James Marshall Reber, ID: 500409166 Math 6111, Homework 1

Problem 1 (Section 1.2, Exercise 12). Show that both cancellation laws hold in a group. That
is, ar = ay = x =y and xa = ya = x = y. Show that any finite semigroup in which both
cancellation laws hold is a group.

Proof. Before beginning, we’ll need a claim.

Claim 1. Let X be a set such that | X| < co. If f: X — X is a well-defined function such that f
is injective, then it is bijective.

Proof. For it to be bijective, we need f to also be surjective. Assume for contradiction that f is
not surjective. Then there is at least one y € X such that f(z) # y for all z € X. Since the
set is finite, and the codomain and the domain are the same, we use the Pidgeonhole principle to
deduce that there must be z1, 29 € X so that x; # xo, f(z1) = f(x2). But this then contradicts
our assumption that f is injective; hence, we must have that f is surjective, and so bijective. [

We first start with showing that both cancellation laws hold in a group. Let G be our group,
and take a,z,y € G. Assume that we have ax = ay. Then since we are in a group, there exists an
a~! € G. Multiplying to the left, we have

a Yaz) = a Y ay).

Associativity then gives

la)y.

a = e, where e € GG is the identity element. So we rewrite this

(ata)z = (a”

1 1

Since a~ " is an inverse, we have a~
as
ex=1x =1y =ey.

So we have the cancellation law; that is, ax = ay = x = y. Doing the same operations on the
right gives us the same result; that is, multiplying a~! to the right, we have

'=a2(aa™) =2 =y=ylaa™") = (ya)a .
We now need to show that any finite semigroup in which both cancellation laws hold is a group.
Let S be a finite semigroup satisfying this. We would like to first establish that there is an identity

element; i.e. an element e such that

(xa)a™

ae=ea=a
for all @ € S. Fix arbitrary a € S, and let f, : S — S be a function where

fa(b) = ab.

We see that this functions is well defined, since if ¢ = b then

fa(c) = ac = ab = fq(b).
We also see that the function is injective, since
fa(b) = fa(c) <> ab = ac,
and the left cancellation law tells us that b = ¢. Thus, f, : S — S must be a bijection by Claim

1, since |S| < oco. Therefore, we have that there is a e, € S so that fq(eq) = a, or ae, = a. Now,
take b € S arbitrarily. We have that

ab = (aeq)b = aeyb),

and so the left cancellation law gives
b=-eyb
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for all b € S. In particular, taking b = a, we have
ae, = eqa = a.
Finally, take ¢ € S arbitrarily again. Then we have
cb = c(eqgb) = (ceq)b,

and so
c=ce,

by the right cancellation law. Since this works for all ¢ € S, we have that e, is a left and right
identity for all x € S. Hence, it is an identity element, and we can rewrite it as e. Thus, we have
S is a monoid.
To get that S is a group, we need to establish that every element admits an inverse. Again, let
fa S — S be the function

fa(b) = ab.

Since this is a bijection, we have that there is some element b € S so that
fa(b) = ab=ce.

Denoting b = a;zl, we have that every element admits a right inverse. Letting g, : S — S be the
function

9a(b) = ba,
we can analogously get that every element admits a left inverse, azl (the argument that this is
a bijection is the same as the argument for f,, except we flip multiplication and use the right
cancellation law). We then want to establish that

-1 -1

ay, =ap .
To see this, notice that
-1 -1, -1
a;” =a; (aag).
By associativity, we can rewrite this as
—1, -1 -1 5 -1 -1
a; (aay’) = (ap a)ay =ag .
So we have
azl _ %31 .
as desired. Since this works for arbitrary a € S, we get that every element has an inverse. Since
every element admits an inverse and we have an identity, we get that S must be a group. O

Problem 2 (Section 1.3, Exercise 4). Is the additive group of integers, (Z, 4+, 0), isomorphic to the
additive group of rationals, (Q,+,0)?

Proof. Assume that we could find a homomorphism f : Z — Q which is bijective. Then, in
particular, we have that there is a rational number p/q such that
p
f1)==.
q
Now, we have that
np
FO) = FA+ 144 1) = F) 4o+ £() = nf() = 2
for all positive integers n using the homomorphism property of f. So this says that every positive
rational number can be expressed by an integer multiple of p/q. But this is not the case; take, for

example, p/(2¢g). Then we have that n satisfies
_ D ~2n =1,
¢ 2
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but this forces n = 1/2, a contradiction. So there is no such isomorphism. Furthermore, this tells
us that (Q, +, 0) is not a cyclic group, since all infinite cyclic groups are isomorphic to (Z,+,0). O

Problem 3 (Section 1.4, Exercise 3). Show that any group in which every a satisfies a® = 1 is
abelian. What if a®> = 1 for every a?

Proof. If a> = 1 for all a € G, then in particular we have that
(ab)? =1
for all a,b € GG. That is, we have
ab=>b"ta L.
But b2 = 1 implies that b = b~! (multiply b=! to the left of both sides), and a? = 1 implies a = a~*
(multiply a~! to the left of both sides), so we get that

ab = ba.
Thus, the group is commutative.
Consider the group
1 a b
G = 0 1 ¢| :abceZ/3Z
0 0 1

under matrix multiplication, where the coefficients are in Z/37Z.First, let’s see that this is indeed a
group. Notice that we have the natural identity, I,,, inherited from normal matrix multiplication.
Next, notice that it’s closed under multiplication. Finally, notice that there are inverses; we have

1 a b 1 d ¥V 1 a+d V+ad+b
01 ¢ 01 =10 1 d+ec
0 0 1 0 0 1 0 0 1
Setting a’ = —a, ¢ = —c¢, and solving
b +ad +b=0,
we get
b =ac—b.

So our inverse is then
1 —a ac—b
0 1 —c
0 O 1
So it satisfies all of the axioms to be a group, and we’re done.
Next, we see that, for arbitrary M € G, we have

1 3a 3ac+ 3b
MP=10 1 3¢ ,
0 0 1
which, after taking these coefficients mod 3, gives us
1 00
M3=I3=10 10
0 0 1
So every element cubes to the identity; however, examining
1 1 2
M=10 1 1],
0 0 1
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1 2 2
Q=101 1],
0 01
we have
1 00
MQ={(0 1 2|,
0 01
1 0 2
QM =10 1 2],
0 01
SO
M@ # QM.
Thus, the group is not commutative. O

Problem 4 (Section 1.5, Exercise 1). Let C(A) denote the centralizer of the subset A of a monoid
M. That is, let

CA)={be M : ab=ba for all a € A}.

Note that

(1) Ac ey,
and if A C B, then

(2) C(B) Cc C(A).

Show that these imply that
C(C(C(A))) = C(A).
Without using the explicit form of the elements of (A), show that C(A) = C((A)).

Use this to show that if a monoid is generated by a set of elements A which pair-wise commute,
then the monoid is commutative.

Proof. Throughout, we implicitly use the fact that C(A) is a submonoid of M, where A C M is a
subset. This can be found in Section 1.4, pg. 41 of Jacobson.
To see (1), take a € A and notice that, for all b € C(A), we have ab = ba by definition of C(A).
Hence, a € C(C(A)). Since the choice of a was arbitrary, we get A C C(C(A)); that is, (1) holds.
To see (2), take a € C(B). Then we have for all b € B, ab = ba. But, since A C B, we get
that for all b € A we have ab = ba. Hence, a € C(A). Since the choice of a was arbitrary, we get
C(B) Cc C(A).
Notice that (1) and (2) tells us that
C(C(C(A))) c C(A).
Replacing A in (1) by C(A), we have that
C(A) co(ee)),
and so we have
3) c(e(C(A))) = C(A).

Let ¢ € C(A). Then A C C(c) by construction, since ca = ac for all a € A. Thus, (4) C C(c),
since (A) is the smallest submonoid which contains A. Since this works for all ¢ € C'(A), we have

(4)c [ Cle)=c(c),
ceC(A)
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which, using (2) and (3), tells us that
C(A) = C(C(C(A))) C C((4)).

By definition, we have
so (2) tells us that

Coupling these facts together, we get
C((4)) = C(A).

Let M = (A). The statement says that A C C(A), since given a € A, b € A, we have ab = ba, and
since the choice of b is arbitrary we get a € C'(A). Therefore we have

C(A) = C((4)) = C(M),

and so A C C(M). Hence, (A) C C(M) by minimality again, and since (A) = M, this then tells
us that M C C(M). Therefore, M must be commutative, since given any a € M, b € M, we have
that a € C(M), and so ab = ba. O

Problem 5 (Section 1.5, Exercise 4). Show that if ¢ is an element of a group and o(g) = n then
g*, k # 0, has order [n,k]/k = n/(n, k). Show that the number of generators of (g) is the number
of positive integers less than n which are relatively prime to n. This number is denoted by ¢(n)
and ¢ is called the Euler ¢-function.

Remark. Throughout, we implicitly use the fact that, for cyclic groups, the order of the group
is the exponent of the group. This statement is proven in Theorem 1.4 in Jacobson. We also
implicitly use power rules, which are both in Jacobson and Lang, as well as explained in the lecture
notes

Proof. Note that [m,n] is the least common multiple (Icm) of m and n and (m,n) is the greatest
common divisor (ged) of m and n. From earlier in Jacobson, we note that

(4) kn = [k,n](k,n).

Notice as well that
(gk)n/(k,n) _ (gn)k/(k,n) _ ek/(k,n) —e

9

so we must have that n

k
o(g") < —,
9= G
since (g*) is a cyclic subgroup and so it’s order is it’s exponent, which is the smallest positive
integer power which kills g*.

Now, suppose that we have an m such that
(") =g" =e.
Then since n is the order of (g), and hence the exponent, the division algorithm gives us that

That is, since n is the exponent, we have that n is the smallest integer such that ¢" = e, and so

n < km. Using the division algorithm, we have km = qn + 7, ¢ a positive integer and 0 < r < n an

integer. If r # 0, we have that power rules give us

gkm — gqngr — egT — g'r —=e,

so r is a smaller integer than n which kills g, contradicting the minimality of n. Hence, n | km.
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Dividing both sides by (k,n), we have
n k
CRORCEIR
Notice that ged(n/(k,n), k/(k,n)) = 1. If we consider the case where ged(n/(k,n),k/(k,n)) =d >
1, we have that d(k,n) | n, d(k,n) | k, and d(k,n) > (k,n), a contradiction of the maximality of
(k,n). So, we must have that

n
< m.

n Im o
m
(k,n) (k,n) —
Therefore, since this worked for all m which satisfies (%)™ = e, we can take m = o(g") to get
n

Gy SO = gy = o),
From (4), we see that
on_ [kn]
G =G = Tk

Now, if (¢*) is a generator for (g), we must have that o(¢g*) = o(g) = n. By what we’ve just shown,
this can only happen if (k,n) = 1. So the number of generators of (g) is the number of positive
integers less than n which are relatively prime to n. O
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Problem 6 (Section 1.6, Exercise 4). Show that if « is any permutation, then
alit, ... ip)at = (a(iy),...,a(iy)).

Proof. Let J be the underlying set where these elements are being shifted around. Let x € J. We
consider some cases.

o Let z € {i1,...,i,} and assume « fixes = (that is, a~(z) € {i1,...,i,}). If a fixes z, then
we have that (i1,...,i.)a" ! (z) = i} for some 1 < k < r. So a(iy,...,i)a " (z) = a(iy).
e If o does not fix x, consider the case where a~1(z) ¢ {i1,...,i,}. Then we have that
(i1,...,i)a" (z) = a~!(z), and so applying « to the left gives z. So we see that a(iy, ..., 4, )a !
fixes x.
e If o does not fix z, consider the case where a~!(z) = ir_1 € {i1,...,ir}, 2 < k <7+ 1.
Then we have that (iy,...,i,)a"1(2) = ix, and so a(i1,...,i.)a" () = aliy).
e Finally, if x ¢ {i1,...,i,} and « fixes z, it’s clear that a(i1,...,i,)a " (z) = 2.
Using these properties, we can do the cycle decomposition of o = a(iy,...,4i,)a~ . It is all depen-
dent on whether a~'(z) € {i1,...,i,}, and for this to happen we need x = a(iz). We see then

that o(a(i1)) = a(iz), o?(a(i1)) = a(iz), and so on until we get to a(i,), in which we see that
o(a(iy)) = a(i1). Hence, it is a cycle, and it can be written as

-1

a(iy,...,ip)a =0 = (ali1),...,a(i)).

O

Problem 7 (Section 1.7, Exercise 4). Let G be a finitely generated group, H a subgroup of finite
index. Show that H is finitely generated.

Proof. Let G = (S), S ={z1,...,2,}. Then
G=||uH,
i=1

where the y; are taken to be representatives of the cosets. Take y; = 1 without loss of generality.
Since the z; € G by assumption, we get that z;y; € yx, ;H for all 4, j, and hence there is an h; ; so
that

LY = Yk, ;hij-
Now, take h € H. We have that
h=ux, 2.
Notice that
Tl = Yk, Py 1
So we can rewrite this as
h =y T, Yk, g, o,
We now examine
Lly_1Ykyy, = ykzv,l,klylv hlvfl,kl,lv'
We can continue replacing these generators, and after relabeling we get
h=y-hy N
Since h € H, we get that y = 1, and so we have
h=hy--h,.
7
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So taking the set
Sl = {hl 1y--- 7h7‘,’n}7

we see that
(8" = H.
Hence, H is finitely generated. O

Problem 8 (Section 1.7, Exercise 6). Let H be a subgroup of the finite group G. Show that there
exists a subset {z1,..., 2} of G which is simultaneously a set of representatives of the left and of
the right cosets of H in G, that is, GG is a disjoint union of the z; H and also of the Hz;, 1 <17 <r.

Proof. We proceed via the hint. Take g € G. We can write
S
HgH = |_| x;9H,
1

where z; € H and zjgH Nx,gH = @ if j # r. To see this, notice that

HgH = | J hgH.

heH

Furthermore, take x;,z, € H, and examine y € z;9H Nx,gH. We have that

y = zjgh1 = zrgho,
and so we can rewrite this as

$j9h1h51 = Irg,
and letting h = h1hy !, we have
zjgh = x,9.
So
argH = (xj9h)H = (x;9)(hH) = zj9H.

So if they are not disjoint, they are identical. Thus, we can partition the space in a way similar to
cosets.

In a way analogous to cosets, we have the inverse map gives us a bijection between left partitions
and right partitions, and so there are s right partitions of HgH; that is, there are y € H so that

S
HgH = |_|Hgyj.
1

Let z; = xz;9y;. We'd like to establish that

HgH =|JzH = JHz;.

But this follows, since

Usz = U:L'jgyjH = Ul’ng = HgH,
and likewise

UHz =JHejgy; = Hay; = HgH.
Furthermore, the disjointness follows from the disjointness of the z; and y;, so this is a collection
of representatives of the left cosets and right cosets. Do this process for every representative coset
gH to get

HGH =G =|JzH = JHz,

so the collection {z;} is a set of representatives of both left and right cosets. O

Problem 9 (Section 1.8, Exercise 4). Show that a subgroup of index two is normal. Hence, prove
that A,, is normal in S,,.
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Proof. We can write G = H Ll gH, where g ¢ H, since this has index 2. Thus, we have that
gH = G — H; that is, the set of elements in G which are not in H. Notice as well, though that we
can write this in terms of right cosets, so that G = H U Hg. Hence, again, Hg = G — H, but this
tells us that gH = Hg. Multiplying by ¢! on the right gives gHg~! = H, or that H is a normal
subgroup.

From lecture, we have that |A,| = |S,|/2. So [S, : A,] = |Snl/|An| = 2, and by prior work it
must be normal. O

Problem 10 (Section 1.8, Exercise 11). Let G be a group of order 2k, where k is odd. Show that
G contains a subgroup of index 2.

Proof. The hint says to use a prior exercise.
Claim 2. A group of even order contains an nontrivial element a such that a® = 1.

Proof. Consider the map ¢ : G — G such that p(z) = x2. We see that ¢(e) = e and that this
function is well defined, since x = y implies that
p(r) = 2" =y* = o(y).

Examine ker(p) = {y € G : ¢(y) = e}. We have that | ker(¢)| > 1. If | ker(¢)| = 1, then this says
that every element other than the identity has a unique inverse. However, notice that this implies
that the order of the group will be odd, since this says that for all ¢ € G we have g # ¢~ !, and so
we can write |G| = 2k + 1, where k is the number of non-identity elements. This is a contradiction
to the fact that |G| is even, and so therefore we must have |ker(y)| > 1; that is, there is some
y € Gsothat y>? =e, ory =y ' O

Claim 3. Let ¢ : G — K be a homomorphism of groups. Then
ker(p) ={g € G : ¢(e) = ex}
is a subgroup of G.

Proof. We see e € ker(p), since ¢(e) = ex. Next, take x,y € ker(y), then we have zy~! € ker(y),

since
play™) = p(@)ply) ™ = exer' = e
Hence, ker(yp) is a subgroup. O

Claim 4. A composition of homomorphisms ¢ : G - H and x : H — K is a homomorphism from
G to K.

Proof. Let v: G — K be defined by v = k o ¢. Then, for all z,y € G, we have
V(zy) = Kp(zy)) = wle(@)e(y)) = rle(@))r(e(y) = 1(@)7(y)-
So 7 is indeed a homomorphism. O

Let Gr, = {pg € M(G) : @q4(x) = gz Vo € G}. This is the transformation group of left
translations, as defined on pg. 52 of Jacobson.

Claim 5. We have that G < Sg; that is, it is a subgroup of the space of all bijections from G to
itself.

Proof. We have Id = ¢, € G,. Take ¢, € G. Then we see that ¢, ' = ¢, 1, since
propai(y) =z ly =y =1d(y) = ¢ ey = g1 0 pa(y).
Furthermore, we have ¢, o ¢, = ¢4y, since

0z 0 py(9) = 2Yg = Vay(9),
9



and so G, is closed under multiplication, inverses, and has an identity. Therefore, it is a subgroup.
O

Define k : G — G, via k(g) = p4. We see that  is an isomorphism. Clearly & is well defined,
since x = y implies that
K(T) = o = py = K(Y).
It is also clearly surjective, since for all ¢, € G, we have k(g) = ¢,. We also see injectivity by
noticing that
Kx)=krYy) G pe=pycaxg=ygforallge G-z =y.
Finally, it is a homomorphism, since

K(2Y) = Pay = Pa 0y = K(x) 0 K(Y).
So we have G = G, < Sg. Recall that ¢ : S¢ — {—1,1}, where we equip {—1,1} with multiplica-
tion and ¢(0) = 1 if o is even and ¢(0) = —1 is 0 is odd, is a homomorphism (this is by the lecture
notes). So we have a homomorphism vy =9 ok : G — {—1,1} by Claim 3, and H = ker(y) < G a
subgroup by Claim 2. By Claim 1, we have a non-trivial element g € G with order 2. We would
like to establish that v(g) = —1. To do so, we need to see that k(g) = ¢4 is a product of an odd
number of transpositions. Take z,y € G such that ¢4(x) = gr = y. Then we have ¢4(y) = x, since

gy = g(g7) = g’z = =.
Notice that ¢4 is a bijection as well, and so we can write it as a product of |G|/2 = k transpositions.
Since we assumed k was odd, we get that v(g) = —1, and so v : G — {—1,1} is a surjection.

Claim 6. Let ¢ : G — K be a homomorphism. Then ker(y) is a normal subgroup.

Proof. Claim 2 establishes that it is a subgroup. To see that it is normal, we need to show that

gker(p)g™! C ker(p).

Notice that for all g € G, k € ker(y), we have

o(gkg™") = p(g)e(k)plg) " = p(g)plg) " = ex.

So gkg~! € ker(y), establishing that this is normal. O
Claim 7. A homomorphism ¢ : G — K is injective if and only if it’s kernel is trivial.
Proof. (=) Assume ¢ is injective. Then

ker(p) ={g € G : ¢(g) =e}.

But we see that ¢(g) = e = ¢(e) implies g = e, and so ker(p) = {e}.
( <= Assume ker(y) is trivial. Take ¢(g) = ¢(h). Then we have

e(9)p(h) ' =plgh™ ) =ewr gh™' =e e g=h,
and so  is injective. O

Claim 8 (First Isomorphism Theorem). If v : G — K is a surjective homomorphism, then we have
that G/ ker(y) =2 K.

Proof. Claim 5 establishes that G/ ker(+y) is indeed a group (see quotient group pg. 56 in Jacobson).
Let f : G/ker(y) — K via f(gker(y)) = v(g). This map is well defined, since if g ker(y) = ¢’ ker(v),
we have that ¢’k = g for some k € ker(), and so

fgker(y)) = v(9) = v(d'k) = 1(g") = f(g'ker(7)).
We see it is a homomorphism, since

f(gker(y)hker(v)) = f(ghker(v)),
10



since ker(7y) is normal, and

f(ghker(v)) = v(gh) = v(9)v(h) = f(gker(y))f(hker(y)).

We see that f is clearly injective, since it’s kernel must be trivial. That is, if f(gker(y)) = e, then
we have 7(g) = e, but this implies that g € ker(y) and so gker(y) = ker(y). Finally, the map is
surjective, since for all k£ € K we have a g € G so that v(g) = k, which is hit by f(gker(7)). O

Using Claim 7, we get that G/ ker(y) = {—1,1}, or in other words that |G : ker(vy)] = 2. Thus,

we have found a group of order 2.
O
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Problem 11 (Section 1.9, Exercise 3). Show that a — a~! is an automorphism of a group G if
and only if G is abelian, and if G is abelian, then a — o is an endomorphism for every k € Z.

Proof. ( = ) Assume that f(a) = a™! is an automorphism on G. Then we would like to show
that for all a,b € G, we have ab = ba. Notice that for all a,b € G, we have that the automorphism
property gives us

ab= fla™) ") = fla™b7h) = (a0 = ba
for all a,b € G. Hence, the group G is abelian.
( <= ) Assume that G is abelian. Then we would like to show that f : G — G defined by
f(a) = a~! is an automorphism. To do so, we show that f is well-defined, injective, surjective, and
a homomorphism. First, let’s see well-defined; take a = b, then we see that

alb=alta=e=10b""b,

so a”! = b7!, and hence f(a) = f(b). To see injective, if f(a) = f(b), we have a=! = b~!. Notice
that
aa b =e=ba"t,

and so we see a = b. Hence, the function is injective. For surjectivity, since G is closed under
inverses, we have that for all g € G, g~ € G, and so we see f(g~!) = g. Finally, we need to see
that the function is a homomorphism. That is, for all a,b € G, we need to see that f(ab) = f(a)f(b).
Notice that, since G is abelian, we have ab = ba, or in other words a6~ = b~1a~! = (ab)~!, and
so we have

fla)f(b) =a™'b7" = (ab)™" = f(ab),
and hence this is an automorphism.

Finally, assume that G is abelian. We want to establish that g : G — G defined by g(a) = a” is
an endomorphism for every k € Z. To do so, we need to show it’s well-defined, surjective, and a
homomorphism. For well-defined, if a = b, then a* = b* clearly, and so we have g(a) = g(b). For
surjective, we take h € G, and we notice that h~**1 € G such that g(h=**1) = h=F*+*+1 = b Hence,
the function is surjective. Finally, we need to show that for all a,b € G, we have f(ab) = f(a)f(b).
To do so, we establish a claim.

Claim 9. If G is an abelian group, then (ab)* = a*b* for every k € Z.

Proof. To establish this, let’s first take k € Z>g. The case kK = 1,0 is trivial (for £ = 0, we have
(ab)? = e = a®°, and for k = 1 we have (ab)! = ab = a'b'). For k > 2, we proceed by induction.
We first show the base case for k£ = 2; that is,

(ab)? = a®b?.
To see this, notice that
(ab)? = abab.
Now, since G is abelian, we have ba = ab, and so we can rewrite this as
(ab)? = a(ba)b = a(ab)b = a*b?,
and so we are done. Now, assume it holds for £ — 1. That is, we have
(ab)k_l — ak_lbk_l.
We want to show it holds for k. We can write this as

(ab)* = (ab)*Lab = a*10* Lab.
12



Again, using the relation that ba = ab, we can write this as
a" 1R 2bab = a* 10 2ab?.
We repeat this process k — 1 times to get
" tabt "t = oFvk.
Thus, we have
(ab)* = a*b*,

and so the induction hypothesis holds.

We now consider the case where k € Z.¢. Then we can write k = —c, where ¢ € Z~¢. Thus, we
have

(ab)f = (ab) ™ = (@) ") = (b a 1) = (a7 = (@ )P = 0D

using the fact that G is abelian, properties of powers, and the claim shown prior. Hence, we have
it holds for k € Z. O

Using this claim, we see that, since G is an abelian group, we have
9(a)g(b) = a*b" = (ab)* = g(ab),

and so this is a homomorphism for k € Z. It is therefore an endomorphism. ]

Problem 12 (Section 1.9, Exercise 6). Let a € G be a group, and define the inner automorphism
I, to be the map = — axa™! in G. Verify that I, is an automorphism. Show that a — I, is a
homomorphism of G into Aut(G) with kernel the center C' of G. Hence, conclude that Inn(G) =
{I, : a € G} is a subgroup of Aut(G) with Inn(G) = G/C. Verify that Inn(G) is a normal
subgroup of Aut(G). We have that Aut(G)/Inn(G) is called the group of outer automorphisms.

Proof. There are a lot of steps to this problem, so let’s break it up.
Step 1: We first establish that I, is indeed an automorphism. To do so, we need to check that it’s
well-defined, injective, surjective, and a homomorphism. Let z =y € G. Then

Lo(z) = aza™ = aya™" = L(y)

by multiplying a~! to the left and a to the right, so the function is well-defined. Next, we check
it’s injective. Let I,(x) = I,(y). Then we have

ara! = aya_l Sr=y

after multiplying a~' to the left and a to the right. Hence, it’s injective. To see surjectivity, take
g € G. We see that a~'ga € G, and furthermore

I(a ga) = aa tgaa™t = g.

Since the choice of g was arbitrary, we get it’s surjective. Finally, we need to check it’s a homo-
morphism. Notice that, for x,y € G, we have

I(zy) = azya™ = az(a la)ya™! = aza taya™t = I, (z) 1. (y),
and so it’s indeed a homomorphism. Thus, I, is an automorphism.
Step 2: We presumably need to establish that Inn(G) is, in fact, a subgroup of G. First, we see
that I, = Id, since I.(x) = exe ! = x for all z € G. Next, if I, € Inn(G), we need to establish that
it’s inverse is also in Inn(G). But notice that I,—1 o I,(z) = a laza='a = x for all z € G, and so
they are inverses. Hence, I, ! = I,-1 € Inn(G). Finally, we need to establish that it’s closed under
products. But this follows from the fact that I, o Iy(x) = abzb~la™! = abz(ab)~t = I(z) for all
x € G, and so [, 0 I = I € Inn(G). Thus, it is a subgroup.
Step 3: Now, we need to establish that a — I, is a homomorphism of G into Aut(G). That is, if we
define this function to be ¢, we wish to show that ¢ is well-defined and satisfies the homomorphism

13



property. To see well-definedness, if a = b, then we see that I,(z) = ara™! = bwb~! = I(x) for all
x € G, and so I, = I. Hence, ¢(a) = ¢(b). To see the homomorphism property, we need to show
that ¢(ab) = ¢(a)p(b). Notice that for all z € G we have

Ip(x) = abzb™ta™ = I, (bab™1) = I, o I(z),
and so
Iop = 1g 0 Iy;

in other words, ¢(ab) = ¢(a)p(b). So it is a homomorphism.
Step 4: We now want to establish that

ker(¢p) =C ={g € G : ga=ag for all a € G}.

Notice that ker(¢) = {g € G : ¢(g) = L.}, but ¢(g) = I, implies that, for all x € G, we have

Iy(z) = grg =1z < gz = xg.

Since this applies for all z, we get that g € C. So ker(¢) C C, and for the other direction if g € C
we have gz = xg for all z € G, so in particular grg~! = z, and therefore I, = I.. Hence, g € ker(¢),
and so C' C ker(¢). Thus, C' = ker(¢).
Step 5: We have a homomorphism ¢ : G — Inn(G) which is surjective, and so the First Isomor-
phism Theorem tells us that G/ ker(¢) = Inn(G). We established in Step 4 that ker(¢) = C, and
so we get that G/C = Inn(G) < Aut(G).
Step 6: Finally, we need to verify it is a normal subgroup. Take £ € Aut(G). Then we see that

klk N z) = klaw N (z)a™) = k(a)k(k 1 (2))k(a™t) = k(a)zk(a) L.
Since k is an automorphism, we have that x(a) = b € G, and so we can write this as

r(a)zr(a)™t = bab~! = I, € Inn(G).

Since the choice of I, k were arbitrary, we get that this is a normal subgroup. (|

Problem 13 (Section 1.10, Exercise 2). Let {H,} be a collection of subgroups containing the

normal subgroup K. Show that
NHa/K) = ((V Ha) /.

Proof. We wish to establish that these sets are equal. Take xK € (((Hq/K). Then, for every
a, K € H,/K, which tells us that tK = hoK for each «, where h, € H,. In other words
rh;! € K ¢ H,. Thus, we get xh;! = h!, or x = h/ h,. Hence, x € H, for each «, and so

('3}

x € (Hqo C G. Taking it’s image in the quotient, we see that K € ([ Hy)/K, and so we get

N(Ha/E) (ﬂ Ha) /K.
For the other direction, Notice that (| H, C H, for each «, and so we have
(ﬂ Ha) /K  ((Ha/K).
Hence, we have equality. O

Problem 14 (Section 1.12, Exercise 5). Let p be the smallest prime dividing the order of a finite
group. Show that any subgroup H of G of index p is normal.

Proof. We use the prior problem to solve this one.

Claim 10 (Section 1.12, Exercise 4). Show that if a finite group G has a subgroup H of index n,
then H contains a normal subgroup of G of index a divisor of n!.
14



Proof. We proceed via the hint. Let G act on the coset space G/H via left translation. Then we
have a homomorphism ¢ : G — Sym(G/H), where ¢(g)(xH) = (92)H € G/H. Notice that

ker(¢p) ={9g € G : ¢(9)(zrH)==zH for all ztH € G/H}.
That is, the collection of g € G so that
gtH=2H < x 'gge H gea tHa

for all x € G, and so in particular we have g € H. Hence, ker(¢) < H a subgroup which is
normal in G. We wish to then figure out [G : ker(¢)]; that is, we would like to know |G/ ker(¢)| |
n!. But the inner-outer automorphism theorem (Problem 2) tells us that G/ker(¢) = K <
Sym(G/H). Lagrange’s theorem tells us that |K| = |G/ ker(¢)| | |[Sym(G/H)| = n!. Thus, we have
the result. 0

Now, using this, let G act on G/H via left translation. Then we have that there is a normal
subgroup K < H such that [G : K] | [G : H]! = pl. Since K < H, we have
p=[G:H]|[G:K]|p.

We see that if [G : K] # p, then [G : K| = pk, where k > p. But this contradicts the fact that
[G: K]|p' =pp-1)---1. So we must have [G : K| = p, which forces K = H. Hence, H is

normal. O

Problem 15 (Section 1.2, Exercise 7). Let H be a proper subgroup of a finite group G. Show that
G+# | JgHg™

geG

Proof. We break this up into cases.
Case 1: If H is normal, then gHg~' = H for all g € G, and so we have

UeHg ' cG,
geG

as desired.
Case 2: Assume that H is not normal. Let K = {gHg™! : g € G}. Then |K| > 2 by assumption.
Furthermore, G acts transitively on this set by conjugation, since for any gHg ', 2Hz~! € K we
have

(gz™ Y - (xHz™Y) = gelaHa tag™t = gHg™ L.

The Cauchy-Frobeinus theorem (or Burnside’s Lemma) states that

1
12@2)((9)

geG
since we have a transitive action, where x(g) = |[{xHx™!' € K : g(xHx 1)g~! = xHx'}|. So,
Gl =" x(9).
geG

Since |K| > 2, we have x(e) > 2, and so this forces there to be some g € G such that x(g) = 0.
Assume now for contradiction that
G=|JgHg",

geG
then this implies that for all g € G there is an € G so that g = xha~!, h € H. Notice, however,
that this implies that tHz ' € K9 ={k € K : g-k =k}, since

g(zHz Vg™t = zha Y (zHz Hahla=t = cHz L.
15



So, we get that x(g) > 1 for all g € G, which is a contradiction.
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Problem 16 (Section 1.12, Exercise 9). A group H is said to act on a group K by automorphisms
if we have an action of H on K and for every h € H the map k +— hk of K is an automorphism.
Suppose this is the case and let G be the product set K x H. Define a binary composition in K x H
by

(k1, h1)(k2, ha) = (k1(h1k2), h1h2)
and define 1 = (1,1) — the units of K and H respectively. Verify that this defines a group such
that h — (1, h) is a monomorphism of H into K x H and k — (k, 1) is a monomorphism of K into

K x H whose image is a normal subgroup. G is called a semi-direct product of K and H. Note
that if H and K are finite, then |K x H| = |K||H]|.

Proof. Step 1: We check that K x H with this law of composition is a group. To do so, we
need to check three things. Since hy is an automorphism of K, we get that hiko = k' € K, so
k1(hiks) = k1k’ € K, and hihy € H clearly, so the composition is closed. Next, we need to check
that this is associative. That is, if we have k1, ko, ks € K, hq, ho, hg € H, then

(k1, ha)((k2, ho)(ks, hg)) = ((k1, h1)(kz, ha))(ks, hs).
Notice that
SO
(k1,h1)((ka, ho)(ks, h3)) = (ki1, h1)(ka(hoks), hahs) = (ki(h1ka(hoks)), h1(hohs)).
Since H is a group, we can write the second component as
(kl(hlkg(hgkg)), hl (hghg)) = (kl(hlkg(hgkg)), hlhzhg).
Notice now that
SO
((k1, h1)(ka, ha))(ks, h3) = (k1(h1k2), hih2)(ks, hs) = (k1(h1ke)(hihoks), h1hahs).
Since h; is an automorphism, we can rewrite this as
(k1(hika)(hihoks), hihahs) = (k1(h1k2(haks)), h1hahsg).
Hence,
(K1, h1)((ka, ho)(ks, hs)) = ((k1, ha)(k2, he))(ks, hs),
as desired, so we have it’s associative.

Next, we see that (1,1) is an identity. Since H acts on K, we get that 1k; = k; for all ky € K,
and since h € H is an automorphism we get hl =1 for all h € H, and so

(1,1)(k,h) = (1(1k),1h) = (k, h),
(k,h)(1,1) = (k(h1), h1) = (K, h),
so we have an identity (1,1).
Finally, we need to check that there are inverses. Take (k1,h1) € K x H, then we want to find
(k,h) such that
(kla hl)(k> h) = (17 1)
Notice that the left hand side is

(k1,h1)(k, h) = (k1(h1k), hah).
17



So, this forces h = hl_l. Hence, we can rewrite this as
(k1(hik), hih) = (k1(hik),1).

Next, notice that h; is an automorphism of K. Hence, we can choose k such that hik = ki ! via
setting k = hflk:fl. Thus, we have

(kv, b)) (A 'R BT = (1,1).
Notice as well that
(hy 'k by (ks b)) = (b RN (hy R ), By tha) = (B (kM k), By Pha) = (hH(1), 1) = (1,1).

So this is a left and right inverse, and so it is an inverse.

Thus, we have that this is a group.

Step 2: We check now that the mapping h + (1,h) is a monomorphism of H into K x H.
To see that it is a monomorphism, we show it is well-defined, injective, and a homomorphism.
For well-defined, if hy = hg, then it’s clear that (1,h1) = (1, ha). Injectivity also clearly follows;
(1,h1) = (1, hg) forces h; = ha. To see that it is a homomorphism, we need to show that hihg +—
(1, h1h2) = (1,h1)(1,ha). But this follows from the definition of the law of composition. So we
have an injective homomorphism of H into K x H, and so it is a monomorphism.

Step 3: We need to check now that the mapping k — (k, 1) is a monomorphism of K into K x H.
Again, to see it is a monomorphism, we check that it is well-defined, injective, and a homomorphism.
Again, we see that k; = ko implies (k1, 1) = (k2,1), and so it is well-defined. Injectivity also clearly
follows; (k1,1) = (ko,1) forces k1 = k2. Finally, to see that its a homomorphism, we need to check
that k1ks — (k1k2,1) = (k1,1)(k2,1). But this follows from noting that

(k1,1)(ko,1) = (k1(1ke),1) = (k1ke, 1).
So it is indeed a monomorphism. To see that it’s a normal subgroup, take any (h,k) € H x K,
(k’,1) in the image. Then we have
(ks ) (K D) (W R ATY) = (R ) (K (WY, R = (R(REET, 1),

Since hk' € K, we get that k(hk')k~! € K, so the image is indeed a normal subgroup (alternatively,
we could have used the proof from the class notes, but this seems faster).

Step 4: It clearly follows that |K x H| = |K||H]| if all are finite from basic set theory, since we
did not alter the set K x H itself, only the law of composition on it. ]

Problem 17 (Section 1.13, Exercise 3). Show that there are no simple groups of order pq, where
p and g are primes.

Proof. Throughout, let Syl,(G) denote the Sylow p-subgroups of G. Recall that a group is simple
if there are no normal subgroups other than itself or the trivial group. So, it suffices to show that
G has a non-trivial normal subgroup if |G| = pq.

Remark. This gives us the result for Section 1.12, Exercise 6.

Case 1: If p = ¢, then we have |G| = p?, where p is a prime. Since this is a p-subgroup, we have
that |Z(G)| > 1. We then have the following claims.
Claim 11. If G/Z(G) is cyclic, then G is abelian.
Proof. Since G/Z(G) is cyclic, we can write it as G/Z(G) = (a)Z(G). So, for all g,h € G, we can
write ¢ = a’x, h = aFy, where z,y € Z(G). Thus,
Miye = ad*alyz = d*yalx = hyg.

Hence, G is abelian. O
18
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Claim 12. A group of order p must be cyclic.

Proof. Since this is a p-group, we have that |Z(G)| # 1. Lagrange tells us that |Z(G)| | p, which
tells us that |Z(G)| = p. Hence, Z(G) = G, and so the group is abelian.

Cauchy’s theorem tells us that if p | |G|, G abelian, then there is an element of order p. Since
we have an element a such that o(a) = |G|, we get that G must be cyclic. Hence, a group of order
p must be cyclic. ([l

Since the center is non-trivial, we have |G/Z(G)| = {1,p}. If |G/Z(G)| = p, notice that G/Z(G)
must be cyclic, and so the claim tells us that G is abelian; hence, Z(G) = G, a contradiction to the
fact that we took Z(G) < G. Thus, we must have |G/Z(G)| =1, or Z(G) = G. Since G is abelian,
we have that every subgroup is normal, and so using Cauchy’s theorem we can find an element a of
order p in G, and we have (a) is normal in G. Thus, G cannot be simple in the case where p = q.
Case 2: Without loss of generality, take p > ¢. Notice that |[Syl,(G)| = {1, ¢}, since [Syl,(G)| | |G|.
If |Syl,(G)| = 1, we are done, since this implies that P € Syl,(G) is normal and non-trivial. Since
we require that [Syl,(G)| =1 (mod p), and ¢ < p, we have that this forces |Syl,(G)| = 1.

Coupling Case 1 and Case 2, we get that G is not simple for all primes p,q. Therefore, if
|G| = pq, we have it is not simple. O

Problem 18 (Section 1.13, Exercise 4). Show that every non-abelian group of order 6 is isomorphic
to S3.

Proof. To do this, we classify all groups of order 6. Notice that |G| =6 = 2 -3, and so |G| = pq
where p = 2, ¢ = 3. We see from the argument above that this forces [Syl;(G)| = 1; that is, we
have that K < G, where |K| = 3 is the unique normal Sylow 3-subgroup of G. Let H < G be such
that H € Syl,(G). We want to examine

¢ H — Aut(K).

Since |K| = 3, this implies that K = Zg from prior claims. Notice, then, that Aut(Zs) = Zo;
this follows since an automorphism f : Zs — Zs is completely determined by where it sends
generators. That is, the homomorphism is completely determined by where f(1) is sent. Since it’s
an automorphism, we need to send 1 to another generator, and the only possibility is 2. Thus, we
can rewrite the above as

¢o:H — Aut(Zg) = Zo.
Since K is cyclic, and so abelian, there are two automorphisms already accounted for. We have
the identity automorphism, where everything is mapped to itself, and the inverse automorphism.
That is, we have

¢ H — {Id, Inv}.

