
James Marshall Reber, ID: 500409166 Math 6211, Homework 1

Problem 1. Two metric spaces ρ1, ρ2 on X are called equivalent if there is a C > 0 such that

(1) C−1ρ1(x, y) ≤ ρ2(x, y) ≤ Cρ1(x, y), ∀x, y ∈ X.
Show that equivalent metric spaces induce the same topology on X. That is, show that U ⊂ X is
open with respect to ρ1 if and only if it is open with respect to ρ2.

Proof. ( =⇒ ) Recall that an open set in a metric space is a subset U ⊂ X such that for all x ∈ U ,
there is an ε > 0 so that Bρ,ε(x) = {y ∈ X : ρ(x, y) < ε} ⊂ U . Assume that U is open with
respect to ρ1. Then for all x ∈ U , we have an ε > 0 so that Bρ1,ε(x) ⊂ U . Fix x ∈ U . We need to
then find an appropriate ε′ > 0 so that Bρ2,ε′(x) ⊂ U .
Taking ε′ = C−1ε, we see that for all y ∈ Bε′,ρ2(x) the equivalence (1) gives

C−1ρ1(x, y) ≤ ρ2(x, y) < ε′ = C−1ε↔ ρ1(x, y) < ε,

and so we see that y ∈ U , and so Bρ2,ε(x) ⊂ U . Since the choice of x was arbitrary, we get that
U is open with respect to ρ2. Hence, we have that if U is open with respect to ρ1, it is open with
respect to ρ2.
( ⇐= ) Assume that U is open with respect to ρ2. Then for all x ∈ U , we have that there is an
ε > 0 so that Bρ2,ε(x) ⊂ U . Fix x ∈ U . We need to then find an ε′ > 0 so that Bρ1,ε′(x) ⊂ U . If we
take ε′ = C−1ε, then we have for all y ∈ Bρ1,ε′(x) that

ρ1(x, y) < ε′ = C−1ε↔ Cρ1(x, y) < ε,

and so the equivalence gives us

ρ2(x, y) ≤ Cρ1(x, y) < ε,

and so y ∈ U . Hence, Bρ1,ε′(x) ⊂ U , and since the choice of x was arbitrary we have that U is open
with respect to ρ1. Hence, if U is open with respect to ρ2, it is open with respect to ρ1.
Thus, we have that these metrics induce the same topology on X. �

Problem 2. Let (X, ρ) be a metric space.

(1) Let α : [0,∞)→ [0,∞) be a continuous, non-decreasing function satisfying:
• α(s) = 0 if and only if s = 0, and
• α(s+ t) ≤ α(s) + α(t) for all s, t ≥ 0.

Define σ(x, y) := α(ρ(x, y)). Show that σ is a metric, and σ induces the same topology on X
as ρ.

(2) Define ρ1, ρ2 : X ×X → [0,∞) by

ρ1(x, y) :=

{
ρ(x, y) if ρ(x, y) ≤ 1

1 otherwise.

ρ2(x, y) :=
ρ(x, y)

1 + ρ(x, y)
.

Use (1) to show that ρ1 and ρ2 are metric spaces on X which induce the same topology on X
as ρ.

Proof. (1) We first establish that σ is a metric. Recall that σ is a metric if it satisfies four properties:
(a) σ(x, y) ≥ 0 for all x, y ∈ X.
(b) σ(x, y) = 0 if and only if x = y for all x, y ∈ X.
(c) σ(x, y) = σ(y, x) for all x, y ∈ X.
(d) σ(x, z) ≤ σ(x, y) + σ(y, z) for all x, y, z ∈ X.
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To see (a), we see that ρ is a metric and so satisfies (a), and furthermore α is non-negative, so

σ(x, y) = α(ρ(x, y)) ≥ 0

for all x, y ∈ X.
To see (b), we start with the implication. If σ(x, y) = 0, then we have α(ρ(x, y)) = 0. Since
α(x) = 0 if and only if x = 0, this implies that ρ(x, y) = 0, and since ρ is a metric we must
have that x = y. For the converse, if x = y, then ρ(x, y) = 0, α(0) = 0, and so σ(x, y) = 0.
To see (c), we have α is well-defined, so if x = y we get α(x) = α(y). Hence, using the fact
that ρ(x, y) = ρ(y, x) since ρ is a metric, we have

σ(x, y) = α(ρ(x, y)) = α(ρ(y, x)) = σ(y, x)

for all x, y ∈ X.
Finally, to see (d), take x, y, z ∈ X. We see that

σ(x, z) = α(ρ(x, z)).

Since ρ is a metric, we have

ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Notice that α is non-decreasing, so

α(ρ(x, z)) ≤ α(ρ(x, y) + ρ(y, z)).

Finally, α is subadditive, so

α(ρ(x, y) + ρ(y, z)) ≤ α(ρ(x, y)) + α(ρ(y, z)) = σ(x, y) + σ(y, z).

