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Let’s first examine what linear algebra really even is. Generally, your first
linear algebra class illustrates that it’s about matrices and row reduction, which
is entirely1 the wrong idea. What you should really think of when you hear
linear algebra is linear functions. These are extremely nice functions which
give us a great deal of versatility to do what we want. I’ll start by going through
some basic definitions, and then we’ll get to the point where we can talk about
things.

Definition. (Set) A set is just a collection of objects.

To the more astute reader, this should appear to be a very poor definition
of sets.2 However, I’ll assume you don’t care about the more esoteric side of
things, and so I’ll breeze through this. Let’s just take this at face value. What
is a set? Let me give you a few examples.

Example 0.1. The collection A “ t1, 2, 3u is a set.

This seems pretty dull, and it should. Sets are not super special on their
own. However, there are some more notable sets we will be working with.

Example 0.2. The collection of positive integers (that is, numbers greater
than or equal to 0) is defined to be N. These are also known as the natural
numbers.

This should be pretty familiar (although the notation may be scary). These
are just the numbers you use to count. Now, if you are a merchant of some kind,
you may also want to be able to add and subtract numbers to get estimates of
how much things cost, how many things you have, or any other sort of thing.
To do that, we need a new set of numbers.

Example 0.3. The collection of postive and negative numbers is Z. These are
known as the integers.

Now, you may want to repeatedly add a number (and also may want to
do the opposite). Multiplication is fine in the integers; if we repeatedly add
something, we will still get an integer. However, the other direction is not so
fine. For example, say we want to find a x P Z (read: x in the integers) so that

x ¨ 2 “ 3.

That is, if I add x to itself twice, I want to get 3. Well, there is in fact no integer
that can do that. However, there is something that’s sort of close. We call these
things the rationals.

Example 0.4. The collection of numbers

p

q
, p P Z, q P Z, q ‰ 0

is denoted by Q, and is referred to as the rationals.

1Entirely is a strong word here. It is somewhat about this, but to the same extent that
calculus is about trigonometry.

2Is the set of all sets which do not contain themselves a set?

2



Going back, I can now find that x:

3

2
`

3

2
“

3 ` 3

2
“

6

2
“ 3.

So x “ 3{2. Now, there’s a lot of machinery I’m explicitly skipping over here.
We would need to be more careful with our definitions, and need to discuss
things like monoids or groups to be entirely precise. However, what I just gave
above is really the gist of things.

With multiplication and addition comes things like exponents, and with
exponents comes logs, and there are many things we can now do with our set.
A long time ago a famous mathematician by the name of Pythagoras discovered
the Pythagorean theorem. This says that, for a right triangle with sides a and
b and hypotenus c, we have a formula which relates all these values;

a2 ` b2 “ c2.

This is fine and dandy, and there is a nice geometric proof of this which I
won’t include here. However, up until this point we really only knew about the
rational numbers. Numbers which were irrational were not really discussed. The
Pythagorean theorem gives us our first example of a rational number though;
let’s say my triangle has sides 1 and 1 and hypotenus c. Then the Pythagorean
theorem says

12 ` 12 “ 2 “ c2.

If I take the square root of both sides, this gives me

c “
?
2.

This is strange – if Q really is the biggest universe, this should reduce to some
quotient or fraction of two integers. Let’s try to figure out what these numbers
would be. I’ll first just assume that there are two numbers, let’s say p and q, so
that

p

q
“

?
2.

I also want this to be the smallest ratio of numbers; that is, I can no longer
divide p by q. Alright, if I square both sides, I get

p2

q2
“ 2.

So if I multiply both sides by q2, I get

p2 “ 2 ˚ q2.

In particular, this says that p2 is an even number, that is, it is divisible by 2.
A number is odd if it is not an even number. We can generalize this to say
that x is an even number if there is an integer k so that x “ 2k, and it is odd
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if there is an integer k so that x “ 2k ` 1. If I have an even number multiplied
to an even number, then I have

x ¨ y “ p2kq ¨ p2lq “ 4kl,

where k and l are integers. If I have an even number multiplied to an odd
number, I have

x ¨ y “ p2kq ¨ p2l ` 1q “ 4kl ` 2k “ 2pkl ` kq.

Now, kl ` k is an integer, so this says that it is even. If I have an odd number
multiplied to an odd number, I get

x ¨ y “ p2k ` 1q ¨ p2l ` 1q “ 4kl ` 2k ` 2l ` 1 “ 2p2kl ` k ` lq ` 1.

Notice 2kl ` k ` l is an integer, and so this must mean that it is odd. Going
back to the problem, if p2 is even, then this means that p must be even, since
an odd number times an odd number is odd. Now, if p is even, we get that it is
of the form 2k for some k. So we rewrite this as

p2kq2 “ 4k2 “ 2q2.