Since H is a subgroup of order 2, we get that H = Zs. So our options for a homomorphism
¢+ H— {Id,Inv} is that everything is mapped to the identity map, or the non-trivial element in
H is mapped to the inverse map. Denote these by ¢, for everything being sent to the identity map,
and ¢o being the one where the non-trivial element is mapped to the inverse map.

So we have that G = K x4, H or G = K x4, H are our only two options. Since ¢; is the trivial
homomorphism, we have that K x4, H = K x H. Since K = Z3, H = Za, we get that G = Z3 X Zs.
This is clearly abelian, since it’s abelian in each component, and since we know S5 is not abelian
we have that S35 2% Zs X Zs.

In the other case, we note that K x4, H is not abelian (it must not be, since we must have
S3 = K X4, H, but we show this explicitly). Let a € H — {e}, k € K — {e}, where o(k) # 2, then
we have

(kva) - (k,e) = (k(a ’ k),a) = (e, a),
(k,e) - (k,a) = (k(e- k), a) = (K, a),
19



and we see that k? # e since k does not have order 2.

Since all groups of order 6 must be isomorphic to one of these, we have that S3 = K x4, H,
and since isomorphism is an equivalence relation, we get that any non-abelian group of order 6 is
isomorphic to S3. ]

Problem 19 (Section 4.6, Exercise 6). Define G* by G! = G, G* = (G*~1,G). The sequence of
normal subgroups

. CGcGcat
is called the lower central series for GG. G is called nilpotent if there exists an integer k£ such that

G* = 1. Show that if G is nilpotent, then it is solvable. Give an example where the converse does
not hold.

Proof. This will follow if G® < G* = (G*',G). To show this, we proceed by induction on i. In
the case that i = 1, we clearly have GM) = G/ < G! = G. Assume that it holds up to k — 1. Then
we need to show that G*) ¢ G*. But this follows, since

G(k) _ (G(k71)7G(k71)) < (szflj G) _ Gk

Hence, induction tells us that this holds, and so since G¥ = 1 for some k, we have G*) < Gk =1,
and so the group is solvable.

Examine S3. Then we have it is solvable, since 1 < A3 < S3, and S3/A3 = Zo, so it is abelian,
and A3 2 Zs, so A3/1 is also abelian. To see that it is not nilpotent, notice that S5 = (S, S3) = As,
and Sg’ = (A3, S3) = A3 again, since for ¢ € S3, k € A3, we have oxo~'x~! gives us a product of
three cycles or trivial elements, and so is in A3. Hence, we see that S5 # 1 for any k, so it is not
nilpotent. g

Problem 20 (Section 4.6, Exercise 10). If G is a group, define the upper central series 1 C C; C - - -
by C; = C(G), the center of G, and Cj, the normal subgroup such that C;/C;_; is the center of
G/Cj_1. Show that a finite group G is nilpotent if and only if the upper central series ends in a
finite number of steps with G.

Proof.

Remark. We follow a proof given in Isaacs (Theorem 8.17).
( = ) Assume that G is nilpotent. Then this tells us that G is solvable by the prior problem.
So we can construct a sequence

1=NogdN; 9Ny--- I N =G,

where N; = G~ Since G is solvable, we get G(®) = 1. Notice that N;,1/N; < Z(G/Nj;), since
Nit1/N; is abelian. If we show that N; C C; for all i, then we get that the upper central series
ends in a finite number of steps with G, since this implies that Ny = G C Cs C GG. We prove a few
claims first.

Claim 13. Let X < G. Then X C Z(G) if and only if (X,G) = 1.

Proof. ( = ) We have that elements from X commutes with elements from G, so examining
generators from (X, G) we have v~ 'g lzg = x712zg~ g = 1. Hence, (X,G) = 1.

(<= ) If (X,G) = 1, then this tells us that all elements of the form 2 'g~txg = 1. That is,
xg = gz, and so x € Z(G). Since this applies for all x € X, we have X C Z(G). d

Claim 14. Let ¢ : G — H, X, Y < G subgroups. Then ¢((X,Y)) = (¢(X), #(Y)).

Proof. Elements in (X,Y) are generated by elements of the form z~!'y~lzy. Then we see that

d(x "y~ toy) = ¢(x)1o(y)Lo(x)p(y), which is in (¢(X),4(Y)). For the other direction, if
o) Lo(y)Lo(x)o(y) = ¢(z~ty~Lwy), which is in ¢((X,Y)). Hence, the sets are equal. O
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Claim 15. Let Y < G, X <G. Then (X,G) CY if and only if XY/Y C Z(G/Y).

Proof. ( = ) Assume (X,G) C Y. Let ¢ : G — G/Y be the canonical map. Notice that
d(X,G) = (¢(X),d(G)) = 1, so we have that (X, G) C ker(¢), which tells us that ¢(X) C Z(6(G)).
Hence, we have XY/Y C Z(G/Y).

(<= ) Assume XY/Y = ¢(X) C Z(G)Y) = Z(¢(G)). Then this tells us that (¢(X),d(G)) =
#((X,G)) = 1, which implies that (X, G) C ker(¢) =Y. O

Now, we proceed by induction. Clearly Ny C Cp, so assume it holds for £ — 1. Then we want to
show N C Ck. Notice that we have (Ng,G) C Ni_1 C Ci_1, 80 NyCx_1/Cr_1 C Z(G/Ck—1) =
Ck/Cik_1, and so by the correspondence theorem we have NiCj_1 C Ck. Since N C NpCk_1, we
get Ny C Cy, as desired.

( <) Assume that the upper central series ends in a finite number of steps with G. Using the
trick outlined in the implication, we have that G is solvable. We then need to deduce that G is
nilpotent. Let G! = G, G* = (G, G). We want to show that G°* = 1 for some s. Assume that
our upper central series is of the form

1=CycCiC---CcCs=0G.

Notice that (Cyy1,G) C Cy, since Cy11/Cr C Z(G/Cy). Notice as well that G* C Cs. Assume it
holds for k£ — 1, and we want to show by induction that G* C Cs_k+1. Since GF1 C Cy_jta, we
have G* = (G*1,G) C (Cy_g42,G) C Cs_p11, and so it holds. Therefore, we have that G5+ =1,
and so it is nilpotent. O
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Problem 21 (Section 2.2, Exercise 1). Show that any finite domain is a division ring.

Proof. Recall that a ring is called a domain if R* is a submonoid of (R, -, 1). We have the equivalent
characterization that a ring is a domain if and only if R # 0 and the cancellation laws hold; ab = ac,
a # 0 implies b = ¢, and likewise for ba = ca, a # 0. To get that it is a division ring, we need to
establish that R* is, in fact, a group. That is, for all @ € R*, there exists an a~' € R*such that
aac™' =ala=1. Let ¢, : R* — R* be defined by ¢,(z) = ax. Notice that ¢, is injective; that
is, we have @, (x) = ¢4 (y) or az = ay if and only if x = y by our characterization of domains (that
is, the cancellation rules). Since ¢, : R* — R* is injective and R* is finite, we have that it is a
bijection, and so we have that there is some y such that ¢,(y) = ay = 1. Notice that we have

a=1-a=(ay)a=a(ya),
and so the cancellation law gives us
1 =ya.
Since
ay = ya =1,
we have that y is an inverse for a. Since the choice of ¢ € R* was arbitrary, we get R* is a
subgroup, and so R must be a division ring. O

Problem 22 (Section 2.3, Exercise 12). Show that if R is a field, A € M, (R) is a zero divisor in
this ring if and only if A is not invertible. Does this hold for arbitrary commutative R? Explain.

We need a claim for the following proof.

Claim 16. Let V,W be finite dimensional vector spaces over a field F' such that Dim(V) =
Dim(W), L : V — W be an injective linear homomorphism. Then L is an isomorphism.

Proof. 1t suffices to show that L is surjective. Take w € W, then we need to show that there is a
v € V such that L(v) = w. Since ker(L) = {0} = 0, we have

n n
Lv)=1L (Z aivi> = ZCLZL(U@‘),
i=1 i=1
assuming {v;} is a basis for V and a; € F. Injectivity says
n
L(v) =0+« Zaivi =0,
i=1

and since this is a basis this implies that a; = 0 for all 7. Hence, we have that L(v;) is a linearly
independent set of vectors. Since Dim(W) = n, we have that this is a basis for W. So, we have

that
n n
w=> bL(v) =L (Z bivi> = L(v),
i=1 i=1
and so there is a v € V such that L(v) = w. Hence, the mapping is surjective. O

Proof. We show that for R a field, A € M, (R) is a zero divisor if and only if A is not invertible.
( =) We proceed by contradiction. Assume that A is a zero divisor and A is invertible. Then we
have that there is a B # 0 such that

BA=1
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and a C' # 0 such that
AC = 0.
So we have
AC =0+ B(AC)=(BA)C=C =B(0)=0.

This is a contradiction, since we assumed C # 0. Thus, we must have that A is not invertible.
( <=) (Assuming some linear algebra) We want to show that if A is not a zero divisor, then A is
invertible (i.e., the contrapositive). Let L4 : M,(R) — M, (R) be defined by La(B) = AB. Then
this is a linear homomorphism; for A, B € M, (R), x,y € R, we have La(xB+yC) = A(xB+yC) =
xAB+yAC = xLA(B)+yLa(C). Notice as well that ker(L4) = {B € M,(R) : AB = 0}. However,
by assumption, every non-zero element does not multiply into 0, and so we have ker(Ly) = 0.
Hence, L4 is an injective linear homomorphism. Since M, (R) is a finite dimensional vector space,
we get that L, is an isomorphism. Hence, we have that there is some B € M,(R) such that
Ly(B) = AB = 1. Thus, A is invertible.

Examine F' = Z, M;(F'). Then any element a € M;(F’) is not invertible, however no non-zero
element is a zero divisor. d

Problem 23 (Section 2.4, Exercise 10). Let D be a division ring, C its center and let S be a
division subring of D which is stabilized by every map = — dxd~!, d # 0 in D. Show that either
S=DorScCcC.

Proof. Clearly if S is a division subring of D, we have S C D or S = D. Thus, it suffices to show
that if S C D, we have S C C.
Let oy : D — D via a,(d) = zdoz~ !, where x € D*. We can rewrite this as

Oéx(d) = ({L‘, d)da
assuming that d # 0. Our goal is to show that, assuming S C D properly, we get (z,d) =1 for all
x € S*, d e D* (it’s clear that S will commute with zero). Take x € S*, d € D — S. First, we
notice that
ap(d+1)=z(d+ 1)z =xde™ +1=0a,(d) + 1.
Using our alternative notation, this gives
ay(d+1)=(x,d+1)(d+1) = (z,d)d + 1.

Expanding and rewriting, we have
If (x,d+ 1) # (x,d), we have (z,d), (z,d+ 1) € S*, since S* is a normal subgroup (since we have
it’s stabilized under conjugation). We therefore have (x,d + 1) — (z,d) # 0 € S*, and so we have
it’s invertible. On the right hand side, we have 1 — (z,d + 1) € S* as well, so therefore we must
have d € S*, but this contradicts our choice of d, which we assumed was outside of S. Hence, we
must have (x,d + 1) = (x,d), but this then forces (x,d 4+ 1) = 1 = (x,d). Thus, z € C(d) for all
de D-S.

To see that z € C(d) for all d € S*, take h € D — S. Then we claim h+ s € D — S; clearly

h+seD,andif h+de S, wehave h+d=5s',andso h =5 —d = h €S, a contradiction.
This then gives (z,d + h) = 1. Writing this out, we have

(x,d+h) =x(d+h)z" (d+h) = (zde™" + zha™ ) (d+ h)7!,
and so
xdz '+ zha ™t =d+ h.
From our prior result, zhz~' = h, so we get

xdr™' +h=d+h e zdz™t = d,
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as desired. So, if § C D strictly, we must have S C C, the center of D, as desired. O

Problem 24 (Section 2.5, Exercise 7). Let I be an ideal in R, U the group of units of R. Let U;
be the subset of elements a € U such that a = 1 (mod I). Show that U; is a normal subgroup of
U.

Proof. Let y € U, a € U;. Then we need to show that yay~! € U;. To see this, notice that
yay ' =y()y™' (mod I) = yay '=1 (mod I),

since yay™' — 1 = yay™' —yy~! = y(a — 1)y~ !, and since I is an ideal, a — 1 € I, we get
yla—1)y~t el
Hence, yay~! € Uy, and so Uj is a normal subgroup. O

Problem 25 (Section 2.6, Exercise 4). Let A € GLy(Z/(p)). Show that A? = 1if ¢ = (p*> —1)(p?> —
p). Show also that A972 = A? for every A € My(Z/(p)).

Proof. We first show a claim on the order of GL,(Z/(p)).
Claim 17. The order of GL,(Z/(p)) is (p™ — 1)(p" — p)(p"™ — p?) - (p™ — p"~1).

Proof. We proceed by a combinatorial argument. Notice that the first row of GL,(Z/(p)) can be
anything except the 0 row, so we have p"™ — 1 options. For the next row, we have it can be anything
but what we chose as our first row. We then need our next row to be linearly independent from
our first row, and so we only have p™ — p options for it. Continuing, we get the desired result. [

Thus, we have that the order of GLy(Z/(p)) is (p* — 1)(p? — p). Hence, if A € GLy(Z/(p)), we
have A? = 1if ¢ = |GL2(Z/(p))| = (p* — 1)(p* — p).

Next, we need to show that A972 = A? for every A € My(Z/(p)). If A € GL2(Z/(p)), we are
done, since A%T2 = A9A% = A%, If A ¢ GLy(Z/(p)), we have the following identity.

Claim 18. For
a b
4= 9
with det(A) = 0 = ad — be, we have

n_ (ala+d)" 1t bla+d)"t
AT = (C(a +dm d(a+ d)"1> :

Proof. We proceed by induction. The case of n = 1 is trivial. Assume it holds for n — 1; that is,

we have
An-1 ala+d)" 2% bla+d)"?
“\ela+d) % dla+d)" %)
Then we see that

e (G010 ) (0 )

Calculating it, we have
A — a?(a+d)" 2+ (be)(a+d)" 2 (ab)(a+d)" 2+ (bd)(a + d)" 2
~ \(ac)(a+d)" 2+ (de)(a+d)" 2 (be)(a+d)" 2+ d*(a+d)"?
We have ad = bc, and so rewriting this we get
qn — ((la+d)" 2+ (ad)(a+d)"2  (ab)(a+d)" 2 + (bd)(a +d)"
“ \(ac)(@a+d)" 2+ (de)(a+d)" 2 (ad)(a+d)" 2+ d*(a+d)" 2 )"
Factoring gives
a(ala+d)" 2 +d(a+d)"2) b 2@(& +d)" 2 +d(a+ d)”_2)>

A= <c (ala+d)" 2 +da+d)"?) d(a(a+d)" 2 +d(a+d)"?)
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SO

If the trace is 0, then A? = 0 using the identity, and so
A2 = AIA% =0 = A%
If the trace is non-zero, then we notice that for ¢ = (p?> — 1)(p? — p), we have for x € Z/(pZ)
non-zero,

9 = mod p),

(xp—l)(p+1)(p2—p) =1
using Fermat’s little theorem, and so

2 =z (mod p).
Hence, the identity gives

g2 (ala+ )T bla+d)T  (ala+d) bla+d))
AT = <c(a +d)? d(a+ d)q“) B < > =4

So for all matrices, we get
AT = A2,
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Problem 26 (Section 2.7, Exercise 9). If Ry, ..., R, are rings, we define the direct sum R1®- - B R,
as for monoids and groups. The underlying set is R = Ry X --- X R,. Addition, multiplication, 0,
and 1 are defined in the obvious way.

(a) Verify that R = R1 & --- & R, is a ring.
(b) Show that the units of R are the elements (u1,...,uy), u; is a unit of R;. Hence, show that if
U=U(R) and U; = U(R;), then U = Uy X --- x Uy, and that |U| = [[|U;| if they are finite.

Proof. (a) We need to check that (R,+,0) is an abelian group, (R, -, 1) is a monoid, and that we
have the distributive property. Throughout, let (ai,...,a,), (b1,...,by), and (ci,...,c,) are
arbitrary elements. First, notice that

(a1y...yan) 4+ (b1y...,by) = (a1 + b1,...,an + by),
so the operation is closed. Next, notice that
(a1, ... an) + ((b1,...,by) + (c1,...,cn)) = (a1,...,an) + (b1 +c1,. .., by + ¢p)
=(a1+b1+c1),...;an+ (bn+cn)) = ((a1 +b1) +c1,..., (an + by) + cn)
= ((a1,...,an) + (b1,...,bn)) + (c1,...,cn),
using the properties of the underlying ring. So we have associativity. Next, we see that
(a1,...,ap) +(0,...,0) = (a1,...,an) = (0,...,0) + (a1, ...,ay),

again by the underlying ring structure in each component, and so we have that 0 is the identity.
Next, we have that

(a1y...,an) + (—a1,...,—an) =(0,...,0) = (—a1,...,—ay) + (a1, ..., an),
again by the underlying ring structure, and so we have inverses. Finally, we check that
(al, RN an)—|—(b1, ... ,bn) = (CL1—|—b1, . ,an—l—bn) = (b1+a1, e bn+an) = (bl, RN bn)+(a1, e an),

so it’s abelian.
Next, we check that (R, -, 1) is a monoid. Notice that it’s closed, since

(@1,...,an)(b1,...,bp) = (a1b1,...,anby) € R.
Next, we have identity, since
(aty...,an)-(1,...,1) = (a1-1,...,an-1) = (a1,...,a,) = (L-a1,...,1-ap) = (1,...,1)-(a1,...,an),
Finally we have associativity, since
(a1, an)((b1,. .., bn)(c1y v oyen)) = (a1, .. an)(bict, ..., bpcyn) = (a1(brcr), - .., an(bncy))

= ((a1b1)c, ..oy (apbp)cn) = (a1by, ... anby)(ci, ... cn) = ((a1, ...y an) (b1, ..., bp))(c1,y .-, Cn).
Finally, we check the distributive property.

(a1y..oyan)-((b1, ..., bp)+(c1y. . yen)) = (a1, ... an)(b1+ecr, ... bptcy) = (abi1+aicr, . .., anby+ancy)

= (a1b1,...,anby) + (arc1, ... ancy) = (a1, ... ap) - (b1,...,bp) + (a1,...,an) - (Cc1,.. 0 ),
using the distributive property inherent to the underlying rings. We also have that
((a1y...yan) 4+ (b1y...,bp)) - (c1y .o yen) = (a1, -y an) - (c1y- - yen) + (b1, .-, bn) - (c1,. -+, Cn)

by the same kind of argument. Thus, R is a ring.
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(b) The units of R are those elements (u1,. .., u,) such that there is an element (ay,...,a,) where
(a1, ...,an)(ur,...;up) = 1 = (ug,...,up)(a1,...,a,). Using our definition, we have that
w;a; = a;u; = 1 for each i. Hence, for each i, we must have that u; € U(R;). Thus, we have
that U Cc Uy X --- x Uy, and it’s clear that Uy x --- x U, C U, so U = Uy x --- x U,,. Basic set
theory tells us that if each of the U; are finite, we get

n
Ul =Tl
i=1
O

Problem 27 (Section 2.7, Exercise 10). Let I; and I3 be ideals of a ring R which are relatively
prime in the sense that Iy + Is = R. Show that if a1,a2 € R then there exists an a € R such that

a = a; (mod I;). Generalize this result to show that if I, ..., I,,, are ideals where
L+()Ik=R
k#j
for 1 < j < m, then for any (ai,...,an), a; € R, there exists an a € R such that a = aj (mod Ij)
for all k.

Proof. We start with the 2 case. Since I; + Iy = R, choose z,y € I, I respectively such that
x+y=1. Let a = a1y 4+ asx. Then we have that

a—ay = (a1y + agz) — a1 = a1(y — 1) + agx.

Since x +y = 1, we have x = 1 — y, so using the fact that I; is an ideal, we get a —a; € I;. In
other words, a = a; (mod I;). An analogous argument applies to a, as.

We use induction to generalize. Assume that this holds for m ideals. Then we examine the case
of m + 1 ideals. Notice that we have

m
Inpr+ (L =R
=1

Notice as well that the intersection of finitely many ideals is an ideal; the intersection of finitely
many abelian groups is an abelian group, and if a € R, we have

m m m
aﬂIiCIjVISjSmﬁamIiCﬂIi.
=1 =1 =1

We then repeat the trick from the case n = 2. Take © € Ly41, y € ()ioy I; such that z +y = 1.
Since the induction hypothesis holds, let a’ be chosen such that @’ = a; (mod I;) for 1 < i < m.
Then setting a = a1y + (a’)z, we have that

a—ami1 = ami1(y—1)+dz €l = a=ame1 (mod I11),
and similarly for each 1 < ¢ < m, we have
a—d =apny+d@—-1)€el; = a=d (modI;) = a=a; (mod I;).
Thus, we win. ]

Problem 28 (Section 2.7, Exercise 11). Use the Chinese remainder theorem and the fundamental
theorem of homomorphisms to show that if I, I» are relatively prime ideals and I = I; N I, then

R/I~R/I, ® R/I,.
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Proof. We construct amap ¢ : R — R/I1 & R/I5 via ¢(a) = (a (mod I1),a (mod I2)). We see first
that this is well-defined, since this is just the canonical mapping onto each component. Likewise,
this a homomorphism by the first problem, since it’s a homomorphism in each component. Finally,
it’s surjective by the Chinese remainder theorem. Notice as well that

ker(p) ={a € R : ¢(a)=(0,0)} ={a € R : ac 1 NI},
so we have by the fundamental theorem of homomorphisms that
R/(Il N IQ) = R/Il D R/IQ.
O

Problem 29 (Section 2.9, Exercise 5). Let R be a commutative ring, and S a submonoid of the

multiplicative monoid of R. In R x S, define (a,s) ~ (b,t) if there exists a u € S such that

u(at — bs) = 0.

(a) Show that this is an equivalence relation in R x S.

(b) Denote the equivalence class of (a,s) as a/s and the quotient set consisting of these classes as
RS~!. Show that RS~! becomes a ring relative to

a/s+ b/t = (at + bs)/st

(a/s)(b/t) = ab/st
0=0/1
1=1/1.
(c) Show that a — a/1 is a homomorphism of R into RS~
(d) Show that the homomorphism given above is a monomorphism if and only if no element of S

is a zero divisor in R.
(e) Show that the elements s/1, s € S, are units in RS~1.

Proof. (a) To show it’s an equivalence class, we need to establish three things.
(1) (Reflexive) Notice that we have (a, s) ~ (a, s), since (as—as) = 0, so we have 1 € S satisfies
the property that 1(as — as) = 0.
(2) (Symmetric) If (a, s) ~ (b, t), we have u(at—bs) = 0. Notice that —u(bs—at) = u(at—bs) =
0. Multiplying by —1 to both sides gives u(bs —at) = (—1)-0 = 0, so we have (b,t) ~ (a, s).
(3) (Transitive) If (a,s) ~ (b,t), and (b,t) ~ (c, k), we wish to establish that (a,s) ~ (¢, k).
Notice that we have u,v € S so that

u(at —bs) =0, wv(bk —ct) = 0.
Hence, we have
uvk(at — bs) + uvs(bk — ct) = 0 <> uvt(ak — cs) + uvksb — uvksb = wvt(ak — cs) = 0.

Since S is a monoid, we have uvt € S, and so (a, s) ~ (¢, k).

(b) We need to show that it is an abelian group with respect to addition, a monoid with respect to
multiplication, and it satisfies the distributive properties. Throughout, (a,s), (b,t) and (c, k)
are arbitrary elements. To see that it is a group with respect to addition, we first check closure;
notice that

(a,8) + (b,t) = (at +bs,st) € RS™L.
Next, we check associativity
(a,s)+ ((b,t) + (¢, k) = (a,s) + (bk + ct, tk) = (atk + bks + cts, tks)

= (at + bs, st) + (¢, k) = ((a, s) + (b,1)) + (¢, k).
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We see that 0 is the identity, since
(a,s)+(0,1) = (a,s) = (0,1) + (a, s).
We have inverses, since
(a,8) + (—a, s) = (as — as, s*) = (0,5,

and we see

(0,5%) ~ (0,1) < 1(0 — 0) = 0.
So (a,s) + (—a,s) = (0,1). Finally, we see it’s abelian, since

(a,s) + (b,t) = (at + bs, st) = (bs + at, ts) = (b, t) + (a, s).
To see that it’s a monoid under multiplication, we first check closure; we have
(a,s)(b,t) = (ab, st) € RS
Next, we check associativity;
(a,s)((b,t)(c, k) = (a, s)(be, tk) = (abe, stk) = (ab,ts)(c, k) = ((a,t)(b, s))(c, k).

Finally, we check that 1 = 1/1 is the identity;

(a,s)(1,1) = (a,s) = (1,1)(a, s).
Hence, it’s a monoid under multiplication. To finish, we need to check the distributive proper-
ties. That is,

(a,s)-((bt) + (¢, k) = (a,s) - (b,t) + (a,s) - (¢, k)
and
((a,s) + (b)) - (¢, k) = (a,s) - (¢, k) + (b,t) - (¢, k).
The first follows, since
(a,s)- ((b,t)+ (¢, k) = (a,s) - (bk + ct, tk) = (abk + act, tks),
(a, s)(b,t)+(a, s)(c, k) = (ab, st)+(ac, sk) = (absk+acst, s*tk) = (s, s)(abk+act, stk) = (abk-+act, stk),
by noticing that, as before, (s,s) = (1,1). Likewise, the second follows, since
((a,s) + (b, t))(c, k) = (at + bs, st)(c, k) = (atc + bes, stk),

(a,8)(c, k)+(b,t)(c, k) = (ac, sk)+(be, tk) = (actk+besk, stk®) = (k, k)(act+bes, stk) = (act-+bes, stk).
So we have that RS~! is a ring.

(c) To see that it is a homomorphism, we need to check four things. First, notice that ¢(1) =
(1,1) = 1 and ¢(0) = (0,1) = 0, so it since the respective identities to identities. Next, notice
that ¢(a +b) = (a +b,1) = (a,1) + (b,1) = ¢(a) + ¢(b). Finally, we have ¢(ab) = (ab,1) =
(a,1)(b,1). So it’s a homomorphism.

(d) (=) Assume that it is a monomorphism. Then ker(¢) = 0, so ¢(a) = 0 if and only if a = 0.

If there were an element of S that were a zero divisor, say t, we have that ta = 0 for some
a € S C R non-zero. Taking this a, we see that

é(a) =0 ¢ (a,1) = (0,1) ¢ t(a) = 0,

which contradicts our kernel being trivial. Hence, there cannot be an element of S that is a
zero divisor.
( <= ) Assume that no element of S is a zero divisor. Then we have that, for all s € S,

sa=0 < a=0.
Notice that this implies that

¢(a) =(0,1) <= (a,1)=(0,1) <= s(a) =0 < a=0.
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So ker(¢) = 0, and thus ¢ is injective. Hence, it’s a monomorphism.
(e) We need to show that there is an inverse for (s,1) in RS™!. That is, some element (a,t) so
that
(a,s)(s,1) = (as,s) = (1,1).
Recall that

(as,s) = (1,1) <= 3t € S such that t(as —s) =0 < ts(a—1) =0.
If we choose a =1, t = 1, we get that

(17 S)(Sv 1) = (37 S) = (L 1)
as desired. So the elements (s, 1) are invertible.
(|

Problem 30 (Section 2.11, Exercise 7). (a) Use the Chinese remainder theorem to show that if
F is a field and f(z) € Fz| is monic and factors as f(x) = g(x)h(z), (9(x),h(x)) = 1, then
Flal/(f(2)) = Flal/(g(2) ® Flal/(h(x)).

(b) Show that if f(z) = [[}(z—a;) in F[z] where the a; are distinct, then Fz]/(f(z)) = F&---&F
n times.

Proof. (a) Notice that, since (g(x), h(z)) = 1, we have that (g(x)) + (h(z)) = 1; that is, the ideals
generated by them are relatively prime. To see this, we follow the proof of Bezout’s identity for
integers. Let S = {r(x)g(z)+s(x)h(z) : r(x),s(x) € F[z]}. The well-ordering on degree gives
us that there is a smallest element non-zero element, call it w(z). The division algorithm then
gives us that g(z) = q(x)w(z)+t(x), where degt < degw. Furthermore, t(x) = g(z)—q(z)w(x),
so t(x) € S. However, degt < deg implies that ¢ must be zero, and so we get that w divides
g. Likewise, we get that w divides h. Any common divisor between g and h divides all the
elements in S, and so in particular divides w. But this means that w is the greatest common
divisor, which we have is 1, and so we get that there are polynomials so that

r(x)g(x) 4+ s(x)h(x) = 1.

Next, we’d like to show that (f(z)) = (g(x)) N (h(x)). Notice that f(x) = g(x)h(z) implies
that (f(x)) C (g(z)) N (h(x)). For the other direction, take p(x) € (g(x)) N (h(x)). Then we
have that p(x) = g(x)t(z), p(x) = h(x)s(x). By the above, we have that there are polynomials
a(x),b(z) such that a(x)g(x)+b(z)h(x) = 1. Thus, we have that p(x)a(z)g(z)+p(z)b(z)h(z) =
p(x), and furthermore using the identities from prior we have that h(z)s(x)a(z)g(z)+g(z)t(x)b(z)h(z) =
p(x), or f(x)(s(x)a(x) + t(x)b(x)) = p(x), and so p(z) € (f(x)). So we get that the ideals are
equal. Hence, the Chinese Remainder theorem tells us that

Fla]/((9(x)) 0 (h(x))) = Fla]/(f(x)) = Fla]/(g(x)) © Flz]/(h(z)).

(b) Consider the case n = 2. Since ay,ag are distinct, we get (z — a1, — az) = 1. Hence, by (a),
we have that

Fla]/(f(x)) = Flz]/(x — a1) ® Flz]/(z — az).
Notice that we have a map ¢ : Flz] — F via evaluating a polynomial f(x) at the point a;.
This is surjective, clearly, and we see that ker(¢) = {f(x) € Flz] : f(a1) = 0}. This must
mean that = — a; | f(z), and so ker(¢) C (z — a1), and clearly (x — a;) C ker(¢). Hence,
ker(¢) = (z — a1). By the fundamental theorem of homomorphisms, we get that
Flz]/(x —a1) = F.
Since the choice of a; was arbitrary, this also applies for as. Hence, we have

Flz]/(f(x)) = F & F.
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Now, assume by induction this holds for the case of n — 1 linear factors. We wish to then show
it holds for n linear factors. We can write this as g(z) = [[}" ' (z — a;) and h(z) = (z — an).
Then we have f(x) = g(z)h(x), and (g(x),h(x)) = 1, since the a; are all distinct. By (a), this
gives us

Flz]/(f(x)) = Flz]/(9(x)) ® Flz]/(x — an) = Flz]/(9(z)) & F.
By the induction hypothesis, we have

Flz]/(9(z)) = F®--- @ F

n — 1 times, and so we get
Flz]/(fx)) 2 F&®-- & F
n times. Thus, by induction, the result holds.
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Problem 31 (Section 2.12, Exercise 4). Show that if fy and gg are two polynomials of degree less
than ¢, and fy and gg define the same function, then fy = go.

Proof. Let ( = (s : F[x] — F|[s] be defined by ((x) = s and ((r) = r for all r € F', where s = Id
is the identity function. Since fp,go define the same function, we have that ((fo) = ((go), or
C(fo — go) = 0, so that fy — go are in the kernel. Notice that the isomorphism given on page 137
tells us that fo — go € (7 — ). That is, there is a p € F[z] such that p(z? — z) = fo — go. The
degree function tells us that deg(fo — go) = deg(p) + q. However, since deg(fo — go) < ¢, this forces
deg(p) = —oo; that is, we must have that deg(fo — go) = —o0, which tells us that fo — go = 0. So,
fo=go in Flz].

Not assuming that » = 1, we have that the degrees of fy and gy are less than g for every z;.

Furthermore, we have our substitution function is ( = (s, ... s, : F[z1,..., 2] = F[s1,...,sy], where
here the s; are projection functions onto the ith coordinate. Again, we get that ¢(fo) = ((go), hence
the difference is in the kernel, and so there are polynomials pq,...,p, such that

fo—g0=pi1(a]{ —21) + - +p (2} — x;).
Restricting to each coordinate (e.g. view fo — go € Fl[z1,...,2x,—1][zr]), we see that the above

argument tells us that the degree must be —oo with regards to each coordinate, and so we have
that it is 0 in every coordinate. Hence, we have that fo —gg = 0, or fo = go in the polynomial ring
Flzy, ...,z O

Problem 32 (Section 2.12, Exercise 7). Let f(x1,...,2,) be a polynomial of degree n < r, the
number of indeterminates. Assume f(0,...,0) = 0. Prove that there exists (ay,...,a,) # (0,...,0)
such that f(ai,...,a,) = (0,...,0).

Proof. We do this by doing the previous two problems.

Problem 33 (Section 2.12, Exercise 5). Let f(z1,...,z,) satisfy f(0,...,0) =0and f(ai,...,a,) #
0 for every (ay,...,a;) # (0,...,0). Prove that if g(x1,...,2,) =1 — f(z1,...,2,)9" !, then

) 1if (a1,...,a;) = (0,...,0)
glar, . ar) = {0 otherwise.

Proof. Since f(ai,...,a,) # 0 for every (ay,...,a,), we have that Fermat’s little theorem gives
that f(ai,...,a,)?9 ! = 1. Hence, we have that 1 — f(ay,...,a,)?! is non-zero if and only if
flai,...,a,)9"t =0, which forces f(ay,...,a,) = 0, which only happens if (a1, ...,a,) = (0,...,0).
In this case, we get that it evaluates to 1. Thus, we have the resulting g. g

Problem 34 (Section 2.12, Exercise 6). Show that the g of the prior exercise determines the same
polynomial function as

fo(ﬂf]_, . 7.’Er) = (]_ — gjqil) Ce (]_ — xg_l)‘
Hence, prove that deg(g) > r(q — 1).

Proof. Notice that we have g = fy as functions, since we have
1if (a1,...,a,) =(0,...,0
fo(al,-“7ar):{ (1 7“) ( )

0 otherwise.
If g has degree less than ¢ in every x;, then by Problem 1 we get that these polynomials are equal,
and so deg(g) = r(q — 1). Otherwise, we have that g has degree greater than ¢ in at least one z;.
We wish to show that deg(g) > r(¢ — 1). Let h be the polynomial defined by taking the degrees of
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the monomials of ¢ modulo ¢ — 1; notice we have that deg(h) < deg(g). We also notice that h has
degree less than ¢ in each variable, and so if we can show that h = fy as functions, we are done.
But this is clear, since Flz1,...,z,])/(2f —z1,..., 27 —2,) = F[s1,..., s;], and we have that g = h
as functions in F'[s1, ..., s,], since taking the degree modulo ¢ — 1 is the same as taking the image
of g under this isomorphism, so h = fy as functions. So by the first problem, we get that h = fj as
polynomials, and so deg(h) = r(q — 1). Hence, for all possible g, we get that deg(g) > (¢ — 1) as

desired. 0

Assume deg(f) = n < r, which is the number of indeterminates, and assume that for all
(a1,...,ar) # (0,...,0) we have f(ai,...,a,) # (0,...,0). Then by Problem 3, we have that
there is a g(x1,...,2) = 1 — f(21,...,2,)9" " which satisfies the criteria. By Problem 4, we see

deg(g) > r(g—1). Finally, by the additive property of degree, we see that deg(1—f(x1,...,2,)97!) =
n(q —1). However, we have a contradiction, since this implies that n(¢—1) > r(¢—1) = n>r.
Thus, we must have at least one (aq,...,a,) # (0,...,0) such that f(a,...,a,) =(0,...,0). O

Problem 35 (Section 2.13, Exercise 2). Let A = [[,_;(z; — x;). Show that A? is symmetric, and
express A? for r = 3 in terms of elementary symmetric polynomials.

Proof. We first show that A? is symmetric. Let 7 € Sym(r). In the case where r = 2, we have
that A = z; — x9. Notice that our options are m = (12) or 7 is trivial. If 7 = (12), we get that
Tr1) — Tr2) = —A, and so the automorphism applied to A? gives back A%. Hence, it holds for
r=2.

Notice as well that if it holds for a transposition (ij) and another transposition (kl), then it
holds for the product (i5)(kl). This holds since, viewing = = (i7)(kl), we have

Cm)(A) = ¢(m) | [T — =) | = [[(@ne) = 2=)) = <) | (k) | [ [ (i — )
i<j i<j i<j
That is, the flipping can be done in any order, and so it suffices to check it on transpositions.
Assume for induction A2 is symmetric for 1 < k <r — 1. We wish to then establish it holds for
r. It suffices to show it holds for any transposition of the form = = (kr), 1 < k < r — 1 by the
observations above. We wish to show that

¢(m)(A) = (1),

for some constant C' (one can determine this constant, however for our purposes it just matters
that it’s —1 to some power). This, however, is clear, since we'’re just permuting around variables;
hence, we have that either the variables are flipped, in which case we multiply by (—1), or they are
not flipped, in which case we multiply by 1. Regardless, we have at most a negative sign on the
outside, and so once we square it we see that this goes away. That is, we see we have

C(m)(A?%) = A%

So for any such transposition, we have that ((7)(A?) = A2, and since Sym(r) is generated by
products of transpositions, by the above remark, we have that for any = € Sym(r),

C(m)(A%) = A%
Hence, we have that A? is a symmetric polynomial.
Notice that, for 7 = 3, A? = (21 — x3)(22 — x3)(z1 — x2). Writing this out, we have
f=aley — 2les — xy23 + xy0k + 2ds — x022.

We follow the procedure from the proof given in the class notes. That is, going by lexicographic

ordering, the highest monomial is z?x1z9, so we have k1 = 2, ko = 1, k3 = 0, and so going through
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and doing this for each polynomial, we get

2

A? — 252 = f1,
o 2,22
1 = —4x{x272 — 4361332 6x1:(:2x3 6x1x2$3 41’1.%'3 6x1x2x3 21x{x5x3

—6x1x2:r3 4:1711‘21‘3 6:L‘1:L‘2:U3 — 61’11‘21‘3 — 4x1x2333 — 2362;3%,
3
J1+4s7s3 = fo,
fo = —dae3+6x3riws 61 roni —Artri+6rtrirs+3atasas 62T wexs 621 w303 +621 w57 —AwSwd)

f2+ 453 = f,
fz= 181‘?1’%1}3 + 18:6?332.%% + 18x?x§x3 + 27:5%33%93?)) + 1813%:6233% + 18m1x§x§ + 18x1x§az§,
f3 = 18s15983 = fu,

fa=—27ata3a3,
f5 = f4+27s2,
f5 — 07

and so going through all of the calculations we get
A% = (51)%(s2)% — 4(s1)3s3 — 4(s52)> + 18(51)(s2)(s3) — 2752,
where
§1 =71 +x2+ T3,
S0 = x1x2 + T123 + X2x3,

83 = X1X2X3.

Problem 36 (Section 2.14, Exercise 6). Show that any prime is irreducible.

Proof. Let p be a prime. We wish to show that p is irreducible. Let b be a proper factor of p. Then
we have that there is an a such that ab = p. If p did not divide a, we have that p does not divide
ab, which is a contradiction, and so we must have that p divides a. Hence, there is an r so that
pr = a. Substituting this in, we get (pr)b = p, or p(br — 1) = 0. Since p # 0, this forces br = 1,
which means that b is a unit. Hence, any proper factor of p is a unit, and so p is irreducible. [

Problem 37 (Section 2.14, Exercise 7). Let Z[v/10] be the set of real numbers of the form a-+bv/10,
where a,b € Z. Show that Z[v/10] is not factorial.

Proof. Notice that we have
10 =2-5 = (v10) - (V10).
Define the norm by
N(r) =a® — 106, r = a + bV/10.
Then it’s a quick calculation to see that N(rs) = N(r)N(s). We wish to show that there are no
common irreducible elements to 2 and /10, and likewise v/10 and 5. Hence, even if these were
not irreducible elements, they would not share the same factorization, and so we have two different
factorizations. Notice that N (2) = 4, N(v/10) = —10. So if x irreducible is such that z | 2, = | v/10,
then we have that N(z) | 4 and N(x) | —10. Since 4 1 —10, it suffices to show that there is no x so
that N(z) = +2.
Assume N(z) = 2. Then we have
a® — 100% = 2.
Taking this mod 2, we see that
a>=0 (mod2) = a=0 (mod 2).
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Hence, a is even. Taking this mod 4 gives
—100* =2 (mod 4),

and checking this by hand shows that b is odd. Hence, we have that a = 2k, b = 2d + 1, and so we
write this as
4k? —10(2d 4 1)? = 2 <> 4k* — 40d”? — 40d — 10 = 2.
Taking this modulo 10 gives us
4k* =2 (mod 10),
which has no solutions, and so there is no such z.
Likewise, assume N (x) = —2. Then we have

a® —100% = —2.