So we have for all x, y, z ∈ X,

σ(x, z) ≤ σ(x, y) + σ(y, z).

Thus, we see σ satisfies properties (a)-(d), and so it is a metric.
We now wish to establish that σ induces the same topology as ρ on X. That is, U is open

with respect to σ if and only if it is open with respect to ρ.
( =⇒ ) Assume that U is open with respect to σ. Then we have for all x ∈ U , there is an ε > 0
so that Bσ,ε(x) ⊂ U . That is, if y ∈ Bσ,ε(x), we have

σ(x, y) = α(ρ(x, y)) < ε.

Take λ ∈ (0, ε) such that α−1(λ) = {z ∈ [0,∞) : α(z) = λ} 6= ∅; such a λ exists, since α is
continuous and α(s) = 0 if and only if s = 0. Take ε′ ∈ α−1(λ). Then we have that if y is such
that

ρ(x, y) < ε′,

that is, y ∈ Bρ,ε′(x), then

σ(x, y) = α(ρ(x, y)) ≤ α(ε′) = λ < ε

by the monotonicity of α, and so y ∈ Bσ,ε(x) ⊂ U . Hence, Bρ,ε′(x) ⊂ U .
( ⇐= ) Assume U is open with respect to ρ. Taking x ∈ U , we have that there is an ε > 0 so
that Bρ,ε(x) ⊂ U . Take ε′ = α(ε) > 0. Then we have that if y is such that

σ(x, y) = α(ρ(x, y)) < ε′ = α(ε),

then we must have

ρ(x, y) < ε,

since α is non-decreasing. Hence, we get Bσ,ε′(x) ⊂ U . So these two metrics induce the same
topology on X.
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(2) Let

α1(x) :=

{
x if x ≤ 1,

1 otherwise.

α2(x) :=
x

1 + x

We need to establish that α1, α2 : [0,∞) → [0,∞) are well-defined functions which are
continuous, non-decreasing, subadditive, and which satisfy αi(x) = 0 if and only x = 0.
We note here that it’s clear that the image of α1 will be in [0,∞), since x ∈ [0, 1] maps to x and
x > 1 maps to 1. Likewise, we see that the image of α2 will be in [0,∞), since if x ∈ [0,∞),
then 1 + x ∈ [1,∞), and so x/(1 + x) ∈ [0,∞) as well. So this condition is satisfied.
Well-defined: (α1): If x = y ∈ [0, 1], then we have that α1(x) = x = y = α1(y). If
x = y ∈ (1,∞), we see that α1(x) = 1 = α1(y). So the function is well-defined.
(α2): If x = y ∈ [0,∞), then 1 + x = 1 + y as well. So α2(x) = x/(1 + x) = y/(1 + y) = α2(y),
and the function is well-defined.
Continuity: (α1): For all ε > 0, if we take δ = ε, we have that |x − y| < δ implies |α1(x) −
α1(y)| < ε. To see this, let x < y, x, y ∈ [0,∞) throughout. We break it up into cases based
on where x and y are. If x, y ∈ [0, 1], then we have

|α1(x)− α1(y)| = |x− y| < ε,

and so we are done. If x ∈ [0, 1], y ∈ (1,∞), we have α1(y) < y, and so

|α1(y)− α1(x)| = α1(y)− α1(x) < y − x = |x− y| < ε,

and so we are done. If x, y ∈ (1,∞), then we have

|α1(y)− α1(x)| = 0 < ε.

Since these are all the possibilities, we see that α1(x) is continuous.
(α2): Recall from undergraduate analysis that if f, g are continuous, g 6= 0 on the domain, then
f/g is also continuous. Notice that the function x is clearly continuous, adding 1 to it is still
continuous, and since 1 + x 6= 0 for all x ∈ [0,∞), we have that α2 is continuous.
Non-decreasing: (α1): Again, this is clear. If x, y ∈ [0,∞), x < y, then we have α1(x) ≤
α1(y). To see this, break it up into cases again; if x, y ∈ [0, 1], then α1(x) = x ≤ α1(y) = y;
if x ∈ [0, 1], y ∈ (1,∞), we have α1(x) = x ≤ α1(y) = 1 by definition; if x, y ∈ (1,∞), then
α1(x) = α1(y).
(α2): If x < y, x, y ∈ [0,∞), we have

y

1 + y
− x

1 + x
=

y − x
(x+ 1)(y + 1)

.

Since y > x, we have y − x > 0, and since x, y > 0, 1 + x, 1 + y > 0. So, we get that

y

1 + y
− x

1 + x
> 0↔ α2(y) > α2(x),

so this is non-decreasing.
Subadditive: (α1): Take x, y ∈ [0,∞), x ≤ y. We can break this up into cases by x, y, and
x+ y ∈ [0,∞).
If x, y ∈ [0, 1], x+ y ∈ [0, 1], then we have

α1(x+ y) = x+ y = α1(x) + α2(y).