Dividing by both sides by 2 says

2k2 “ q2.

We have k2 is still an integer, and so this says that q2 is even. That is, q is
even. But if p and q are both even, we have an issue, since I originally assumed
that p could no longer be divided by q (that is, the fraction is reduced), and
yet this says I should be able to take out another 2 from p. I have run into a
contradiction, so my original statement must have been false.

This proof perplexed the Greeks, and some downright said it was false. It
turns out this is true, and that Q is not the biggest universe, we can go one step
higher. If I take the collection of all numbers which are like

?
2, that is, they

are not in Q but can be approximated by numbers in Q (this idea will make
more sense in real analysis), then I get something called the real numbers. I
will not give a formal definition, but this is again the gist of things.

Moving forward in this story, the real numbers were great. You could do a
lot of things with it, and it’s the basis of your high school algebra class. I can’t
do everything (for example, I can’t take the square root of negative numbers),
but it’s really good enough for me to get by in my everyday life. However, the
real world cannot really be classified in terms of just R (the symbol for the real
numbers). There are, for example, many other factors that I need to consider.
What if I wanted to study something moving across a plane, relative to where
I stand? I would need two bits of information (how far away they are in terms
of horizontal to me, and how far away they are in terms of in front or behind of
me). Thus, I need to move to a new universe, called R2. This is the collection
of elements pa, bq so that a, b P R individually.
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How do I define operations here? I can make addition make sense – just
do it component wise. And this makes sense in a geometric universe as well;
when adding px, yq, I’m moving x units horizontally and y units vertically. But
what does multiplication mean? Can I still do it? The answer is no, I can’t,
and it doesn’t really make sense either. But I can do other things, like the dot
product and cross product, which we’ll explore more so later on. The gist is
that I want to classify all of what I can do with Rn, the direct product of R with
itself multiple times. Moreover, I want to also be able to relate sets to other
sets, and in particular relate Rn to other spaces like Rm.

Before jumping into functions, we also need to discuss some operations on
sets. There are four things we can do with sets: take the union, intersection,
product, and complement.

Definition. (Union) Let A and B be two sets. The union of these sets is
defined to be

A Y B “ tx : x P either A or Bu.

What we used above is called set builder notation: that is, on the left we have
the set, on the right is a description of all the elements in that set. The :
(sometimes it is a bar |) is supposed to be read as “such that.” So, translating
the notation above, we have that A Y B, or A union B, is the collection of
elements x such that x is in either A or B.

Definition. (Intersection) Let A and B be two sets. The intersection of these
sets is defined to be

A X B “ tx : x P A and Bu.

The product is kind of what we did with Rn. We just keep appending more
data on in the form of a tuple.

Definition. ([Cartesian] Product) The product of two sets A and B is defined
to be

A ˆ B “ tpa, bq : a P A, b P Bu.

Before getting to complement, we need to discuss a little about subsets.
We’ve been implicitly using this notion, but it is always good to formalize some-
thing if you’re going to use it a lot.

Definition. (Subset) Let A and B be subsets. We say that A is a subset of
B if for all x P A, x P B. This is denoted by A Ă B. If we have the possibility
of equality, we write A Ď B.

This is kind of similar to your less than and less than or equal to sign. In a
sense, you can think of it like that.

Definition. (Complement) Let X be a set, and A Ă X a subset. Then the
complement Ac is the set

Ac “ tx : x P X, x R Au.

Here, R is read “not in.”
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Notice that for complements to make sense we need a sort of “universal”
set. This is what our X is playing the role as. Now, with all of that out of the
way, we can move on to functions. Functions are ways of relating sets to one
another. In mathematics, and in life, this is really our goal; we want to have
ways of understanding things in terms of other things that we are maybe more
familiar with. Thus, the definition of a function needs to reflect that. It needs
to be a way of pushing one of our sets to another set.

Definition. (Function) For two sets A and B, a function f : A Ñ B takes
elements from A and maps them to elements in B. We call A the domain and
B the codomain.

Let’s look at a silly example.

Example 0.5. Let A “ t1, 2, 3u and B “ t1, 2u. Then a function f : A Ñ B
can be defined in terms of fp1q “ 1, fp2q “ 2, and fp3q “ 2.

To move forward, we need to put some restriction on our functions. As of
now, they are too wild for us to say anything. The first sort of restriction we
put is injectivity. This is sort of an embedding restriction; this says that our set
can be placed inside of another set. In the context of special kinds of functions,
this will also force our set to “play nicely” within another set, although as of
now we do not know how these sets are playing, so to speak.

Definition. (Injective) We say a function f : A Ñ B is injective if for all
a1, a2 P A, fpa1q “ fpa2q implies a1 “ a2.