Taking mod 2 again gives a even, and taking mod 4 gives that b is odd. So following the same
procedure and taking it mod 10, we have

4k?> =8 (mod 10),

which also has no solutions, and so there is no such =x.

Hence, we have that there is no common irreducible element to 2 and V10. Likewise, we see
N(5) = 25, and so we need to show that there is no = such that N(z) = +5. Again, assume
N(xz) =5. Then we have

a® — 10b* = 5.
Taking this mod 5 gives a?> = 0 (mod 5), so a = 5k. Taking it mod 25 gives —10b> =5 (mod 25).
However, there is no solution, and so no such x exists.

Assuming N(z) = —5, we again get that a = 5k, and so taking mod 25 gives —10b*> = —5
(mod 25), which again has no solutions. So no such z exists. Hence, we have that 5 and /10
cannot share any irreducible elements. We have 10 has two different factorizations, and so the ring
cannot be factorial. 0

35



James Marshall Reber, ID: 500409166 Math 6111, Homework 8

Problem 38 (Section 2.15, Exercise 4). Let D be a PID, E a domain containing D as a subring.
Show that if d is a ged of a and b in D, then d is also a ged of @ and b in F.

Proof. If ged(a,b) = d, then we have that (a,b) = (d), since we are in a PID. That is, there are
e, f € D such that ae + bf = d. We need to show that d is the ged in F; that is, if [ | a, [ | b, then
[ | d. Notice that if [ | a, we have that there is a g € F such that gl = a, and likewise we have a
t € F such that [t = b. Hence, using the fact that ae + bf = d, we have

ae+bf = (gl)e+ (It)b =l(ge + tb) = d,
so that [ | d. Hence, we get that d is the ged of a and b in E. O

Problem 39 (Section 2.15, Exercise 11). Let aj,as be non-zero elements of a Euclidean domain.
Define a; and ¢; recursively by a1 = qra2 + a3, a; = ¢;a;+10;+2 where 6(a;12) < 6(a;+1). Show that
there exists an n such that a, # 0 but a,4+1 = 0 and that d = a,, = (a1, a2). Also use the equations
to obtain an expression for d in the form za; + yas.

Proof. By the definition of a Euclidean domain, since a1, as # 0, we have that there are ¢y, ag such
that

a1 = qia2 + as,
where d(az) < d(az). We can then define a; and ¢; recursively in this form; that is, now with as,
as, we have

az = q2a3 + aq,
where §(ayq) < d(a3). Since this is a strictly decreasing sequence, and d(a;) < oo, we have that
eventually there is an a,, such that d(a,) = 0 by the well-ordering principle. Notice that if a,, # 0,
we have that a,4+1 must be zero, since §(a,4+1) < 0(ay), but d(ay) is the smallest such degree by
assumption. If a, is 0, then §(a,) is strictly the smallest value in the chain, and so a,—1 # 0.
Hence, it is fine after relabeling to let n be the value such that a, # 0, a,+1 = 0.

Next, we show that a,, divides a; for all 7. Notice that it holds for a,,_1, since

Un—1 = gn—10n.

Assume by induction it holds for n — 1 > ¢ > 1. We wish to show it holds for a;_1. But we see this
follows, since

i—1 = ¢i—10; + Qi41,
and since ay, | a;, ap, | a;+1 by assumption, we have that there are d, f so that da, = a;, fa, = a;+1,
and so

ai—1 = an (gi—1d + f).
Hence, a, | a;—1, and so we get that it holds for all such i. So a,, | a2, a, | a;.

Next, we need to show it is the greatest such divisor. Notice that we have

a1 = qiaz + as,
and we can rewrite this as
az = a1 — q1a2.
So ag is a linear combination of a1, as. Assume that we can describe a; as a linear combination of
a1, ag for 3 <1i < n, we wish to show it holds for ¢ + 1. The hypothesis gives us that
Gi—1 = qt—10; + Qjt1,
and so we can write

Ai+1 = Gt—1a; + aj—1-
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Since we have a;, a;—1 can be described in linear combinations, we have wuy, us, v1, v9 such that
a;—1 = u1a1 + u2a2,
a; = vi1a1 + v2a2,
and so
aiv1 = qi—1(viar + v2a2) + (ura1 + ugasz),
and so after grouping terms we get
aiy1 = a1(qi—1v1 + u1) + az(q—1v2 + u2),
and hence a;;1 can be described as a linear combination of a1, as. So we have that it holds for all
1 <i < n, and hence we can write
an, = xrai + yaz,
where x,y are values in our Euclidean domain. Assume now that [ | a1, [ | ag. Then we have that
there are u, v such that

ul = ay,
vl = as,
and hence
an = z(ul) +y(vl) = l(xu + yv).
Hence, [ | a,, and so a,, is the greatest common divisor. That is, (a1, az2) = ay. ([l

Problem 40 (Section 2.16, Exercise 2). Prove the following irreducibility criterion due to Eisen-
stein. If f(x) = ap+a1z+- - -+a,z™ € Z[z], and there exists a prime p such thatp | a;, 0 <i < n—1,
p1{an, and p? { ag, then f(z) is irreducible in Q[x].

Proof. Assume for contradiction that f(z) factors into polynomials over Q[z]; say, f(z) = g(z)h(z),
g(z), h(z) € Q[x]. That is, we have
h(l‘) =by+bix+ - +ba",
g(z) =co+crz+ -+ csx®,
where n = r + s, and b;,¢; € Q. Since we must have bycg = ag, and we have p | ag, we get that
p | boco. Notice that we cannot have p | by and p | co, as this implies that p? | ag. So without loss
of generality, assume p | by, p 1 ¢p. Since b,.cs = ay, and p { a,, we have p 1 b,, p{ cs. Now, notice
that we can write
ar = Z cibj = coby, + c1bg—1 + - -+ + cbo,
itj=k
where if ¢;b; are not within the bounds of their respective indices we rewrite them as 0. Hence, we
have
ar = ¢bg + -+ breo.
Notice that we have that p | by. We show that p | b; for 0 < ¢ < r — 1. Once established, this
implies that, since a, is divisible by p, we must have that p | b.cg, which results in a contradiction
since p 1 b, pt co.
We have
a1 = coby + bicg.
Since p 1 cg, this forces p | by. Assume by induction it holds for 0 < ¢ < r — 1, we wish to show it
holds for t + 1. We expand
ar+1 = Cobip1 + e1by + - - + crpabo.
Again, since p t g, p | ai+1, we have that p | by+1. Hence, it holds by induction. O
Problem 41 (Section 2.16, Exercise 6). Let F' be a field and f(x) an irreducible polynomial in

F[z]. Show that f(x) is irreducible in F'(¢)[x], t an indeterminate.
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Proof. Assume for contradiction that f(x) is reducible in F'(¢)[xz]. Then by the contrapositive of
Lemma 3 (Gauss Lemma 2), we have that f(x) is reducible in F[t][x] = F[z][t] or it does not have
positive degree. Not having positive degree implies that it is either 0 or a constant in F'; since
f(z) is irreducible in F[x], we have that it is neither of these, and so f(x) must be reducible in
F[z][t]. Let D = F[z], then we have that f(x) is reducible in D[t]. That is, f(x) = g(t)h(t), where
g(t),h(t) € D[t] are non-units with coefficients as polynomials in F[z]. Notice that this means we
can write

g(t) =ao+art+---+apt",

h(t) = by + byt + - - + byt®,
where a;,b; € D. Since deg(f) = 0 with respect to t, we have that g(t) = ag, h(t) = by. In other
words, we have that f(x) = agbg, ag,bp € D = F[x]. Since f(x) is irreducible with respect to F[x],
we must have that ag or by is a unit in F'; thus, we have a contradiction. ]

Problem 42 (Section 3.1, Exercise 4). Determine End(Q, +,0).

Proof. We want to determine the collection of maps ¢ such that ((z+y) = ((z)+((y). Let p/q € Q.
Notice that if ¢ = 1, we have that p € Z, and so we have that

() =¢l+-+1)=¢(1)+--+¢(1) = p¢(l).
Next, if ¢ # 1, we have that

e () -w(2)

Hence, notice that
p p
¢ <> = =C(1);
) " q (1)

that is, these endomorphisms are completely determined by where they send 1. We claim that
this gives us a bijection from End(Q, +,0) into Q via ¢(¢) = ¢(1). To see that it’s well-defined,
notice that if ¢ =+, then ((1) = (1) clearly, so ({) = (). To see it’s injective, notice that if
©(¢) = ¢(1) = (1) = ¢(v), then for any t € Q, we have that ((t) = t{(1) = ty(1) = v(t), and so
¢ = ~. Finally, for surjectivity, notice that for any ¢ € Q we can define the map ¢ by (1) = ¢. This
is an endomorphism, since ¢(0) = 0,¢(1) =t and ((z +y) = t(z +y) = tx + ty = ((z) + {(y). So
we have a bijection.

Since End(Q, +,0) is a ring, we would also like to check that whether this is a ring isomorphism.
Notice that 0 € End(Q, +,0) is the map which sends everything to 0; hence, ¢(0) = 0. Notice as
well that ¢(1) = 1, where 1 € End(Q, +, 0) is the identity map. Finally, for ¢,~, we have

p(y+¢) = +O1) =~(1)+ (1) = () + ¢(0),
p(yo )= (v(¢(1))) = v(1)¢(1) = p(7)(C).

So ¢ is a bijective ring homomorphism, or a ring isomorphism. Hence, we have End(Q, +,0)

Q.

O
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Problem 43 (Section 3.5, Exercise 5). Let M and N be R modules, f : M —- N, g: N - M R
module homomorphisms such that (f o g)(y) =y for all y € N. Show that M = ker(f) & Im(g).

Proof. First, we note that Im(g), ker(f) are submodules of M. Let a,b € ker(f), then a—b € ker(f),
since f(a —b) = f(a) — f(b) =0—0=0, and if r € R, we have that f(ra) = rf(a) =r0 =0, so
ra € ker(f). Hence, it’s a subgroup under addition, and it’s closed under the R action.

Likewise, we show that Im(g) is a submodule. Let a,b € Im(g). Then we have x,y € N such
that g(z) = a, g(y) = b. So we get that a —b € Im(g), since g(z —y) = g(z) — g(y) = a — b. Hence,
it’s a subgroup under addition. Let r € R, then we have that ra = rg(z) = g(rx), so ra € N.
Hence, it’s closed under the R action. Thus, it’s a submodule.

Next, take m € M. Notice that we can write m as

m = g(f(m)) — (g(f(m)) —m).

It’s clear that g(f(m)) € Im(g), so it suffices to show that g(f(m)) — m € ker(f). To see this, we
notice that

fg(f(m)) —m) = f(g(f(m))) — f(m)

using module homomorphism properties. Next, we have that f(g(x)) = z, and so f(g(f(m))) =
f(m). Hence,
Fg(f(m))) = f(m) = f(m) = f(m) =0,
so g(f(m)) —m € ker(f). Hence, M = ker(f) + Im(g).
Next, we need to show that ker(f)NIm(g) = 0. Let a € ker(f)NIm(g). Since a € Im(g), we have
that there is an © € N such that g(z) = a. Since a € ker(f), we have that f(a) = (fog)(z) =0.
Since (f og)(y) =y for all y € N, this forces z = 0, which then forces a = 0. Thus, we must have

ker(f) NIm(g) = 0.
By Theorem 3.5, we see that M = ker(f) @ Im(g). O

Problem 44 (Section 3.6, Exercise 2). Find a basis for the submodule of Q[A]® generated by
fl = (2)‘ - LA A2 + 3)7 f2 = ()‘7)\7 Az)? f3 - (A + 1,2, 2)% — 3)

Proof. Create a 3 x 3 matrices with our generators as rows; that is, we have

2A—1 A A2+3
A A A2
A+1 2\ 2)2-3

We do Gaussian elimination to find the generators. Notice that this will preserve the span of the
elements.
We want to first shift it so we have the smallest element is in the top left, so we have

A A 22
A+1 2\ 2)22-3
—22+1 =X\ —=X2-3

Subtracting the first row from the second gives

AN )2

1 A A2-—3

22—1 X A\2+3
39



Subtracting the first row from the third gives

A A A2
1 A N\2-—3
A—1 0 3
Subtracting the first row from the third again gives
A A A2
1 A A2 -3
-1 —X 3-X°
Adding the second to the third gives
A A A2
1 A \2-3
0 0 0

We then show that these elements are linearly independent. Let a € Q[z], b € Q[z], then
a(A A, A2) +b(1,\, A% —3) = (0,0,0).

Hence, we need to find a, b such that

aX+b=0,

(a+b)A=0,

(a+b)A* — 3b = 0.

Notice that the second equation tells us that a = —b. So substituting this in to the

aX—a =0,

3a = 0.

Thus, the third condition tells us that a = 0, and so we have a = b = 0 are the only a,b € Q[z]
such that they satisfy the conditions. Hence, we have that (A, A\, \2) and (1, A\, A2 — 3) form a basis
for the submodule. O]

Problem 45 (Section 3.7, Exercise 9). Show that if A € M,, (D), D a pid, then A and A have
the same invariant factors.

Proof. We have that
QAP = diag(dy,...,d,,0,...,0),
where Q and P are appropriate matrices formed by products of elementary matrices of type I, II,
and III. Taking the transpose of both sides gives
(QAP)" = (diag(ds, ..., d,,0,...,0))" = diag(di,...,d,,0,...,0).
Transpose is an anti-homomorphism, since (AB)! = B A, so using this we have that
(QAP)! = P'A'Q" = diag(dy,...,d,,0,...,0).

We need to show that if P € GL,(D), then P* € GL,(D). This, however, is clear by using
the antihomomorphism property of transpose; since. P € GL, (D), we have that there is a P~!
such that PP~! = P71P = I, and taking the transpose gives (PP~ !)! = (P~ 1)IPt =t =] =
PYP~Ht = (P71P)!. So A! is equivalent to diag(dy,...,d,,0,...,0), and we see that d; | d; if
i < j still. Hence, A and A? share the same invariant factors. O

Problem 46 (Section 3.8, Exercise 3). Let M be the ideal in Z[z] generated by 2 and x. Show
that M is not a direct sum of cyclic Z[z]-modules.
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Proof. We have that M = (2,z). We wish to show that M # Z[z|a; & --- & Z[z]ay,. Assume it
was the case, then we have that M is expressible in terms of principal ideals. That is, we have
principal ideals (a;) such that M =Y (a;). Part of being a direct sum means that the (a;) need to
be disjoint. But this is not the case for principal ideals over Z[z]; if a € (a;), b € (a;), then we have
that ab € (a;) N (a;), so the intersection for n > 1 will be non-trivial. Hence, this must mean that
M = (a) for some a € Z[x]. So we must have that (a) C (2,z) and (2,z) C (a). But if (2,z) C (a),
this means that (2) C (a) and (z) C (a). If (2) C (a), this means that a | 2. Since 2 is irreducible
in Z[z], this must mean that either a is a unit or a is 2. Next, (z) C (a) implies that a | z, and so
since z is irreducible we have that a is a unit or a = x. Since we need both conditions, this forces
a to be a unit, which means that (2,z) = Z[z]. However, this is a contradiction, since (2,z) is
clearly not the whole ring (for example, 5 ¢ (2, z)), and so we cannot have that (2, ) is principally
generated. Hence, (2,z) cannot be decomposed into a direct sum of cyclic Z[z] modules. O

Problem 47 (Section 3.9, Exercise 2). Show that a torsion module M over a pid D is irreducible
if and only if M = Dz and ann(z) = (p), p a prime. Show that if M is finitely generated then M
is indecomposable in the sense that M is not a direct sum of two non-zero submodules if and only
if M = Dz, where ann(z) = 0 or ann(z) = (p€), p a prime.

Proof. Recall that a module is said to be irreducible if M = 0 and 0 and M are the only submodules
of M. We first show the following:

Problem 48 (Section 3.3, Exericse 7). A module M is irreducible if and only M # 0 and M is
cyclic with every non-zero element as a generator.

Proof. ( =) If M is irreducible, then it’s clear that M # 0 by definition. Furthermore, taking
0 # x € M, we have that 0 C Dz C M, and so Dx = M. Hence, M is cyclic, and every nonzero
element is a generator.

(<) Let M be cyclic; that is, M = Dx for some x. If 0 C N C M, take y € N, we have that
Dy C N C M, but since y € N C M, this implies Dy = M, and so we have M C N C M, or
M = N. So there are no non-trivial proper submodules. ]

We now establish the first part.

( =) Assume that M is torsion and irreducible. Let 0 # z € M. By above, we have that M # 0
and M = Dz. Since M is torsion, we must have ann(z) # (0). By the lemma and the remark right
after (page 190), we see that if ann(z) # (p®), e > 1 and p a prime, we get a contradiction, since
there must be non-zero proper submodules of M or, in the case that ann(z) = D, we have that
M is the 0 module, which contradicts irreducibility as well. Notice as well by the remark in the
invariance theorem, we have that if e # 1, we can find a non-trivial proper submodule of the form
p°~!M C M. Hence, we must have that e = 1, and so M = Dz, where ann(z) = (p).

( <) We first show the following claim.

Claim 19. A module M is irreducible if and only if M is isomorphic to R/I for a maximal ideal
1.

Proof. ( = ) Assume M is irreducible. Then by prior, 0 # M = Dz for some z € M. Take the
map f: D — Dz via f(r) = rz. Then this is a module homomorphism, since f(r+s) = (r+s)z =
rz+sz= f(r)+ f(s), f(rs) = (rs)z =r(sz) = rf(s). Notice that for all m € M, we have m = rz,
and so f(r) = m. Hence, f is surjective. By the fundamental homomorphism theorem, we get
M = R/ker(f). So it suffices to show that the kernel is an ideal, and it is maximal.

To see it’s an ideal, notice that for all a, b € ker(f), a—b € ker(f), since f(a—b) = f(a)—f(b) =0,
and 0 € ker(f), so it’s subgroup under addition. Let r € R, a € ker(f), then we have that
ra € ker(f), since f(ra) =rf(a) =70 =0, and likewise for ar. So the kernel is indeed an ideal.
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To see it is maximal, let ker(f) C J C R be some ideal. The correspondence theorem tells us
that J/ker(f) C R/ker(f) = M is an ideal, and moreover a submodule. Since M is irreducible, we
must have that J/ker(f) = R/ker(f) or J/ker(f) = 0; that is, J = ker(f) or J = R. Hence, we
get that ker(f) is a maximal ideal.

(<) Let M 2 R/I, I a maximal ideal (notice implicitly this says that M # 0). Take N C M =
R/I a submodule. Since it’s a submodule, it must be closed under the action and it must be an
additive subgroup; in other words, it must be an ideal in R/I. Since I is maximal, R/I is a field,
so the only ideals are (0) (which corresponds to N = 0) or (1) (which corresponds to M = N).
Hence, we have that M is irreducible. [l

So we have M = Dz by assumption, M = R/ann(z), and since ann(z) = (p), we have that (p)
is a maximal ideal (since the principal ideal generated by an irreducible element in a PID gives a
maximal ideal), so M is irreducible.

Next, we need to show that if M is finitely generated, then M is indecomposable in the sense
that M is not a direct sum of two non-zero submodules if and only if M = Dz, where ann(z) =0
or ann(z) = (p°), where p a prime.

( = ) Assume that M is indecomposable. Since M is finitely generated, we can write it as
M = tor(M) & N, where N is a free submodule of M. Since M is indecomposable, we must have
either M is torsion or M is free. If M is torsion, the classification theorem (Theorem 3.12) tells
us that M = Dz, and we have that ann(z) # 0. Notice that this forces ann(z) = (p°) for some
e > 1, where p is a prime, since otherwise we would be able to write it as a direct sum of two
non-zero submodules by the lemma and its remark (page 190).

If M is free, then we have that M has a basis {x1,...,2,}, and M = Dx1 @& ---® Dx,. Since M
is indecomposable, we must have that M is generated by one element, say z. So we have M = Dz.
Since M has no torsion, we must have that ann(z) = 0. So we have the desired result.

( <= ) Assume that M = Dz, where ann(z) = 0 or ann(z) = (p°), p a prime. In the first
case, we have that M has no torsion, and so is a free module — in particular, this means that M is
indecomposable, since it has a basis consisting of one element. In the latter case, since ann(z) = (p°)
and M is torsion, we have that the invariance theorem tells us that we cannot write it as a direct
sum of two submodules. In either case, we have that M is indecomposable. ([l
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Problem 49 (Section 3.10, Exercise 2). Let Z(™ be the free Z-module with base (ei,...,e,), K
the submodule generated by the elements f; = > a;je; where a;; € Z and d = det(a;;) # 0. Show
that

2™ /K| = |d].

Proof. Let M be the module such that M = Z( /K. Then M is a finitely generated abelian
group. Using the fundamental structure theorem for finitely generated modules over a pid, we
have that we can diagonalize A = (a;;) to get PAQ = diag{di,...,d,,0,...,0}. Now, since
det(A) = d # 0, we have that the diagonal row is full; that is, PAQ = diag{di,...,d,}. This is
due to the fact that determinant is multiplicative, and sends the elements to the underlying ring,
so det(PAQ) = det(P)det(A) det(Q) = [Ii_; dr - [}, 0, and since det(P),det(A),det(Q) # 0, we
cannot have any 0’s along the diagonal. Thus, we get

M =P zy;,
i=1
where y; is such that ann(y;) = (d;). Recall that

M =P z/(dy).
=1

Now, we have that
|2/(di)| = di,
taking the d; to be positive without loss of generality and
|Z/(di) & Z/(dk)| = d; - dy,

via properties of groups, so inducting gives

M| =] d:
=1

Finally, it remains to show that [[;_, d; = |d|. Recall by Theorem 3.9 we have the following
formula for the d; (the theorem says up to units, but the only units in Z are £1, so just taking the
absolute value of the determinant gives us this);

di = Ay, dr = ALATH

r—1»

where A; is the ged of the i-rowed minors of A. In this case, we get

[Tdi=a0 (A7 (An- A1) = Ay = |d],
=1

since we take the d; to be positive. O

Problem 50 (Section 3.10, Exercise 8). Prove that any nilpotent matrix in M, (F') is similar to a

matrix of the form
N 0
No

0 N3
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where N; has the form

010 0
0 01 0

0 :
0 0O 1
0 0O 0

Proof. Let M € M, (F) be a nilpotent matrix. That is, there exists an r such that M" = 0. We
find the characteristic polynomial of this matrix; that is, we have
FO) =det(A\ ] — M) = A" —a A" L4 oo 4 (=1)ay.
In a geometric series sort of fashion, notice that we have
A =MYN N2 IM A M"Y = N TN T IM A A NIM =N IM =N 2I M2~ —M" = \'I.

So we have f(\) | A" after taking determinants of both sides. Hence, this forces f(A) = A". Thus,
we must have that any invariant factors are of the form M for 0 < k <n.

Since the invariant factors are linear, with root zero, the Jordan canonical form tells us that our
matrix is similar to a matrix of the form

Ny 0
Ny
0 N3
where N; has the form
010 0
0 01 0
0 :
0 0O 1
0 0O 0
g
Problem 51 (Section 3.10, Exercise 9). Show that a matrix A € M,,(C) is similar to a diagonal
matrix diag{ri,...,m}, r; € C, if and only if the minimum polynomial m() has distinct roots.
Proof. (=) Assume A is similar to diagonal matrix diag{ry,...,r,}, r; € C. Recall two matrics

are similar if there exists an invertible matrix P € GL,(C) such that PAP~! = diag{ry,...,m,}.
Notice that this gives

M — PAP™! = P\ — AP~ = diag{\ —r1,..., A — 1, }.

Taking the determinant gives

det(\] — PAP™!) =] (A = ri).
i=1
Notice, that by our equivalence above, we have
det(\ — PAP™Y) = det(P(M — A)P™1) = det(P) det(\] — A) det(P)~! = det(\ — A).

Thus the characteristic polynomial is of the form
n

FO) =TI =ra).

=1
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we get that

),
k
V=Tl

for some k£ < n, and some subset of the r;. In fact, since the minimal polynomial and the char-
acteristic polynomial share the same linear (prime) factors (Theorem 3.14), we must have that
m(A) = f(A) by this. Regardless, though, the minimal polynomial has distinct roots.

( <) Since the minimum polynomial has all distinct roots, and we’re working over C, we see that
the invariant factors must be linear of the form H?zl(/\ — rj), where r; are the roots (this follows
since all invariant factors divide the minimum polynomial). In other words, the Jordan form will
be given by

Hence, since the minimal polynomial m(\) | f(A

1
)
Cn
where the C; are simply r; (since they all have multiplicity 1). Hence, the Jordan form is
™
Tn
and so we have that A is similar to the matrix diag{ri,...,m}.

0

Problem 52 (Section 6.1, Exercise 3). Let B be a non-degenerate bilinear form on V. Show that
if C' is a bilinear form on V, then there exists a unique linear transformation Lo of V' into V' such
that C(z,y) = B(Lc(z),y) for all z,y € V. Show that C is non-degenerate if and only if L¢ is
bijective. Show that there exists a unique bijective linear transformation P of V into V such that
B(y,xz) = B(P(z),y) for all z,y € V.

Proof. We have that every linear function on V' is of the form xy, : V' — F such that z,(y) = B(z,y)
since B is non-degenerate. Notice that the function 2/ : V' — F is such that 2, (y) = C(z,y) is a
linear function. For some z € X, then, we have zy, : V' — F is such that z1(y) = C(z,y) = B(z,y).
Let Lo : V. — V be the linear function defined by Lo(z) = z, where 2z, : V' — F is defined to
be such that z1(y) = B(z,y) = B(Lc(z),y) = C(z,y) = xr(y). Notice this is well-defined by
assumption (that is, if x = y, then z1(g9) = yr(g) for all g, and so they map to the same function
zr,). We first check that this is indeed a linear function. Let a,b € V. Then we have Lc(a) = f,
Lo(b) = g, and we notice that f(y) + gr(y) = B(f,y) + Blg,y) = B(f + g9,9) = (f +9)L(y),
B(f+g,y) = B(f.y) + B(g,y) = C(a,y) + C(b,y) = C(a+b,y), so we have Lc(a+b) = f+g =
Lc(a) + Lc(b).

Next, if a € V, r € F, we want to see that Lo(ra) = rLco(a). Letting f = Leo(a), we have that
rfr(y) = rB(f,y) = B(rf,y), B(f,y) = C(a,y), rC(a,y) = C(ra,y), so we see that rLc(a) =
rf = Lc(ra). Hence, the function is linear.

Next, we wish to check that the function is unique. Let T': V' — V be such that B(T(z),y) =
C(z,y). Then we see that B(T'(z),y) = B(Lc(z),y) forallz € V, and so B(T(x),y)—B(Lc(x),y)
0 for all x € V. Using linearity in the first component, we see that B(T(z) — L¢(x),y) = 0 for all
y. This implies that T'(x) — Lo(x) € V4, but this is trivial by assumption, so T'(x) — Lo(x) = 0,
or T'(z) = Le(x) for all z € V, and so T' = L¢. Hence, it is unique.

We now show that C' is non-degenerate if and only if L¢ is bijective.

(= ) Since C'is non-degenerate, there exists a linear function Lp : V' — V such that C(Lp(x),y) =
45



B(z,y) by the previous part. Hence, we have C(Lp(Lc(z)),y) = B(Lc(x),y) = C(z,y). Since
the function is unique, this tells us that Lg o Lo = Id. Going the other direction, we have that
B(Le(Lp(x)),y) = C(Lp(x),y) = B(x,y), so Lo o Lp = Id again by uniqueness. This tells us that
L¢ is bijective, since it admits a left and right inverse.

(<= ) Examine U = {x € V : C(x,y) = 0forally € V}. Notice that this is the same as
{r € V : B(Lc(x),y) = 0forally € V} by assumption. Since L¢ is bijective and B non-
degenerate, we have that U = 0; if it weren’t, we have 0 # z € U such that B(z,y) = 0 for all
y € V (since ker(L¢) = 0), but this is a contradiction since V¥ relative to B is trivial. Notice
that this implies that V1L relative to C is trivial, and by the equivalence in Theorem 6.1, we see
that C' is non-degenerate.

We check that the map C : (z,y) — B(y,z) gives is a bilinear form. By the first part of the
problem, we can deduce a unique linear transformation P exists, and by Theorem 6.1 we see that
B(y, z) will still be non-degenerate, and so we have a unique bijective linear transformation by the
second part of the problem.

To see that this still gives us a bilinear form. That is, we need to check it is linear in each
component (it’s clear that the map is still into F'). Notice that for a,b,c € V, r € F we have

C(a+b,¢) = B(c,a+b) = B(c,a) + B(c¢,b) = C(a,c) + C(a,b),
C(ra,b) = B(b,ra) =rB(b,a) = rC(a,b),
C(a,b+c)=B(b+c,a) = B(b,a) + B(c,a) = C(a,b) + C(a,c),
C(a,rb) = B(rb,a) = rB(b,a) = rC(a,b).

So this is indeed a bilinear form. O

Problem 53 (Section 6.1, Exercise 8). Let B be a bilinear form. Note that if v and v are fixed
vectors, then the map x +— B(z,u)v is a linear transformation of V' into V. Denote this as
u ®v. Find a formula for the trace tr(u ® v). Show that if B is non-degenerate then every linear
transformation has the form > u; ® v;.

Proof. Fix a basis {e1,...,e,} for V. Let T : V. — V be the linear transformation given by
T(x) = B(x,u)v, where B the bilinear form. We have that v and v are fixed vectors, and so we

can write them as
n
u = E a;€;,
i=1

n
v = E biei.
=1

Furthermore, we see that we have values d;; = B(e;, e;). Notice that we can write

B(z,u)v =B ( Zazel>v—<2al a:eZ)v:ZaiB(x,ei)v

We can then form a matrix A from seeing where we map the basis elements to; we have that

n n
61) = ZaiB(el, 62')7) = Zaidlw,
i=1 i=1
n n
62) = ZaiB(eg, 62‘)’1) = Zaidgiv,
i=1 =1
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to get the matrix

Yoy agdigby YT adaiby - YT aidniby
A= : : : s
Doicy aidiiby D70 aidoiby oo 3T aidniby
Thus, the trace is given by

n
tr(u & ’U) = Z aidjibj,
ij=1
relative to the chosen basis. Notice that this corresponds to, after fixing a basis, v Bu, where B is
the matrix with coefficients given by B(e;, e;).

Remark. This actually aligns with the answer given in class using a basis free method. That is,
the trace is B(v,u).

If B is non-degenerate, then every linear transformation on V to F' is of the form zp : V — F
where zr(y) = B(x,y). Take a given function 7" : V' — V. Fix a basis {e1, ..., e,}. Writing a vector
zeVasxz =), ae; we have that projecting onto the ith coordinate gives us a function 7; :
V — F via T;(z) = a;. Hence, we can write T : V — V as T'(x) = >_ Ti(x)e; = (Th(z), ..., Tu(x)).
Since each T; : V. — F is a linear function (since 7' is linear in each component), we have that
there is a u; € V so that (u;)r(z) = B(x,u;) = T;(z). To get a vector, then, we sum these over the
basis e;; that is, we have T'(x) = > 1" | Ti(x)e; = Y i~y B(x,u;)e;. By definition, this tells us that
T(z) =Y " (ui ®e;)(x). Since this applies for all z, we get T'= > (u; ® ¢;), as desired. Hence,
every linear transformation is a sum of these tensors. O
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Problem 54 (Section 6.2, Exercise 2). Assume B is an alternate bilinear form and (uy, vy, . .., ug, v)
satisfy B(u;,v;) = 1 = —B(v;,u;) with all other B(z,y) = 0 for z,y € (u1,v1,...,uk, vg). Using

the notation prior, let
k

Ey = Z(Uz ® v — v @ Uy).
1
Verify that E,% = F}, and
B(Eyx,y) = B(z, Ey)
for all z,y € V.
Proof. Notice that u; ® v; = (r — B(wz,u;)v;) is a map V. — V. Hence, we see that Ej :
V — V as well. Since B is alternate, we can find a basis for V' of the form (ui,v1,...,ug, vk,

Ukt 1y Vkt1y -y Upy Upy 215 - -+, Zn—2r ), Where n is the dimension of V' by Theorem 6.3. Then the
matrix of B is of the form diag(S,...,S,0,...,0) (here, there are r S’s) where

0 1
s_<__1 0.

We then would like to find a matrix form for u; ® v; relative to this basis. Notice that

U; & vi(uj) = B(uj,ui)vi =0,

U; & vi(vj) = B(vj,ui)vi = _5]'1'”1'7

u; @ vi(25) = B(zj,u;)v; = 0.
Hence, the corresponding matrix is the matrix with all 0’s and a —1 at the (i + 1,7 + 1) location;
that is, it is —e(;41)(i41)- Likewise, we see that, relative to this basis,

v; @ wi(u;) = Bluj, vi)u; = 0i5u;,
vi ® ui(vs) = 0,
v; ® ui(z5) = 0.
In other words, this corresponds to the matrix e;. So we have
U ®v; — U1 QUug

corresponds to the matrix

-1 0 0 0
0 -1 0 0
0 0 0 0f,
0o o0 0 --- 0
and so on. So the matrix of Fj relative to this basis corresponds to diag(J,...,J,0,...,0), where

the J occur k times and are of the form

=(3 %)

I believe the book is wrong at this point, or I'm misunderstanding something. We see that Fj
corresponds to this matrix with the respective basis, and so we have Eg # Ey, since one will have
1’s along the diagonal and the other has —1 along the diagonal. Checking with others, we seem to
have independently all reached the same conclusion.
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Let z,y € V. Then we have that

2n—r

x—Zalul—i—Zb vj + Z CtZt,

Hence,
r T k
Ey(z) = Z a; E(u;) + ijE<UJ> = Z(_az)uz - Z(bJ)UJ7
=1 7j=1 =1 7=1
k k
B(E(a)y) = B | 3 (-a)u Zbﬂ],y)
i=1 j=1
k
= —q; ZB Uiy Y) — Zb-B(U],y),
j=1

and substituting y in we get

2n—r
:—Zaz ZafB ul,u]c +ZbBu2,vg ZchB Uiy 21)
=1
k r T 2n—r
=Y b | D ayBlojup) + > byBvj,vg) + D ¢ B(vj, zn)
j=1 f=1 g=1 h=1
k k
= — Zazb; + ija;.
i=1 j=1
A similar argument gives
k k
Bi(y) = > (—apu; — > _(b))v;,
i=1 j=1
k k
B(x,Ex(y)) = B | 2,) (—aj)us — Y _(b))v;
i=1 j=1
k k
= (—aj)B(z,u) — Y _(V;)B(=z,v)),
i=1 j=1

and substituting in x gives

2n—r

k r r
= Z(—ag) ZafB(uf, ui) + Z bgB(vg, u;) + Z cnB(zp,ui)
i=1 f=1 g=1 h=1

2n—r

k r r
- Z(bg) ZafB(UfWi) + ZbgB(Ugvvi> + Z cnB(zn,vi)
i f=1 =1 h=1
k ’ k
= Z a;bz — Z b;a,-,
=1 i=1
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and so we get that B(FEx(z),y) = B(z, Ex(y)), as desired. O

Problem 55 (Section 6.2, Exercise 3). Let B be a non-degnerate alternate bilinear form on V', T
a linear transformation of V' into V. Define the adjoint of T relative to B as the (unique) linear
transformation 7" such that B(Tz,y) = B(z,T'y) for all z,y € V. Determine the adjoint of u ® v
relative to B.

Proof. We have u ®@ v = (x — B(z,u)v). We see then that
B((u®wv)(z),y) = B(B(x,u)v,y) = B(x,u)B(v,y).
We then want to find 7" so that
B(z,T'y) = B(z,u)B(v,y).
If we define 7" = (z — B(v,z)u), we get
B(z,T'y) = B(z, B(v,y)u) = B(v,y)B(z,u) = B(z,u)B(v,y).
Hence, this is the adjoint. It’s unique by the prior problem set. ]
Problem 56 (Section 6.2, Exercise 7). Let s = diag(S,...,S), where

sz<_°1 3)

Call a matrix a € M, (R), R a commutative ring, symplectic symmetric if s~'a's = a. Show that
this condition is equivalent to the condition that sa is skew.
Show that a is a root of the equation, Pf(sA — sa) = 0.

Proof. ( = ) Recall that sa is skew if (sa)! = —(sa). Assume that a € M,(R) is symplectic
symmetric. Then we have that s~'a’s = a. Notice that

sa+ (sa)! = sa + a's' = sa —a's,

t:

since s' = —s, and we have that the symplectic symmetric property gives us that a's = sa, so

sa+ (sa)' = sa — a's = sa — sa = 0.
In other words,
(sa)! = —sa,
and so the matrix is skew.

( <= ) Assume the matrix is skew. Then we have

—a's = a's' = (sa)! = —sa,

or

CLtS = Sa.

Since s is invertible (in fact, s* = 1), we have that

So the matrix is symplectic symmetric.

Remark. The next portion originally had a very wrong proof. I found this proof in Structure and
Representations of Jordan Algebras by Jacobson.
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Next, we wish to show that Pf(sA—sa) = 0 has a root at a (assuming a is symplectic symmetric).
To do this, we need to do the prior problems. Let X = (z;;) a 2n X 2n matrix in Z[z;;] which is
skew symmetric; that is, we have z;; = 0 and z;; = —z;;. First, notice that XAdj(X) = det(X)I.

This then gives us
2n

Z aix Xpj = (51']' det(X),

k=1
where here X;; represents the cofactor. We notice that X;; = 0, X;; = —Xj;. Using this, we get an
equation for 2n — 1 elements Xy, k # j. Taking the determinant of the coefficients of these linear

equations gives the (—1)“*7 cofactor of z;;. That is, we get

-Tij = (—1)i+iji = (—1)i+j+1Xij.
Using Cramer’s rule, we get o

(—1) XY = (det(X)) Ay,

for some A;; € Z[z;;]. Now, we have that det(X) = Pf(X)?, so replacing this gives

(1)L = (det(X))PH(X)?,
So for all , j, we get

P{(X) | Xij,
since X;; = 0. Using this, we have that
PH(X)Y;j = X
for some Y;; € Z[x;j], so writing Y = (Y;;), we get
XAdj(X) = XYPf(X) = (Pf(X))21.

This then gives us

XY =Pf(X)1.
Using this, write

X = s\ —sa,
then we have

(sA — sa)Y = Pf(sA — sa)l.
We now follow the proof of Cayley-Hamilton, which gives us the desired result. Write p(\) =
Pf(sA — sa). Then we have
(sA—sa)Y = p(M)1.

For simplicity, let m = 2n. Y is a matrix of polynomials with respect to A as well, so we can write

m—1 '
Y =3\,
=0

where Y; is the matrix of coefficients of \' in Y. So using this, we get

m—1
(sA — sa) E 2Y;
=0

m m—1
=s (Z NY;_q — Z /\iaYi> .
=1 1=0

Expanding then gives

m—1
s ()\mYm_l + Z MYy —aY;) — aY0> )

1=0
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Write
p(A)1 = Z NeiI,,
i=0

where ¢; are constant matrices. By the equality, we get
co=—aYp, Vi1 —aY;=c¢;, ¢y =Y 1 =1,

noting here that p(\) is monic. Multiplying the coefficients of A? by a’, we have

m—1 m
A"Vt + Y (0o —a™Yi) —aYy =) d'ei = pla)
=1 1=0

We notice that the left hand side dies completely, so we get p(a) = 0. In other words, a is a root
of the Pfaffian. 0

Problem 57 (Section 6.3, Exercise 3). Show that a symmetric bilinear form B in V over R is
positive definite in the sense that B(u,u) > 0 for all u # 0 if and only if it has 1 as one of its
matrices. Use the Lagrange reduction (in this case called the Schmidt orthogonalization process)
to prove that if s is a matrix of a positive definite symmetric bilinear form, then there exists a
triangular matrix p with 0’s above the main diagonal such that

psp' =1
or

s =qq’,

g=p "

Proof. We first show that a symmetric bilinear form B in V over R is positive definite if and only
if it has 1 as one if its matrices.