If x, y ∈ [0, 1], x+ y ∈ (1,∞), then we have

α1(x+ y) = 1 ≤ x+ y = α1(x) + α1(y).
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If x ∈ [0, 1], y, x+ y ∈ (1,∞), we have

α1(x+ y) = 1 ≤ x+ 1 = α1(x) + α1(y).

If x, y, x+ y ∈ (1,∞), we have

α1(x+ y) = 1 ≤ 2 = α1(x) + α1(y).

Since these are all the possibilities, we have that α1 is subadditive.
(α2): Notice that, for x, y ∈ [0,∞), we have

α2(x+ y) =
x+ y

1 + x+ y
,

α2(x) + α2(y) =
x

1 + x
+

y

1 + y
=

2xy + x+ y

xy + x+ y + 1
.

Subtracting, we have

α2(x) + α2(y)− α2(x+ y) =
xy(x+ y + 2)

(x+ 1)(y + 1)(x+ y + 1)
.

Since x, y ≥ 0, we get that this is greater than or equal to 0, and so

α2(x) + α2(y) ≥ α2(x+ y).

αi(x) = 0 if and only if x = 0: (α1): This follows by definition.
(α2): Algebra gives us that

x

1 + x
= 0↔ x = 0.

Since all the conditions from (1) are satisfied, we have that ρ1 := α1 ◦ρ, ρ2 := α2 ◦ρ are metrics
which induce the same topology on X as ρ.

�

Problem 3. A collection of subsets {Fi}i∈I of X has the finite intersection property (abbreviated
FIP) if, for any finite J ⊂ I, we have ⋂

j∈J
Fj 6= ∅.

Prove that for a metric (or topological) space, the following are equivalent:

(1) Every open cover of X has a finite subcover.
(2) For every collection of closed subsets {Fi}i∈I with the finite intersection property,⋂

i∈I
Fi 6= ∅.

Proof. (1) =⇒ (2): We proceed by contradiction. Assume that every open cover of X has a finite
subcover, {Fi}i∈I is a collection of closed subsets satisfying the finite intersection property. Assume
that ⋂

i∈I
Fi = ∅.

DeMorgan’s then gives (⋂
i∈I

Fi

)C
=
⋃
i∈I

FCi = X.
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Since the Fi are closed, we have that the Ui = FCi are open. Since X is compact, we can take a
finite subcover to get ⋃

i∈J
Ui = X,

but applying DeMorgan’s again gives ⋂
i∈J

Fi = ∅,

contradicting the FIP assumption. Hence, we must have that⋂
i∈I

Fi 6= ∅.

(2) =⇒ (1): We proceed by contradiction again. Take an open cover of X;⋃
i∈I

Ui = X.

DeMorgan’s gives us ⋂
i∈I

Fi = ∅,

where Fi = UCi are closed subsets. If X does not admit a a finite refinement of the cover {Ui}i∈I ,
then we have that there are no J ⊂ I finite so that⋂

i∈J
Fi = ∅;

but this tells us that {Fi}i∈I has the FIP, and so by assumption we have⋂
i∈I

Fi 6= ∅,

a contradiction again. Hence, we must have that there is some J ⊂ I finite so that⋃
i∈J

Ui = X.

That is, X is compact. �

Problem 4. Let X be a set. A π-system on X is a collection of subsets Π ⊂ P (X) which is closed
under finite intersections. A λ-system on X is a collection of subsets Λ ⊂ P (X) such that

• X ∈ Λ,
• Λ is closed under taking complements, and
• for every sequence of disjoint subsets {Ei} in Λ,

⋃
Ei ∈ Λ.

(1) Show that M is a σ-algebra if and only if M is both a π-system and a λ-system.
(2) Suppose Λ is a λ-system. Show that for every set E ∈ Λ, the set

Λ(E) = {F ⊂ X : F ∩ E ∈ Λ}

is also a λ-system.

Proof. (1) ( =⇒ ) Assume that M is a σ-algebra. Then recall that this means that
• X ∈M,
• M is closed under complements,
• M is closed under countable unions.
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We first want to establish that M is a π-system. If M is closed under complements and
countable unions, then DeMorgans gives us that it is closed under countable intersections, and
more specifically under finite intersections. Thus, M is a π-system.
We then want to establish that M is a λ-system. This just follows from the following:
• X ∈M, since M is a σ-algebra,
• M is closed under complements, since M is a σ-algebra,
• M is closed under countable unions, sinceM is a σ-algebra, and so more specifically closed

under countable unions of disjoint subsets.
Thus, M is a λ-system.
(⇐= ) If M is a λ-system and a π-system, then we get for free that X ∈ M and M is closed
under complements. It remains to check that M is closed under countable unions. That is, if
we let {Ei}∞i=1 be a collection of sets in M, then we want to show that

∞⋃
i=1

Ei ∈M.

Construct a sequence of disjoint sets as follows: let H1 = E1, and

Hi = Ei ∩ ECi−1 ∩ · · · ∩ EC1 .