Example 0.6. Consider the set A “ t1, 2, 3u and B “ t1, 2, 3, 4u. Then the
function which send fp1q “ 1, fp2q “ 2, fp3q “ 3 is injective.

Another kind of function is a surjective function. This is a function which
projects information from a bigger space to a smaller space. Sometimes we want
to squeeze our set into another set. Again, this says nothing of how the set will
“play” in the smaller space, rather it will just tell us where things go.

Definition. (Surjective) We say a function f : A Ñ B is surjective if for all
b P B, there is an a P A so that fpaq “ b.

Example 0.7. Consider the set A “ t1, 2, 3, 4u and B “ t1, 2, 3u. Then the
function which sends fp1q “ 1, fp2q “ 2, fp3q “ 3, fp4q “ 3 is surjective, since
for every element in B I can find an element in A which maps to it. It is not
injective; fp4q “ fp3q but 3 ‰ 4.

Example 0.8. Consider the set A “ t1, 2, 3u and B “ t1, 2, 3, 4u. Then the
function which send fp1q “ 1, fp2q “ 2, fp3q “ 3 is not surjective; there is no
element a P A so that fpaq “ 4.

So we now have seen functions which are not injective but surjective, and not
surjective but injective. What happens when they are injective and surjective?
It turns out there’s a special word for this, so I’ll quickly throw this definition
in.
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Definition. (Bijective) A function f : A Ñ B is bijective if it is injective and
surjective.

So what can I really say if f : A Ñ B is bijective? Well, let’s think about it
for a minute. If there are a certain number of elements in my domain, maybe
say n, and my function is injective, then that means intuitively it embeds into a
space. So I know that there is at least n elements in my codomain. Now, if my
set has n elements and surjects, that means for every element in my codomain I
can find an element in my domain which maps to it. So I have that my codomain
has at most n. Well, if it’s at least n, and at most n, it’s gotta be n.

Okay, that’s pretty cool. We can say something about the number of el-
ements in a set. There’s actually a fancy word for this, and it’s called the
cardinality, or magnitude.

Definition. (Magnitude) The magnitude of a set A is defined to be the num-
ber of elements in that set. Notationally we represent this by |A|.

Now, this is more of the intuitive definition than the formal definition, but
for now this is fine. Let’s go back to trying to figure out what the hell a bijection
does for us. If we’re finite, then this means our sets are the same size. So maybe
this is how we will define size properly; that sets are the same size if they are
bijective. That is, if I can place or map every element from one set uniquely to
an element in another set, then they should be the same size. This seems natural
enough, and in fact is kind of how we actually do things in the real world. If I
had a bag of things, and another bag of things, and I had no concept of size,
one way I could figure out if they are the same size is by placing my things from
one bag on top of the things in the other bag. If they line up perfectly, then
they are the same size. However, this is going to give us some weird things.

Example 0.9. (Weird things are afoot...) Let’s go back to N. In set builder
notation, we have

N “ t0, 1, 2, . . .u,

with the trailing dots meaning that it keeps going. So if bijection is going to
be our notion of size, what can I say about the set 2N? In set builder notation,
this is

2N “ t0, 2, 4, . . .u.

Intuitively (at least, when I was a child first reading about this) I would say this
had roughly half the size. So I should not be able to create a bijection between
this and N. But, it turns out this is entirely wrong.

Let f : N Ñ 2N be defined by fpaq “ fp2aq. This seems to be a fine
assignment, and is in fact how I would construct the even positive integers.
Now recall that for a bijection to happen, we need injectivity and surjectivity.
Let’s start with injectivity. If fpaq “ fpbq, then this means that 2a “ 2b. But
I can divide both sides by 2 to get that a “ b. So this is injective. Now, for
surjectivity, recall that this says that for all y P 2N, I should be able to find an
x P N so that fpxq “ y. But what if I take y “ x{2? You may say, “But James!
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If I divide by 2, I might no longer be a natural number!” Let me remind you
that y “ 2a for some a P N. So what I’m doing is just working backwards, and
saying x “ a. Things work out nicely, and we get that the function is surjective.

This weird paradox turns out to be called the Hilbert Hotel paradox. The
idea is that you have a very famous football game going on, and there are
infinitely many people at it. At the Hilbert hotel, there is an infinite number of
rooms, and Hilbert has filled them all up for the evening. All of the people from
the football game come to the hotel and would like to stay the night. What is
Hilbert to do? If he says no, he misses out on infinite profit. He can’t let them
stay though, right?

Wrong. What Hilbert is going to do is he will move all the people currently
at the hotel to rooms of even numbers. From our bijection earlier, we know
that this is possible, since they have the same size. Now, he can place all of the
other people in the odd numbered rooms, which for similar reasons is the same
size as N. Thus, he wins and gets all the profit.