(=) Assume B is positive definite. Then we get that it’s corresponding matrix B is symmetric
and has only positive values; hence, we have that it is diagonalizable. Since we require that it be
positive definite, we must have that its signature is p = n, where p here denotes the number of 1’s
along the diagonal, by Theorem 6.8. In other words, it has 1 has one of its matrices.

( <= ) Assume that it has 1 as one of its matrices. Then we have a basis (v1,...,v,) for V such
that B(v;,vj) = 0;;. Taking z € V', we have

e=Y
where a; € F, and so we get

n n n n
B(z,z) =B (Z aivi,Zaivi) = ZB Vi, Zajvj = Z a;a; B(vi,vj) = Za%.
i=1 j=1 ij=1 i=1
So as long as x # 0, we have that a; # 0 for at least one ¢, and so B(x,z) > 0.

Write B = (B(e;, ej)) where e; is the current basis of V. We then do a change of basis using the
Schmidt orthogonalization procedure; let v1 = eq, uy = e1/+/B(e1,e1), and given the basis up to
k, say (u1,...,ug), we find ug1 by

k

Uk+1 = €k+1 — 73(%“’60 i
+ + o1 B(ei,ei) v
Vk+1

Uk4+1 =
B(Vky1, Vk41)
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Then we have a collection of vectors (u1,...,u,), and we check that this is a basis. It suffices to
show that its linearly independent. That is, if we have

Z a;U; = 0,

then this forces a; = 0. But writing this out, we have

D aiui = Z R
i=1 ,Ulvvz

so it suffices to check that the v; are also a ba31s. Hence, we check
n n i—1
B(ei, 6]')
Zaﬂ}i =aje1 + Z a; | e; — Z - €j
i=1 i—2 =1 B(eja e])

Expanding this out gives

n
Z diei = 0,
i=1

which forces the d; = 0, where here we have that

n

B
d1 =a] — Z 7(6]7 61)

aj
= B(el,el)
n
Blej,e2)
dy=as— Y a;—2L =L
2 2 23 ? B(ea, e2)’
J
B(eruen—l)
dp-1=0Qp-1— ap———"—
n—1 an—1 anB(en—l,en—1>’
dp = Q.

We see that the basis criteria forces a,, = 0. This then forces a,,_1 = 0, a,_2 = 0, etc. Hence, we
have that the v; are linearly independent, and since Dim (V') = n, this forces them to be a basis,
and furthermore this then forces the wu; to also be a basis. Under this basis, we see that

B (ul, ul) = 1,

B(ui,u;) =0 for all i # 1,

and furthermore by calculation we get

B(ui,uj) = (51]
Hence, the corresponding matrix will be 1.

Notice that to get the matrix (B(u;,u;)), we have to multiply the matrix s = B(e;, e;) by

p=(u1 up -+ uy)
and (p') to get

p'sp = (B(ui,uj)) = 1.
Notice that p here is an upper triangular matrix by this orthonormalization process, so by taking
the transpose we get a lower triangular matrix. Letting p be the lower triangular matrix without
loss of generality, we get

pspt = 1.

Notice that along the diagonal of p, we have non-zero values (by construction), and so it is invertible.
Letting ¢ = p~ !, we see that

qpsp'q’ = s = q¢'
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as well. O

Problem 58 (Section 6.3, Exercise 4). Assume we have the same hypothesis as in the prior problem.
Call a base (u,...,u,) Cartesian if B(u;,u;) = d;5. Show that if (v, ...,vy) is a second such base,
then the matrix relating the two is orthogonal. Use the result of the prior exercise to show that if
m is any invertible matrix in M, (R), m can be written in the form po, where p is triangular and o
is orthogonal (RQ, LQ factorization).

Proof. Recall that being orthogonal means that oo’ = 1. Let o be the matrix relating these bases;
that is, letting s = (B(us, uj)), v = (B(v;, vj)), we have

OSOt = .

However, s = (B(u;,u;)) = (0;;) = 1, and likewise v = (B(v;,v;)) = (d;5) = 1, so

oso' = 0ot = 1.

Thus, the matrix is orthogonal.
Let m be an invertible matrix. Let B the bilinear form with associated matrix s = mim. We
see that this has 1 as one of its matrices, since

(m")"ts(m™) =1,
so B is a positive definite bilinear form. Hence, we can find a lower triangular matrix p by the last
problem with
p(m™)rs(m™)pt = pm~ s(pm ™) = 1.
Since this is relating to basis which both give the 1 matrix, by the first part of this problem we

have that p(m~!)! is an orthogonal matrix; in other words, we have

p(m")~! =o.

Multiplying (m!) to the right of both sides and o® to the left of both sides gives
o'p =m!.
Taking the transpose of both sides gives
plo=m.
Since p was chosen to be lower triangular, we have that the transpose is still a triangular matrix,
say ¢, so we get that
qo =m,

where ¢ is a triangular matrix, o orthogonal.
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Problem 59 (Section 6.2, Exercise 4). Show that Pf(a) is linear in any one of the rows of the
alternate matrix a (for fixed values of entries in the submatrix obtained by deleting the chosen row
and corresponding column).

Proof. Now, examine the matrix

0 T2 't Tim

—T12 O e Tom

a= | —T13 —I23 - T3m
_mlm _':EZTTL oo O

We want to show that this is linear with regards to a row. Multiply the ith row of a by A. Since
it’s alternating, this corresponds to

Di(N)aD;(N),
so we have
Pf(D;(AN)aD;(\)) = det(D;(X))Pf(a) = A\Pf(a).
Using the swapping row and linearity properties, we can use the trick to show that determinants
are linear in rows to get that the Pfaffian is linear in rows. O

Problem 60 (Section 6.3, Exercise 5). Prove that the set of polynomial functions on V' can be
defined as the subring of the ring of maps from V to F' generated by the linear functions. Here,
addition and multiplication of maps from V to F' are the usual ones:

(f +9)(x) = f(z) + g(x) (pointwise)
(f9)(x) = f(z)g(z) (pointwise).

This gives an intrinsic definition of polynomial functions.

Proof. Let f(x1,...,zyn) € Flz1,...,%,], where n is the dimension of V. We wish to show that f
is a linear combination of linear functions. We write

Diy Pi
flar,...,an) = E biy - b apt ap”
(ilv--ai'r)

where 1 <7 < n, i; € {1,...,n}. It’s clear that it’s a linear combination of linear functionals via
projections. Likewise, any linear combination of these linear functionals is some linear combination
of the projections, so we get that it’s a polynomial. O

Problem 61 (Section 6.3, Exercise 6). Let @ be a non-degenerate quadratic form on an n > 3
dimensional vector space over a finite field. Show that @ is isotropic (where isotropic means that
there exists a vector u # 0 such that B(u,u) = 0.)

Proof. Associated to @ is the bilinear form
B(z,y) = Qz +y) — Qz) - Q(y).
Assume for contradiction that there is no vector u such that B(u,u) = 0. Then we have that

B(u,u) =2Q(u) #0
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for all u # 0. Associated to this bilinear form (since it’s non-degenerate) is a matrix of the form

1 0 --- 0
01 --- 0
bi=1|. . . :
00 --- d
Since n > 3, we have at least 2 1s. We also have that B is universal. Write v = (z1,...,2,), then

with regards to this base we have
B(v,v) = (x1,...,2,)b(x1,...,1,)"

1
T2
= (T1,...,Tp) : =22 4+ da.
dx,
The Chevalley-Warning Theorem applies then to find us a non-zero solution. (Il

Problem 62. Recall that an isometry of V onto V relative to the quadratic forms @1, Q2 (equiv-
alently, bilinear forms Bj, Bs) is a bijective linear map 1 : V' — V such that Q2(n(z)) = Q1(z) for
all x € V (equivalently, Bo(n(z),n(y)) = Bi(z,y) for all x,y € V).

Recall that an orthogonal transformation of V onto V relative to a non-degenerate quadratic
form @ is an isometry which has the same quadratic form in the domain and codomain. In other
words, we have that Q(n(z)) = Q(x) for all z € V.

Prove that a linear transformation n : V' — V is orthogonal if and only if for all 1 < 4,5 < n,

B(n(ei),n(e;j)) = Blei, e5),
where here B is the associated bilinear form to ). Recall that the associated bilinear form is of
the form

B(z,y) = Q(z +y) — Q(z) — Q(y)

Proof. Let n: V — V be a linear transformation.
( = ) Assume 7 is orthogonal, (ei,...,e,) a base for V, @ a quadratic form, B the associated
bilinear form (that is, B(z,y) = Q(z + y) — Q(z ) Q(y)). We have that

B(n(ei)n(ej)) = Q(n(ei) +nlej)) — Qnle:)) — Qnles)) = Qnle: +¢5)) — Qnle:)) — Qnle;))
= Q(e;i +¢j) — Qe ) Q(ej) = Blei, e;).

( <= ) We need to show that for all x € V, Q(n(z)) = Q(z). We have
2Q(n(x)) = Bln(w),n(x)) = B (n S aie) 0 (D ase; )

= Z a;a; B Z a;a; B(e;, e;)

=B (Z a;e;, Zajej> = B(z,z) = 2Q(x).

Hence, Q(n(z)) = Q(a). O

From here onwards, unless otherwise stated, let V' be a vector space and () a non-degnerate
quadratic form on V.

Problem 63 (Section 6.4, Exercise 1). Show that if n is an orthogonal transformation and
Vi=A{z : n(x) =z},

then dim(V) = dim(V3)+dim((1—7)V). Show also that Vi = ((1—n)V)* and hence Vj* = (1—n)V.
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Problem 64. Recall that a symmetry is a map of the form

B(x,u) )
Q(u)

Su(z) =2 —

(1) Prove that S, is linear.

(2) Prove that S, is orthogonal.

(3) Recall that a transformation is called improper if the determinant relative to some base is
—1 (it turns out this is equivalent to saying the determinant relative to all bases is —1).
Show that S, is improper. (Hint: Fu™)

(4) Show that S2 = 1.

Problem 65. Let B be a non-degenerate biliner form on a vector space V. Recall that the adjoint
of a linear map T relative to B is a linear map 7" so that

B(Tz,y) = B(x,T"y).
Prove that the adjoint of an orthogonal transformation is its inverse.

Problem 66 (Section 6.4, Exercise 2). Let 1 be an orthogonal transformation such that dim(V;) >
dim(V') — 1, where Vj is as in the prior exercise. Show that either n = 1 or 7 is a symmetry.

Problem 67 (Section 6.4, Exercise 3). Recall that a a pair of vectors (u,v) is called a hyperbolic
pair relative to a quadratic form @ if

B(u,u) =0 = B(v,v), B(u,v)=1=—B(v,u),

where B is the associated bilinear form to Q.
Let (u,v) be a hyperbolic pair and let w € (Fu+ Fv)* be non-isotropic (that is, either Q(w) # 0
or w = 0). Verify that the linear transformation p defined by

U u
v v — Qw)u — w,
z+— z+ B(z,w)u, =€ (Fu+ Fv)t
coincides with Sy, Sy _Qwyu)- (Note that Q(w — Q(w)u) # 0.)

Problem 68. Read/prove Witt’s Cancellation theorem:
Let @ be a non-degenerate quadratic form on a vector space V over a field F' of characteristic # 2,
U1, Us non-degenerate subspaces which are isometric. Then UlJ- and Uj- are isometric.

Problem 69. Read/prove Witt’s Extension theorem:
If V is equipped with a non-degenerate quadratic form @, any isometry of a subspace U; onto a
subspace Uy can be extended to an orthogonal transformation.

Problem 70. Read/prove Cartan-Dieudonné theorem:

If dim(V') = n, then any orthogonal transformation of V' is a product of < n symmetries.
Read/prove also the “cheap version:”

Any orthogonal transformation is a product of symmetries.

Problem 71 (Section 6.9, Exercise 1). Recall that a symplectic base for V relative to a non-
degnerate alternate bilinear form B is a base (uj,v1, ..., u,,v,) which satisfies the following condi-
tions:
B(u;,uj) = 0= B(vi,v;), B(u;,vj) =di; = —B(vj,u;).
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Let (u;,v;) be a symplectic base for V', and let U and U’ be the subspaces spanned by the u; and
v; respectively. Let K be the subset of Sp,(F) of n which stabilize U and U’. Show that a linear
transformation n € K if and only if its matrix relative to the base

(ulv"‘auravlv"‘7v'r')

<61 (A?)_l) . AeCL.(F).

Note that K is actually a subgroup of Sp,,(F).

has the form

Problem 72 (Section 6.7, Exercise 4). A linear transformation 7 is called a transvection if there
exists a hyperplane U such that T'|U = 1y, and for every =, we have T'(x) — x € U. Show that the
linear transformations corresponding the matrices 7T;;(b), i # j, b € F are transvections. Show that
any transvection 7 has the form = — x + f(x)u, where f(z) is a linear function and w is a vector
such that f(u) = 0. Hence, show that there exists a base (e1, ..., ey)for V such that the matrix of
T 18 Tlg(l).

Problem 73 (Section 6.9, Exercise 2). Let the notation be as in Exercise 1 of this section. Let L
be the subgroup of Sp,,(F') of ¢’s which fix every v € U’. Show that a linear transformation o € L
if and only if the matrix relative to (u1,...,u,,v1,...,v,) has the form

b7

where S* = S. Show that the map o — S is a monomorphism of L into the additive group of r x r
symmetric matrices. Show that if S = e;;, 1 < ¢ < r, then the corresponding o is a transvection
(see above).

Problem 74 (Section 6.9, Exercise 3). Let 0 € L and n € K (as in Exercises 1 and 2 in this
section). Verify that non~' € L. Verify that if the matrices of  and o are

(0 )
(b 7)

and

respectively, then the matrix of the commutator non~'o~! is
1 5
0 1
where
S; = ASA' — S.
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Problem 75 (Section 1.2, Exercise 9). Let G be a non-vacuous subset of a monoid M. Show that
G is a subgroup if and only if every g € G is invertible in M and g5 e @ for any g1, g2 € G.

Proof. (=) Let G be a subgroup of M. Then we have that every g € G is invertible, and G is
closed under multiplication, so g1g, e G for all g1, g2 € G.

( <= ) Let G be a subset satisfying these conditions. We need to show that 1 € G, G is closed
under multiplication, and G is closed under inverses. To see that 1 € G, we take g € G and notice
that gg~! = 1 € G. To get that it is closed under multiplication, let g1, g2 € G. Since G is closed
under inverses, we get that g, 1 € G. Hence, we have g (95 1)*1 = g1go € G. Finally, it’s closed
under inverses by assumption. Thus, we have that G is a subgroup. O

Problem 76 (Section 1.2, Exercise 10). Let G be a semigroup having the following properties:

(a) G contains a right unit 1,, that is, an element satisfying al, = a, a € G,
(b) every element a € G has a right inverse relative to 1,; that is, every a € G has an associated
b € G such that ab = 1,.

Show that G is a group.

Proof. We need to show that three conditions:

(1) (Closure) This follows since G is a semigroup.
(2) (Associativity) This follows since G is a semigroup.
(3) (Identity) We need to show that there is a 1; and 1, = 1;. First, notice that

1, =1,-1,.

Notice as well that for every a € G, we have a b € GG such that ab =1,. So
1, =1,-ab=ab-1, = ab.
Multiplying throughout by the right inverse of b, denoted ¢, we get
1. -¢c=abc=c.

Furthermore, we notice that

abc = c = a.
So we have for all a € G that

1, -a = (ab)a = a(ba) = a(bc) = a.

So 1, is a left inverse, as desired. Thus, we can denote it by 1.
(4) (Inverses) From (3), we see that a is a right inverse for b. In other words, b is both a left and
right inverse for a.

Thus, since it satisfies all of the axioms, we have that G is a group. O

Problem 77 (Section 1.2, Exercise 11). Show that in a group, the equations ax = b and ya = b
are solvable for b € G. Conversely, show that any semigroup having this property contains a unit
and is a group.

Proof. We start with the forward direction. Notice that we can solve for x in the equation ax = b
by multiplying by a~! on the left; that is, we have x = a~'b. Likewise, we can solve for y by
multiplying on the right by a~!; that is, we get y = ba ™.

Now, assume we have a semigroup satisfying that these equations are solvable. Denote this set
by S. We again have closure and associativity immediately, and so it suffices to show that we have
an identity and inverses. We proceed first by showing that S has a unit. Fix a € 5. We have
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solving ax = a gives us a right identity for a. We need to then establish that for any other b € S,
bx = b. Notice that ab = (az)b = a(zb) = ab, and so we get zb = b. So x is a left inverse for any
element b € B, which gives us that it is also a left identity for a. To get that it is a right identity,
notice that ¢b = ¢(xb) = (cx)b, so we have cx = ¢ and so x is a right identity as well. We can
denote it by 1.

To get inverses, we solve ax = 1, ya = 1. Then we see that z = (ya)x = y(ax) = y. So every
element also admits an inverse. Hence, it’s a group. ]

Problem 78 (Section 1.2, Exercise 14). Show that a group G cannot be the union of two proper
subgroups.

Proof. Let G = HUK, H K < G. If either H, K = G, we are done. Assume H,K # G. Let
xe€(H—-K),ye (K—H); we have (H - K),(K —H) # @ since HUK = G but H K # G.
Then we have xy € G, since it is closed under products, and by assumption we must have xy € H
or zy € K. But if zy € H, then there is a h € H so that

zy=h<<y=ax"'h,
and since x,h € H, this implies y € H, a contradiction. Similarly, if xy € K, we have a k € K so
that

zy=k+<o=ky !,
and since k,y € K this implies that * € K, a contradiction. Therefore, we cannot have that
HK#Gand HUK =G. O

Problem 79 (Section 1.3, Exercise 3). Let G be a group. Define the right translation ag for a € G
as the map x — za in G. Show that Gr = {ar} is a transformation group of the set G and a — ay,
is an isomorphism of G with Gp.

Proof. We first show that it’s a transformation group. That is, we need to show that ap is a
bijection G — G, and G is a group. To see that ag is a bijection, we see that

ar(z) = ar(y) <> za =ya < x =y,
so it is injective, and to get surjective, we note
ar(ya™) =y
for all y € G. Next, we first see G is closed under composition. That is,
arobgr € Gp.

Notice that

ar o br(z) = ar(xb) = xba = (ba)g(x) € Gg.
So it is indeed closed under composition. Associativity follows from the associativity of composition
of functions. We have an identity, via noticing that

er(x) =ze=1x

for all z € G, and so eg = I € M(G). Finally, given agr € Gr, we can construct an inverse via
taking a]_%l; notice that

ag o aél(x) =ag(za ) =zata=2

forall z € G,so ago a}l = I. Hence, this is a group of transformations on G.
We now need to show that f: G — Gpr via f(x) = x; is an isomorphism. For injectivity, we
see
f(@)=fly) & 2 a) =yp'(a) Va e G ar =ay &z =y.
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For surjectivity, notice that we can get any transformation by just taking the inverse of it’s respective
element. Finally, to see it’s a homomorphism, we have

flay) = (@y)z" = (v 'z ")r,

f@)fy) =2z oyr' = 'a g,
SO

flzy) = f(x)f(y)

for all x,y € G. Hence, it is an isomorphism. O

Problem 80 (Section 1.3, Problem 5). Is the additive group of rationals isomorphic to the multi-
plicative group of non-zero rationals?

Proof. No. Assume that it were; for example, we have f(p/q) = 2 for some p/q € Q. But we see
that

f(p/(29) +p/(29)) = f(p/(29))f(p/(29)) = 2,
but this implies that

f(p/(29)) = V2,

which is not a rational number. So there cannot be an isomorphism. U

Problem 81 (Section 1.3, Problem 6). In Z, define a o b = a + b — ab. Show that (Z,0,0) is a

) )

monoid, and that the map a — 1 — a is an isomorphism of the multiplicative monoid (Z, -, 1) with
(Z,0,0).

Proof. We break this up into steps.
Step 1: We first show that (Z, 0,0) is a monoid. To do so, we need to show three properties.
(1) (Closure) Z is closed under multiplication and addition, so clearly aob = a+b—ab € Z. Hence,
it’s closed.
(2) (Associative) We have
(aob)oc=(a+b—ab)oc=(a+b—ab)+c—cla+b—ab) =a+b—ab+ c— ca — cb+ cab,
ao(boc)=ao(b+c—bc)=a+b+c—bc—alb+c—bc)=a+b+c—bc—ab— ac+ abe.
Hence, we see that
(aob)oc=ao(boc),
so the operation is associative.
(3) (Identity) We need to show 0 is the identity. Notice that for all a € Z,
ao0=a+0—a(0)=a=0+a—0(a)=00a,
so 0 is indeed an identity.

Hence, (Z,0,0) is a monoid.
Step 2: We need to show that f: (Z,-,1) = (Z,0,0) is an isomorphism. That is, it is a bijective
homomorphism. First, let’s show it is bijective. To see that it is injective, we have

fla)=fb)+1—a=1—-b+a=hb.
To see it is surjective, notice that for all a € Z, we have 1 — a € Z, so
fl—a)=1—-(1-a)=a.

So it is a bijection.
To see it is a homomorphism, we need to show that f(ab) = f(a) o f(b). Notice that

f(ab) =1 — ab,

fla)of(b) =(1—a)o(1—b) = (1—a)+(1—b)—(1—a)(1—b) =2—a—b—(1—b—a+ab) = 1—ab.
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Hence, f(ab) = f(a) o f(b), and so it is a homomorphism.
Since it is a bijective homomorphism, it is an isomorphism. ]

Problem 82 (Section 1.4, Exercise 1). Let A be a monoid, M (A) the monoid of transformations
of A into itself, A; the set of left translations ay, and Agr the set of right translations ar. Show
that Ay, is the centralizer of Ap in M (A) and vice versa. Show that Ay NAg ={cr=cr : c€ C},
C the center of A.

Proof. Step 1: We need to show that Ay is the centralizer of Ar in M(A). Recall that the
centralizer is the set of elements in M(A) such that they commute with all of Ar. We first
establish that A, C C(AR). Take ay, € Ar. Then we have

ar, obg(x) = axb=broar(x) Vx € A.

Hence, ay, € C(AR). Since the choice of aj was arbitrary, we get A, C C(AR).
Next, we need to show that C(Ar) C Ar. Take ¢ € C(Ar). Then we have

cobr(x) =broc(z).

Notice that the left hand side gives

cobr(z) = c(xb)
and the right hand side gives

br o c(x) = c(x)b.
So we have that c(xb) = c(z)b for all z,b € A. Notice that for z = e, we find ¢(b) = c(e)b for
all b € A. So we have ¢(z) = c(e)z, and hence c¢(z) = c(e), € Ar. Since this was for arbitrary
c € C(AR), we have that C(Agr) C Ar. Hence, they are equal.

A similar argument applies to show Ar = C(Ap).
Step 2: Take f € A NAg. Then since f € Ay, we have f commutes with all of Ag, and likewise f
commutes with all of Ar. Notice as well that from our prior argument f is determined completely
by where it sends 1; that is f = f(1) = f(1)r. Denote f(1) = a. Furthermore, since a; = ag, we
have
ar(x) = ax = xa = agr(x),

soacC. O
Problem 83 (Section 1.4, Exercise 2). Show that if n > 3, C(S,) = 1.

Proof. Assume n > 3, take v € C'(S,) non-trivial. Since v € C(S,,), we have
U’yafl =7
for all o € S,,. Recall that, rewriting v in terms of a cycle (WLOG take it to just be (y1,...,7)),

we have

oyot = (o(n),- .-, o).

So we have o(y1) =71, ...,0(Yn) = Yn. But this cannot hold for all o; take o(y1) = 72, 0(72) =™
if K > 3, and if K = 2 take o(y1) = j for j # ~1,7. Then we have oyo~! # «, which is a
contradiction of v # 1 being in the center. Thus, v = 1. O

Problem 84 (Center of Dihedral Group pt. 1). Show that the center of the Dihedral group Da,
is trivial for n > 2 odd.

Proof. Recall
Doy = (r,7 : " =7>=1,7r7 =7""1)
Let v € C(Day,). That is,
oy =0
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for all ¢ € Ds,. Notice that elements in Ds,, are of the form 7577, 0 < k < n, 0 < j < 2. So we
have

k

orfrl =k

o,
It suffices to check this on generators. Notice that if ¢ = 7, we have

rrfr =¥,

but this can only happen if n — k = k. That is, n = 2k, which is a contradiction. O

Problem 85 (Center of Dihedral Group pt. 2). Show that the center of Dy, is non-trivial for n
even, n > 2. Explicitly calculate it.

Proof. Again, it suffices to check it on generators. From before, we had if ¢ = 7, then this forces
k=mn/2. If 0 = r, we have

Tk+1 k

7 =rkriy,
Consider the case where j = 0. Then these are clearly equal. Consider now the case where j = 1.
Notice from the presentation that r7r = 7, so we have

PR k=1

Y

or in other words

rPr=1orl=r
For n = 2, we see that this holds, and so Dy = Z(Dy) (this checks out with the fact that Dy =
Zo X Zs). If n > 2, we see that this is false, and so j # 1. Hence, we have that Z(Dy,,) for n > 2 is

{e,r™/2}. O

Problem 86 (Section 1.5, Exercise 2). Let M be a monoid generated by a set S (i.e. (S) = M)
and suppose every element of S is invertible. Show that M is a group.

Proof. Since M is a monoid, to show that M is a group we just need to show that for every x € M,
there is an 2=! € M such that z2~! = 27 '2 = e. Using the constructive definition, which is
equation (11) on page 43 in the book, we have that every x € M is such that
rT=818, S €Sr>1
Since every s; has an inverse, denoted by sz-_l, we can write
z! :5;1'--31_1.

Then we have

and using associativity we get

e e =5t (s7tsy) s =8 sy lsg s, == e
Likewise, we have
acx_lzsl-"sr-sr_l- 31_1— =e
So we get that every element is invertible in M, and so M is a group. O

Problem 87 (Section 1.5, Exercise 3). Let G be an abelian group with a finite set of generators
which is periodic in the sense that all of its elements have finite order. Show that G is finite.

Proof. Let (S) =G, S ={ai,...,an}, o(a;) =1; < oo. Then we have that, for all g € G,

g:a’fl ...a"’iﬂ,
where 0 < k; < l;. We see that o(G) = [[;; li < cc. O
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Problem 88 (Section 1.5, Exercise 5). Show that any finitely generated subgroup of the additive
group of rationals (Q,+,0) is cyclic. Use this to prove that this group is not isomorphic to the
direct product of two copies of it.

Proof. Step 1: Let H < Q be a subgroup such that H = (S), S = {p1/qi,...,pn/aqn}. Notice that
S C(1/(q1--qn)),so (S)=H < (1/(q1---qn)). Hence, a subgroup of a cyclic group is cyclic, and
so H is cyclic.

Step 2: Take H < Q x Q, where H = ((0,1),(1,0)). Then if Q x Q = Q, we have that H is
cyclic. It suffices then to show that H is not cyclic. If it were cyclic, then H = {(a,b)), a,b € Q.
So (1,0) = n(a,b), (0,1) = m(a,b), and therefore a = b = 0, a contradiction. Hence, H is not
cyclic. O

Problem 89 (Bezout’s Lemma). If (m,n) = d, show that there are integers a,b € Z so that
am + bn = d.

Proof. Since d | m,n, let © = dx1, y = dy;. Thus, we have that (x1,y1) = 1. Therefore, [z1,y1] =
x1y1. S0 y1 is the smallest positive number so that

z1y1 =0  (mod y).
Now, if for all other integers 0 < a,b < y;, we have that
ria # 210 (mod y1)
implies that there is an a in this range so that
z1a =1 (mod y1)
by Pidgeonhole principle. If there is an a # b so that
zia = x1b  (mod y1),
then assuming b > a we have that
z1(b—a) =0 (mod y1),
and this contradicts the minimality of y;. So we have there is an a so that
ria =1 (mod y1).

Thus, y1 | 10 — 1, and so there is an integer b so that x1a — 1 = by, or z1a — by; = 1. Multiplying
by d and letting ¢ = —b, we have

a(dzy) + c(dy1) = ax + cy = d.
U

Problem 90 (Section 1.5, Exercise 6). Let a, b be as in Lemma 1. That is, let @ and b be elements
of an abelian group G such that o(a) = n, o(b) = m, m,n < oo, and (m,n) = 1. Show that
(a) N (b) =1 and (a,b) = (ab).

Proof. Let x € (a) N (b). We see that (z) < (a); that is, is is a subgroup of the cyclic group. Then
we have that o(x) | n. Likewise, (z) < (b), so o(z) | m. Since 1 < o(z) < (m,n) = 1, we must have
that o(z) = 1. Thus, z = 1.

Next, we want to show that (a,b) = (ab). Notice first we have

(a,b) ={1,s1---5, : sjors; " €{a,b}}.

It’s clear by this construction that
(ab) C (a,b).
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So it suffices to show the other direction. Let = € (a,b). Then

T =81 Sp.
Since the group G is abelian, we can write this as

r=dV, k+j=r, 0<j<m, 0<k<n

If & = j, we are done; = € (ab). Notice that taking (ab)” = b", (ab)™ = a". Since (m,n) = 1,
Bezout’s lemma gives there are integers a,b € Z such that

am+bn = 1.
Now, assume without loss of generality that & < j (the argument works the same the other direc-
tion). Then we have '

z = (ab)F/ k.
So it suffices to show that &= € (ab), since clearly (ab)* € (ab). Using Bezout’s lemma, we have

a(j —k)m+b(j —kn=(j—k).
Since o(b) = m, we can write this as
b(j — k)n = (j — ) — a(j — k)m.
So we see that
(ab)b(j*k)n = PU—knpi-k)—a(i—kym _ pi—k
so b/~F ¢ (ab). Hence, v € (ab), and since this works for arbitrary @ € (a,b), we have (a,b) =
(ab). O
Problem 91 (Section 1.7, Exercise 2). Show that if G is finite and H and K are subgroups such
that K C H, then
[G: K]=|G: H|H : K].

Proof. Since G is finite, we have that all the indices will be finite as well. Hence, let [G : H| = n.
Then we have representatives so that

G= |_| ylH
i=1
If we let [H : K] = r, we have
T
H=||zK
j=1
Substituting this in, we get
n T
i=1j=1

Since H C G, we get y;2; = g; j for some g. So we get

G= |_| |_| gi,jK-

i=1j=1

Notice, however, this is the same as just taking
nr
G= |_| giK.
i=1

Hence,
[G:H]=nr=[G: H|H: K]
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Problem 92 (Section 1.7, Exercise 3). Let H;, Hy be subgroups of G. Show that any right coset
relative to Hy N Hy is the intersection of a right coset of H; with a right coset of Hs. Use this to
prove Poincare’s Theorem; that if H; and Hs have finite index in GG, then so has H; N Ho.

Proof. Step 1: Take a right coset relative to Hy N Hg; that is, let (Hy N H2)x. Then we have
(HlﬂHz)l‘:{h$ : hEHlﬂHQ}.
However, we notice that

{hx : hEHlmHg}:{h{E : hGHl}ﬂ{hiL' : hEHQ}:Hll‘ﬂHgl‘.

Step 2: If Hq, Hs have finite index, then we have that there are finite representatives such that

n
G = |_|H1$2',
=1
m
G = |_| Hgmj.
7j=1

Then we see that, by Step 1, any representative (Hy N Hs)xy, for the right coset of the intersection
must be a representative for H; and Ho. Hence, the number of representatives is finite, since Hj
and Hy have finite representatives. ]

Problem 93 (Section 1.7, Exercise 4 (Schrier’s Lemma)). Let G be a finitely generated group, H
a subgroup of finite index (that is, [G : H] = n < o0). Show that H is finitely generated.

Proof. Let G = (S), S ={z1,...,2,}. Then
i=1

where the y; are taken to be representatives of the cosets. Take y; = 1 without loss of generality.
Since the z; € G by assumption, we get that z;y; € yx, ;H for all 4, j, and hence there is an h; ; so
that

TiYj = Yk, ;hij-
Now, take h € H. We have that
h=xy -z
Notice that
T, = Ykyy, Py 1-
So we can rewrite this as
h=wxy, -2, Yk, it
We now examine
Tl Ykyy, = Yk P,y gy,
We can continue replacing these generators, and after relabeling we get
h=y-hy-hy.
Since h € H, we get that y = 1, and so we have

h=hy -l

v—1:F1 1,

So taking the set

S/ - {h1,17 teey hr,n}a
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we see that
(S"y = H.
Hence, H is finitely generated. O

Problem 94 (Section 1.7, Exercise 5). Let H and K be two subgroups of a group G. Show
that the set of maps * — hxk, h € H, k € K is a group of transformations of the set G.
Show that the orbit of x relative to this group is the set HxK = {hak : h € H,k € K}.
This is called the double coset of x relative to the pair (H,K). Show that if G is finite, then
|HxK| = |H|[K : = 'Hz N K] = |H|[H : s Kz~ N HJ.

Proof. Step 1: We need to show that the set of maps {fux : fux(z) = hak} is a group of
transformations of the set G. To do so, we need to show that its closed under composition, the
identity is in it, and it is closed under inverses.

To see it’s closed under composition, take fri, fnrr. Then we have

(fak o frw)(@) = fre(R'zk") = hh'2k'k = frppi(z).

Since this applies for all z € G, we get that the maps are equal, and so the set is closed. To see
that the identity is in it, we notice that 1 € H N K, and so

fii(x) =1zl =z = I(x),

and so [ is in this set as well. Finally, we need to show it’s closed under inversion. Notice that the
inverse of the map frr will be f;,—1;-1, which is in this set as well since H and K are closed under
inversions. Hence, this is indeed a group of transformations.

Step 2: We now need to show that the orbit of x relative to this group is the set Hx K. Denote the
group above by Z. Then we want to show that Zx = HxK. We see clearly that Zx = { frr(x)
fnk € Z} C Hzx K, so it suffices to go the other direction. However, this is also clear; if hak € Hx K,
take the function fxr € Z.

Step 3: Let F = 2 'Hx N K, then we want to establish a bijection between the cosets of F in
K and the cosets of H in HxK. Let f(Fk) = Hxk. We need to show that this is well-defined,
injective, and surjective. To see it’s well-defined, let Fk' = Fk. Then ¥k™' € F = 7 'Hx N K,
which tells us that 'k~ € 271 Hx, and so wk’k~1z~! = (zk')(xk)~! € H. Hence, Hxk = Hzk'.
To see it’s injective, we have Hxk = Hak' < (zk)(zk’)™' € H + kk'"' € 27 'HxNK < Fk = Fk'.
Finally, we see that surjectivity is clear. Thus,

[K:2 'HxNK)=[HzK : H| & |H|[K : 2 'Hx N K] = |HzK]|.
The other equality is proven in the same way. O

Problem 95 (Section 1.8, Exercise 5). Verify that the intersection of any set of normal subgroups
of a group is a normal subgroup. Show that if H and K are normal subgroups, then HK is a
normal subgroup.

Proof. Step 1: We need to verify that NoH,, Hy < G, is normal. Notice that for h € (), Ha, we
have zhz~!' € H, for all o, since H, is normal. Since this applies for all h, we get

T (ﬂ Ha> 7t C ﬂHa,
(6% «
and so this, too, is normal.
Step 2: We have that HK is a subgroup, since H is normal. To see that it is normal, we have
tHKz ' =zHz '2Kz™' = HK.

Hence, it’s a normal subgroup. ]
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Problem 96 (Section 1.8, Exercise 6). Let G1,G2 be simple groups. Show that every normal
subgroup of G1 x G is either G, isomorphic to G, isomorphic to Ge, or is trivial.

Proof. Let Hy x Hy < G. Then if this is normal, we have 2(H; x Hy)z~' = H; x Hy. But this

implies that it is normal in each component, so we must have that Hy = {G1,1}, Hy = {Go, 1},
and this gives us all possibilities. O

Problem 97 (Section 1.8, Exercise 7). Let = be an equivalence relation on a monoid M. Show
that = is a congruence if and only if the subset M x M defining = is a submonoid of M x M.

Proof. (= ) Let S C M x M be defined by (a,b) € S if and only if @ = b. Since this is a
congruence (a,b), (a’,t’) € S implies aa’ = bb' implies (aa’,bb’) € S. Furthermore, (1,1) € S. So
it’s closed, associative, and there’s an identity, and so S is a submonoid.

( <= ) Assume S is a submonoid. Then it’s closed under multiplication, and so (a,b), (a’,b’) € S
tells us (ad’,bb’) € S, or a = b, a’ =V implies aa’ = bb'. So, = is a congruence. O

Problem 98 (Section 1.8, Exercise 8). Let {=;} be a set of congruences on M. Define the
intersection as the intersection of the corresponding subsets of M x M. Verify that this is a
congruence.

Proof. Intersection of submonoids is a submonoid, the corresponding = will be a congruence as a
result. O

Problem 99 (Section 1.8, Exercise 9). Let G1,G2 be subgroups of G, and let o be the map of
G1 x Gy into G by a(g1, g2) = gi1g2. Show that the fiber over gigo — that is, a~!(g1g2) — is the set
of pairs (g1k, k™ 1g2), where k € G1 N Ga. Hence, show that all fibers have the same cardinality,
namely, that of G; N Ga. Use this to show that if G; and G5 are finite, then

|G1]|Ga|

GGyl = ————.
| 1 2| |G10G2|

Proof. Step 1: We want to show

a ' (g192) = {(g1hk, Kk "g2) : k€ G1NGa}.
One direction is clear, which is that

{(g1k, k7 go) : k€ G1NGy} Cat(giga).

For the other direction, take (a,b) € a~'(g1g2). We have that a(a,b) = ab = g1 g2, 50 g; 'a = gab~".
So gl_la € G1NGa, gob~' € G1NGy. So let k € G1 NGy be such that k = gl_la = gob~!. Then we
have g1k = a, b = k™ 1gs. So we have equality.

Step 2: We then want to establish that all fibers have the same cardinality. Let f : a~!(g192) —
K = G1 N Gy via f(gi1k,k~tg2) = k. We see that this is well-defined, since (g1k,k 1ge) =
(g1K',k'"1go) implies k& = &/, and so they map to the same thing. Injective and surjective are
also clear.

Step 3: We see that

G1x Go| =|G1|Ga| = D aNgige) =1G1NGa| Y 1=[G1NGal|GiGl.
9192€G1G2 9192€G1G2
O
Problem 100 (Section 1.8, Exercise 10). Let G be a finite set, A and B non-vacuous subsets of

G. Show that G = AB if |A| + |B| > |G|.
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Proof. Assume |A| + |B| > |G|. First, notice that AB C G, since G is closed under multiplication.
Next, notice that we have
|A|+|B|=|ANB|+ |AUB].
If |A| + |B| > |G|, |AU B| < |G|, we get
|ANB|+|AUB| > |G| < |ANB| > 0.

Hence, they are non-trivial. Now, notice that for all g € G, we have A~'g = {a"'g : a € A} has
the same order as A, and so |[A~1gN B| # 0. Thus, taking y € A~'gN B, we have y = a~!g = b,
or ab = g. Since we can do this for all g € G, we have G C AB, giving the desired result. O

Problem 101 (Section 1.9, Exercise 4). Determine Aut(G) for the following:
(i) G an infinite cyclic group,

(i) a cyclic group of order 6,

(iii) for any finite cyclic group.

Proof. (1) G = 7Z = (1,—1). Since this is cyclic, we must have generators are sent to generators,
so we get either —1 + 1 or —1 — —1. Hence, Aut(G) = Zs.
(ii) Again, generators have to map to generators, ¢(6) = 2, so the only automorphisms are 1 +— 1,
1+ 5, and so Aut(G) = Zs.

(iii) From the prior arguments, Aut(G) = Z,,), where |G| = n.

w(n)
O

Problem 102 (Section 1.9, Exercise 5). Determine Aut(Ss).

Proof. We have S35 = ((12), (123)). For this to be an automorphism, we need to map generators to
generators. We have 3 options for where we map (12), 2 options for where we map (123), and so
we have [Aut(S3)| = 6. Up to isomorphism there are two options for Aut(Ss); either it’s Zg or it’s
S3. To see that it’s not Zg, it suffices to show that it’s not commutative. This is a lot of effort, and
I don’t feel like doing this. O

Problem 103 (Section 1.9, Exercise 7). Let G be a group such that Aut(G) = 1. Show that G is
abelian and that every element of G satisfies the equation 2> = 1. Show that if G is finite, then
|G| =1,2.

Proof. Step 1: We first establish that G is abelian. Notice that G/C = Inn < Aut(G). Since
Aut(G) = 1, this implies C = G.