Then it’s clear that, for all i 6= j, we have

Hi ∩Hj = ∅.

Furthermore, we have that Hi ∈ M for all i; this is because it is closed under complements
(from being a λ-system) and finite intersections (from being a π-system). So we have

∞⋃
i=1

Hi ∈M,

and by construction we have
∞⋃
i=1

Ei =
∞⋃
i=1

Hi,

so
∞⋃
i=1

Ei ∈M.

Hence, M is closed under countable unions, and so a σ-algebra.
(2) Let E ∈ Λ be arbitrary. First, notice that F ∩X = F ∈ Λ, so X ∈ Λ(E).

Next, if F ∈ Λ(E), we want to show that FC ∈ Λ(E); that is, FC ∩E ∈ Λ. Using DeMorgan’s
laws, and noticing that E ∩ EC = ∅, we can write this as

E ∩ FC = (E ∩ FC) ∪ (E ∩ EC) = E ∩ (F ∩ E)C = (EC ∪ (F ∩ E))C

Now, F ∩ E,E ∈ Λ by assumption, EC ∈ Λ since it is closed under complements, and notice
that EC ∩ (F ∩ E) = ∅; that is, they are disjoint. Thus, we have that EC ∪ (F ∩ E) ∈ Λ.
Again, using the fact that Λ is closed under complements, we have (EC ∪ (F ∩ E))C ∈ Λ, but
this translates to FC ∩ E ∈ Λ. Hence, Λ(E) is closed under complements.
Finally, we need to show that it is closed under disjoint unions. Let {Fi} be a collection of
disjoint sets in Λ(E). Then we have, for all i, Fi ∩ E ∈ Λ. Furthermore, since Fi ∩ Fj = ∅ for
i 6= j, we have (Fi ∩ E) ∩ (Fj ∩ E) = ∅. So,⋃

(Fi ∩ E) =
(⋃

Fi

)
∩ E ∈ Λ,
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since Λ is closed under disjoint unions, and so⋃
Fi ∈ Λ(E).

Hence, Λ(E) is closed under disjoint unions. Since it satisfies the three properties, we get that
Λ(E) is a λ-system.

�

Problem 5. Let Π be a π-system, let Λ be the smallest λ-system containing Π, and let M be the
smallest σ-algebra containing Π.

(1) Show that Λ ⊂M.
(2) Show that for every E ∈ Π, Π ⊂ Λ(E), where Λ(E) was defined in the problem above. Deduce

that Λ ⊂ Λ(E) for every E ∈ Π.
(3) Show that Π ⊂ Λ(F ) for every F ∈ Λ. Deduce that Λ ⊂ Λ(F ) for every F ∈ Λ.
(4) Deduce that Λ is a σ-algebra, and thus M = Λ.

Proof. (1) From Problem 4 (1), we have that M is a π-system and a λ-system. Since Λ is the
smallest λ-system containing Π by assumption, we get that Λ ⊂M.

(2) Fix E ∈ Π and take F ∈ Π. Since Π is closed under finite intersection, we get that F ∩ E ∈
Π ⊂ Λ. But since F ∩ E ∈ Λ, we must have F ∈ Λ(E). Since F was arbitrarily chosen in Π,
we get that Π ⊂ Λ(E) for all E ∈ Π. From Problem 4 (2), we know that Λ(E) is a λ-system,
and since Λ is the smallest λ-system containing Π, we must have Λ ⊂ Λ(E) for all E ∈ Π.

(3) Fix F ∈ Λ and take E ∈ Π. Since Λ ⊂ Λ(E) from (2), we have that for all G ∈ Λ, E ∩G ∈ Λ.
Hence, in particular, we have E ∩ F ∈ Λ, but this implies that E ∈ Λ(F ). Thus, Π ⊂ Λ(F ).
Since Λ(F ) is a λ-system by Problem 4 (2), this implies that Λ ⊂ Λ(F ) by minimality.

(4) Notice that for all F ∈ Λ, we have Λ ⊂ Λ(F ). In other words, for all E,F ∈ Λ, we get
E ∩ F ∈ Λ. We can then extend this to finite intersections, and so we have that Λ is closed
under finite intersections; in other words, Λ is a π-system. Since Λ is both a π-system and a
λ-system, Problem 4 (1) tells us that Λ is a σ-algebra. Since M is the smallest σ-algebra
containing Π, we get M⊂ Λ. Coupling this with (1) from this problem, we have that M = Λ.

�
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James Marshall Reber, ID: 500409166 Math 6211, Homework 2

Remark. Thomas O’Hare was a collaborator for this.

Problem 6. Let Π be a π-system, and let M be the smallest σ-algebra containing Π. Suppose µ
and ν are two measures on M whose restriction on Π agree.

(1) Show that if µ and ν are finite and µ(X) = ν(X), then µ = ν.
(2) Suppose that X =

⊔∞
j=1Xj with (Xj) ⊂ Π and µ(Xj) = ν(Xj) <∞ for all J ∈ N. Show that

µ = ν.