We can do more weird things like pushing them to prime numbered rooms
(that is, there is a bijection between primes and N), or every tenth room, or
whatever thing you wish so long as there is a bijection. This is one of my
favorite paradoxes from set theory, as it seems ridiculous until you look at it
notationally.3

As we can see, there are weird things that happen with sets and functions.
I could keep going to describe to you how R and N are not in bijection, and so
therefore not the same size,4 but I feel like this is enough for now. We should,
after all, move on to actual linear algebra eventually.

We should first talk about fields if we’re going to talk about linear algebra.
A field is the nicest thing you can imagine; its a realm in which you can add,
subtract, divide, and multiply. Essentially, it’s a world where you can do algebra.
Everything has an inverse in terms of multiplication (I just divide by it to get
to 1) and everything has an inverse in terms of addition (I subtract by it to get
to 0). The key examples you should hold in your head are Q and R as you read
this definition.

Definition. (Field) A set F equipped with two operations5 generally denoted
by ¨ (for multiplcation) and ` (for addition) which satisfies these properties:

(i) There is an identity for both ¨ and `. That is, there is an element a P F
so that for all b P F , a ` b “ b ` a “ a, and there is an element e P F so
that for all b P F , e ¨ b “ b ¨ e “ b.

(ii) Every element has in inverse for both ¨ and `. That is, for every element
b P F , there is a ´b so that b` p´bq “ p´bq ` b “ a (where a is as above),
and for every b P F there is a b´1 so that b ¨ b´1 “ b´1 ¨ b “ e.

3Even then, it might still seem a little ridiculous. But it’s how things go.
4See: Cantor’s diagonalization argument
5I didn’t really discuss operations, so let me do it in a footnote. Let A be a set. An

operation is a function which goes from A ˆ A into A which is closed; that is, it doesn’t leave
A.
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It may be good for your soul to check that R and Q are both fields. I will not
do that, as it’s tedious and I’ve done it many times already. However, fields are
important, as again they let us do things like algebra. Linear algebra is more
about things called vector spaces than it is about fields though.

Definition. (Vector Spaces) A vector space V over a field F is a set V with
two operations ` and ¨ such that it satisfies these properties:

(i) For all u, v, w P V , u ` pv ` wq “ pu ` vq ` w.

(ii) For all u, v P V , u ` v “ v ` u.

(iii) There is an element 0 P V so that for all u P V 0 ` u “ u ` 0 “ u.

(iv) For every u P V there is a p´uq so that u ` p´uq “ p´uq ` u “ 0.

(v) For a, b P F and u P V , we have apbuq “ pabqu.

(vi) If 1 is the multiplicative identity in F , then for all u P V we have 1u “ u.

(vii) For all a P F , u, v P V , apu ` vq “ au ` av.

(viii) For all a, b P F , u P V , pa ` bqu “ au ` bu.

This is a complicated definition with a lot to unpackage. Maybe it’s best
to go back to our example Rn. There, we wanted to do things kind of like R;
that is, we want to do algebra. But if we imagine things geometrically, we see
that things like multiplication don’t quite make sense. However, if I defined
multiplication by an element in R to be just multiplying every component by
that number, then that makes a lot of sense; it’s simply just making your vector
longer. The vector space definition is a geometric one, and it has a lot to do with
understanding how these vectors interact and play with one another. However,
in mathematics we always want to get more out of the little we have, and so
we noticed that if we define vector spaces as above, we could do everything we
were doing in Rn and R in full generality. For example, we will use this to do
things in differential equations in a bit.

Let’s (painfully) try showing that Rn (as we’ve defined it) over R is a vector
space.

Example 0.10. Let pa1, . . . , anq, pb1, . . . , bnq, pc1, . . . , cnq P Rn, α, β P R
throughout.

(i) We have

pa1, . . . , anq`ppb1, . . . , bnq`pc1, . . . , cnqq “ pa1, . . . , anq`pb1`c1, . . . , bn`cnq

“ pa1 ` b1 ` c1, . . . , an ` bn ` cnq “ pa1 ` b1, . . . , an ` bnq ` pc1, . . . , cnq

“ ppa1, . . . , anq ` pb1, . . . , bnqq ` pc1, . . . , cnq.

So this checks out.
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(ii) We have

pa1, . . . , anq ` pb1, . . . , bnq “ pa1 ` b1, . . . , an ` bnq

“ pb1 ` a1, . . . , bn ` anq “ pb1, . . . , bnq ` pa1, . . . , anq.

(iii) The 0 here is just p0, . . . , 0q, since

pa1, . . . , anq ` p0, . . . , 0q “ pa1 ` 0, . . . , an ` 0q “ pa1, . . . , anq.

(iv) It is just the negative. So

pa1, . . . , anq ` p´a1, . . . , anq “ pa1 ´ a1, . . . , an ´ anq “ p0, . . . , 0q.

10