Step 2: The inversion map is an automorphism for abelian groups, but since the automorphisms
are all trivial this implies that =1 = z, or every element has at most order 2.

Step 3: Cauchy’s theorem gives us the desired result. O

Problem 104 (Section 1.9, Exercise 8). Let a be an automorphism of a group G which fixes only
the unit of G; that is, a(a) = a implies @ = 1. Show that f(a) = a(a)a™! is injective. Deduce that
if G is finite, then every element of G has the form a(a)a™".

Proof. To see it’s injective, we note that f(a) = f(b) implies a(a)a™! = a(b)b~!. Hence, a(ab™!) =
ab~', which implies that ab=! = 1, or @ = b. If G is finite, then we have a map f : G — G which is
injective, and so it’s surjective and therefore bijective. So every element is of the form a(a)a™!. O

Problem 105 (Section 1.9, Exercise 9). Let G and « be as given in the prior problem. Assume
that o? = 1. Show that G is abelian of odd order.

Proof. By the second part of the last problem, every element is of the form a(a)a™!. So
a(a(a)a™) = a*(a)a(a)™! = aa(a)"! = (a(a)a™) ™!

Since the inverse map is an automorphism, we get that the group is abelian.
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Cauchy’s theorem tells us that if G is not of odd order, there is an element a € G — {e} such
that a? = 1. Notice that a(a) = a, but this implies that a = 1, a contradiction. Hence, G must be
of odd order. 0

Problem 106 (Section 1.12, Exercise 10). Let G be a group, H a transformation group acting
on a set S, and let G° denote the set of maps of S into G. Then G° is a group if we define
(fif2)(s) = fi(s)fa(s), fi € G%, s € S. If h € H and f € G, defined hf by (hf)(s) = f(h™'s).
Verify that this defines an action of H on G*° by automorphisms.

Proof. Step 1: We verify that G° is a group with this. We have that there is a map f = 1 for all
s € S, which we denote by I. This is the identity, since (I.f1)(s) = I(s)fi(s) = fi(s) for all f; € G,
s € S. Same with left multiplication. For inverses, we define f~! € G° via f~1(s) = (f(s))~".

Then we have (f~1f)(s) = (f(s)) "' (f(s)) = 1.
Step 2: We verify that this is an action. We need to check two things:

(i) We have (1f)(s) = f(171s) = f(s) for all s € S, so 1f = f for all f € G°.
(ii) Notice that

(hih2) f(s) = f(hy'hyts) = haf(hy's) = hu(ha(f(5)))
for all s € S, f € G%, so we get
(hiha) f = hi(haf).

Remark. By automorphisms, it may mean to show that this defines an automorphism 7" : H —
Aut(GS ). However, this is equivalent to showing what we’ve shown above.

O

Problem 107 (Section 1.13, Exercise 1). Show that if P is a Sylow subgroup, then N(N(P)) =
N(P).

Proof. One inclusion is clear, that is, N(P) C N(N(P)). For the other, let z € N(N(P)). Then
we have that
zPz~! c aN(P)z™' = N(P),
so that P and zPx~! are two Sylow subgroups of N(P). So, there exists a € N(P) so that
P=aPa ! = xPx_l,
and so we get that x € N(P).

Remark. Alternatively, P < N(P), so that P is the only Sylow subgroup of N(P). Use this to
also determine the result.

0

Problem 108 (Section 1.13, Exercise 2). Show that there are no simple groups of order 148 or of
order 56.

Proof. (1) Let |G| = 148. Write
|G| = 2% 3.

Now, the number of Sylow 37 subgroups of G is 1 (clearly), so we have that the Sylow 37
subgroup is normal. Hence, it is not simple.

(2) Write
|G| =56 =23-7.
We have the number of Sylow 7 subgroups is
n7(G) = {1,8},
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and the number of Sylow 2 subgroups is
na(G) = {1,7}.

Assume n7(G) = 8, na(G) = 7. Then we have that this accounts for (6-8) 4 (7-7) +1 = 98
elements, which is an overcount. Hence, we cannot have that they are both not 1, so at

least one must be normal. Hence, it’s not simple.
O

Problem 109. Let G be a finite group of order 216. Show that G is not simple.

Proof. Recall that being simple means that the only normal subgroups of G are {1} and itself.
Write
216 = 23 - 3°.
Let ny denote the number of Sylow 2 subgroups. We have that
ng =1 (mod2), mngl27.
Hence,
ny = {1,3,9,27}.
Likewise, we have that
n3 =1 (mod 3), mn3]|8,
SO
ns = {1,4}.
If n3 = 1, we win, since this means that the Sylow 3-subgroup is normal. Assume for contradiction

that ng = 4. Consider a map ¢ : G — S4. Since 4! = 24 # 216, we must have ker(¢) < G is
non-trivial. Hence, we have a normal subgroup. ]

Problem 110. If G = (x,y : 2 =y* =1, 2y =y2r~1), and H = (3?) < G, then H < G.
Proof. We check on the generators; this will be sufficient. Notice that for x, we have
vy’ = ayy =y "y =y,

zl = 1x,

and for y we have
v’ =y’ =y,

yl = 1y.
Hence, it is normal. ]
Problem 111. If H < G, then the number of conjugates of H in G is [G : Ng(H)].
Proof. Let G act on the space of conjguates of H K = {gHg~' : g € G} in the following way;
g- (kHE™Y) = gkHk 'g=!. We see that the orbit stabilizer theorem gives us that the size of
the orbit of H (i.e. the number of conjugates of H) is given by [G : Stabg(H)]. Notice that

Stabg(H) = {g € G : gHg~! = H}, which corresponds to the normalizer of H. Hence, this does
correspond to the number of conjugates. O

Problem 112. All abelian groups are solvable.

Proof. We have a condition that a group is solvable iff G = {e} for some n, where G’ = G =
[G,G]. Since G is abelian, G’ = {e}, so it is indeed solvable. O

Problem 113. Let H and K be finite groups. Identify K with its isomorphic copy in H x K via
kw— (1,k). f K <Hx K, then Hx K~ H x K.
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Proof. This only happens if the action of K on H is trivial; in other words, k(h) = h for all h.
Since K < H x K, we observe that (for all h € H)

(h1)- (L&) - (Y1) = (1) - (k(h™"), k) = (A(R(h™Y)), ) = (L K).

So we have that h(k(h~!)) = 1 and k = k’. For the left hand side to be true, we require k(h~!) = h~1
for all h € H. Since it’s closed under inverses, this is equivalent to k(h) = h for all h € H, so the
action is trivial for all k£ € K. O

Problem 114. If G is simple and A is a set, then any action of G on A is either effective or trivial.

Proof. Recall that being simple means the only normal subgroups are the trivial subgroup and
yourself. Let T': G — Sym(A). We have that ker(7T") < G is a normal subgroup, and so must either
be 1 (i.e. the action is effective) or G (i.e. the action is trivial). O

Problem 115. Let P be a Sylow subgroup of G. Show that P is normal if and only if it is the
unique Sylow p-subgroup of G.

Proof. We have that G acts by conjugation of the space of cosets of P, and the conjugation of a
Sylow subgroup is a Sylow subgroup. The Sylow subgroup is normal iff gPg~! = P for all P, but
this is true if and only if it is the unique Sylow p-subgroup. g

Problem 116. Let G and H be groups, ¢ : G — H be a homomorphism, and let F be a subgroup
of H. Prove that ¢~!(F) is a subgroup of G. If, in addition, E < H, prove that ¢~ (E) < H.

Proof. To show it’s a subgroup, we need to show that 1 € ¢ 1(E) and it’s closed under the
operation as well as inverses. Since F is a subgroup, 1 € F, and ¢ a homomorphism implies
p(1)=1,801€ p 1(E). Let a,b € o Y(E). Then ¢(a), p(b) € E, so ¢(a)p(b) = p(ab) € E, hence
ab€ o 1(E). If a € ¢ Y(E), then ¢(a)"! € E, so p(a™!) € E, and thus a~! € p~}(E).

Normality is a similar kind of argument. ([l

Problem 117. Let G be a finite group which acts transitively on a set S with |S| > 2. Show that
there exists an element g € G which has no fixed points; i.e., for all s € S, g - s # s.

Proof. We proceed using Burnsides Lemma. Recall that the statement is
1
1= al Z x(9),
G| 22
where
x(g)=|{s€S : g-s=s}.

Assume for contradiction that x(g) > 1 for all g. Notice that x(e) > 2, since by definition of a
group action we have e - s = s for all s € S. Hence, we get that

1 1
— x(g) =21+ — >1,
P ETE

a contradiction. 1
Problem 118. Let H, K C G be subgroups. Then HK is a subgroup iff HK = KH.

Proof. (=) Assume HK is a subgroup. Then we have KH C HK,since K C HK and H C HK.
Take y~' € HK, then (y!)"' =y c KH forally € HK,so HK = KH.
(=) O

Problem 119. Show that any group of order 360 must have a group of order 10.
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Proof. Write

360 = 3% .23 . 5.
We see that
n5(G) =1 (mod 5),
and
ns(G) | 3223
So we have

ns(G) = {1,6,36}.

Cauchy’s theorem guarantees there is an element of order 2 in our group. If n5(G) = 1, then we
can multiply these two together (since they’re both normal) to get a group of order 10. If ns = 36,
take any Sylow 5-subgroup and denote it by P. We have that [G : Ng(P)] = 36, and so Ng(P) is
a subgroup of order 10. If ns = 6, look at [G : Ng(P)] = 6, so Ng(P) is a subgroup of order 60.
Repeat the process within Ng(P); we have that

INg(P)| =60 =3-22.5,

and examine nz which is the number of Sylow 5 subgroups. We have ns =1 (mod 5), ns | 12, so
ns = {1,6}. If n5 = 1, we’re done. Examine the case ns = 6. Let P’ be a Sylow 5 subgroup. Then
[Na(P) : Ny, (p)(P')] = 6, s0 Ny, (p)(P') is a subgroup of order 10. O

Problem 120. The intersection of a set of subrings is a subring.

Proof. Recall that S C R is a subring if it is an additive subgroup of (R, +,0) and a multiplicative
submonoid of (R,-,1). Let {S,} be a collection of subrings of R. Recall that the intersection of
subgroups is a subgroup, and the intersection of submonoids is a submonoid, so we have

(SaCR

is an additive subgroup and a multiplicative submonoid, and so a subring. ]

r n T _(r+1

k k—1) k)
Proof. We can use a combinatorial argument. Say we have a binary string of length r 4+ 1, and say
we want to choose binary strings with k 1’s. Then we have that this is given by (TJ,gl). Alternatively,
we can condition based on what the first bit is. If it is a 1, then we are looking at a binary string

of length r, and we need to choose k — 1 more 1’s; that is, (kﬁl) However, if we have that the

Problem 121. Prove that

first bit is 0, then we have a string of length r and we need to choose k 1’s; that is, (2) Since this
exhausts all combinations, we get that

(D ! <ki1> - <T_/L_1>'

Problem 122. Prove the binomial theorem; that is

(a+b)" = <g>a”+-~+ (Z)b”
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Proof. We go by induction. It holds in the case n = 1, clearly. Assume it holds for n — 1. Then we

have
a+bn—1: n—1 an—1+ n—1 an—2b+_”+ n—1 bn—l.
0 1 n—1
Hence,
—1 —1 —1
atb)"=(a+b)" Ya+b)=((" R A Y b)) (a+b).
0 1 n—1
Using distributivity, we get
n— 1b+< - ) n_2b2++<n_1>bn
n—1

(1) e )
(e (e (3 (4 o ()

Notice as well we can rewrite this as
Coupling terms, we have

e () (7)o (D ()

Using the prior problem, this gives

) (e e (=

Thus, it holds for n, and so we have it holds by induction. ]

Problem 123 (Section 2.1, Exercise 1). Let C be the set of real-valued continuous functions on
the real line R. Show that C' with the usual addition of functions and 0 is an abelian group, and
that C' with composition as the product and 1 the identity map is a monoid. Is C' with these
compositions and 0 and 1 a ring?

Proof. We first remark that, under pointwise addition, a collection of functions inherit the familiar
properties of the codomain. So in this case, we see that 0 is continuous, and we have (f + g)(x) =
fx) +g(x) = glx) + f(x) = (g + f)(x) for all z € R, —f is continuous, (f + (g + h))(x) =
F(2) + (g + h)(z) = (@) + g(@) + h(z) = (f + g)(@) + h(z) = ((f +g) + h)(x), and f + g
is continuous for all f,g,h € C. Hence, it’s an abelian group under addition. Clearly, under
composition, we get a multiplicative monoid.

To see that it’s a ring, we need to show that the distributive properties are satisfied. That is,

((f +9) o h)(z) = f(h(x)) + g(h(z)).

To see this, note
((f +9) o h)(@) = (f + 9)(h(z)) = f(h(x)) + g(h(z)).

Next, we want

(folg+h)(z) = flg(x)) + f(h(z)).
We have

(folg+h)(z) = f(lg+h)(z)) = flg(z) + h(z)).

However, it’s not necessarily true that f(g(z) + h(z)) = f(g(x)) + f(h(x)). So we see this is notDa
ring.

Problem 124 (Section 2.1, Exercise 2). Show that in a ring R, a(b — ¢) = ab — ac where b — ¢ =
b+ (—c) and n(ab) = (na)b = a(nb) if n € Z.
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Proof. Let R be our ring. For the first part, we can rewrite the inside as
a(b—c) =a(b+ (—c)).
The distributive laws then give
a(b+ (—c)) = ab+ a(—c).
Thus, it suffices to show that

We have
a(—c) +ac=a((—c)+c¢) =a(0) =0,
so a(—c) = —(ac). Likewise,
(—a)c+ac= ((—a)+a)c= (0)c =0,
so (—a)c = —(ac). Hence, we can write
a(b—c¢) = ab — ac,
as desired.

For the second part, we have
n(ab) =ab+ab+---+ ab
n times. Notice we can pull out the a by distributivity to get
ab+ab+---+ab=ab+b+---+b) =a(nb).
Likewise, we can pull out the b to get
ab+ab+---+ab=(a+a+---+a)b=(na)b.

Hence, we have n(ab) = (na)b = a(nb) for any n € Z-qo (it’s clear for n = 0). To get the same
result for n € Z.q, let k = |n|. We remark that

n(ab) = —ab—ab—--- —ab
k times, and we get (by prior work)
a(—b—b—---—b) = a(—kb) = a(nb),
and a similar argument applies throughout. ([l

Problem 125 (Section 2.1, Exercise 3). Show that if all the axioms for a ring except commutativity
of addition are assumed, then commutativity follows, and hence we have a ring.

Proof. We use distributivity to get
I+ D(a+b)=1+1Da+ (1+1)b=2a+ 2b,
and likewise
(1+1)(a+b)=a+b+a+b.

So we have
at+a+b+b=a+b+a+ba+b=>b+a.

Problem 126. A subring of a domain is a domain.

Proof. Recall that a subring is a domain' if RX = {x € R : x # 0} forms a submonoid of R. Let
S C R be a subring. Then we have (S, -, 1) is a submonoid of (R, -, 1). Hence, S* = R*N(S,-,1) =
{r € S : x # 0} is the intersection of two submonoids, and so a submonoid, and so S is a
domain. g

LAlso referred to as integral domain.
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Remark. The property of being a domain means that there are no zero-divisors (assuming R # 0),
since R* being a submonoid means that it’s closed under multiplication.

Problem 127. A ring R # 0 is a domain implies that it satisfies the cancellative law; that is,
a # 0, ab = ac implies b = c.

Proof. We have

ab=ac <= a(b—c) =0.
Since we are in a domain, we must have that either a = 0 or b — ¢ = 0. By assumption, a # 0, so
this forces b—c=0,or b =c. ]

Problem 128. A non-zero division ring satisfies the property that, for any a # 0, there exists a b
such that ab =1 = ba.

Proof. Recall that a division ring is a ring such that R* is a subgroup of (R,-,1). So since a # 0,
we have that a € R*, and since it’s a subgroup we have that there must be an inverse; that is, an
element b € R* such that ab = ba = 1. O

Problem 129. The set of units U = {x € R : Jy € R,xy = yx = 1} is a subgroup of (R, -, 1).

Proof. Let’s first show that U is closed under multiplication. Let a,b € U. Then we have ab € U,
since (ab)~! = b~la~! is such that

(ab)(b"ra™ 1) =1=(b"1a" 1) (ab).

Next, we need to show that it’s associative. This, however, is inherited from (R,-,1). It’s clear
that it’s closed under inverses. Finally, it’s clear that 1 € U as well. Hence, it’s a subgroup. O

Remark. The group of units of Z is {—1,1}.

Problem 130. A ring R # 0 is a domain if and only if the cancellation laws hold; that is, a # 0
and ab = ac implies b = ¢ and vice versa.

Proof. (= ) Let R # 0 be a domain. Then this means that R* = {r : r # 0,7 € R} is a
submonoid of (R,-,1). We then wish to show that ab = ac implies b = ¢ for a # 0. Notice that

ab=ac+ab—ac=0+a(b—c)=0

using the fact that we have distributivity. Now, if b — ¢ # 0, this implies that we have that R* is
not a submonoid, since it’s not closed. Hence, we must have b — ¢ = 0, or b = c. The same goes in
the other direction.

( <= ) Assume the cancellation law holds and R # 0. We wish to show that R* is a submonoid.
That is, a,b € R* implies ab € R*. Assume otherwise; that is, we have a a,b € R* such that
ab = 0. Notice that a0 = 0, so we have ab = a0, and the cancellation law tells us that b = 0, but
this contradicts the fact that b € R*. Hence, we must have that ab # 0, and so ab € R*, so R is a
domain. ]

Problem 131 (Section 2.2, Exercise 2). Show that a domain contains no idempotents (e? = e)
except e = 0 and e = 1. An element z is called nilpotent if z” = 0 for some n € Z. Show that 0
is the only nilpotent in a domain.

Proof. We first show the idempotent part. Assume we have e? = e, then this implies that e? —e = 0.

Using the distributivity, we have e(e — 1) = 0. Since we are in a domain, either e =0 or e —1 =0,
which forces either e =0 or e = 1.

Let n be the smallest positive integer such that 2" = 0. We have that 2" = 2"~z = 0. Since we
are in a domain, this forces either 2”~! = 0 or z = 0. Since n is the smallest positive integer such
that z™ = 0, this forces z = 0. Thus, 0 is the only nilpotent in a domain. ([l
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Problem 132 (Section 2.2, Exercise 3). Let z be an element of a ring for which there exists a
w # 0 such that zwz = 0. Show that z is either a left or a right zero divisor.

Proof. If z = 0, then we clearly have that zwz = 0 for any w # 0 and z is both a left and right
zero divisor, and so we are done. Assume z # 0. Then associativity of multiplication gives

2wz = z(wz) = (zw)z = 0.

Examine z(wz) = 0. If wz = 0, then this implies that z is a right zero divisor, and so we are done.
Otherwise, we have wz # 0, and z(wz) = 0, so z is a left zero divisor. Thus, z must be either a left
or right zero divisor. O

Problem 133 (Section 2.2, Exercise 4). Show that if 1 — ab is invertible, then so is 1 — ba.

Proof. Let ¢ be such that
c(l —ab) =1.
Then we have
beca(1l — ba) = bea — beaba = (be — beab)a = b(c — cab)a = be(1 — ab)a = ba.

So we see that
(14 bca)(1 —ba) = (1 —ba) +ba =1,
and so we have an inverse. So 1 — ba is invertible. O

Problem 134 (Section 2.2, Exercise 5). We first recall Example 8 from Section 2.1. Let I' be
the set of real-valued continuous functions on the interval [0, 1], where we define f 4 g and fg as
usual by (f + g)(z) = f(z) + g(z) and (fg)(z) = f(x)g(x). Let 0 and 1 be the constant functions
0 and 1 respectively. Then (T',+,-,0,1) is a ring.

Show that a function f in this example is a zero divisor if and only if the set of points x where
f(x) = 0 contains an open interval. What are the idempotents of this ring? The nilpotents? The
units?

Proof. We break this up into four parts. Throughout, {f = a} denotes {z € [0,1] : f(x) = a}.

(a) We show that f is a zero divisor if and only if the set of points x where f(z) =0
open interval.

(=) Assume f is a zero divisor, then we have there is a ¢ € I' non-zero such that fg = 0.
Since g # 0 and g continuous, we must have that g # 0 contains some interval. Hence, f = 0
contains some interval.

(<= ) Assume f(x) =0 contains an open interval. That is, (a,b) C {f # 0}. Define g = 0 on
(a,b), and g > 0 on (a,b). Then we have that fg =0, and so f is a zero-divisor.

(b) We now want to figure out what the idempotents are in the ring. That is, the functions f € T’
such that f2 = f. Recall that this means that f2(z) = f(z) for all z € R. The structure
depends on R, and so from prior we know that the only idempotents are f = 1,0.

(c) We now want to figure out the nilpotents. That is, the functions where f* =0, n € Z*. Again,
the structure depends on R, so we are forced to have 0 as our only nilpotent.

(d) Finally, we want to figure out the units. If f(x) = 0, we see that there is no g € " such that
g(x)f(z) = 1. So we are forced to have {f = 0} = @&. Notice that this is a necessary and
sufficient condition.

contains an

O

Problem 135 (Section 2.2, Exercise 6). Let u be an element of a ring that has a right inverse.
Prove that the following conditions on u are equivalent:
(1) u has more than one right inverse;
(2) w is not a unit;
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(3) wis a left 0 divisor.

Proof. (1) = (2): Assume that u has more than one right inverse. Let a,b be distinct right
inverses for u. Then we wish to show that u has no left inverses. Assume for contradiction that g
is a left inverse for u. Then we have

ua = ub < gua = gub < a = b,

but this contradicts our choice of a and b. Hence, there is no left inverse.

(2) = (3): We go by contrapositive; that is, if v is not a left 0 divisor, then u is a unit. We have
that u is not a left 0 divisor implies that ug # 0 for all g in the ring non-zero. We wish to show
that u has a left inverse. Let a be the right inverse. To do so, we notice that

u = (ua)u = u(au),
and so subtracting from both sides we have
u(l —au) = 0.

Since u is not a left 0 divisor, we must have 1 — au = 0, or 1 = au. Thus, we have a is the left
inverse of u as well, and so u is a unit.

(3) = (1): We assume that wu is a left 0 divisor and we want to show that v has more than one
right inverse. We have g # 0 in the ring such that ug = 0. Let a be the right inverse of u. Notice
that

ua+ug=1+0=1,

and factoring gives us u(a + g) = 1. Notice as well that a + g # a, since we have that g # 0, and
so we have more than one right inverse. O

Problem 136 (Section 2.2, Exercise 7). Prove that if an element of a ring has more than one right
inverse, then it has infinitely many.

Proof. From prior, we’ve shown that multiple right inverses implies that it has a right zero divisor.
Let a be a right inverse of u. Let S ={g € R : ug=0,g9 # 0}. We wish to show that |S| = oc.
Let f : S — S be defined by f(g) = gu. Then we see that f is injective, since it admits a right
inverse. Therefore, we have that f is surjective if we assume |S| < co. But f surjective implies
that for all ¢ € S, there is an z € S such that zu = t. Notice that this implies that there is some
y € S such that f(y) = tu — 1, since u(tu — 1) = (ut)u —uw = 0. That is, we have a solution to
yu = tu — 1. But multiplying on the right by ¢, we have yut = y = tut — t = 0, which contradicts
our set. So f cannot be surjective, but this contradicts the fact that |S| < co. Thus, we must have
|S] = 0.
Let g € S. Then we have that

u(a+g) =ua+ug = ua = 1.

Since |S| = 0o, we have that there are infinitely many right inverses. O

Problem 137 (Section 2.2, Exercise 8). Show that an element u of a ring is a unit with v = u=!

if and only if either of the following conditions holds:

(1) wvu = u, vu?v = 1,

(2) wvu = u and v is the only element satisfying this.
Proof. (1) (=) if v =", then we have uvu = u, and vu?v = (vu)(uv) = (1)(1) = 1.
( <= ) Multiplying u on the right, we have
(uvu)uv = u < u*v = u.
Multiplying by v on the left gives

vilv =1 = vu.
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Hence, v is a left inverse for u. Multiplying u now on the right gives

vu2vu =Uu <> vu2 =u,

and multiplying v on the right gives

vulo =1 = uw.

Hence, v = u~!.

(2) (=) This is clear.
( <= ) We examine the contrapositive; if u is not a unit, then uvu # u or v is not the only
element satisfying this. By an earlier problem, if u is not a unit, it admits multiple right
inverses. So, we either have v is a right inverse, in which case it’s not unique, or v is not a right
inverse, in which case uvu # u.

O

Problem 138 (Section 2.2, Exercise 9). Let a and b be elements of a ring such that a,b and ab—1
are units. Show that @ —b~! and (a —b~!)~! — a~! are units and the following identity holds:

(a—bHt—aH™! = aba —a.
Proof. Notice that
(a—bHb=ab—1,
which is a unit. Hence, we have
(a—b"1)(bec) = 1.
So it has a right inverse. Notice as well
(be)(a— b1 =bea — beb™! = be(ab — 1)b™1 — a7 ab — 1)eb™ +beb™! —a"teb™!
=l1—a W t4bcbt—atebt=1—a"0 4+ (b—aeb?
=l-a o '+alab-Dcb'=1-a a7t =1

So this is a left inverse.

Next, we need to show that (a —b~!)~! —a~! = bc — a~! is a unit. Notice that this corresponds

to
be—at=0b-ateHe=0b-—atab-1)c=(b-b+a e=atc
So the inverse is (ab — 1)a = aba — a. Hence, it’s a unit with corresponding inverse. U

Problem 139. Show that the matrix
1 4 1
o 1 -1
-3 —6 -8
is invertible in M3(Z) and find its inverse.
Proof. Recall Theorem 2.1, which says that in a commutative ring R, a matrix is invertible if and
only if it’s determinant is invertible. Hence, we find the determinant of this matrix; going through

the calculations, we see that it has determinant 1. Furthermore, this tells us that the adjoint is the
inverse, and so we just need to find it. We have

A11 = —14
A1p =3
A13 =3
A21 = 26
A9y := —5H
A23 = —6
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Asy := =5

A32 =1
A33 = 1,
so the adjoint is
—14 26 -5
Adj(A) = 3 -5 1
3 -6 1

0

Problem 140 (Section 2.3, Exercise 2). Prove that if R is a commutative ring, then AB = 1 in
M, (R) implies BA = 1.

Proof. Follows from the fact that det(AB) = det(A) det(B) and Theorem 2.1. O

Problem 141 (Section 2.3, Exercise 3). Verify that for any p € R and i # j, 1 + pe;; is invertible
in M, (R) with inverse 1 — pe;; (here, we have e;; corresponds to looking at the matrix with zeroes
at all but the (¢, 7) entry, where it has a 1). More generally, show that if z is a nilpotent element
of a ring (that is, 2 = 0 for some positive integer n), then 1 — z is invertible. Also determine its
inverse.

Proof. Notice that e?j =0, and so we have
(1 —|—peij)(1 —peij) =1 — peij + peij —p26?j =1.

In general, let z be nilpotent such that 2z = 0. Then we have 1 — z is invertible, with inverse
(1+2z+2%+---+2"1). For the case n = 3, we have

1-2)A+z4+2)=14+2+22-2-22-22 =1
In general, we get

1—2)A+z4-+2" D=1zt 2" o222 =1,

Problem 142 (Section 2.3, Exercise 4). Show that diag(ai,...,a,) is invertible in M, (R) if and
only if every a; is invertible in R. What is the inverse?

Proof. The solution is clear after noticing that diagonal matrices multiply element wise. That is,
ap - 0 by - 0 aiby - 0
0 - a, 0 - by, 0 - apb,

O

Problem 143 (Section 2.3, Exercise 5). Verify that for a,b € R, a + bi — (_ab

b) is an isomor-
a
phism of C with a subring of M(R).

Proof. We show that it’s an injective homomorphism, and so an isomorphism onto it’s image.
Letting ¢ denote the map, we first note it’s well-defined and injective clearly. To see it’s a homo-
morphism, we have

¢<<a+bé>+<c+dz’>>=¢<<a+c>+<b+d>z‘>=(fffd Zii)=(fb 2)+(_cd f)

= ¢(a + bi) + ¢(c + di),
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»(0) =0,
. . . ac—bd ad+ be a b c d
¢((a+ bi)(c+ di)) = ¢((ac — bd) + (ad + be)i) = (—ad —be ac— bd> - <—b a) (-d C)
= ¢(a + bi)p(c+ di),
o(1) = 1.

So we have its an isomorphism onto its image, which is a subring of Ms(R). O

Problem 144 (Section 2.3, Exercise 6). Show that in any ring the set C(S) of elements which
commute with every element of a given subset S constitute a subring. If S is taken to be the
whole ring, then C' = C(S) is called the center of the ring. Note that this subring is commutative.
Determine C(S) in M,,(R) for S = {e;; : i,7 =1,...,n}. Also determine the center of M, (R).

Proof. Let S C R be a subset, C(S) ={z € R : xy =yx for all y € S}. We wish to show that
this is a subring. That is, it’s a subgroup under addition and a submonoid under multiplication.
First, we show that it’s closed under addition. Notice that, for a,b € C(S), y € S, we have
(a+b)y=ay+by=ya+yb=y(a+b),soa+be C(S). It’s clearly associative. Next, 0 € C(S5),
since Oy = 0 = y0. Finally, if a € C(95), we have —a € C(S), since (—a)y = —ay = —ya = y(—a).
So it’s a subgroup.

Next, we check it’s a monoid. If a,b € C(S), y € S, we have y(ab) = (ya)b = (ay)b = a(ydb) =
a(by) = (ab)y. So ab € C(S), and it’s closed under multiplication. Associativeness holds clearly.
Finally, 1 € C(95), since 1y = y = yl. So it’s a submonoid. Hence, it’s a subring. Clearly, this is
going to be commutative.

Let A € M,(R). For A € C(S), we need Ae;; = e;;A for all i, j. Notice this can only happen in
the case of A = 0. O

Problem 145 (Section 2.3, Exercise 8). Show that if R is commutative and D is the set of diagonal
matrices in M, (R), then C(D) = D.

Proof. Follows from the solution of exercise 4. O

Problem 146 (Section 2.3, Exercise 10). Let R be a ring, R’ a set, n a bijective map of R’ onto
R. Show that R’ becomes a ring if one defines:
a +b =n"'(n(d) +n®)),
a't' =~ (n(d")n(¥")),

0" =n""(0),

1=n"1(1),
and that 1 is an isomorphism of R’ with R. Use this to prove that if u is an invertible element of
a ring, then (R, +, -u,0,u~"

Proof. To see that R’ is a ring, we need to check that it’s an additive group under addition,
multiplicative monoid under multiplication, and it satisfies distributivity. We first check its an
additive group. First, it’s closed, since @’ + b € R’ for all a/,b' € R'. Next, we see that it’s
associative, since

a + ' + ) =d + 07 (") + () =" (nd) + 07 () + ()
O
Problem 147 (Section 2.4, Exercise 1). Define T = ag—a1i—agj —ask for x = ag+ayi+azj+ask.
Show that
rT+y=7+Yy,

7y = 7.
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Proof. We have
T =ag+ ait + asj + ask,
y = bo + b1i + baj + b3k.
Hence
x4y = (ao + bo) + (a1 + b1)i + (a2 + b2)j + (a3 + b3)k,
m = (ao+b0)—(a1+b1)i—(a2+bg)j—(a3+b3)/~c =ag—ait—agj—ask+bg—bii—byj—bsk =T+7y.
Same idea for Ty. O

Problem 148. Show that 27 = N(x), where N(x) = a3 + a2 + a3 + a3. Define T'(z) = 2ag. Show
that z satisfies the quadratic equation 22 — T'(z)z + N(z) = 0.

Proof. We have
2T = (ag+aritasj+ask)(ag—ari—asj—ask) = a2 —apayi—agasj—apask+apari+ati+ajask—aiazik
+agasj — asa1ji + a% — agasjk + agask — aza1kt — azaskj + a%.
Using the identities,
iy =k, ji=—k, jk=1, kj = —1, ki =3, ik = —7,

things cancel appropriately to get a3 + a2 + a3 + a3. Expanding things out in the quadratic gives

the same result. O

Problem 149. Prove that N(zy) = N(z)N(y).

Proof. We have

T = ag+ ari + asj + ask,
y = by + b1i + baj + b3k,
xy = (ag+ari+azj+ask)(bo+bri+baj+bsk) = (apbo+apbii+agbej+aobsk)+ (bpari—aiby +aibok
—a1bzj) + (boazj — agbik — agby + asbsi) + (azbok + azbij — azbai — azbs)
= (apbp — a1by — agbs — asbs) + (apby + bpay + azbs — asbe)i + (agbe + boas + agby — a1b3)j
+(aobs + aiba + agby — azb1 )k
and so
N (zy) = (agby — a1by — agbs — azbz)? + (agby + boa1 + agbs — asbs)? + (agby + boas + azby — a1b3)?
+(agbz + aibs + azby — azbr)?
= adbg + agb? + adbs + agbi + aibl + aibi + - + a3by = (af + ai + a3 + a3) (B + b + b3 + b3).

]

Problem 150. Is IJ C INJ? Does IJ = I N J if they are coprime?

Proof. Notice that I NJ is an ideal, and so it’s closed under addition as well. Notice that elements
in I.J are of the form agby + - - - + anby, a; € I, b; € J. Hence, since we’re in an ideal, a;b; € I and
a;b; € J, so a;b; € INJ. Closure under addition gives us all elements of this form are in N J, and
solJcCInd.

We then wish to determine when I NJ = IJ. Recall that two ideals are coprime when I +J = R,
R the ambient ring. Notice that

INJCRUINT) =T +)INJ)=IINJ)+JINJ)CIJ+1J=1lJ

Problem 151. The intersection of ideals is an ideal.
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Proof. The intersection of additive subgroups is an additive subgroup. Next, let {I,} be a collection

of ideals. Let a € R. We have
a (ﬂ Ia> el,

for all o, and so its in the intersection. Hence, it’s an ideal. O
Problem 152. Every finite division ring is commutative.
Proof. We need to show that ab = ba. ([l

Problem 153 (Section 2.5, Exercise 1). Let I" be the ring of real-valued continuous functions on
[0,1]. Let S be a subset of [0,1], and let Zg = {f : f(z) =0,2 € S}. Verify that Zg is an ideal.
Let S7 = [0, 1/2], Sy = [1/2, 1], I = ZS17 I, = ZSQ- Show that I1Io = I NIy = 0.

Proof. We first show it’s an ideal. First, we establish it’s an additive subgroup. Let f,g € Zg.
Then we have that, for all x € S, (f +¢)(x) = f(z) + g(x) =0, so f+ g € Zg. Likewise, if f € Zg,
then —f(x) = =0 =0, so —f € Zg. So it’s an additive subgroup. Next, let g € Zg, f € I'. We
have that (fg)(x) = f(x)g(x) =0 =g(x)f(z) = (9f)(z), so fg € Zs. Hence, it’s an ideal.

0 C I1Io C I N I5, and the only function which is 0 on S7 and S5 is 0, so I; N Is = 0. ]

Problem 154 (Section 2.5, Exercise 2). Show that the associative law holds for products of ideals:
I(JK) = (IJ)K,
where I, J, K are ideals.
Proof. Notice that
JK ={bjci1+ - +bmcm : bi€J € K,meZ},

and

I(JK)
= {a1(bincin+t - +bimeim)+ - +an(bnicnit +bpmenm) : a;i € Ib; € J,c; € K,n, (i,m) € ZT} C (IJ)K,
and likewise for the other direction through expansion. ([l

Problem 155 (Section 2.5, Exercise 3). Does the distributive law I(J + K) = IJ + I K hold?

Proof. We have
I(J+K) :{al(b1+cl)—|—---+am(bm—|—cm) ca; €1,b; € J, ¢ EK,mEZ+}

= {(a1by + -+ ambm) + (arc1 + -+ amem) : a; €L,b; € Jc;€e KkmeZ} CcIJ+IK.
Likewise, we see IJ C I(J + K), IK C I(J+ K), so IJ+ IK C I(J+ K). Hence, we have
equality. O

Problem 156 (Section 2.5, Exercise 4). If R is a ring, we define a right (left) ideal in R to be a
subgroup of the additive group of R such that ba € I (ab € I) for every a € R, b € I. Verify that
the subset of matrices of the form
00
(@ )

(o)

is a left ideal in My(R) for any R. Are either of these sets ideals?
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Proof. First, it’s clear to note that both of these are closed as additive subgroups. Next, take an
arbitrary matrix in M>(R). We have that

00\ (e f\ [ O 0
<a b> <g h>_<ae+bg af+bh)

which is still in the ideal. The same idea holds for the other set.

Notice that
e f\(0 0\ (fa fb
g h)\a b) \ha hb

which is not in the set, and so this is not an ideal. The same idea holds for the other set. ]

Problem 157 (Section 2.5, Exercise 5). Prove the following extension of Theorem 2.2: A ring
R # 0 is a division ring iff 0 and R are the only left (right) ideals in R.

Proof. (= ) If R is a division ring, then every element r € R has an inverse. Hence, if I is an
ideal which is non-zero, we have that, for i € I non-zero, 4~ ' = 1 € I. If 1 € I, we have that
I = R. So the only non-zero right ideal is R (respectively same for left).

( < ) Let a € R non-zero, and examine Ra; that is, the ideal generated by a. Since this is
non-zero, we must have that Ra = R, which implies that there is some b € R such that ba = 1.
Likewise, we see that

a = a(ba) = (ab)a,
and so we have
a— (ab)a = a(l —ab) =0,

since a is non-zero, this tells us that 1 = ab. So, a is invertible. Since the choice of a is arbitrary,
we get that R is a division ring. O

Problem 158 (Section 2.5, Exercise 6). Let R be a commutative ring and let N denote the set of
nilpotent elements of R. Show that N is an ideal and R/N contains no non-zero nilpotent elements.

Proof. Step 1: We show that NV is an ideal. To be an ideal, we need to be a subgroup of (R, +,0),
and we need to satisfy the property that, for all r € R, rN C N. First, notice that 0 € N clearly.
Next, let a,b € N. Then we have a” = 0, b™ = 0 for some n, m € Z". Notice that

(atb)m=3" (”ZL) ak bk,

k=0

If k < n, we have nm — k > nm —n = n(m — 1) > m, and so 6" % = 0. If k > n, we have a” = 0.
Hence, (a +b)" =0, and so a +b € N. If a € N, then we notice as well that (—a) € N, since
(—a)” = (=1)"a™ = 0. So we have that NN is a subgroup.

Take r € R, a € N. Then we have that (ar)"” = a"r", since it’s a commutative ring, and so
(ar)™ = 0. Hence, ar € N for all r € R, a € N, and so it is an ideal.
Step 2: Take a € R, and let @ € R/N be it’s canonical image. If @ is nilpotent, we have that there
is n such that ™ € N. But a" € N implies that a € N, and so the only nilpotent element in R/N
is 0. g

Problem 159 (Section 2.5, Exercise 8). Let I be an ideal in R and let M, (I) denote the set of
n X n matrices with entries in I. Show that M, () is an ideal in M, (R). Prove that every ideal in
M, (R) has the form M, (I) for some ideal I of R, and that I — M,(I) is a bijective map of the
set of ideals of R onto the set of ideals of M, (R).
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Sketch of solution. We first show that M, (I) is an ideal of M, (R). Matrix multiplication gives us
that for A € M, (R), A = (a;j), B € My(I), B = (b;;), we have

n
ik =Y _ ajibip.
i=1

Since I is an ideal, this is in I, so the product is in M, (I). Same idea for other direction. It’s also
clearly an additive subgroup, and so we have that this is an ideal.

Let I C My (R) be an ideal. Define J to be the set of elements which are in some component of
some matrix in /. This is an additive subgroup, then, and furthermore we get its an ideal, since
bJ € J for all b € R. Hence, it’s an ideal, and so we get our bijection. O

Problem 160 (Section 2.6, Exercise 1). Write down addition and multiplication tables for Z/(5)
and Z/(6).