Proof. (1) We proceed via the hint. Consider Λ := {E ∈ M : ν(E) = µ(E)}. By assumption,
Π ⊂ Λ, and we’d like to show that Λ is a λ-system. If we do so, we get that M ⊂ Λ by the
prior homework, which implies that µ and ν are equal on all of M.

Recall that a λ-system needs to satisfy three things:
• X ∈ Λ;
• Λ is closed under taking complements;
• For every sequence of disjoint sets {Ei} in Λ,

⋃
Ei ∈ Λ.

First, we want to show that it’s closed under disjoint unions. Let {Ei} be a sequence of
disjoint sets in Λ. Then we have

µ
(⊔

Ei

)
=
∑

µ(Ei) =
∑

ν (Ei) = ν
(⊔

Ei

)
since µ and ν are measures, and we have countable additivity. So

⊔
Ei ∈ Λ.

Next, it follows that X ∈ Λ since µ(X) = ν(X) <∞.
Finally, we want to show that it’s closed under complements. Let A ∈ Λ. Since AtAC = X

and µ(X) = ν(X) <∞, we have that

µ(A) + µ(AC) = µ(A tAC) = µ(X) = ν(X) = ν(A tAC) = ν(A) + ν(AC),

and since µ(A) = ν(A) < ∞ we can subtract them from both sides to get µ(AC) = ν(AC).
Hence, AC ∈ Λ.

Remark. Prior to Dr. Penneys fixing the problem, I had done this with an increasing cover.
To remediate this, let En = tni=1Xi. Then we have an increasing cover En ↗ X and the
argument below applies.

(2) We do the same trick, letting Λ = {E ∈ M : µ(E) = ν(E)}. Again, we get that it’s closed
under disjoint unions by the same argument from prior.

Next, to see that X ∈ Λ, we get that

µ(X) = lim
n→∞

µ(Ei) = lim
n→∞

ν(Ei) = ν(X),

using the continuity from below property.
Finally, we want to show that if A ∈ Λ, then AC ∈ Λ. Notice that we have

µ

(
(A tAC) ∩

N⋃
i=1

Ei

)
= µ

(
N⋃
i=1

(A ∩ Ei) t
N⋃
i=1

(AC ∩ Ei)

)
= µ

(
N⋃
i=1

(A ∩ Ei)

)
+µ

(
N⋃
i=1

(AC ∩ Ei)

)

= ν

(
(A tAC) ∩

N⋃
i=1

Ei

)
= ν

(
N⋃
i=1

(A ∩ Ei) t
N⋃
i=1

(AC ∩ Ei)

)
= ν

(
N⋃
i=1

(A ∩ Ei)

)
+ν

(
N⋃
i=1

(AC ∩ Ei)

)
.

By assumption,

µ

(
N⋃
i=1

(A ∩ Ei)

)
= ν

(
N⋃
i=1

(A ∩ Ei)

)
<∞,
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so we can subtract it from both sides to get

µ

(
N⋃
i=1

(AC ∩ Ei)

)
= ν

(
N⋃
i=1

(AC ∩ Ei)

)
.

Since this applies for all N , we can use continuity from below to get that

µ

( ∞⋃
i=1

(AC ∩ Ei)

)
= lim

n→∞
µ(AC ∩En) = µ(AC) = ν(AC) = lim

n→∞
ν(AC ∩En) = ν

( ∞⋃
i=1

(AC ∩ Ei)

)
.

Hence, we get AC ∈ Λ. So Λ is indeed a λ-system.
�

Problem 7 (Folland 1.14, Folland 1.15). Given a measure µ on (X,M), define ν on M by

ν(E) := sup{µ(F ) : F ⊂ E and µ(F ) <∞}.
(1) Show that ν is a semifinite measure. We call it the semifinite part of µ.
(2) Suppose E ∈ M with ν(E) = ∞. Show that for any n > 0, there is an F ⊂ E such that

n < ν(F ) <∞.
(3) Show that if µ is semifinite, then µ = ν.
(4) Show there is a measure ρ on M which assumes only the values 0 and ∞ such that µ = ν + ρ.

Proof. (1) We need to show the ν is a measure. That is, it satisfies two properties:
(i) ν(∅) = 0;

(ii) if {Ei} ⊆ M disjoint, then

ν
(⋃

Ei

)
=
∑

ν(Ei).

For (i), we see clearly ν(∅) = 0.
For (ii), let {Ei} be a sequence of disjoint sets in M. We see

ν
(⊔

Ei

)
= sup

{
µ(F ) : F ⊂

⊔
Ei and µ(F ) <∞

}
.

Since these are disjoint, we see that the F ⊂
⊔
Ei can be seen as a disjoint union of Fi ⊂ Ei

by setting Fi = (F ∩Ei); that is, F =
⊔
Fi ⊂

⊔
Ei. Using the fact that µ is a measure and the

Fi are disjoint, we can write this as

ν
(⊔

Ei

)
= sup

{∑
µ(Fi) : Fi ⊂ Ei and µ(Fi) <∞ for all i

}
.