Proof. T'll do Z/(5) first. We have

+/0 1 2 3 4
001 2 3 4
111 2 3 4 0
212 3 4 01
313 4 01 2
414 01 2 3
-0 1 2 3 4
0/j0 0 0 0 O
110 1 2 3 4
210 2 41 3
310 3 1 4 2
410 4 3 2 1
The ideals for this ring are (1) and (0).
Next, for Z/(6), we have
+10 1 2 3 4 5
001 2 3 4 5
111 2 3 4 5 0
212 3 45 01
334501 2
414 5 01 2 3
515 01 2 3 4
-0 1 2 3 4 5
0/0 00O 0O
110 1 2 3 4 5
210 2 4 0 2 4
3/0 3 03 0 3
410 4 2 0 4 2
5/0 5 4 3 21

The ideals in this ring are (0), (1), (2), (3). (2) and (3) are both prime and maximal.
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Problem 161 (Section 2.6, Exercise 2). Show that Z/(k) contains non-zero nilpotent elements if
and only if k is divisible by the square of a prime. Determine the nilpotent elements of Z/(180).

Proof. (=) Let k = p{' ---p&r. By assumption, we have that there is an i such that e; > 2. Let
t = max{ei,...,e,}. We notice that p; ---p, € Z/(k) is such that it is not zero. Furthermore, we
see that

(p1---pn)' =0 (mod k).
Hence, we have that there is a non-zero nilpotent element.
(<=) Let a € Z/(k) be such that a* = 0 for some ¢ > 1. Let p{* --- p" = a, where e; > 1. Then
this implies that

(p1" - py) =0 (mod k).
Sine t > 1, we have that pg | k for all 1 < i < n. Hence, there is at least one prime whose square
divides k.

We write
2%.32.5 = 180.

We can get all of the nilpotent elements by taking different combinations of powers of these primes.
That is, all the multiples of 2-3-5 = 30 are nilpotent elements. So the list is 30, 60, 90, 120, 150. O

Problem 162 (Section 2.6, Exercise 3). Prove that if D is a finite division ring, then a/”l = a for
every a € D.

Proof. Since D is a division ring, we have |D*| = |D| — 1 (the only non-unit is 0), so we have that
aPl=t =1
by basic group theory. Hence,
alP! = a.
O

Problem 163 (Section 2.7, Exercise 1). Prove that if « is a homomorphism of the ring R into the
ring R’ and ¢ is a homomorphism of R’ into R”, then ¢ o « is a homomorphism of R into R”.

Proof. Notice that
Coa(0) = ¢(0) = 0.
Coa(l)=¢(1)=1.
Next, notice that for z,y € R, we have
Coa(r+y) =((az) +aly) = ((a(z)) + ((aly)) = Co
¢ oa(ry) = ((a(z)a(y) = ((a(z))C(a(y)).

Hence, we have that ¢ o « is a homomorphism. ]

Problem 164 (Section 2.7, Exercise 2). Show that if u is a unit in R and ¢ is a homomorphism
of R into R/, then ((u) is a unit in R’. Suppose ( is an epimorphism. Does this imply that ¢ is an
epimorphism of the group of units of R into the group of units of R'?

Proof. We proceed as follows:
(1) Let u be a unit. Then there exists a u’ such that uu’ = 1. Hence,

Clun') = C(u)(v') = ¢(1) = L.
Therefore, we see that u is mapped to a unit in R'.
(2) No, there may be less units in R than in R’, so even though ¢ hits everything we may have
a u € R” such that the element which is mapped to u is not a unit.

t
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Problem 165 (Section 2.7, Exercise 3). Let I be an ideal in R, n a positive integer. Apply the
fundamental theorem on homomorphisms to prove that M, (R)/M,(I) = M,(R/I).

Proof. Let ¢ : M,(R) — M, (R/I) be given by taking the quotient of the coefficients mod I. Need
to check that this is surjective and is a homomorphism. This is surjective, since R — R/I is
surjective, and we have that the kernel is going to be all the matrices with coefficients in I. To see
that it is a homomorphism, let A = (a;;), B = (b;j) € M, (R). Then letting AB = C, we have

Cij = Zaz‘kbk]‘.
k=1
So applying ¢ gives
P(cij) = ¢ <Z az‘k%‘) = dla)d(bry),
k=1 k=1
and so

$(AB) = ¢(A)(B).

Hence, the fundamental theorem gives
M (R)/Mo(1) = My (R/1).
O

Problem 166 (Section 2.7, Exercise 4). Show that if R is a commutative ring of prime characteristic
p, then a +— aP is an endomorphism of R. Is this an automorphism?

Proof. Recall that the characteristic of a ring R is the smallest positive number p such that
14+---+1=p=0.
We want to then check that ¢ : R — R, ((a) = a? is an endomorphism. To check that, we have

¢(0) = 0" =0,
(=1 -1,
p
Cla+b) = (a+b)p:;<z>anw—" = aP + 1P,

since every other factor will have some factor of p in it and so will evaluate to 0. Finally, we have
C(ab) = (ab)P = aPbP.
Hence, it’s an endomorphism.
For it to be an automorphism, we need it to be bijective. For injectivity, we see
((a) =((b) <= aP =b".
We see this does not necessarily hold unless we are in a domain. O

Problem 167 (Section 2.7, Exercise 5). Let F be a finite field of characteristic p (a prime). Show
that p — 1 | |F| — 1. Hence, conclude that if |F'| is even, then the characteristic is two.

Proof. We have the map ¢ : Z — R given by ¢(1) =1, ¢(0) = 0, p(n) = np(1). The kernel of this
map is (p), and so we get that there is a subring R < F' which is isomorphic to Z/(p). The units
of this subring form a subgroup of U(F’), and so Lagrange tells us that

UR)| [ [UF)| < p—1][F[-1.
If |F| is even, then |F| — 1 is odd. The only prime p which has the property that p — 1 divides an

odd number is 2; hence, the characteristic of F' is 2. ]
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Problem 168 (Section 2.7, Exercise 6). A ring is simple if R # 0 and R and 0 are the only ideals
in R. Show that the characteristic of a simple ring is either 0 or p for a prime.

Proof. Examine the set
tR={tr : teZ,r € R}

(here, tr is defined by r added to itself ¢ times). We see that this is clearly an ideal. It’s an additive
subgroup clearly, and if ' € R is multiplied with an element tr € tR, we have

rtr=r'(r+r+-+r)=rr+r'r+--+1r'r=t(r'r) LR,

and analogously,

trr' =(r+--+r)r' =r'+ -+’ =t(r') € tR.
Since R is a simple ring, we have tR = (0) or tR = R. Let p be the characteristic of the ring
R. Then we have that pR = (0), and for all 0 < m < p, mR = R. Assume p was not prime
nor 0, then we have mn = p for m,n < p. Hence, mnR = (0). But mR = R, nR = R, and so
mnR = m(nR) = mR = R, which results in a contradiction since we assumed R # 0. Hence, if
p # 0, we must have that p is prime. d

Problem 169 (Section 2.7, Exercise 7). If S is a subset of a ring (field) R, then the subring
(subfield) generated by S is defined to be the intersection of all the subrings (subfields) containing
S. If this is R itself, then S is called a set of generators of the ring (field) R. Show that if n; and
72 are homomorphisms of the ring R into a second ring and 7;(s) = n2(s) for every s in a set of
generators of the ring R, then n; = 2.

Proof. We need to show that for all z € R, n;(x) = n2(z). Let Z be the collection of elements such
that n1(z) = n2(z). We first show that this is a ring. Since these are homomorphisms, 0,1 € Z.
Next, if a,b € Z, then we have a+b € Z, since n1(a+b) = n1(a) +n1(b) = n2(a) +n2(b) = n2(a+b).
We also have that —a € Z, since n1(—a) = —mi(a) = —na2(a) = n2(—a). Finally, ab € Z, since
n(ab) = ni(a)ni(b) = na(a)n2(b) = na(ab). So Z C R is a subring. Since S C Z, and R is the
smallest ring which contains S, we must have that Z = R. Hence, we have that for all z € R,
m(z) = m(2). 0

Problem 170 (Section 2.7, Exercise 8). Show that every homomorphism of a division ring into a
ring R # 0 is a monomorphism.

Proof. Let D be a division ring, R # 0 a ring, and n : D — R a homomorphism. It suffices to show
that ker(n) = 0. Let a € ker(n). Then we have that n(a) = 0. Since D is a division ring, if a # 0,
we have that there is a b € D such that ab = 1. Hence, n(a)n(b) = n(ab) = n(1) = 0. This is a
contradiction, since a homomorphism n must map 1 to 1, and R # 0. Hence, we must have that
a = 0, which means the kernel is trivial. ]

Problem 171 (Section 2.7, Exercise 12). Use exercise 11 (the Chinese Remainder theorem) to
prove that if m and n are relatively prime integers, then p(mn) = @(m)p(n), where ¢ is the
Euler p-function. Show also that if p is a prime, then ¢(p€) = p® — p°*. Hence, prove that if
n =p{ - ptr, p; distinct primes, then

T T 1

i i—1y _
ot = ITor ) =aL (1- ).

i=1 i=1 pi
Proof. Since m,n are relatively prime, we have (m), (n) are relatively prime ideals, and so

Z/(mn) 2 7Z/(m)®Z/(n).

These are isomorphic as rings, and so their units are isomorphic. Hence, ¢(mn) = ¢(m)e(n).
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Next, we need to show that ¢(p°) = p® — p°~!. We count the number of elements coprime to p°.
These are the elements which are less than p® such that they do not have a factor of p. We have
that this comes out to p(p®) = p°~1(p — 1), since there are (p — 1) factors coprime to p, and we
repeat the process of counting this p®~! times.

The formula is clear from these two facts. The primes are all coprime, so

T T
- pi) = [[ i) = [ —p% 7).
i=1 i=1

Factoring out p%, we get

s0(n)=i]i[lpe" <1—;> :n}i{(l_;@-)'
O

Problem 172 (Section 2.7, Exercise 13). Show that the only ring homomorphism of R into R is
the identity.

Proof. Let ¢ : R — R be a homomorphism. This tells us that ¢(0) = 0, ¢(1) = 1. For integers p,
we see that this is determined by

o(p) = ¢(1+---+1) =pg(1l) = p.

For rationals 1/q, we see that

(1) =o(1/q+---+1/q) = qp(1/q) < ¢(1/q) = 1/q.
So for rationals p/q, we have
¢(p/a) = p/q-
So ¢(x) is the identity on Q. We want to show that it’s the identity on irrational numbers then.
Take z € R—Q. First, assume that x > 0. We have that thereisay,z € Q such that z > z > y > 0,
|z —y| < 1/n, |¢p(2) — &(y)| < 1/n. Taking n — oo forces ¢(z) = ¢(y) = ¢(x) when y = z = z, so
we have the identity. Same idea applies for negatives. O

Problem 173 (Section 2.7, Exercise 15). Define a maximal ideal of a ring R to be a proper ideal
I such that there exists no proper ideal I’ such that I C I’. Show that an ideal I of a commutative
ring is maximal if and only if R/I is a field.

Proof. (=) Assume I is maximal. Let a € R —I. Then we have that I C (a)+ I C R, and since
a ¢ I this implies that (a) + I = R. In other words, the ideal generated by @ € R/I is the whole
ring, and so therefore @ is invertible. Since every non-zero element is invertible, it is a field.

Remark. Notice that a non-zero field is an integral domain. Assume otherwise; that is, ab = 0,
a # 0, b # 0. Then we have that there are ¢, d such that ca = 1, db = 1. Hence, (cd)(ab) =1 =0,
which is a contradiction, since a non-zero field must have the property that 1 # 0.

(<= ) If R/I is a field, it has only two ideals; (0) and (1). By the correspondence theorem,
this tells us that any ideal containing I must either be I or the whole ring, and so the ideal is
maximal. O

Problem 174 (Section 2.7, Exercise 16). Define a prime ideal I of a commutative ring R by the
conditions I # R and if ab € I then either a € I or b € I. Show that if I is maximal, then [ is
prime.

Proof. Let ab€ I but a ¢ I, b ¢ I. Then a,b # 0 € R/I, however, ab = 0. This contradicts the
fact that we are in a field. O
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Problem 175 (Section 2.7, Exercise 17). Determine the ideals and the maximal ideals and prime
ideals of Z/(60).

Claim 20. The ideals of Z/(k) are of the form (d), where d | k.

Proof. Let I C 7Z be an ideal. Since Z is a PID, we must have it is principally generated; that is,
I = (d). Next, the correspondence theorem tells us that the ideals of Z/(k) are of the form (d)/(k),
where (k) C (d). Recall that if (k) C (d), then k € (d), so that d | k. O

Proof of Ezercise 17. By the claim, all the ideals of (60) are generated by divisors of 60. Noting
that 60 = 22 -3 -5, we have (0), (1), (2), (3), (4), (5), (6), (10), (12), (15), (20), (30) are all the ideals.

In a PID, an ideal is prime if and only if it is maximal. The prime ideals here are the ones which
are generated by primes, so we have (2), (3), (5) are all the prime/maximal ideals. O

Problem 176 (Section 2.8, Exercise 7). Define a Jordan homomorphism 7 of a ring R into a ring
R’ by the conditions:

(1) n is an additive group homomorphism;

(2) n(1) = 1;

(3) n(aba) = n(a)n(b)n(a).
Show that any homomorphism or anti-homomorphism is a Jordan homomorphism. Show that
Jordan homomorphisms satisfy:

(1) n(a*) =n(a)* for all k € N;

(2) n(ab + ba) = n(a)n(b) + n(b)n(a);

(3) n(abe + cba) = n(a)n(b)n(c) +n(c)n(b)n(a).
Proof. 1t’s clear that a homomorphism is a Jordan homomorphism. Recall a anti-homomorphism
is one which switches the order of multiplication, and so

n((ab)a) = n(a)n(ab) = n(a)n(b)n(a).
Hence, an anti-homomorphism is a Jordan homomorphism. We now show the other three properties.

(1) For this, it suffices to show that n(a?) = n(a)?. Notice that n(a®) = n(a)? clearly. Next,

notice that

n(a(l+ a)a) = n(a)(L +a)n(a) = n(a) [1(1) +n(a)] n(a) = n(a)? +n(a)’,
and similarly
n(a(1+ a)a) = n(a® + a®) = n(a®) + n(a*) = n(a®) + n(a)®.
So cancelling n(a)? from both sides gives
n(a®) = n(a)*.
(2) Now, we write
1((a +0)?) = nla+b)* = n(a)® + n(a)n(®d) +n®)n(a) + ()
and similarly
n((a+b)*) = n(a® + ab + ba + %) = n(a)* + n(ab + ba) + 1(b)?,
so cancelling the squares leaves
n(ab + ba) = n(a)n(d) + n(b)n(a).
(3) Here, write
n((b+ c)a(b + c)).
Much in the same way that everything cancelled before, we are left with the desired result.

t
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Problem 177 (Section 2.9, Exercise 1). What is the field of fractions of a field?
Proof. 1t is isomorphic to the field itself. See next problem for proof of why this is the case. O

Problem 178 (Section 2.9, Exercise 2). Show that if D is a domain and Fy, F5 are fields such that
D is a subring of each and each is generated by D, then there is a unique isomorphism of Fj onto
F5 that is the identity map on D.

Proof. Use the universal property of field of fractions. We have

Since the diagrams commute, and the mappings are unique, we get
iQ o) il = Id.

Since 9 is injective, the existence of a right inverse makes it a bijection, and so we have it is an
isomorphism. Furthermore, iy is the identity on D. O

Problem 179 (Section 2.9, Exercise 3). Show that any commutative monoid satisfying the can-
cellation law (ab = ac = b = ¢) can embedded into an abelian group.

Proof. The idea is that the units for a domain form a commutative monoid satisfying the cancella-
tion law, and so since we can embed a domain into a field, we can embed these units into the group
of units of a field.
Let M be a commutative monoid satisfying the cancellation law. Take the product set M x M,

and define (a,b) ~ (¢,d) if and only if ad = bc. We see that this defines a relation on M x M;

(1) We see (a,b) ~ (a,b), since ab = ab.

(2) We have (a,b) ~ (¢,d) implies ad = cb <= ¢b = ad or (¢,d) ~ (a,b).

(3) If (a,b) ~ (c,d), (c,d) ~ (e, f) we have ad = cb, cf = ed, and so we have

ad =cb <+ adf = cbf < adf = edb + af = eb,
so (a,b) ~ (e, f).

So it is indeed an equivalence relation. We can then quotient by this equivalence class to get
(M x M)/ ~. Notice that, denoting [(a,b)] € (M x M)/ ~=: G by a/b, we have that G is a
group, with 1/1 =1 as the identity. To see this, first notice it’s clearly closed under multiplication;
(a/b)(c/d) = ac/bd. Tt’s also clearly associative, inheriting this from the monoid. (1/1) is the
identity, since (a/b)(1/1) = (1/1)(a/b) = a/b. Finally, for any a/b € G, we have b/a is the inverse,
since ab/ab = (a/a)(b/b), and a/a ~ 1/1, since a = a. Hence, it’s a group.

We can embed our monoid into G by taking the mapping ¢ : M — G via ((a) = a/1. This is a
homomorphism, since ((ab) = ab/1 = (a/1)(b/1) = ((a)((b), ((1) = 1/1 =1, and we have that it’s
injective, since if ((a) = a/1 =b/1 = {(b), then a = b. O

Problem 180 (Section 2.9, Exercise 4). Show that if ™ = 0™ and a" = b" for m and n relatively
prime positive integers, and a and b in a commutative domain, then a = b.

Proof. If a or b are zero, then we have that the other is nilpotent, and since the only nilpotent

in a commutative domain is zero, we have that it is zero. So assume that a,b # 0. Since they’re

relatively prime, we have that there are ¢,d € Z such that cm 4+ dn = 1. At least one of ¢, d needs
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to be bigger than 0; assume c is larger than 0. Then since a™ = b™, we have a™¢ = b"“. Notice
that
qme — pme achrdn — bmc+dn a="b

after using factoring and cancellation. Hence, have they are equal. O

Remark. From here on out, all rings are commutative (recall commutative means that for all
a,b € R we have ab = ba).

Problem 181. Finish the proof of Theorem 2.10. That is, prove the following (universal property):

Let R, S be commutative rings, 7 a homomorphism of R into S, u an element of S. Let R[x] be
the ring of polynomials over R in the indeterminate . Then 7 has one and only one extension to
a homomorphism 7, of R[x] into S mapping x into u.

Proof. Let A =ag+ a1z + -+ -+ apx™. Then we have

nu(A) = af + dju+ - - + alu”,
where we let @’ = n(a). If B = by + -+ + bypa™, then AB = pg + -+ + ppima™™™, where
D = Zj+k:z’ a;by. Then

M(AB) = po + -+ Py,

r= 2 ab
k=i
since 7 is a ring homomorphism. On the other hand,
Mu(A)m(B) = (ag + -+ ana") (b + -+ bpu™) = pf+ - + P ™" = 1u(AB).
Let n = m without loss of generality (if they are not equal, set the coefficients which are missing
to be 0). Notice as well that

Nu(A) +1u(B) = (ag + -+ apz") + (b + -+ + bpa") = (ag + ) + - + (a5, +b,)2" = nu(A + B)
using the homomorphism property of 7. Notice as well that, by construction, 7, is an extension of

7, and 7, is a homomorphism of R[z] into S. By Section 2.7, Exercise 7, this gives us that this
is unique, since x and R generate R[z].s O

and

Remark. We call this map 7, : R[z] — R[u] C S the evaluation map. Notice that 7, is a

~

surjection, and so by the fundamental theorem, we have R|[x]/ker(n,) & R[u]. Furthermore, since
7y is the identity on R, we must have ker(n,) N R = 0.

Remark. Notice that if we have an ideal I such that I N R = 0, then there is a ring R[u] such that
R[z]/I = R[u]. We get this via Theorem 2.10, by noticing that R C R[z]/I = S is an ambient
ring, and 1 : R — S is the identity, so we can extend it uniquely to a map n’ : R[z] — Rx]/I.

Remark. Algebraically independent is equivalent to transcendental, algebraic implies a non-trivial
relation.

Problem 182. Show that v/3 + /5 is algebraic over Q.

Proof. To be algebraic means that there is a polynomial with coefficients in Q such that v/3 + /5
is a root. Let a = v/3 + /5. Notice that

a>(V3+v5)> =3+ 215+ 5 = 8+ 2V/15.
Hence
a? — 8 =2V15.

Squaring both sides gives



SO
(a® — 8)2 — 60 = 0.
So it is in fact algebraic over Z. O

Problem 183. Let F' C K be fields, let u # 0 in K be algebraic over . Show that u~! is algebraic
over F.

Proof. Since u is algebraic over F', we have that there is a f(x) € F[x] such that f(u) = 0. Write
flx)=ao+ -+ apz",
then
f(u) =ag+---+ayu" = 0.
Multiplying by u~" to both sides gives
wf(u) =aou "+ +an = gul) =0.
Notice that, since the a; € F, we have that g(x) € F[z] is such that g(u™!) = 0. Hence, u™! is

algebraic over F' as well. ([l

Problem 184. Suppose that u is algebraic over the field F C K, and a € F'. Show that v + a is
algebraic over F', find the minimal polynomial of u + a, and show that u 4+ a and u have the same
degree over F.

Proof. Since u is algebraic over the field F', there is an f(x) € F[z] such that
f@)=ag+ -+ ana”,
flu)=ap+ -+ apu™ =0.
Define
g(@) = f(z —a).
We have
g(x) =ao+ai(zx —a)+ - +an(x —a)" = by + brw + - - + bpx”,
where b; are the appropriate coefficients in F. Furthermore, we see that
guta)=a+a(ut+ta—a)+---+a(uta—a)"=as+au+---+ayu” =0.
Hence, u + a is algebraic over F'. Furthermore, this has the same degree as u. To see that it’s

minimal, we note that this is also monic and irreducible, since f(z) was irreducible. O

Problem 185 (Section 2.10, Exercise 1). Show that the complex number
1 1 -
W = —5 + 5\/§Z
is algebraic over Q. Show that Q[w] = Q[xz]/(I), where I is the ideal generated by (z% + x + 1).

Proof. Notice

2w+ 1= V3i.
Hence,

(2w +1)* = -3,
SO

(2w+1)24+3 = 0.
Replacing w with x, we have
f(x) :=4a® + 4a + 4
is such that
flw)=0.
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Thus, w is algebraic over Q.
Next, let ¢ : Q[z] — Q[w] defined by

C(f(z)) = flw),

i.e. it’s the evaluation map. First, note it’s a well-defined surjective homomorphism (epimorphism).
Then the kernel is

ker(¢) = {f(z) € Qlz] : f(w) =0}
We have that

(22 +x+1) C ker(¢)
from above. To get the other direction, take f € ker(() non-zero. We have either deg(f) > 2 or
deg(f) < 2. If deg(f) < 2, this implies there is some linear polynomial so that f(w) = 0. However,
any linear polynomial will still have complex irrational components, and so this is impossible.
Hence, we must have deg(f) > 2. Since deg(f) > 2, we can invoke the division algorithm, letting
g=2>4+x+1, to get
f(@) = q(@)g(x) +r(z),

where —oo < deg(r(z)) < 2. We have that

fw) = q(w)g(w) +r(w) < r(w) =0,
but this can only happen if » = 0. Hence, g | f.

Thus, we have that f € (22 4+ + 1), and so ker(¢) C (224 z + 1). Hence, we have equality, and
so the isomorphism theorem gives

Q[z]/(I) = Quw].

Problem 186 (Section 2.10, Exercise 2). Show the following;:
(1) V3 ¢ Q3.
(2) The real numbers 1,+/2,/3,1/6 are linearly independent over Q.
(3) u =2+ /3 is algebraic.
(4) Determine the ideal I such that
Proof.

(1) We first show that there are no a,b € Q such that a + bv/2 = /3. Notice if there were, we
would have that a = /3 — bv/2. This can only happen if @ is 0, since the right hand side is
entirely irrational, but this means that bv/2 = /3, or b = \/3/ V/2. Since this is irrational
as well, we have that there is no such b, and so v/3 ¢ Q[v/2].

(2) We have that 1,+/2, and v/3 are all linearly independent over Q by (1). Notice that if

a+bV2+cevV3+dvV6 =0

for some a, b, ¢, d not all 0, then this implies that
V6 = a+ V2 + V3,
where a, b, ¢ are appropriately normalized by —d. Notice that ¢ must be 0, and so we have
V6 =bv2 + cV3.
Since V6 =+v2-3 = \/i\/g, we have that
V6 —bV2 =cV3 <= V2(V3-b) = cV3.

Squaring both sides gives
2(v3 — b)? = 3¢,
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after letting ¢ be ¢? since it’s arbitrary anyways. Dividing both sides by 2 and squaring
gives
3+ 2V3b + b* = 3.

So v/6 is in the span if and only if we have b, ¢ non-zero rationals which solve this polynomial.
By normalizing, we have that this is equivalent to non-zero b, c integers which solve this
polynomial. We see this only happens if b = 0, ¢ = 1, a contradiction.

(3) To see this is algebraic, notice that

u? =5+ 2V6.
Hence,

u? -5 = 2\/6,
and squaring both sides again gives

(u? — 5)% = 24,
so we have

(u? —5)? —24 =0,

or after expanding, u is the root of the polynomial

zt — 1022 + 1.

Hence, it’s algebraic.
(4) The above is the minimal polynomial where this will be a root, and so we get that I =
(x* — 1022 + 1) is the appropriate polynomial.
]

Problem 187 (Section 2.10, Exercise 3). Let I be an ideal in R and let I[xy,...,z,] denote the
subset of R[zq,...,x,] of polynomials with coefficients in I. Show that I[zq,...,z,] is an ideal in
R[z1,...,x,], and that

Rlxy, ...,z )/I[x1, ... 2] =2 (R/D[y1,- -, yrl.
Remark. Notice that
(R/D)y1y .- yr]) Z(R/I)[x1,. .., 2]

Proof. To show it’s an ideal, we first show it’s an additive subgroup under addition. For notations
sake, label J = I[z1,...,2,] and S = R[z1,...,z,|. Taking f,g € J, we have f+ ¢ adds component
wise, and so will be in J again. Take f € S, g € J; that is,

f=a+taz+ - +apa",

g=bo+biz+ -+ bpa™,

then we have

nm )
fog= Z Z a;b; | x".
i=1 \j+k=i

Since [ is an ideal, a;b; € I, and since it’s a subgroup under addition the sum of these will be in I.
Hence, fg € J, so it is an ideal.

Let ¢ : S — (R/I)[y1,...,yr] be defined by p(ag+- - -+anz™) = b+ -+bpy", where b; = a;+1.
This is clearly well-defined, it’s a homomorphism since p(0) = 0, p(1) = 1, ¢(fg) = ¢(f)e(g),
and o(f +g9) = o(f) + ¢(g). It’s also clearly surjective, and so since the kernel is J, we have
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Problem 188 (Section 2.10, Exercise 7). Let R[[z]] denote the set of unrestricted sequences
(ap,a1,...), where a; € R. Show that one gets a ring from R][[z]] if one defines +,-,0,1 as in
the polynomial ring. This is called the ring of formal power series in one indeterminate.

Proof. Recall to show a ring, we need to show that it’s an abelian group under addition, monoid
under mulitplication, and satisfies the distributive properties. We first check the group property.

Let A = (ag,a1,...) and B = (bg,b1,...). We first note closure, since A + B = (ag + by, ...) €
R][z]]. Next, we note associativeness, since it’s associative in each component. Next, we note that
A+(0,...) =(ap+0,...) = (ap,...) = A, and likewise for the other direction, so 0 is an identity.
Next, A+ (—A) = (ag,...) + (—ag,...) = (aop — ap,...) = (0,...) = 0, so it’s closed under inverses.
Finally, since R is commutative, we have a; +b; = b; +a; in each component, and so A+ B = B+ A.
So it’s an abelian group.

Next, we check it’s a monoid under multiplication. First, we have closure, since

AB = (Co, .. )
where
Cp = Z aibj.
i+j=n

Since ¢, € R for all n, we have that it’s closed. Next, we check associativeness. That is, if
C = (cp,...), we have

A(BC):A Z biCj,... = Z a; Z bjck,...

i+5=0 i+l=0 j+k=l
= D abjer,... | = D abk > ¢ | = < > aibk,...> .C = (AB)C.
i+j+k=0 i+k=l I+5=0 i+k=0

So we have it’s associative. Finally, we see that 1 = (1,0,...) € R[[z]] acts as the identity, since
A-(1,0,...) = (ap,a1,...) = A.
Finally, we need to check distributivity. First, we check
A-(B+C)=AB+ AC.
Notice that

A'(b0+00,...): Zai(bj—l—cj),... = Zaibj—i— Zaicj,... = AB + AC.
i+§=0 i+§=0 i+5=0

Next, we check
(A+B)-C=AC+ BC.
Notice that

(A+B)-C=(ag+bo,...)-C=| Y (ai+bi)c;,...| = AC+ BC.
i+j=0
So we have it’s distributive. Hence, it’s a ring. ([l
Problem 189 (Section 2.10, Exercise 8). Let M be a monoid, R a commutative ring, and R[M]

the set of maps m — f(m) of M into R such that f(m) = 0 for all but a finite number of m. Define
addition, multiplication, 0, and 1 in R[M] by

(f +9)(m) = f(m) + g(m),

96



(a) Show that R[M] is a ring.

(b) Show that the set of maps a’ such that a’(1) = a and a/(m) = 0 if m # 1 is a subring isomorphic
to R. Identify the ring indicated.

(c) Show that the set of maps m’ such that m’(m) =1 and m/(n) = 0 if n # m is a submonoid of
the multiplicative monoid of R[M] isomorphic to M. Identify the monoid indicated.

(d) Show that R is the center of R[M], and every element of R[M] can be written as a linear
combination of elements of M with coefficients in R; that is, in the form Y rym;,rm € R,
m; € M.

(e) Show that > r;m; = 0 if and only if every r; = 0.

(f) Show that if o is a homomorphism of R into a ring S such that o(R) is contained in the center
of S, and if 7 is a homomorphism of M into the multiplicative monoid of S, then there exists
a unique homomorphism of R[M] into S coinciding with o on R and with 7 on M.

If M is a group, R[M] is called the group algebra of M over R.
Proof. (a) We show that R[M] is an abelian group under addition and a monoid under multiplica-

tion. We first check closure under addition. Throughout, f, g, h are arbitrary elements. Notice
that for f,g € R[M], we have

(f +9)(m) = f(m) + g(m),

and this is 0 for all but a finite number of m, since f and g respectively are 0 for all but a finite
number of M. Hence, f + g € R[M]. Next, we have that

((f+g)+h)(m) = (f+g)(m)+h(m) = (f(m)+g(m))+h(m) = f(m)+(g(m)+h(m)) = (f+(g+h))(m)
for all m € M, using the associative property of R. Hence, we have
f+lg+h)=(+g) +h

Next, we check that 0 is the identity. This, however, follows again using the underlying structure
of R; for all f € R[M], we have

(f +0)m = f(m) +0(m) = f(m) = 0(m) + f(m) = (0 + f)(m)
for all m, and so
f+0=f=0+f.
Next, we check for inverses. Define —f to be —f(m) for all m. Then we have

(f + (=))m) = f(m) + —f(m) = 0= —f(m) + f(m) = (=) + ) (m)
for all m, and so
fH(=H=0=(=f)+/

Hence, we have inverses by the underlying structure of R. Finally, we check that this is abelian
under addition, but again this follows by the structure of R; we have

(f +9)(m) = f(m) + g(m) = g(m) + f(m) = (g + f)(m)
for all m, and so

ftg=9+f
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We now check that it is a monoid under multiplication. We have closure, since

(fo)(m) = > f(p)g(q)

pa=m
for all m, and so it’s still in R[M]. We check associativity. That is,

(foh)m) = > (fo)P)h(e) = Y | D fi)g(k) | hiq)

pg=m pg=m \ jk=p
> FWamh(e) = > FG) D ak)h(a) = Y f(G)(gh)(t) = (f(gh))(m),
jkqg=m Jjt=m kq=t Jjt=m

and so we have associativity. Finally, 1(1) = 1 is the identity, since

(fD(m) = Y fp)La) = f(m),
pg=m
and likewise
(L) (m) =Y 1p)f(a) = f(m).
pg=m
We then need to check the distributive laws. That is, for all f, g,h € R[M], we have

flg+n)=fg+ fh,
and

(f +9)h = fh+ gh.
For the first, notice that we have for all m,

(flg+m)m)= > f@)g+h)@) =D F®)9(a)+ f(p)hla) = (Fg)(m) + (Fh)(m),
pg=m pg=m
using the underlying ring properties. Since this applies for all m, we get the first property. For
the other, we analogously have

(f+ ) m) = D" (f+9) (@) = Y FP)h(g) + 9(p)h(q) = (fh)(m) + (gh)(m),
pg=m pg=m
again using the underlying ring properties. Since m arbitrary, we get the second property, so
we have distributivity. Hence, it’s a ring.
We first show that the set of maps a’ such that a/(1) = a and a’(m) =0 if m # 1 is a subring.
Let R’ denote this set. Notice that we have 1 € R’ and 0 € R’ clearly. Next, notice that it’s a
subgroup under addition, since for arbitrary a’, b, and m we have

(a' = V') (m) = a'(m) — V'(m),

which is @ — b if m = 1 and 0 otherwise. Hence, a’ — V' € R’. We see that it’s a submonoid
under multiplication, since
(@b)(m) =" d(p)(q),
pg=m
which is ab if m = 1 and 0 otherwise. So this is indeed a subring.

To get that it’s isomorphic to R, we need to create a map f : R — R’ which is a homomor-
phism and bijective. Let f: R — R’ be the obvious map f(a) = a’. Then this is well-defined,
since if @ = b, f(a) = o’ =¥ = f(b). This is injective, since f(a) = 0 happens if and only if
a = 0, so the kernel is trivial. Finally, it’s surjective, since for any map a’ € R, we have that
a’(1) = a, and so we have f(a) = a’. So it’s a bijection. Furthermore, f(1) =1, f(0) =0, and

98



()

we have f(a +b) = (a+b) = d’ + V' by the work above, and f(ab) = (ab)’ = a’b' by the work
above. So it’s an isomorphism.

This is the dual of R, which we will just identify as R under this isomorphism.
We first show that M’, the set of all maps m’ where m/(m) =1 and m/(n) =0 for n # m, is a
submonoid of the multiplicative monoid. To do so, we need to check that 1 is in it, and that
it’s closed under multiplication. We clearly see that 1 € M’ by definition, though. To see it’s
closed under multiplication, we have

m'n’(t) = Z m/(p)n’(q),
pg=t
which is equal to mn if t = mn and 0 otherwise.

We now need to show that this is isomorphic to M. Let f : M — M’ be defined by
f(m) = m/. Then this is well-defined, since if m = n, f(m) =m’ =n’ = f(n) by definition.
It’s injective, since if f(m) = f(n), then we have m’ = n/, which can only happen if m = n. It’s
clearly surjective, since m/(m) = m, so taking m we have f(m) = m/, and so it’s a bijection.
To get that it’s a homomorphism, we have f(1) = 1, and f(ab) = (ab)’ = d't/ = f(a)f(b) by
prior work.

This is the dual of M, which we identify as M under this isomorphism.

We first show that R is the center of R[M]. Take f € R[M], r € R, and identify r with it’s
dual in R[M]; that is, the function 7’ such that /(1) = r and »/(m) = 0 for m # 1. Then we
have that, for m arbitrary,

(r'f)m) = > r'(0)f(a) = (1) f(m) = rf(m) = f(m)r = Y f(p)r'(q) = (fr')(m).
pg=m pg=m
So we get v'f = fr’, and so ' € C(R[M]). Since the choice of 7’ was arbitrary, we get
R C C(R[M]). We then need to show that C'(R[M]) C R. Take ¢ in the center, then we have
that
(fo)m) = > flp)ele) = Y cp)f(q) = (cf)(m)
pg=m pg=m

for m arbitrary. If ¢ is not in R, then we have that c(¢) # 0 for some ¢ # 1. Since this applies
for all f, m, take without loss of generality [, m, and f such that t/ =m, f(I) # 0 # f(t), and
c(l) = 0. Then we have that (fc)(m) # (cf)(m) by the above, and so ¢f # fc. Hence, ¢ must
be in R, and so R = C(R[M]).

We now show that every element of R[M] can be written in a linear combination of elements
of M with coefficients in R. Take f € R[M]. We have that f(m) € R for all m, and so we have

f(m) = (r'm/)(m) =r.

Hence, since f is zero for all but a finite number of m, we can write that it’s finite on myq, ..., my,
and we have f(m;) =r; € R. Using the identification, we get

n
f=Yrimi,
i=1

since

The fact that R is in the center let’s us have all of the r; on the left.
We now need to show that
Z Trym; — 0
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if and only if every r; = 0. We interchangeably use the function and element identification
to get the result. The converse direction is clear, so we proceed with the forward direction.

Assume we have
E rimg; = 0.
Then for every m;, we have

(Z rzmz)(mz) = Zn(mz)mz(mz) =T; = 0.
Thus, we get r; = 0. Doing this for all m; gives us the desired result.

(f) Let 0 : R — S be a homomorphism such that o(R) C C(S). Let 7 : M — (S5,-,1). We
construct the ring homomorphism v : R[M] — S as follows; we have

f)=n~ (Z Timz) = o (ri)(my).

i
We first check that this is indeed a ring homomorphism; clearly v(0) = ¢(0)7(0) = 0, y(1) =
o(1)7(1) = 1 since these are homomorphisms. Next, we have

(f +9) anz + Za] =7 (Z(Ti + ai)mi> ;

i
where we take 7; = 0 if m; = 0 and likewise for a;, b; (so that we can extend it to the whole
sum). Hence, we get

v (Z(H + ai)mi> = ZU(T’z‘ + a;)7(m;) = ZU(Tz‘)T(mi) + o(ai)r(mi) = ~v(f) +v(9),

using the homomorphism property for ¢. Finally, we check

(f9) =~ (Z sz) = o(e)r(ni),

i
where this is defined via a convolution of sums; that is, ¢; = >, ,_;rpagand n; = 3, mpbg,
and so using the homomorphism property of ¢ and 7 we get that

Y(fg) =D ale)r(ni) = (Z 0(%)7(%)) > ola)r(by) | = (g

i i g
So we have established existence.

For uniqueness, assume there was another such map, say §. Then we want to check that
5(f) = y(f) for any choice of f. First, we have that §(r) = v(r) and §(m) = v(m) for all r € R,
m € M. Next, notice that the homomorphism property of ¢ says that

§(rm) = 6(r)o(m) = y(r)y(m) = v(rm),
and so by (d), since f = > r;m; for all f, we get

o(f)y=9 (Z Tl-ml-) = 25(7“1')5(77% Z’y (rs)y = (Zrﬂnz) =(f).

Since this applies for all f, we have that 6 = 7, and so the homomorphism is unique.
O

Problem 190. Let F' be a field. Show that an ideal I = (f(z)) in F[z] is maximal if and only if
f(x) is irreducible. Does this argument hold over a PID?
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Proof. ( = ) Assume I maximal. Then we have that, for any ideal J such that I C J C R, we
must have J = R or J = I. Since F[z] is a PID, this implies that J = (g(x)) for some g(x) € F[x].
So this implies that if g(z) | f(x), we have either f(z) ~ g(x) or g(z) is a unit. Hence, f(z) must
be irreducible.
( <= ) Assume f(z) irreducible, let I = (f(x)). Take J such that I C J. Since J is a PID, we have
J = (g(z)). Notice I C J implies g(x) | f(x). Since f(z) irreducible, we have either f(z) ~ g(x),
in which case I = J, or g(z) is a unit, in which case J = R. Thus, I must be maximal.

Nothing we used in the argument was specific to F[z|, and we see it does hold for any PID. O

Remark. Notice that this tells us that, over a PID, a non-zero prime ideal is maximal.
Problem 191. Is the ring Z[z]/(z3 + 1,2) a field?

Proof. By prior work, we notice that
Zlz]/(z® + 1,2) 2 Fslz]/(z® + 1).

Over Fa[z], 23 4 1 has root 1. So it can be written as 23 + 1 = (x + 1)g(x), deg(q) = 2. Since it’s
not irreducible, this is not a maximal ideal, so we see that it’s not a field. ]

Problem 192. Find all the ideals in Z[z]/(2® + 1, 2).

Proof. By the last problem, we see that it suffices to find all the ideals which contain 23 + 1. Since
23 4 1 factors, we just need to find ¢(x). So q(x) = 22 + bz + ¢, and we have

(z+ D)2 +br+c)=2>+ b+ 12>+ b+ )z +e
This forcesc=1,b+¢=0,b+1=0. So b= 1, and we have
q(z) =2® + o+ 1.

Since ¢(1) # 0, we have that (22 + 2+ 1) and (z + 1) are two ideals in Fy[x], and these are the only
ideals (non-trivial). O

Problem 193 (Section 2.11, Exercise 3).