Notice that this is equal to∑
sup{µ(Fi) : Fi ⊂ Ei and µ(Fi) <∞} =

∑
ν(Ei).

So this is indeed a measure.
We need to now show that ν is semifinite. Recall that ν is a semifinite measure if, for all

E ∈M with ν(E) =∞, there exists an F ∈M such that F ⊂ E and 0 < ν(F ) <∞.
Take E ∈M where ν(E) =∞. Then this is equivalent to saying that

sup{µ(F ) : F ⊂ E and µ(F ) <∞} =∞.
But this then implies that there is an F ⊂ E so that 0 < µ(F ) <∞ (the empty set will always
be in this set, and if the supremum is infinity we must have something which is not 0 since the
supremum is the least upper bound). We see that

ν(F ) = sup{µ(G) : G ⊂ F and µ(G) <∞},
and the monotonicity of µ tells us that any such µ(G) ≤ µ(F ) < ∞. It follows that the
supremum will be µ(F ) and therefore 0 < ν(F ) <∞. Thus, ν is a semifinite measure.
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(2) Assume otherwise. That is, let n = sup{F : F ⊂ E, F ∈M, 0 < ν(F ) <∞}. Then we have
that n < ∞ by assumption. Since this is a supremum property, for each k ≥ 1 an integer we
have that there are corresponding sets Fk so that

n− 1/k < ν(Fk) ≤ n.

Let Hm =
⋃m
k=1 Fk. This is a measurable set, since M is a σ-algebra. Notice that Fk ⊂ Hm

for all 1 ≤ k ≤ m, and so we get that for all such k,

n− 1/k < ν(Hm) ≤ n.

Taking a union over all m, calling this set H, we get an increasing sequence, and so we can use
continuity from below to get that

n− 1/k < ν(H) ≤ n

for all k, and so therefore

ν(H) = n

and H ⊂ E. Now, since these are measurable sets, we can use the measure property of ν to
write

ν(E) = ν(E ∩H) + ν(E ∩HC).

Since ν(E) =∞, H ⊂ E, we get that

∞ = n+ ν(E ∩HC),

or in other words,

ν(E −H) =∞.
Now, ν is a semifinite measure, so we have that there is a measurable set, say G, so that
G ⊂ E −H and 0 < ν(G) <∞. Since G ⊂ E −H, we have that it is disjoint from H, and so
we have

n < ν(H ∪G) = ν(H) + ν(G) <∞.
Notice as well that H ⊂ E, G ⊂ E, so we have that H ∪ G ⊂ E. But this implies that
H ∪G ⊂ {F : F ⊂ E, F ∈M, 0 < ν(F ) <∞}, and so therefore we have

sup{F : F ⊂ E, F ∈M, 0 < ν(F ) <∞} ≥ ν(H ∪G) > n,

which is a contradiction. Thus, we cannot have such an n.
(3) We want to show that, for all E ∈ M, we have µ(E) = ν(E). If µ(E) < ∞, then the proof in

(1) establishes that µ(E) = ν(E). If µ(E) =∞, then the proof in (2) applies (since we didn’t
use any property of µ in this proof), and so we have for all n > 0, there is an F ⊂ E so that
n < µ(F ) <∞. Hence, we get that

ν(E) = sup{µ(F ) : F ⊂ E and µ(F ) <∞} =∞,

and so µ(E) = ν(E). We conclude that µ = ν.
(4) Throughout, let σ-finite denote µ-σ-finite. Let ρ :M→ [0,∞] be defined by

ρ(E) =

{
0 if E is σ-finite

∞ if E is not σ-finite.

It’s clear to see that ρ(∅) = 0. Next, we check countable additivity. We show this by breaking
it up into cases
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Case 1: Assume
⊔
En is σ-finite. This tells us that there is a disjoint collection {Ki} such that

µ(Ki) <∞ for all i and
⊔
Ki =

⊔
En. Taking Ei arbitrary, we have that Ei ⊂

⊔
Ki,

and so Ei =
⊔

(Kj ∩ Ei), µ(Kj ∩ Ei) ≤ µ(Kj) < ∞, and thus we have that Ei is
σ-finite. So, the following formula applies:

0 = ρ
(⊔

En

)
=
∑

ρ(En) = 0.

Case 2: Assume
⊔
En is not σ finite. Then there is at least one n such that En is not σ finite;

if otherwise, we have that En =
⊔
Ki,n for all n, µ(Ki,n) < ∞ for every i, and so⊔

En =
⊔⊔

Kn,i =
⊔
Kj , µ(Kj) < ∞, giving us a contradiction. Since there is at

least one, we get the following equality:

∞ = ρ
(⊔

En

)
=
∑

ρ(En) =∞.