(1) Show that Q[v/2], Q[v/3] are not isomorphic.
(2) Let F, be the finite field with p elements, and let Ry = F,[z]/(z* —2), Ry = Fplz]/(2* - 3).
Determine whether R; = Rs in each of the cases in which p = 2,5, 11.

Proof.
(1) Notice
Qlz)/(2* - 2) = Q[V2],

Qlz]/(a* - 3) = Q[V3],
(22 — 2) # (2% — 3) in Q[x], so they cannot be isomorphic.

(2) We construct an isomorphism ¢ : Fa[z]/(2? — 2) — Falx]/(2? — 3). Define ¢(1) = 1,
¢(x) = v + 1. We first see this is an isomorphism on Fy[z]. Notice it’s injective, since
o) =0¢y) = x+1=y+1 = z =y, and ¢(a) = ¢p(b) <= a = b. It’s surjective,
2™ is hit by (x —1)". Sosince ¢p(2? —2) = (z+1)? —2=2?+22+1-2=2?-1=22 -3,
we have that it descends to an isomorphism on Fa/(z? — 2) to Fa[z]/(2? — 3).

Next, we want to do it for F5[z]. Notice 22 — 2 is irreducible in Fs, so F5[z]/(2? —2) is a
field. In particular, it’s a field with 25 elements. Notice that z? — 3 is also irreducible over
F5, and so F5[x]/(2? — 3) is a field with 25 elements. Fields of the same size are isomorphic,
so we are done.

Over [F11[z], we see that 22 — 2 is still irreducible, but 22 — 3 is not; notice that (5)%—3 =
25 —3=22=0 (mod 11). Hence, they are not isomorphic over Fy;[z].
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Problem 194 (Section 2.11, Exercise 4). Show that 23 + 22 + 1 is irreducible in Fo[z] and that
Fo[z]/ (23 + 22 + 1) is a field with 8 elements.

Proof. Assume it were not irreducible; we have then that 23 + 22 + 1 = fg, where f,g € Fa[z].
By the degree formula, we must have deg(f) + deg(g) = 3, and for it to not be irreducible (since
this is a field), we need deg(f),deg(g) > 0. Hence, we have deg(f) = 1,deg(g) = 2 and deg(g) =
2,deg(f) = 1 are our two options. It suffices to consider one of these scenarios, and so we have

f=as+ a1z + a2x2,

g="bo+ bix.
Notice that we need asby = 1, so this forces them both to be 1. Likewise, agbg = 1, so this forces
both of them to be 1. So we have
f=14ax+ 22
g=1+zx.
Expanding gives
fg=1+z(a; +1) + (ay + 1)z* + 25
Notice that this tells us that a; +1 = 0 and a; + 1 = 1, which is impossible. Hence, it does not
factor.

Examine f € Fa[z]/(2® + 22 + 1) = F. Factoring out by the polynomial is equivalent to setting
23 = 22 + 1. Notice that for z*, we have z* = (2%)z = (22 + 1)z = 23 + 2. We claim that, for
every n > 3, we can reduce the degree of this polynomial by at least one by doing this. Notice that
2" = 3%+ where 0 < r < 3 by the division algorithm, and so we have 2" = 232" = (22 + 1)k2".
The degree of this is now less than n, and so we have successfully reduced this by at least one.
Hence, it holds for all n > 3. Doing this inductively gives that the degree of any polynomial in F
will have degree less than 3, and so it suffices to count all possible non trivial combinations of this.
Thus, we have

0,1, z,z+ 1,22 2 + 2,22 + 1,22+ z + 1
are all the elements in this field (it’s a field since it’s an irreducible polynomial, and hence maximal).
0

Problem 195 (Section 2.11, Exercise 5). Construct fields with 25 and 125 elements.

Proof. Tt suffices by the last problem to find irreducible polynomials of degrees 2 and 3 in F5[z].
From earlier, we see 22 — 2 is irreducible in F5[z], so this will give us a field with 25 elements.
We have 3 + 22 +  — 2 is irreducible, so this will give us a field with 125 elements. U

Problem 196 (Section 2.11, Exercise 6). Show that 23 — x has 6 roots in Z/(6).
Proof. We have

7/(6) = {0,1,2,3,4,5}.
Going through,

Number | Value of 23 — x
0 0

Ul W N~
O OO oo

so we have 6 roots.
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Remark. If we weren’t allowed to brute force, we would factor 2® —2 = z(22—1) = z(z+1)(x—1).
Notice that for all x € Z/(6), we have x + 1 =0, x — 1 = 0, or some combination of z,z + 1,2 — 1
gives us factors which are 2 and 3.

0

Problem 197 (Section 2.11, Exercise 8). Show that the quaternion division ring H contains an
infinite number of elements u satisfying u? = —1.

Proof. Recall that all the elements in H are of the form a + bi + ¢j + dk, a,b,c,d € R. We have
then that

(a+bi+cj+dk)(a+bi+cj+dk)=—1
gives us the following system of equations;
a? = - —d? =1,
2ab = 2ac = 2ad = 0.
Notice this forces a = 0, and so we have
b+ di=1.
This corresponds to the unit sphere S? and so we have that there are infinitely many solutions. [

Problem 198 (Section 2.11, Exercise 9, 10). Show that the ideal (3,2% — 2 + 2z — 1) in Z[z] is
not principal.

Proof. 1If it were principle, we have a f € Z[x] such that
(f) = (3,2 — 2® + 22 — 1).

Notice that (3) C (f), and so f | 3. Since 3 prime, this forces f(x) = 3 or f(x) = £1. Hence,

(f) € (3,23 — 2% + 22 — 1). In the other direction, we need to show that 2® — 2% + 2z — 1 € (3).

However, for any polynomial p, we have that 3p will not be monic, since the coefficients are over

7. Hence, there is no polynomial such that 3 — 22 + 22 — 1 = 3p, and so it cannot be principle.
Notice that it is a prime ideal (and in fact maximal). We have

Z[x] /(3,23 — 22 + 2z — 1) = Fa[z] /(23 + 222 + 22 + 2),
and since 23 4 222 + 22 + 2 has no roots in F3, we get it’s irreducible, and hence this is a domain.

Remark. Notice how this contrasts Theorem 2.15; for a domain D which is a PID, we may not
have D[z] a PID.

U
Problem 199. Is I = {f € R[z,y] : f(1,0) = f(0,1) = 0} a prime ideal?

Proof. Take z,y € R[z,y]. Then f(z,y) = xy is such that f(0,1) = f(1,0) = 0, but neither x nor
y are in I. So it is not a prime ideal. 0

Problem 200 (Section 2.11, Exercise 11). Let R be a ring without non-zero nilpotent elements.
Prove that if f(x) € R[z| is a zero divisor, then there exists an element @ # 0 in R such that

af(z) =0.
Proof. If f(x) is a zero divisor, we have that there is a g(x) such that
Fla) = a0+ -+ aa”

9(5) = by + -+ b,
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fox)=>_| > ajbp |2’ =0

i=0 \j+k=i
That is, for every 0 < i < nm,
Z ajbk = 0.
k=i

Notice that ag is a zero divisor. We then have that
a1by + agby = 0.
Multiplying by by throughout gives
a1bg + agboby = 0.
Assume this pattern holds up to n — 1. That is, a,—1bf = 0. Then we have that
anby + Gp—1b1 + - - - + bpag = 0,
and multiplying by b throughout gives
aanH =0.

Hence, the pattern holds. Thus, we have that bgeg(f ) is a non-zero element (since there are no
non-zero nilpotent elements) such that

bgeg(f)f =0.

0

Problem 201 (Section 2.11, Exercise 12). Let F' be a field of ¢ elements, F* = {a1,...,a4—1} the
set of non-zero elements of F'. Show that a1 ---aq—1 = —1.

Proof. By Theorem 2.18, we have that F'* is cyclic. Let g be the generator. Then we have

_a(g—1) a(g—1)

al...aq_l :g...gq_l :gq(q_l) 2 :gT
By Fermat’s, we see that ¢¢ = g. Hence, we get that this is equal to ¢{¢~1/2. If ¢ is odd, then
g — 1 is even, and so (¢ — 1)/2 is an integer. So this is well-defined, and furthermore we have
qg—1/2 < q—1,so @ 1/2 £ 1. Let ¢ = ¢(4=Y/2, We have that ¢2 — 1 = 0. We can factor the
polynomial 2 — 1 in the field to get 22 — 1 = (x + 1)(z — 1). So it’s only solutions are z = —1, 1.

Since ¢ # 1, we must have that ¢ = —1, and so for ¢ odd we get
ag - Qg—1 = —1.
If ¢ is even, notice that it’s characteristic is 2, so 1 = —1. Notice that we can rewrite this as

<g(<171)>q/2 = ¢9/2,

Moreover, we have that ¢9/2 is a root of the polynomial 22—z = 0, which factors to be z(x—1)=0.
Since g # 0, we must have that ¢7/2 =1 = —1. O

Problem 202 (Section 2.11, Exercise 13). Prove Wilson’s theorem: If p is a prime in Z, then
(p—1)!=—-1 (mod p).

Proof. Examine the field Z/pZ. We have that it’s units are {1,...,p — 1}. By the prior problem,
we have that 1---(p—1) = (p—1)! = —1 (mod p). O
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Problem 203 (Section 2.11, Exercise 16). Let f(z), g(x) # 0 be elements of F'[x] with deg(g) = m.
Show that f(x) can be written in one and only one way in the form

f(@) = ao(x) + ar(x)g(x) + - -+ + an(x)g(z)",
where deg(a;(x)) < m.

Proof. We use the division algorithm. First, let deg(f) = k. Then we have that there exists ¢,r
such that

k=gm+r,
where 0 < r < m. Notice as well that g(z)? has degree deg(g?) = gm. Hence, using the division
algorithm on f with ¢9, we have that

f=g(x)%aq(z) + p(x),
where deg(aq(z)) = r, deg(p(z)) < deg(g(x)?) = gm. Continuing down the line, we have that this
algorithm terminates, with
f(x) = g(x)aq(z) + - + ao(x),

where some a;(x) may be 0. The division algorithm gives uniqueness. O
Problem 204 (Section 2.12, Exercise 1). Prove the following extension of Theorem 2.19: If
f(z1,...,2y) € Flx1,...,z;], F infinite, and f(a1,...,a,) = 0 for all (ay,...,a,) for which a
second polynomial g(z1,...,x,) # 0 has values g(aq,...,a,) # 0, then

f(ml""vxr) =0.
Proof. The way I understand this problem, this is an elaborate way of saying that f evaluates to
0 for all @ € F". In this case, f € ker((), where ¢ : Flxy,...,z;] = FI[s1,...,5], and since F is
infinite, this is an isomorphism, and so f = 0. It seems ill posed, however. [l

Problem 205 (Section 2.12, Exercise 2). Prove that every function in r variables over F' is a
polynomial function (here, |F| = q).

Proof. We first count the number of polynomials. Notice that there are ¢ options for each variable,
so it suffices to count the number of variables. For one variable, we have ¢ possible variables, so
the answer is ¢?, which also gives the number of functions. For two variables, we consider the one
variable case and think of F|z,y| = F[z][y]. That is, f € F[z,y| can be thought of as

f=40(@)+ @)y + -+ An(2)y".
The degree only goes up to ¢ — 1, so we have (¢?)? = ¢*¢ polynomials over this field. Continuing
inductively, we find for r variables we have ¢\~ possible polynomials.

For functions, considering the one variable case, we have ¢? possible functions. For the two
variable case, we again get (¢?)¢ (the number of functions from a set M to a set N of size m, n
respectively is m'). For for r variables we look at F' X --- x F' r-times into F', and so inductively
we get ¢("~17 possible functions. Since the polynomials are a subset of the set of all functions, and
they have equal size, we get that they are equal. ]

Problem 206. Show that xz; are algebraic over R[p1,...,p.].

Proof. To show the z; are algebraic, notice that

gx)=(x—z1)--(z—x,) =2" —prz" L F por” 2 — -+ (=1)p.
Notice as well that
g(x;) =0,
SO
wf —pra] 4 por] 2 =+ (=1)"p, = 0.
Hence, they are algebraic. ]
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Problem 207. Show that
P(x) = 3} + 3 + 23
is a symmetric polynomial, and write it in terms of the symmetric polynomials.

Throughout, let s; = x1 4+ 22 + x3, s2 = T1x2 + T1x3 + Tax3, S3 = T1XT2X3.

Proof. Let m € S3. Then ((7)(x3 + 23 + 23) = mf’r(l) + xi@) + :E?T(g). Since 7 is bijective, we see
clearly that this is equal to 3 + x3 + 23. Hence, it’s invariant under permuting the variables.
Next, we try to calculate the representation. Using the monomial ordering, we notice that

T3 4 23 + m§ — 53 = —3atry — 32%x3 — w123 — 6y w013 — 31:1m§ — 3adrs — 31’2.’E§.

We add on 3s1s2 to get
:c?l’ + x% + x% — s‘i’ + 35152 = 3x1T273.
Hence, we have
3 3 3_.3
] + x5 + x5 = 87 — 35152 + 3s3.

Problem 208. Show that the symmetric polynomials are algebraically independent.

Proof. First, by definition, the x; are algebraically independent. Next, assume we had some non-
trivial relation
d dn _
Za(d)sll ceespm = 0.
(d)

After factoring out, we see that we are left with non-trivial monomials of the form
d dn _
5" g s =0
(d)

In particular, letting k; = d; + - - - + d;, we have that there is a maximal non-trivial monomial

k kn
B(k)x]_l .o .:L'n .

We have that there is a non-trivial relation after cancelling relative terms, which contradicts the
algebraic independence of the x;. ([l

Remark. We define the following:

(1) We call b a factor of a if b | a; that is, there is a k such that bk = a.

(2) We call b a proper factor of a if b | a and a 1 b.

(3) We say a and b are associated if a | b and b | a.

(4) We call an element b irreducible if it is not irreducible and has no proper factors other than

units.

(5) We call an element b prime if b | ac implies b | a or b | ¢ (contrapositive: b { a and b 1 ¢
implies b 1 ac.

(6) The prime condition tells us that irreducible elements are prime.

(7) The divisor chain condition says that every chain of proper factors eventually terminates
(in terms of associates).

(8) The ged of two elements is the greatest d such that d divides both of them (greatest in this
sense means that if ¢ divides both, then ¢ divides d).

(9) The ged condition says that every two elements admit a ged.

3
4

Problem 209 (Section 2.14, Exercise 1). Show that if M is factorial, then ab ~ [a,b](a,b) in M
(recall [a, b] is lem and (a,b) is ged).
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Proof. Using the fact that it’s a commutative ring and grouping, as well as throwing in irreducibles
which divide b but not a and giving them 0 powers (and vice versa), we have

€ n
a=dj"---d,
where e; > 0 and d; primes. We have
_ gk dp,
b=dy'---d,",
where k; > 0 and d; primes. Hence
ab = d§1+k1 L d%’nﬁ‘rkn‘

Notice that '
(a’ b) - drlmn(el,kﬂ . dfin(en’k”) —T
This clearly divides, so (a,b) | T, and we clearly have the other direction as well. So T ~ (a,b).
Similarly,
[a,b] ~ dllnax(e1,k1) . d;nax(el,kl).

Since '
ab — drlnln(e1,k1)+max(el,k1) . d?in(e"’k")+max(el’kl),

we get [a, b](a,b) ~ ab. O

Problem 210 (Section 2.14, Exercise 2). Let M be a commutative monoid with cancellation law.

(1) Show that the relation of associateness ~ is a congruence relation.

(2) Let M be the corresponding quotient monoid, i.e. M = M/ ~. Show that M satisfies the
cancellation law, and that 1 is the only unit in M.

(3) Show that M is factorial if and only if M is factorial.

Proof.

(1) To get that it’s a congruence relation, we need a ~ b and ¢ ~ d implies a + ¢ ~ b+ d and
ac ~ bd. Since a ~ b, there is a unit v such that ua = b and likewise there is a unit ¢ such
that tc =d. Sob+d | ut(a+c), so b+d|a+c, and likewise we have a + ¢ | (ut)~1(b+ d),
so a+c|b+d. Hence, a + ¢ ~ b+ d. Likewise, we have ut(ac) = bd, so ac ~ bd.

(2) Let ab = ac in M. Since we are in a congruence relation, this tells us that ab — ac = 0, or
a(b — ¢) = 0. Since a # 0, this means b = c¢. So we have the cancellation law.

The fact that 1 is the only unit derives from the fact that every unit is associated to 1.

(3) ( = ) If M is factorial, let @ € M. Then a = by ---by,, and where b; are irreducible.

Hence, we have that @ = by - - - b,. This is, in fact, unique, since we quotiented. Hence, M
is factorial.
(<) Assume M is factorial. Then @ = by - - - b,,, where b; are all irreducible. Since these
are all associates, we have that they differ up to units. Hence, a = by - - - b,, after multiplying
by appropriate units. We see this is (essentially) unique, since if we had another, it would
also be a factorization in M, and so must be the one given above (up to units, which get
killed).

O

Problem 211 (Section 2.14, Exercise 3). Show that Z[\/—5] satisfies the divisor chain condition
(abbreviated dcc).

Proof. Let a € Z[v/=5]. Let a; | a, and for every i > 1, a;4+1 | a;. We wish to show that there

is an n such that a, ~ apy1 ~ ---. To get this, we go by norms. Recall that if a; | a, we have

N(ay) | N(a). Continuing down, we get a chain - -- N(a2) | N(a1) | N(a). Since N(a;) € Z, we have

that eventually there must be an n so that N(a,) ~ N(ap+1) ~ ---. If we show that N(a) ~ N(b)

and a | b implies a ~ b, we are done. Notice N(a) ~ N(b) is equivalent to N(a) = N(b). Hence,
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we see that a ~ b, and so we are done, since a | b implies that there is a ¢ such that ca = b,
N(ca) = N(b) = N(a) so N(c) =1, a unit. O

Problem 212 (Section 2.14, Exercise 4). Show that Z[z] satisfies the dcc.

Proof. Let f € Z[z], and take the chain f; such that --- fo | f1 | f. We would like to show that
there exists an n such that f, ~ f,41 ~ ---. Notice the dcc also dictates that these are proper
factors. Since fi | f, we have that deg(f1) < deg(f). Continuing down the line, we have that
deg(f;) < deg(fi—1) (where fy := f) for all i. If deg(fi) < deg(fi—1), we are continue. If it
decreases, we must eventually have that f = 0, £1, since it will eventually become constant. Once
we are one of these, we win. So it suffices to show that we will always have it’s decreasing.

In essence, this boils down to showing that if deg(f) = deg(g), and ¢ is a proper factor, then
there are only finitely many options for what g could be. Since we’re getting a proper factor every
time, we have that the selection is decreasing, and so eventually we must have that the degree
drops.

To prove this claim, suppose deg(f) = deg(g), g | f but ftg. We can write

f:a0+"'+anxn7

g=bo+-+ba",

and we require a,,b, # 0. If g | f, there is a polynomial p such that pg = f. Since their degrees
are the same, though, the multiplicative property forces p to be a constant. Furthermore, it must
be such that b; | a; for all 7, and so p must be this constant. Since the coefficients are in 7Z, this
gives us only finitely many options for what these could be, if there is an option. O

Problem 213. If R is a PID, then R is a UFD.

Proof. Recall that R is a UFD if and only if it satisfies the ged condition and the dcc (descending
chain condition). Let’s first establish the ged condition.

Let a,b € R. Then we have that (a,b) = (d), since R is a PID. Notice that (d) C (a,b), so this
means that d € (a,b), so there are r, s € R such that ra + sb = d. Suppose g | a, g | b. Then there
are e, f such that gf = a, ge = b, so

ra+sb=r(gf)+ s(ge) =d <+ g(rf+se) =d,

hence g | d. So d is the ged of @ and b, and it’s unique up to units.

Next, suppose - - -as | ag | a1 | a be a chain of proper factors. Then this implies that (a) C (a1) C
-+-. Let I = J;2,(a;). This is an ideal, since this is an ascending chain of ideals. Hence, since R is
a PID, we have I = (e). Furthermore, we see that e € (a;) for some 4, since e € I, and so we have
that (e) C (a;). Since (a;) C (e) by assumption, we get (e) = (a;). Hence, we have that a;+1 | a;,
and a; | a;+1 since (a;) U (ai+1) = (ai), so aj+1 ~ a;. Hence, the chain terminates eventually, and
so we have the dcc condition.

Thus, R is a UFD. 0

Problem 214 (Section 2.15, Exercise 2). Show that Z[v/2] is a Euclidean domain with respect to
§(m +nv2) = |m? — 2n?|.
Proof. Notice first that
d(ab) = d(a)d(b)
(this is just a routine calculation). Note that, for a = m 4+ nv/2, b = r + /2, we have

a_ m+n\/§: (m +nv2)(r — sv/2) )
b r—|—5\/§ T2—282
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where p, v are rational numbers. Choose €,0 integers such that e — p| < 1/2, |6 —v| < 1/2. Let
u=p—€ v=v-—0,then |ul <1/2, |v]| <1/2. Now, u+e€=p, v+3J = v, and so

a=b((u+e)+ (v+6)V2) =bg+r,
where ¢ = € + 6v/2 € Z[\V2], r = b(u + vV/2) r = a — bq, so r € Z[/2]. Notice as well that
5(b(u+ vv/2)) = 6(b)d(u + vV/2),
S(u+vv2) = [u? — 202 < |ul2 +2v|? < 1,
S0
d(r) < 4(b)

as desired. O
Problem 215 (Section 2.15, Exercise 6). Let D be a Euclidean domain whose function ¢ satisfies

(1) 6(ab) = d(a)d(b)

(2) d(a+b) < max(d(a),d(d)).
Show that either D is a field or D = F[z], F' a field, z an indeterminate.

Proof. TODO U

Problem 216 (Section 2.15, Exercise 12). Apply the algorithm for finding the ged to the foregoing
polynomials:
it -3
ot — 23+ 322 -4
in Q[z].

Proof. We have the degree of the second polynomial is higher, so we write

et — P 430 fr—d =@+ o —3) + (—22% 4 222 + 4o — 4),
1
9:3+x2+:1:—3:—5(—2553—1-2362+4x—4)+(2:v2+3:6—5),
—20% 4222 + 4o — 4 = —x(22% + 32 — 5) + (52 — x — 4),

2 1
202 + 32 — 5= 5(5m2 —o—4)+ (172 - 17),

25 (17x 17
S’ —x—4="g——— 4o —4
‘-z 7% ( 3 5 ) + (4z — 4),
17 17 17
— — — = —(4x —4).
5 "5 ~ Y
Hence, the ged of these two polynomials is 4o — 4, or it’s associated to x — 1. ]

Problem 217 (Section 2.15, Exercise 17). Define the Mobius function u(n) of positive integers by
the following rules:

(1) u(1) =1;
(2) pu(n) =0 if n has a square factor;
(3) u(n) = (=1)% if n = p1p2-- - ps, p; distinct primes.

Prove that p is multiplicative in the sense that p(ning) = u(ny)u(ng) if (n1,n2) = 1. Also prove

that
lifn=1
> o) =4 .
i 0ifn#1
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Proof. Write ny = p{'---pSr, ny = q{l . qm , ¢ # pj for any 4,j. If either ny,ny = 1, then it’s

clear that it’s multiplicative. If e; > 2 or f; > 2, then we see it’s also multiplicative, since the result
will be 0 either way. So it’s dependent on the case where e¢; = 1, f; = 1 for all 4, j. In this case, we
see that p(ning) = (—=1)™T" = (=1)"(=1)™ = u(n1)u(nz2). So it’s multiplicative.
Write n = p7* - - - p&». Then we have
> u(d)

dln
ends up being the sum of all combinations of p;, f;, where 0 < f; < e;. Since anything greater than
1 results in 0, we end up with

oo (Jene (e (e

Recall the binomial theorem gives

so we have

> ould) =1+ (=1))",

din
where here n denotes the length of the prime factorization. The only element with no primes
dividing it is 1, and so we have that
lifn=1
> n(d
0ifn#1

dn
U

Problem 218 (Section 2.15, Exercise 18). Prove the Mobius inversion formula: if f(n) is a function
of positive integers with values in a ring, and
= /@)

din

= p(n/d)g(d)

d|n

then

Proof. We can rewrite this as

S opn/d) [ D FE) | =D fR) [ D pn/d)

d|n k|d k|n k|d|n
=D SR [ D nlm/t) |,
kln tlm

where t = d/k, m = n/k. By the prior problem, this is non-zero (i.e. 1) if and only if m = 1, which
means n/k = 1, which means n = k, so we have that this is equal to f(n). O

Problem 219 (Section 2.15, Exercise 19). Prove that if ¢ is the Euler ¢-function, then

= 3" u(n/dyd

dn
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Proof. By the Mobius inversion formula, we have that
o(n) =Y u(n/d)g(d),
din
where
g(n) =Y _ ¢(d).
dln
Let’s first show it for n = p®. We have that (defining p~! = 0)

e e
g(n) => e =D ' =p") =p".
i=0 i=0
Now, assume that n = p°q/. Then
g(n) = ¢(d).
dln
Each d will be of the form p%¢®, 0 < a <e, 0 <b < f, and so we get

e f e f e f
g) =D ") =D (@) => > 0" =N —¢" ) =pd) =n.

a=0 b=0 a=0 b=0 a=0 b=0
Inducting like this gives the result. So, we have

g(n) =n,
and hence
p(n) = p(n/d)d.
din
O

Problem 220 (Section 2.16, Exercise 1). Prove that if f(x) is a monic polynomial with integer
coefficients, then any rational root of f(z) is an integer.

Proof. Let p/q be coprime numbers such that
f(x) =ao+ a1z + -+ apa”
evaluated at p/q is
f(p/a) = a0+ ar(p/q) + -+ (p/Q)" = 0.
Notice that this means
¢"f(p/q) = ¢"ao +pg" lar + -+ p" =0,
Notice this corresponds to
P"+gan-1+---+¢"ag) =0,
SO
—p" = qlan—1+ -+ ¢" 'ag).
Soq | —p"orq]|p"” If ¢|p" this means ¢ | p. This can only happen if ¢ = 1, so that p/q is an
integer. (I

Problem 221 (Section 2.16, Exercise 5). Suppose D is a domain which is not a field, then D[z] is
not a pid.

Proof. Assume for contradiction that D[z] is a pid. Let (x) C D[x] be an ideal. Since z is

irreducible, then (z) is maximal. Hence, D[z]|/(z) is a field. However, D[z]/(x) = D. This is a

contradiction, since we assumed that D is a domain which is not a field, and so we must have that

D[x] is not a pid. O
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Problem 222. Let R be a finite commutative ring with 1. Show that every prime ideal is maximal.

Proof. We first show that every finite integral domain is a field. Let R be a finite integral domain
and let f, : R — R given by f,(x) = ax, where a # 0. We first check that this is injective. Notice
that if f,(x) = fa(y), then we have that az = ay, so a(x —y) = 0. Since a # 0, R an integral
domain, this forces x = y. Hence, we have that it’s injective, and since it’s an injection from a set
to itself, it must be surjective. In other words, a must be invertible. Since this is true of all a # 0,
we get that R must be a field.

Now, take R a finite commutative ring with identity. Let p C R be a prime ideal. We see that
R/p is an integral domain which is finite, and hence it must be a field. But this then forces p to
be a maximal ideal. O

Problem 223 (Section 3.2, Exercise 1). Let M be a left R-module and let  be a homomorphism
of a ring S into R. Show that M becomes a left S-module if we define ax = n(a)(z) for a € S,
zeM.

Proof. We still have that M is an abelian group, and so it suffices to show the four properties hold.
That is,

So M is a left S-module. O

Problem 224 (Section 3.2, Exercise 2). Let M be a left R-module and let B={b € R : bx =
0 for all z € M}. Verify that B is an ideal in R. Show that if C' is any ideal contained in B, then
M becomes a left R/C module by defining (a + C)z = ax.

Proof. Let a,b € B. Then a —b € B, since (a —b)x = ax —bxr =0 — 0 = 0. So its an additive

subgroup. Next, let » € R. Then (ra)xr = r(az) = r(0) = 0, (ar)z = a(rz) = 0, so B is an ideal.

Let C' C B be an ideal. Then for all ¢ € C, ca = 0. We need to show the four laws hold:
(a+b+Clz=(a+brz=ar+br=(a+C)z+ (b+ CO)x,

(a+C)(z+y)=alz+y)=ar+ay=(a+Clz+(a+ Oy,
(ab+ C)x = (ab)x = a(bz) = (a+ C)((b+ C)x),
14+ C)z =1z ==z.
So M is a left R/C-module. O

Problem 225 (Section 3.2, Exercise 3). Let M be a left R-module, S a subring of R. Show that
M is a left S-module if we define bz, b € S, x € M as given in M as a left R-module. In particular,
the ring R can be regarded as a left S-module in this way.

Proof. This is clear by Exercise 1. O

Problem 226 (Section 3.2, Exercise 4). Let V = R(™ be the vector space of n-tuples of real
numbers with the usual addition and multiplication by elements of R. Let T" be the linear trans-
formations defined by
T(x1y... &n) = (Tpy @1y e vy Tpe1).

Consider V' as a left R[A]-module (i.e. (a,A" + -+ a1A+ag) - v =a,T"(v) + -+ a1T(v) + ap),
and determine

(1) Az,

(2) (N4 2)z,
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(3) A4 1)
What elements satisfy (A2 — 1)x = 0?
Proof. (1) Using the action, we have
Ao(z1, .o ) =T(x1, .y 2n) = (Tn, T1y -0y Tp—1).
(2) Using the action, we get
N +2)- (21, zn) =T, n) 2= (Tno1, Tny 1,y e v Tro) + 2(21, ..o, T
(3) We have

T(z1,...,2n) = (Tn, T1, -+, Tn-1),
TQ(xl, ces@p) = (Tp—1,Tn, T1,. .., Tn_2),
Tk(a:l) ey xn) = (wn—k—&-la xn—k+2) oo 7:1:7173:17 LU 7xn—k)-

Hence,
A D=
(w2, 23,...,Tp, 1) + (23,..., Tp, T1,T2) + - + (T, T1,. .., Tpo1) + 1
Finally, we see that
N =) z=T%x1,...,20) — (T1,..., %) = (Tp_1, T, T1, ..., Tp_2) — (T1,...,Tn)
= (Tp—1 — ®1,Tp — T2, 1 — X3,...,Tp_2 — Tp) = 0,
so the collection of elements with
Tp—1 =T1,Typ = T2, T; = Tiqo for 1 < i <n—2.

O

Problem 227 (Section 3.2, Exercise 8). Let M be a finite abelian group which is non-zero. Can
M be made into a left Q-module?

Proof. No; consider the case of Z/47Z. Then

a contradiction. N

Problem 228. Let R be a commutative ring, I C R an ideal. Show that I is a left R-module,
defined in the obvious way.

Proof. By definition, I is an abelian group under addition. Notice that we define r - a for r € R,
a € I via ra € I, since I an ideal. We then need to show that distributive properties hold; but this
is clear by the ring axioms. Hence, [ is a left R-module. ([

Problem 229 (Section 3.2, Exercise 6). Let M be an abelian group written additively. Show that
there is only one way in making M into a left Z — module.

Proof. We first show existence, then uniqueness. Let r € Z, a € M. Definera=a+a+---4ar
times. Then we see that

rla+b)=(a+0b)+---+(a+b) =ra+rd,
(r+s)a =ra+ sa,
r(sa) =r(a+---+a)=sa+ -+ sa=(rs)a,

la = a.
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So it’s a left Z-module. We then check uniqueness. Notice that any other way would be defined by
la = a, (14 1)a = la+ la = 2a, and we can deduce from this that this holds for any integer n.
Thus, it is unique. 0

Problem 230 (Section 3.3, Exericse 1). Determine Hom(Z,Z/(n)) and Hom(Z/(n),Z), n > 0, as
Z-modules.

Proof. Let ¢ € Hom(Z,Z/(n)). We see that ¢ is determined entirely by where it sends generators.
Since it’s just Hom, and not isomorphisms, we get a homomorphism for each element of Z/(n).
Moreover, each of these are distinct, so we get that

Hom(Z, Z/(n)) = Z/(n).
Now, for ¢ € Hom(Z/(n),Z), let’s see what happens when we take an element and map it.
Taking (1) = z, we see that
nz = np(1) = ¢(n) = ¢(0) = 0.
Since Z is an integral domain, this means that either n or z is zero. Thus, we must have that z = 0,
since by assumption n > 0. So we get Hom(Z/(n),Z) = 0. O

Problem 231. Determine Hom(Z/(m),Z/(n)), m,n > 0 as Z-modules.

Proof. We follow the same calculation as before. Taking ¢ € Hom(Z/(m),Z/(n)), we see that
(1) = z implies that nz = 0. So this means that m | nz. Hence, nz = mk. Letting d = ged(m,n),
n' =n/d, m' =m/d, we get 'z = m'k, so that z = (m'k)/n’. Notice this gives us d options for z,
and so we have that

Hom(Z,/(m), Z,/ (n)) = Z,(d).

Problem 232 (Section 3.3, Exercise 3). Show that
Hom(Z®,7) =~ (z®, +,0).

Proof. Follow the same procedure as before. Take ¢ € Hom(Z(?),Z), we see that it’s determined
by ¢(1,0) and ¢(0,1). Hence, consider the morphism 1 : Z(?) — Hom(Z(?,Z) by t(a,b) = Plab)s
where ¢ 4)(1,0) = a, ©(4)(0,1) = b. The kernel of this mapping is going to be 0, so it’s injective,
and we see it surjects by the remark at the beginning. Moreover, it is a morphism, and so an
isomorphism. O

Problem 233 (Section 3.3, Exercise 4). Prove that for any R and R-module M, Hom(R, M) =
(M, +,0).

Proof. Define the map by ¢ : Hom(R, M) — M by 1(¢) = ¢(1). We check this is a homomorphism;
la+B8) = (a+B)(1) = a(l) + BL) = ¥(a) + B (8).
We now check the module homomorphism condition: let » € R, then we have
$(ra) = (ra)(1) = ra(1) = r(a).
Hence, it’s an R-module homomorphism. Now, notice that
ker(¢) = {a € Hom(R, M) : «(1) = 0}.
Notice that if «(1) = 0, we have that « is the 0 map; taking any r € R, we have
a(r) =ra(l) =r(0) = 0.

So the kernel is trivial, hence it’s injective.
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For surjectivity, for m € M define the morphism a : R — M by «(1) = m. We see this is a
R-module homomorphism, since
ala+b) =al(a+b)1) = (a+b)a(l) = (a+b)m = am + bm = aa(l) + b (1) = a(a) + a(b),
and for any r € R we have
a(ra) = a((ra)l) = (ra)a(l) = (ra)m = r(am) = r(aa(1)) = r(a(a)).
So we have found an « such that ¥ (a) = m. Hence, it’s an isomorphism. O

Problem 234. Let R be a commutative ring and let A, B, and M be R-modules. Show that
Hom(A x B, M) = Hom(A, M) x Hom(B, M).
Proof. For notational simplicity, let N = Hom(A x B, M), Ny = Hom(A, M), Ny = Hom(B, M).
We want to construct a map 1 : N1 X No — N. Define it by
Y((.B)) =(axB): AxB— M, (axp)(abd)=ala)+ (D)
We first check that its well-defined. Let (a, 8) = (7, ). Then

P((a,B)) = (o x ),

P((7,6)) = (v x 9),
(a x B)(a,b) = afa) + B(b) = v(a) + 0(b) = (v x §)(a,b).
We check this is a homomorphism. Let (o, 3), (7,0) € N1 x Na. Then

((a, B) + (7,0)) = v((a+7,8+6)) = (a+7) x (B+9),

and we see that

(at7y)x(B+0)(a,b) = a(a)+7(a)+L(b)+5(b) = (a(a)+5(b))+(v(a)+0(b)) = (ax)(a,b)+(yxd)(a,b),
so that
Y((a+7,8+6)) =¢((a, 8) + ¥((7,0)).
Let r € R, then
Y((ra,rf)) = (ra xrp),
with
(ra x rB)(a,b) = ra(a) +r4(b) = r(a(a) + B(b)) = rv((e, B)).
So it’s an R-module homomorphism. We check that it’s an isomorphism. Notice that the kernel is
trivial, since it being the zero map means both maps must be zero. To see it’s surjective, suppose
a € N. Then we have a(-,0) = ¢1 : A — M, «(0,:) = ¢2 : B — M, and ¢1 + ¢2 = a. Then
Y((¢p1,P2)) = a, and we have it’s surjective. So it is an isomorphism. O

Problem 235.

Problem 236 (Section 3.3, Exercise 8). A left (right) ideal I of R is called a mazimal if R # I
and there exist no left (right) ideals I’ such that I C I’ C R. Show that a module M is irreducible
if and only if M = R/I, where I is a maximal left ideal of R.

Proof. Recall that a module is irreducible if M # 0 and 0 and M are the only submodules of M.
( = ) Assume that M is irreducible. By prior exercises, we see that M = Dx, x € M, x # 0.
Let I = ann(x). Then we see that this is a maximal ideal; we have R/I = M, take any other ideal
I, and we see that I C I’ C R is impossible, since this would force a submodule to exist.
( <) Similar argument. O

Problem 237 (Section 3.3, Exercise 9). Show that if M7 and My are irreducible modules, then any
non-zero homomorphism of M into Ms is an isomorphism. Hence, show that if M is irreducible,
then Endgr (M) is a division ring.
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Proof. Let ¢ : M} — Ms be an non-zero homomorphism. Then ¢(1) = a € My. Since My is
irreducible, it is cyclic, and this is a generator of Ms. In other words, we get that ¢ is surjective.
If (k) = 0 for some k # 0, we have that k generates M, so ¢ is the zero map, a contradiction.
Hence, ¢ must be injective as well, and so an isomorphism.

Any two non-zero maps compose into a non-zero map, so Endg(M) is a division ring, since there
are no zero divisors. O

Problem 238 (Section 3.4, Exercise 1). Let R be arbitrary, and let (ey,...,e,) be a base for R,
Show that (fi,...,fm), fj = Z?:l ajjrej is a base for R(™) if and only if there exist an n x m
matrix B such that AB = 1,,, BA = 1,, where A = (a;;)m 1,, is the usual m X m unit matrix.
Hence show that R(™ = R(™ if and only if there exists A € M, ,(R), B € M, ,(R) such that
AB=1,, BA=1,.

Proof. We mimic the proof of the noncommutative version to find the result.
(= ) Let M be a module such that M has a basis of n elements and a basis of m elements.
Let (e1,...,e,) be one basis, and (f1,..., fi,) be the other. Then we have that

n
fi =" aziei,
=1

ek =Y bijfi
i=1

Substituting it in both ways gives

fi= Z a;jibik fr,

i,k=1
n,m
er = Z bijaje;.
gl=1
Hence, we see that
n,m
> ajibik = S,
ik=1
n,m
Z bijaj; = Opi-
ji=1

In other words, we have found a matrix B (using B = (b;;)) such that AB = 1,,, BA = 1,,.
( <= ) If there exists a matrix, then we can create the basis clearly.
We can deduce the result in the same way as the commutative case. O

Problem 239 (Section 3.4, Exercise 2). Let 7 € Endg(R™) and let A be the matrix of 7 relative
to the base (e1,...,en). Let fi = > pije;, where P = (p;;) € GL,(R). Verify that the matrix of n
relative to the base (f1,..., f,) is PAP~!.

Proof. This follows by simply noting that P(e;) = fj, so e; = P71(f;). Then we have that n(e;)
corresponds to the jth column of A, and applying P to this and using linearity let’s us expand it
in terms of the f; in other words, we get the matrix corresponding to the basis of (f;) relative to
n. U

Problem 240 (Section 3.4, Exercise 4). Let R be commutative. Show that if n is a surjective

endomorphism of R(™, then 7 is bijective. Does the same hold if 7 is injective?
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Proof. We have 1 : R™ — R(™ is a surjective homomorphism. Notice that to be surjective, it
must map basis elements to basis elements; hence, choosing (e, ..., e,) to be an ordered basis, we
have n(e;) = fi, where (fi,..., fn) is also a basis. It suffices to show that the kernel is trivial; that
is, ker(n) = {x : n(z) = 0} = 0. Taking x € ker(n), we notice that we can write it as

x = E aie;,

and so
n(x) =n (Z aiei) =Y ain(e) =D aif; =0.
Since (f1,..., fn) is a basis, we have that the a; must all be 0. Hence, z = 0, so 7 is injective.
The same does not hold true if 7 is injective. Consider 1 : Z — Z via n(z) = 2x. It is injective
but not surjective. N

Problem 241 (Section 3.4, Exercise 5). Let R be commutative, and let M and N be R-modules.
If a € R, n € Hom(M, N), define an by (an)(x) = a(n(x)) = n(ax). Show that an € Hom(M, N)
and that the action of R on Hom(M, N) convertes the latter into an R-module. Show that
Hom(R™, R(™) is free of rank mn.