So, we have that ρ is indeed a measure. Next, we check that for all E ∈M, µ(E) = ρ(E)+ν(E).
We do this by breaking it up into cases.
Case 1: Assume µ(E) <∞. Then this clearly follows, since ν(E) = µ(E), E is σ-finite and so

ρ(E) = 0.
Case 2: Assume µ(E) =∞. Furthermore, assume E is σ-finite. Then we have that E =

⊔
Fi,

µ(Fi) < ∞. Define Gn =
⋃n
i=1 Fi. Then we have ν(Gn) ≤ ν(E) for all n, and so

therefore ν(E) =∞, ρ(E) = 0.
Case 3: Assume µ(E) = ∞. Furthermore, assume E is not σ-finite. Then we have that

ρ(E) =∞, and we’re done.
Thus, we have that µ = ρ+ ν.

�

Problem 8. Suppose A is an algebra on X, and letM be the σ-algebra generated by A. Let µ0 be
a σ-finite premeasure on A, µ∗ the induced outer measure, andM∗ the σ-algebra of µ∗-measurable
sets. Show that the following are equivalent:

(1) E ∈M∗;
(2) E = F −N , where F ∈M and µ∗(N) = 0;
(3) E = F ∪N , where F ∈M and µ∗(N) = 0.

Deduce that µ is a σ-finite measure on M, then µ∗|M∗ on M∗ is the completion of µ on M.

Proof. Recall that µ0 induces an outer measure via

µ∗(E) = inf

{ ∞∑
1

µ0(Aj) : Aj ∈ A, E ⊂
∞⋃
1

Aj

}
.

We proceed as how Folland does it. We start with a claim.

Claim. For any E ⊂ X and ε > 0, there exists A ∈ Aσ with E ⊂ A and µ∗(A) ≤ µ∗(E) + ε.

Proof. Fix E ⊂ X, ε > 0. Since µ∗(E) is an infimum, we have that there must be a cover A =
⋃
j Aj ,

where A ∈ Aσ since it is a countable union, of E so that

µ∗(A) = µ∗

⋃
j

Aj

 ≤∑
j

µ∗(Aj) =
∑
j

µ0(Aj) ≤ µ∗(E) + ε.

Notice here we used the fact that, on A ∈ A, we have µ∗(A) = µ0(A). Thus, since the choice of
E and ε > 0 were arbitrary, we get that for any E ⊂ X and ε > 0, there is an A ∈ Aσ so that
µ∗(A) ≤ µ∗(E) + ε. �
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(1) =⇒ (2): Since µ0 is σ-finite, we have that there is a cover⋃
i

Ki = X

such that µ0(Ki) = µ∗(Ki) < ∞ for all i. Let E ∈ M∗ and write En = E ∩ Kn. Then we have
µ∗(En) ≤ µ∗(Kn) <∞ by monotonicity. Fix an ε > 0. By the claim above, we can find {Fn} ⊂ M,
E ⊂ Fn for every n, so that

µ∗(Fn) ≤ µ∗(En) +
ε

2n
.

Since µ∗(En), µ∗(Fn) < ∞, and En, Fn are measurable, we can subtract µ∗(En) from both sides
and rewrite it as

µ∗(Fn)− µ∗(En) = µ∗(Fn − En) ≤ ε

2n
.

Now, letting F =
⋃
Fn, we have

F − E ⊂
⋃

(Fn − En),

and so using subadditivity of measures we get

µ∗(F − E) ≤
∑

µ∗(Fn − En) ≤ ε.

Taking ε = 1/k, let Fk be the set such that E ⊂ Fk and

µ∗(Fk − E) ≤ 1

k
.

If we let F =
⋂
k Fk, we see that we have an F such that for all ε > 0,

µ∗(F − E) < ε.

In other words, µ∗(F − E) = 0. Notice that we can write E now as

E = F − (F − E),

where µ∗(F − E) = 0 and F ∈M, as desired.
(2) =⇒ (1): We have E = F − N , F ∈ M and µ∗(N) = 0. We want to show that for all

G ⊂ X, we have

µ∗(G) = µ∗(G ∩ E) + µ∗(G ∩ EC) = µ∗(G ∩ F ∩NC) + µ∗(G ∩ (FC ∪N)).

Notice ahead of time that
µ∗(G) ≤ µ∗(G ∩ E) + µ∗(G ∩ EC)

by subadditivity, so it suffices to show that

µ∗(G ∩ E) + µ∗(G ∩ EC) ≤ µ∗(G).

Rewrite this as

µ∗(G ∩ F ∩NC) + µ∗(G ∩ (FC ∪N)) = µ∗(G ∩ F ∩NC) + µ∗((G ∩ FC) ∪ (G ∩N)).

Subadditivity then gives

µ∗(G ∩ F ∩NC) + µ∗((G ∩ FC) ∪ (G ∩N)) ≤ µ∗(G ∩ F ∩NC) + µ∗(G ∩ FC) + µ∗(G ∩N).