Proof. We first show that an € Hom(M, N). It needs to be an R-module homomorphism between
M and N. Notice that
(an)(0) = n(a-0) = n(0) =0,
since n is a homomorphism. Next, let a,b € M. Then
(an)(m +n) = n(a(m + n)) = nlam + an) = n(am) + n(an) = (an)(m) + (an)(n).

Finally, we need to show it commutes with the R-action. Let » € R. Then

r(an)(m) = rn(am) = n(ram) = n(arm) = (an)(rm).
So this is indeed an R-module homomorphism.

We then need to check that this is an R-module. That is, we need to check the four axioms. Let
a,b € R, n,v € Hom(M, N), and take m € M arbitrary. Then we have

a(n+7)(m) = (n+7)(am) = n(am) +~(am) = (an)(m) + (a7y)(m),
SO
a(n+7) =an+ ay.
Next, we check
(a+b)n(m) =n((a + b)m) = n(am + bm) = n(am) + n(bm) = (an)(m) + (bn)(m),

SO

(a+b)n = (an) + (bn).
Next, we check

(ab)n(m) = n(abm) = n(b(am)) = bn(am) = a(bn(m)),
SO
(ab)n = a(bn).

Finally, it’s clear that

In(m) = n(lm) = n(m),
SO

In=mn.
Since the four axioms are satisfied, we have that Hom(M, N) is an R-module under this action.
Finally, we need to check that Hom(R(™, R™") is a free module of rank mn. Let {eq,...,emn}

be a basis of R™, {fi,..., f,} be a basis of R". Then define f;;(e;) = ditw;, linear over R on
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the basis. We first check that this is a homomorphism. Notice that f;;(0) = 0 clearly. Next, let
a,b € R™). We have

m
a = Z teee,
c=1
m
b= chem
c=1

and so
fij(a —f<Zt ec> Ztcfw ec) = tiwj,
=1
fzg f (Z gcec> = gcfij(ec) = giWwy,
i=1
and

fijla+b)=f (Z(tc + gc)6c> = (te+ge) fij(ee) = (te + ge)wj = tew; + gew; = fij(a) + fi;(b),

c=1 =1

so it is a homomorphism. We then check that it spans. Let n € Hom(R(™ R(™). Then we see
that for all 1 < i < m we either have n(e;) = wy, for some 1 < k < n or n(e;) = 0. In such a case,
we have that n(e;) = fix(e;). Going through, we get that 1 can be expressed as a sum of these,
and we notice that the sum of these f;; agree with n on all of M, so they are equal as functions.
Hence, the f;; span.

Next, we check that it does indeed form a basis; that is, it satisfies the uniqueness. Assume that

we have
Zzaijfij =0

i=1 j=1

Then we wish to show that a;; = 0 for all 7, j. Notice that this means for arbitrary m € M that
m n
DD aiifii(m) =
i=1 j=1

Taking m = e1, we have

Zzaz]fw ez Zaljflj 61 Zalgw] =0.

=1 j=1
Since wj is a basis, this forces a;; = 0 for all j. Going through, we see that we can do this for each

i, and this will force a;; = 0 for all ¢ for all j. Hence, we have the uniqueness, and so this is a base,
and so we have that Hom(R™, R is a free module of rank mn. u

Problem 242. Check the following claims:

(1) Let M,..., M, be independent submodules of M. Put Ny = My + -+ + M,,, Ny =
Myy1+--+ My 4r,, etc. Then Ny, ... are independent.
(2) Let Mj, ..., M, be independent, and suppose M; = M;; & Mjo®- - -®M;y,, 1 < i <n, where

the M;; are submodules of M;. Then the submodules M;1, ..., My, Ma1, ..., Map,, ..., Mp1,...

are independent.
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Proof. (1) Recall that to be independent means that

M; N Z Mj = 0.
J#i
We see that

N ) Ni| =0,
i#1
since expanding gives

(My+---+ M) (ZM) :i(Mjm (ZM)) =0,

i>7r1 j=1 i>7

since submodules of independent modules are independent.
(2) TODO (Same idea as above though).
O

Problem 243 (Section 3.5, Exercise 3). Show that Z/(p®), e > 0, regarded as a Z module is not
a direct sum of any two non-zero submodules. Does the same hold for Z? Does it hold for Z/(n)
for any other positive integers n?

Proof. Assume we could, that is, we have
M, ® My =17/(p°%).

Take my € My, mg € Ms. Since we are in a field, we have that there are m}, m} so that
1 = mim) = mamb,

so My N Ms # 0.

Assume we could do it for Z; that is, Z = My & My. Take mi € My, my € Ms. Let d =
lem(my, ma). Again, we see that am; = d = bmag, so M1 N My # 0.

Finally, it’s possible for Z/(n), n not of the form p¢. Use fundamental theorem for finite abelian
groups.

Remark. This problem is trivialized by a future result. We are showing that these modules are
indecomposable.

0

Problem 244 (Section 3.5, Exercise 4). Show that if M = M; & My, then M; = M/Ms and
Ms = M/M,.

Proof. Define a map 71 : M — M; via 71(x,y) = x. Notice that this map is surjective clearly, and
notice as well that this is a module homomorphism; if r € R, we have that

m(r(z,y)) = m((rz,ry)) = re = rmi((z,y)),

m((a,b) + (z,9)) = m((a+2,b+y)) = a+z =m((a,b) + m((z,y)).
Notice as well that ker(m ) = {(x,y) : mi(x,y) =0} = {0} N M,. Clearly, we have My = {0} N M,
so we get that M/ker(m) =& M/M,; = My by the isomorphism theorem. There is a symmetric
argument for the other one. O

Problem 245 (Section 3.6, Exercise 1). Find a base for the submodule of Z3) generated by

fl = (1707 _1)7 f2 = (27 -3, 1)? f3 = (0731 1) and f4 = (37 175)
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Proof. We have

1 0 -1
2 -3 1
0 3 1
3 1 5
Row reducing gives
1 00
010
0 0 1
0 00
So the basis is the standard basis. ]

Problem 246. Find a basis and the invariant factors for the submodule of Z(B) generated by
x1 = (1,0,—-1), z2 = (4,3,-1), 3 = (0,9,3) and x4 = (3,12, 3).

Proof. We first find the invariant factors. We set up the matrix again
1 0 -1

-3 -1

9 3

12 3

W O =

Row reducing gives

0 -1
3 3
0 6
0 0

So the basis is {(1,0,—1),(0,3,3),(0,0,6)}. We get that the Smith form is
1 0

o O O

o OO
O o OO

3
0
0

Problem 247. Find the Smith normal form for the following matrix.

-2 0 10
0 -3 —4
1 2 -1
Proof. Row reducing gives
1 00
01 2
0 4 0
We then focus on the matrix
1 2
4 0)°
Row reducing gives
10
0 8)°



Hence, the Smith normal form is

OO =
O = O
o O O

0

Problem 248 (Section 3.7, Exercise 5). Prove that if F' is a field, then any matrix in M, (F") of
determinant 1 is a product of elementary matrices of type I.

Proof. Recall that an elementary matrix of type [ is a matrix of the form

First, we verify that this gives a matrix of determinant 1. But this is clear, since this is either
an upper triangular or lower triangular matrix, and so the determinant is the product along the
diagonal. Hence, we get that the determinant is 1. Notice that the multiplicative property of the
determinant will give us that a product of type 1 matrices will have determinant 1.

We now take a matrix who’s determinant is 1. We prove this by inducting on the size of the
matrix. It’s clear for a 1 x 1 matrix. Assume it holds for n — 1. Then for an n x n matrix, using
elementary matrices of type I, we can kill everything other than the element in the top left. Since
the determinant is 1, we can rearrange so that 1 is in the top left. We then use the inductive
hypothesis to get it for the n — 1 x n — 1 inside matrix, and we’re done. O

Problem 249 (Section 3.7, Exercise 6). Let D be a pid, a; € D, 1 < i < n. Let d be the ged of
the a;. Show that there exists an invertible matrix @ € GL,(D) such that

(a1,...,a,)Q = (d,0,...,0).

Proof. Notice that we can write the gcd as a sum of the a;, that is, there exists b; € D such that

Zbiai =d.

Hence, let (b;) be the first column of Q. O

Problem 250 (Section 3.8, Exercise 1). Determine the structure of Z(3) /K, where K is generated
by f1 = (Qa L, _3)7 Ja= (17 _1a2)'
Proof. Let M = Z3) /K. We have that Z®) has basis e; = (1,0,0), ea = (0,1,0), e3 = (0,0,1). We
wish to find a basis for our module M via the proof of the fundamental structure theorem. Notice
that we have
fi=2e1 + ez + —3es,
f2=e1 — ez + 2es,

2 1 -3
A:<1 -1 2)‘

We wish to row reduce this to it’s normal form. Notice that it’s normal form is

(—1 2>_<2 1 —3>' gé; _<100)

0 1 1 -1 2 10 3 010

Hence, we have that there is a basis of e, eg, e3 such that the first two vectors are a basis of K. In
other words, we get that Z®) /K =~ 7. O

Problem 251 (Section 3.9, Exercise 1). Let D = R[A] and suppose M is a direct sum of cylic
modules whose order ideals are generated by the polynomials (z—1)3, (22 +1)2, (z—1)(z24+ 1), (z+
2)(2? + 1)%2. Determine the elementary divisors and invariant factors of M.
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Proof. The invariant factors are
{A=1%A=1),(R+1)% N+ 1% N+ DL (A +2),(A2+1)%
This gives us elementary divisors
ds = (A=1)°(\ +1)'(A +2),
d2 = ()‘ - 1)()‘2 + 1)27
dy = (N2 +1)2
O

Problem 252 (Section 3.9, Exercise 3). Define the rank of a finitely generated module M over a
pid D to be the rank of the free module M /tor(M). Show that if M = D™ /K then rank of M is
n — rank(K). Show that if N is a submodule of M, then N and M/N are finitely generated and
rank(M) = rank(N) + rank(M/N).

Proof. Recall that the submodule of a free module is free. Hence, we have that K = D™ where
m = rank(K), so D /K = D(=™) = [ Hence, rank of M is n —m = n — rank(K).

If M is finitely generated, we have it is of the form M = D(”)/ K. Then any submodule N < M
will be of the form N’/K, where N’ < D™, Take 7 : M — M/N be the canonical surjection. Then
we claim that if 21, ..., z, generate M, then 7(x1),...,7(x,) generate M/N. Take y € M /N, then
y is of the form 7(x) for some x € M, and so

m(x) =7 (Z ai:zi) = Zaﬂf(l’i) =7(y).

Hence, they span M /N, so M/N is finitely generated.

A rank nullity argument gives us the desired result here; that is, use the exactness of 0 - N —
M — M/N — 0, the fact that it descends to both the torsion and free parts, and then use the fact
that the free part of M is a direct sum of the free parts of the other two. O

Problem 253 (Section 3.9, Exercise 4). Let M be a torsion module for the pid D with invariant
factor ideals (ds) C --- C (d2) C (d1). Show that any homomorphic image M of M is a torsion
module. Show that the invariant factor ideals for the homomorphic image (d;) C --- C (d;) satisfies
t < S, dt ‘ ds,...,dl | ds—t—‘rl'

Proof. We first work with the case that M is primary. Let ¢ : M — N, M = Dz, ann(z) = (d) # 0.
Then we see that ¢(Dz) = Dy(z) = M is the homomorphic image of M. We check that this is
torsion. Notice that do(x) = ¢(dx) = ¢(0) = 0, so (d) C ann(z) = (d'). In other words, d’ | d.
Note that it may be possible that the homomorphic image is 0, in which case we simply write
M =0.

For the general case, let M = Dx1 @ - -+ @ Dz,. Examine M /(D1 ®---® Dxy_1) = Dax,. Taking
the homomorphic image of this gives us M/Dx1 @ --- @ Dx,_1 = DZ,. By the primary case, we
see that inducting gives us the desired result. (|

Problem 254 (Section 3.9, Exercise 7). Call a submodule of N pure if, for any y € N, a € D,
ax =y is solvable in M (that is, there exists an x € M such that az = y) if and only if ax = y is
solvable in N. Show that if N is a direct summand, then N is pure (here, direct summand means
that M = N @ L). Show that if N is a pure submodule of M and ann(z + N) = (d), then x can
be chosen in its coset z + N so that ann(z) = (d).

Proof. Fix a € D, y € N so that there is a € M such that az = y. Since N is a direct summand
of M, we have M = N @ L. Let m: M — N be the canonical surjection. TODO U

Problem 255 (Section 3.10, Exercise 1). Determine the number of non-isomorphic abelian groups
of order 360.
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Proof. We have
360 = 3%.5- 2%,
These are given by
03X03X05X02XCQXC2,
C3X03XC5XC4XCQ,
03X03X05><Cg,
CgXC5><CQ><CQ><CQ,
CgXC5><C4><CQ,
Cg X C5 X Cg,
so in total 6. O

Problem 256 (Section 3.10, Exercise 4). Verify that the characteristic polynomial of

1 0 0 O
0O 1 0 0
-2 -2 0 1
-2 0 -1 -2

A=

is a product of linear factors in Q[A]. Determine the rational and Jordan canonical forms for A in

M4(Q).
Proof. We solve
det(AMl —A) = A =12 (MA+2)+1 =N =12\ +20+1) = (A= 12N+ 1)2

So it is a product of linear factors. We want to find the minimal polynomial then. We have
m(A) = (A—=1)(A+1)2. So the invariant factors are (A—1), (A—1)(A+1)2. The Rational Canonical
form is then

1 00 O
001 0
00 0 1}
01 1 -1
with Jordan canonical form

1 0 0 0

0 -1 1 0

0O 0 -1 0

0 0 0 1

0

Problem 257 (Section 3.10, Exercise 5). Prove that if F' is a field, the matrices A, B € M, (F)
are similar if and only if the matrices A1 — A, A1 — B are equivalent in M, (F[)\]).

Proof. Recall two matrices A and B are similar if there exists a P € GL,(F') so that

PAP™!' =B.

Recall that two matrices are equivalent if there exists P,Q € GL,,(F') so that
PAQ™!' =B.

(=) If A and B are similar, then we have
PAP~ ! =B,

SO
P(Al — AP~ = (PP )\l — PAP™' =)\l - B,
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hence they are equivalent.
(=) O

Problem 258 (Section 3.10, Exercise 6). Prove that any matrix A is similar to its transpose A’.

Proof. Look at the Jordan form of a matrix. We have that the Jordan blocks are similar, and so
letting J denote the Jordan form of A, we have

PAP ' =J~J = (P HlAP.
O

Problem 259 (Section 3.10, Exercise 10). Show that A? = A, then A is similar to the matrix
diag(1,...,1,0,...,0).

Proof. By the results of Cayley-Hamilton, we get that m()) | A2—X = A(A—1). Hence, the minimal
polynomial divides A2 — )\, it has distinct roots, and so the matrix is similar to diag(1,...,1,0,...,0)
per earlier exercises. 0

Problem 260 (Section 4.6, Exercise 1). Show that an abelian group has a composition series iff
it is finite.

Proof. We need to first prove another problem.

Problem 261. Let G be an abelian simple group. Prove that G is finite and |G| = p for some
prime p.

Proof. We have that every subgroup of G is a normal subgroup. Let g € G, g # e, then (g) # e
is a subgroup, and since G is simple we have that G = (g). Hence, G is cyclic. Now, we have
(g?) is another subgroup, and either it’s trivial or G. If g? = 1, then |G| = 2. Otherwise, we have
(¢%) = G, s0 g = g*, s0 g*»~! = e and |G| is finite. Let p be a prime dividing |G|, then we have
that ¢/®l/? = 2 is such that = has order p. Since (z) = G, we get that |G| = p. O

(= ) Assume that G is infinite and abelian, and assume that it has a composition series. We
have then
1=Gs 4G 1 2--- 4G =G
Then we have G;/G;_1 is an abelian simple group, and so by the exercise we get that it’s of order
prime p. Hence, we get that |G| is finite, a contradiction.
( <= Any finite group admits a composition series. O

Problem 262 (Section 4.6, Exercise 2). Let G be cyclic of order n, finite. Let G = G1 <G2<---<
Gsy1 = 1 be a composition series. Put |G;| = n;. Show that p; = n;/n;y1 is prime. Conversely,
show that if n = ny,ng,...,nsy1 = 1 is a sequence of integers such that n;/n;11 is a prime, then we
have a composition series for which |G;| = n;. Use this result to deduce the fundamental theorem
of arithmetic for Z.

Proof. Step 1: We have |G;/Giy1| = |Gi|/|Gi+1| = pi- We have that p; is a power of a prime, say
p", n > 1. We need to show that n = 1. Assume that n > 2, then we have that |G;/G;11| = p".
Then we can find a normal subgroup of order p¥, k < n, and so we have that G, is not maximal,
contradicting our assumption of this being a composition series. So, we must have that p; = p,
where p is a prime.

Step 2: Every cyclic subgroup of order n is isomorphic, and using the fact that we can always find
a composition series for a group G, we can use Jordan Holder to get that we will always have the
factors n; up to permuting them around. So we have the desired result.

Step 3: Examine the cyclic group G = Z,. We have that |Gs| = pi, where p; is a prime.
Continuing, Gs_1 = p1p2, where ps is a prime (using Step 1). Continuing down to G, we have that
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|G| = p1---ps. By Step 2, the choice of these primes is unique (any other composition series will
also result in the same primes), and so we have n = p; - - - ps. This tells us that every integer factors
(uniquely up to rearrangement) into a product of primes, giving us the fundamental theorem of
arithmetic. ]

Problem 263 (Section 4.6, Exercise 8). Prove that if H is a proper subgroup of a nilpotent group,
then the normalizer H C N(H).

Proof. We have H C N(H), so it suffices to show x € N(H) such that x ¢ H. Since H is proper,
G nilpotent, we have that there is a k such that GF*' ¢ H and H ¢ G*. Take x € G¥ — H. Then
we have, for all y € H, (x,y) € GF*' C H. But this implies that (z,y) € H. Since y € H, this tells
us that zyz~' € H, which implies z € N(H). O

Problem 264. Let G be a group and K a normal subgroup of G. Show that G has a composition
series if and only if both K and G/K have composition series.

Proof. (=) Assume G has a composition series. Then we have
G=G1 >G> > Ggy1 =1,
where these are maximal normal subgroups. Hence, K < G;. O

Problem 265. Show that
U c UJ_RJ_L

UcUttt,
Proof. First, notice that
ULRLL — {2 €V : B(x,y) =0 for all y € U},

By definition,
UtE={yeV : B(z,y)=0forally € U},

so we have that if z € U, then for all y € U, B(z,y) = 0, so € UL, Hence, U ¢ U+RLE,
The same goes for the other direction. O

Problem 266. If U; C Us for subspaces U; and Us, then
Ust c Uit
Us® c U,

Proof. Let x € Us¥ = {x € V : B(z,y) = 0forally € U}. In particular, if B(x,y) = 0 for
all y € Uy, then this means that B(z,y) = 0 for all y € U; C Us, so we have z € Uf-L. Hence,
Us-? c UfF. The argument is analogous for | R. U

Problem 267 (Section 6.1, Exercise 1). Show that if B is any bilinear form on V, then
(U1 + Ux) = Ut nUst,

and
(UL + U = U n Uy

for any two subspaces Uy, Us. Show also that if B is non-degenerate, then
(U NU)*H = Uit + Uyt

(U N ) = UHE + USE,
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Proof. By definition,
(U1 + U ={x eV : B(z,y)=0forall y € Uy + Us}.
Since these are subspaces, we see immediately by restricting to elements in Uy or Us that
Uy + Up)*F c UL,

(Uy + UQ)LL C UQLL,
SO
(UL + Up)tE c Ut nUstt.
For the other direction, we have
Ut nUit ={z eV : B(x,y) =0 for all y € U and for all y € Uy }.
So taking x € Uil NUS, y € Uy + Us, we get that y = 21 + 22, 21 € Uy, 20 € Us, so B(x,y) =
B(x,z1 + z2) = B(x,21) + B(x,29) = 040 = 0. Hence, B(z,y) = 0 for all y € Uy + Us, and so
x € (Uy + Uz)*r. We have equality.
The argument is the same for R instead of L.
Now assume that B is non-degenerate. Since B is non-degenerate, we have
ULLLR _ [JLRLL _ 7

for all subspaces U. Hence, using the prior result, we have
(ULL 4 USL)LR = ULLLR A UALLR — [y N Uy,
so taking | L of both sides gives
(Ut + Ut = (U n o) -
It’s a similar argument for 1 R. (|

Problem 268 (Section 6.1, Exercise 2). Let B be an arbitrary bilinear form on V' and assume U
is a subspace such that the restriction of B to U is non-degenerate. Show that V = U @ UL,

Proof. Let T : U — U* be the map defined by T(x) = z, = B(x,-). This is surjective, and so
extending this in the obvious way to all of V', we get that this is a surjective map onto U*. Notice
that
ker(T)={zx eV : T(x)=0}={zx eV : B(z,y)=0forallye U} = U+~
Hence, taking the natural injection U < V and using the fact that U = U* by T', we have
0-U—=V U =50

is an exact sequence, and so we get
V=UeaU"
g

Problem 269. Let F be a field of characteristic 2. Show that F? = {a? : a € F} C Fis a
subfield.

Proof. Let a?,b* € F2. We have
a>+b% = (a+0b)? e F2
Notice that for all a®> € F?, we have —a? € F?. Furthermore, 0> = 0, so 0 € F?. Next, take
a’,b?> € F?. We have
a? - b = (ab)? € F2.
For all a® € F?, we have (a=!)? € F2. Furthermore, 12 = 1, so 1 € F2. Inheriting the commutativity

from F', we have that this is a subfield. O
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Remark. We implicitly used the Freshman dream, which states that
(a+b)2=a?+b?
so long as the characteristic of the field is 2.

Problem 270. Let V be a vector space over C. Suppose v1,...,v, are linearly independent
vectors of V, and let w € AP(V). Prove that w is expressible as w = Y ]v; A ¢); for some

Uiy e e NPTV iFop A Aup Aw = 0.
Proof. (=) Assume w is expressible as | v; A ¢;. Then we have that

T
Ul/\/\vr/\wzvl/\/\vr/\<zvl/\wl)
1

.
=D v A AU Av A =0

by properties of the wedge product.
(<) Since w € AP(V), we have that it can be written as

n
w = Zai(ah N Nag,).
1

Furthermore,
(I ANERAN VAN TV

=i A AU A (Zala“ /\ozlp>

:Zaivl/\-~-/\vr/\a“ - Nag, =0.

We see this can happen if and only if v; is among the «;; for all i, and so we have the representation
desired. 0
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James Marshall Reber, ID: 500409166 Math 6111, Homework Misc 2: Data not
in Jacobson

We define a ring to be Noetherian if it satisfies the ascending chain condition; that is, if we
have a chain of ideals

Lchc---Ccl,C---,

then there exists an IV such that, for all n > N, we have
Iy =1,.

In other words, the chain eventually terminates/stabilizes.
For the most part, we consider Noetherian rings to be commutative rings. For non-commutative
rings, place the appropriate adjectives for left and right ideals for left and right Noetherian.

Problem 271. A ring R is Noetherian if and only if all of it’s ideals are finitely generated.

Proof. ( = ): Assume R is Noetherian; that is, it satisfies the ascending chain condition. Let
I C R be an ideal; we wish to show that it’s finitely generated. Take 0 # x; € I, and examine
(r1) € I. If I = (x1), we are done; otherwise, we have that I — (z) # @. Take x9 € I — (1)
and examine the ideal (z1,z9) C I. If I = (x1,x2), then we win; otherwise, there exists an
x3 € I — (x1,x2). Continue the process. Doing so gives us a chain of ideals:

(z1) C (z1,22) C - -+

Since we have the ascending chain condition, there exists an n such that (x1,...,2,) = (1,..., Tp, Tny1).
In other words, z,4+1 € (x1,...,2,), and so we have that I — (z1,...,x,) = &; that is, I is finitely
generated.

( <= ) Assume all ideals are finitely generated. Take a chain
LCIl,C---.

Notice that I = JI,, is an ideal, and hence finitely generated; that is, we have I = (z1,...,zy).
Notice that x; € |JI,, so there exists an N sufficiently large so that x; € Iy for all 4. In other
words, we have that I = I, and so we have that the chain stabilizes. ]

So we can equivalently say that a Noetherian ring is one where all the ideals are finitely generated.

Problem 272 (Hilbert Basis Theorem). Let R be a Noetherian ring. Then R[z] is Noetherian as
well.

Proof. By the equivalence above, it suffices to show that every ideal in R[z] is finitely generated.
Let J C R[z] be an ideal. Let m be the least degree of a non-zero polynomial in J. For n > m,
define

I, ={a € R : ais the leading coefficient of an nth degree polynomial in J} U {0}.

We first check that the I, are ideals. Let a,b € I,,. We need to check that a +b € I,, —a € I,
and 0 € I,. The latter is clear by construction. Notice that if a is the leading coefficient of an nth
degree polynomial in J, we have that

az" + ap_1x" 1+ fag € J,

and likewise

1

bx™ + b2+ -+ by € J

Adding these together gives

(a4 b)z"™ + (an_1 + by1)z" L+ -+ (ao + bo) € J,
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since J is an ideal, and so a + b € J. Likewise, multiplying the first polynomial by (—1) gives a
polynomial in J with leading coefficient —1, using the fact that J is an ideal again. Hence, we have
that I,, is a subgroup under addition.

Now, let r € R. We have that

r(az™ + ap_12" 4 -4 ag) = raz™ + - +rag € J,

so ra € I,, and likewise for ar. Hence, I,, is an ideal.
Notice as well that I, C I,,41. Taking a € I, we can multiply the polynomial by x to get a
polynomial in J again, and so a € I,11. Thus, we have a chain of ideals

[1CIQC"',

and these are in R. Since R is Noetherian, there exists an IV so that I,, = Iy for all n > N.

Notice as well that the I, are finitely generated. For each m < n < N, let A, be a finite set
of polynomials of degree n so that the leading coefficients generate I,,. Let A =|J A,. Then this,
too, is a finite set. We will show that A generates J.

Let p € J. If deg(p) = m, then there are ¢; € A, and a; € R so that the leading coefficient of p
coincides with the leading coefficient of > a;q;. Hence, p; — > a;q; has degree strictly smaller than
m, but this implies that it must be 0. So we have that p € (A).

Assume that for all m < j <n—1, we have that p € J with deg(p) = j is generated by elements
in A. We will then check it for k = n. Let p € J be such that deg(p) = n. If n < N, then we have
that there are polynomials of degree n, ¢; € (4) and a; € R, so that the leading coefficient of p is
the leading coefficient of > g;a;. Hence, p — > a;q; has degree less than n, and so by the induction
hypothesis we can write this polynomial as a sum of elements in (A).

If n > N, then we can find polynomials with degree n—1, ¢; in J and a; € R, so that the leading
coefficient of p agrees with > g;a;. Hence, p — )" a;q; has degree less than n, and so applying
the induction hypothesis to the ¢; and to p — x )" a;q;, we get that p € (A). Hence, J is finitely
generated. Since J was chosen arbitrarily, we get that R[z] is Noetherian. ]

Notice that by induction, if R is Noetherian, so is R[x1,...,zy].
We define a left module over R gM to be an abelian group (written additively) such that we
have
a(x +y) = ax + ay,
(a 4+ b)x = ax + bz,
a(bz) = (ab)z,
lz =z,
where a,b € R, x € M.

Analogously, we define a right module over R Mg to be an abelian group (written additively)
such that we have

(v +y)a = za+ya,
z(a+b) = za + xb,
(za)b = x(ab),
zl =x.

We define a balanced product of two modules M and rN to be an abelian group P coupled with
a function f: M x N — P such that

f(.’L‘ + lj?@/) = f(a:,y) + f(x,7y)a
f(l‘ay + y,) = f(x,y) + f(ﬂf,y,),
f(xCL?y) = f(:v,ay).
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We define a morphism between balanced products (P, f) and (@, g) to be a function n: P — @
which is a group homomorphism and which satisfies

9(x,y) = nf(z,y).
Throughout, M and N will be left and right modules, respectively. Hence, we will drop the
subscripts for notational simplicity.

We define the tensor product of M and N to be a balanced product (M ®r N, ®) (here, we will
drop the R subscript if it’s implicitly understood) such that if (P, f) is any balanced product of
M and N, then there exists a unique morphism ® : M ® N — P. In other words, it satisfies a
universal property.

Remark. This definition establishes that if a tensor product exists, it is unique. We see this in
the following problem.

Problem 273. Prove that if (M ® N);,®1) and (M ® N)2,®2) are the tensor product, then
they are isomorphic.

Proof. This follows by the universal property. We have the maps ®1 : M x N — (M ® N); and
®9: M x N — (M ® N)s. Hence, by the universal property of tensor products, there exists unique
maps f,g such that f: (M @ N); - (M ® N)g and g : (M ® N)3 — (M ® N);. Notice that
uniqueness forces fog = 1 and go f = 1, so these are invertible morphisms. Hence, they are
isomorphisms. O

Notice as well that, assuming the tensor product exists, we have a nice way of writing it in terms
of elements from M and N.

Problem 274. We have
M®N =span{z®y : v € M,y € N}.

Proof. Let
G=span{z®y : € M,y € N}.

Then this is a group, and more importantly is a subgroup of M ® N. Equipped with the map
®: M x N — G, given by ®(z,y) = r ® y, we see that G is in fact a balanced product. We check
then that G is the tensor product; this will give us that G is in fact M ® N. This holds, since G is
a subgroup, and so any morphism from M ® N into a balanced product descends to a morphism
from G into the balanced product. The essential uniqueness gives us an isomorphism between G
and M ® N, and since G is a subgroup we have a unique morphism into M ® N already, which is
given by the natural injection. Hence, they must be isomorphic. O

Problem 275. Construct a tensor product for M and N.

Proof. We start by taking the free abelian group generated by M x N, denoted by F. Elements in
this group are of the form
ni(z1,y1) + -+ (T, Yr),
n; € Z, x; € M, y; € N. Take G to be the subgroup generated by
(z+2"y) — (z,y) - (@, y),
(zy+y) = (z,9) — (z.9),
(za,y) — (2, ay).
Define
M ® N = F/G,
and write

r@y=(z,y)+G.
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Going through the motions, we see that we have a balanced product with ® : M x N - M @ N
given by (z,y) — x®y. We use the property of free groups to deduce that, given a balanced product
(P, f), there is a unique homomorphism g : F' — P given by (z,y) — f(z,y) and extended linearly.
Let K denote the kernel of this homomorphism. We see that G C K by the above properties, so
we get that the map 2 ® y — f(z,y) is a unique morphism, using the prior problem. O

Problem 276. Suppose we have module homomorphism f : M — M’, g : N — N’. Show that
f®g: M®N — M @ N'is well-defined.

Proof. We want to use the universal property (since this is all we have). We have ® : M x N —
M ® N. Notice as well that we can define © : M x N — M’ @ N’ via (z,y) — f(z) ® g(y). We
show that this gives us a balanced product.

(1) We have

O(z+a',y) = f(z+2")@g(y) = [f(z)+ f(2)]@g(y) = f(x)2g(y)+ f(z")@g(y) = O(x,y)+O(,y).
(2) We similarly have
O(z,y +¢') = O(z,y) + O(z,y).
(3) Finally, we have
O(ra,y) = f(za) @ g(y) = f(z)a @ g(y) = f(z) ® ag(y) = f(z) ® g(ay) = O(x, ay).

Hence, it’s a balanced product with respect to ©. We get by the universal property a unique
morphim
f®g:M®N — M @ N'.
Notice that this must factor through, so we have
(@,y) @y~ (fRg)(z@y),

(z,y) = f(z) ® g(y),
and these are equal, so we get

fl@)®g(y) = (f@g)(zvy).
O

Problem 277. Show that for f: M — M', f': M' - M", g: N - N', g : N — N”, we have
fifedg=(fogd)feg).
Proof. We have f'f : M — M", g'g: N — N”, so by prior there exists a unique map
(f'fedg)(@y) = (fz)e @9y

By the prior problems as well, we see that

(f'H@) @ g9y = (@) (f(z)@9y) = (f @ g)(f@g9)(x@y)).

Associativity applies, and so we get that this is

(f'ed)feg)(zey).
We defined it on the generators, and so we have that this holds for the entire map. That is,

f'fredg=('od)f®g).

Problem 278. Use the prior problems to deduce that

lyey =1y ® 1.
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Proof. We have
Iy @1ln)(z@y) =@y
and since this applies on generators we get

Iy @1y = 1yenN.

Problem 279. Show that, for f: M — M', g: N — N/,
(felv)Iu®g)=f®g= 1w @ g)(f®1N).

Proof. Using the prior problems, we have a big commutative diagram:

M&N 2M%% vro N

lf@lN s J/f@lN/

M e N M2 e N

Since the diagram commutes, we get the desired result. O
Problem 280. Prove the distributive laws for tensors; that is, if f; : M — M’, g; : N — N’, prove
(itf)®g=fivwgt 2®g,
folg+g)=I®g+f®g.

Proof. Apply these to z ® y;
(i + ) @9)(x®y) = (N + f2)(x) @g(y) = (f1(z) + fa(z)) @ g(y)

= fi(x) @ g(y) + f2(z) @ 9(y) = (i@ g)(z@y) + (fo @ g)(z @ Y).

Since these are equal on generators, they extend to the whole space. The same argument applies
for the second equality. O

Problem 281 (Jacobson 2, Section 3.7, Exercise 1). Prove that the tensor product is commutative
for commutative rings (the same argument also gives us for a ring and its opposite). That is, show
that

M®N=NQ®N.

Proof. Define a map
p:MxXN-—=-NQM
given by
e(z,y) =y @

We show this gives a balanced product;

ple+ay) =y (@+a)=yer+yes =p@,y) +e@y),

pla,y+y)=@y+y)er=yer+y @r=0p(y) +e(@y),

olza,y) =yQR@ra=yRar =yaR@x = ay @z = ¢(x,ay).

So we have an induced map
o:M®@N — N® M.

An analogous argument gives an induced map
8:NoM — M®N,

and by the uniqueness we get that the composition of these is the identity; in other words, we have
that these are isomorphisms. O
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Problem 282. Let M, be a (finite) collection of left R-modules, N a right R-module. Prove that

(@ Ma) o N =@M, @ N).
Proof. We proceed for the case of two left R modules, denoted M7, Ms. We wish to show that
(Mi® M) ® N=(M;®N)® (My® N).
Inducting will give our desired result. Let
o: (M1 ® M) x N— (M ®@N)® (My® N),
given by

p((z,y),2) = (@ 2,y ® 2).
This is a balanced product, since

pz+2y+y)2) =@+’ @2y+y 02 =@02y02)+ (2’ ®2y ©2)
= go((:z,y),z) +90((x/7y/)72)7
o((z,y),z2+2)=(x@2+y02+2) =20 2,y02)+ (2@, y®2)
= (P((x7y)7z) —i—gp((x,y),z’),

e((z,y)a, 2) = p((za,ya), z) = (za ® z,ya ® z) = (z ® az,y ® az) = p((z,y), az).
Hence, we have an induced map

p:(MieM)®@N— (Mi®@N)& (My® N).
We then want to construct an inverse map, which will then give us an isomorphism. Define
i1: My X N — (M; @& My) ® N,
defined by

il(xa y) = ((JZ‘, 0)7 y)
This is going to be a balanced product by the same argument above, and so we get an induced map

ih: My @ N — (My & M) ® N.
Similarly, we have an induced map

ig: My @ N — (My & Ma) ® N,
so we have a map

0:=i1@iy: (Mi@N)® (My®N) = (My @ M) @ N
given by R R
Oz ®2z,y®2) =i1(x® 2) +i2(y @ 2).
We want to show that g o =1d = 0 o p. Notice that
Oz®@z,yRz2)=(x,00® 2+ (0,y) ® 2= ((2,0) + (v,0)) ® z = (x,y) @ 2,
o((z,y) ®2) = (2 ® 2,y ® 2).

So on generators, the compositions will be the identity, and so by extension the compositions are
the identity. So we have an isomorphism. O

Remark. By induction, we get

m r m,r
i=1 j=1 ij=1

Problem 283. Prove that
R M = M.
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Proof. Define a map
p:RxM—M

via
v(a,m) = am.
We see that this is a balanced product;
pla+a’,m)=(a+a)m=am+dm=p(a,m)+yp(a,m),
ola,m+m') =a(m+m') =am + am’ = p(a,m) + ¢(a,m’),
o(ar,m) = (ar)m = a(rm) = ¢(a,rm).

So we get an induced linear homomorphism

p:ReM — M
given by

o(a®@m) = am.
This is surjective, since

p(l®@m) =m.
This is injective, since

pla@m)=am =20
implies either a or m is 0, which corresponds to the 0 element in R®Q M. Hence, it’s an isomorphism.
Remark. Alternatively, let 6 : M — R ® M be given by 6(m) = 1 ® m. Then taking a generator
a ® m, we have
O(pla®@m)) =0(am) =1 am =a®m,
and likewise
@(0(m)) = (1 ©m) = m.
So these are inverses, and hence we have that ¢ is an isomorphism.
O

Let R and S be two rings. We define a R — S bimodule, say N, to be a module which is a left R
module and a right S module, with the additional quality that

r(ms) = (rm)s
forallre R,me M,s€eS.
Problem 284. Let M S — R bimodule, N a R — T bimodule. Show that

M KRR N
is a S — T bimodule, where we define
sz=(s®1)z,
2t =2(1®1),

forze M®r N,se S, tel.

Proof. We want to first show that it is a left .S module. It’s clear that it’s an abelian group, so we
just need to show the following (here, we use the fact that M ®pr N is spanned by =z ® y):

(1) Notice that
s(z+2')=s (Z(:ﬁl ® i) + Z(ZL‘; ® yé)) =5 (Z ! ® y;')
=(s®1) <Z i ® y§’> = sal @y

:sti®yi+25x;-®yj =sz+ 52
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(2) We have
(r+9)2=(r+9) (Y wou)=(+90) (L aow) =) (r+suoy

= Zrm@yi—i-zgxi@yi =1rz+ sz.
(3) We have

lz=1 (Zfﬂz@yz) =(1®1) (Ziﬂz@yz) = Zivi@yi =z.
So this is a left S module. The same argument applies to give us that it is a right 7" module. [

Problem 285. Prove the Prime Avoidance lemma. That is, prove the following statement:
Let R be a commutative ring. Let I1,..., I, and J be ideals of R such that J C Uj I;. Then if at
most two of the I;s are not prime, then J is contained in one of the Ijs.

Remark. Note the contrapositive of the statement:
Let I1,...,1,, J beideals of R, J ¢ Uj I;. If all but two of the I; are prime, then there exists an
x € J such that « ¢ I; for all ¢; in other words, J ¢ I; for all j.

Proof. We prove the contrapositive. If n = 1, we are clearly done. If n = 2, then we have that
R ¢ I UI,. Choose z,y € J such that = ¢ I and y ¢ I». If x ¢ I, we are done, and if y ¢ I; we
are done. So consider the case that « ¢ I, © € Iy, y ¢ Iy, y € I;. Then we have that  +y ¢ I
nor Io. This follows since if z + y € I3, then we get that (z +y) —y = « € I1, a contradiction. If
x4y € Iy, we get that (v +y) —x =y € Iz, a contradiction.

Now, assume that n > 3. Assume it holds for n — 1. Renumber the ideals so that I, is a prime
ideal. For each j, choose a

zi€J— U Ij.

J#i
The inductive hypothesis tells us that the RHS is non-empty, so we can find such a z. If z; ¢ I;
for some 7 we win, so assume that z; € I; for all i. Let

Z=21"""2Zn-1+ 2n-
We see that z € J, but z ¢ I; for all j. If z € I; for j <n — 1, then we have
Z =21 2Zp-1 = 2n € Ij,
a contradiction. Likewise, if z € I,,, we have that
Z—2Zp =21 2n_1 € Ip.

Since I,, is a prime ideal, we must have that there is some z; for 1 < i < n — 1 such that z; € I,.
This, however, gives us a contradiction. Thus, z € J, z ¢ |J I;. 0
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