Monotonicity gives
µ∗(G ∩N) ≤ µ∗(N) = 0,

so we get

µ∗(G ∩ E) + µ∗(G ∩ EC) ≤ µ∗(G ∩ F ∩NC) + µ∗(G ∩ FC).

We use monotonicity again, noticing that G ∩ F ∩NC ⊂ G ∩ F , so

µ∗(G ∩ F ∩NC) ≤ µ∗(G ∩ F ).
12



Hence, we have

µ∗(G ∩ E) + µ∗(G ∩ EC) ≤ µ∗(G ∩ F ) + µ∗(G ∩ FC) = µ∗(G),

since F ∈M and µ∗ is a measure on M by Theorem 1.14. So we have that E ∈M∗.
So we have established (1) ⇐⇒ (2).
(1) =⇒ (3) : Since E ∈ M∗, M∗ is a σ-algebra, we have EC ∈ M∗. By (1) ⇐⇒ (2), we can

write EC = F −N = F ∩NC , F ∈ M. Let GC = F , then GC ∈ M since it is a σ-algebra and we
have EC = GC ∩ NC . Taking the complement of both sides gives us E = G ∪ N , where G ∈ M
and µ∗(N) = 0.

(3) =⇒ (1) We have E = F ∪ N , F ∈ M and µ∗(N) = 0. We want to show that E ∈ M∗.
That is, for all G ⊂ X, we have

µ∗(G) = µ∗(G ∩ E) + µ∗(G ∩ EC).

Subadditivity gives us

µ∗(G) ≤ µ∗(G ∩ E) + µ∗(G ∩ EC),

so it suffices to show the other direction. Notice that

µ∗(G ∩ E) + µ∗(G ∩ EC) = µ∗(G ∩ (F ∪N)) + µ∗(G ∩ (FC ∩NC)).

Letting H = FC , we have that H ∈M and

µ∗(G ∩ E) + µ∗(G ∩ EC) = µ∗(G ∩ (HC ∪N)) + µ∗(G ∩ (H ∩NC)),

and we see that this is the same scenario as the argument in (2) =⇒ (1). Hence, we have

µ∗(G ∩ E) + µ∗(G ∩ EC) ≤ µ∗(G),

and so E ∈ M∗. Thus, we have (1) ⇐⇒ (2), and (1) ⇐⇒ (3), so we can deduce (2) ⇐⇒ (3).
Thus, (1), (2), and (3) are equivalent.

From the above equivalence, we have that M∗ = {F ∪ N : F ∈ M and µ∗(N) = 0}. Hence,
M∗ is the completion of M, and furthermore µ∗ is the completion of µ. �

Problem 9. Let µ∗ be an outer measure on P (X), M∗ the σ-algebra of µ∗-measurable sets,
and µ := µ∗|M∗ . Let µ+ be the outer measure on P (X) induced by the (pre)measure µ on the
(σ-)algebra M∗.
(1) Show that µ∗(E) ≤ µ+(E) for all E ⊂ X, with equality if and only if there is an F ∈M∗ with

E ⊂ F and µ∗(E) = µ∗(F ).
(2) Show that if µ∗ was induced from a premeasure µ0 on an algebra A, then µ∗ = µ+.
(3) Construct an outer measure µ∗ on the two point set X = {0, 1} such that µ∗ 6= µ+.

Proof. (1) We have

µ+(E) = inf

{ ∞∑
1

µ(Aj) : Aj ∈M∗, E ⊂
∞⋃
1

Aj

}
.

We have µ∗(E) ≤ µ+(E) since for all such covers of E we have

µ∗(E) ≤ µ∗
(⋃

i

Ai

)
≤
∑
i

µ∗(Ai) =
∑
i

µ(Ai),

by monotonicity and subadditivity, and the fact that the Ai are µ∗ measurable. Thus, µ∗(E)
is a lower bound of

∑
µ(Aj) where the Aj ∈ M∗ and they form a cover of E. Since µ+(E) is

the infimum, we have it is the greatest lower bound over all such covers. Thus µ∗(E) ≤ µ+(E).
13



Assume that µ∗(E) = µ+(E). In the case that µ∗(E) =∞, take F = X. Otherwise, we have
µ∗(E) <∞. So, for all ε > 0, we can find a cover {Fi} ⊂ M∗ so that

µ+(E) ≤
∑

µ(Fi) < µ∗(E) + ε.

Noticing that µ(Fi) = µ∗(Fi) for Fi ∈ M∗, µ+(E) = µ∗(E), and µ∗(E) ≤ µ∗ (
⋃
i Fi) ≤∑

µ∗(Fi), we can write this as

µ∗(E) ≤ µ∗
(⋃

Fi

)
≤
∑

µ∗(Fi) < µ∗(E) + ε.

Taking ε = 1/k and the corresponding
⋃
i Fi as

⋃
i Fi,k, we have that

µ∗(E) ≤ µ∗
(⋃

i

Fi,k

)
< µ∗(E) + 1/k.

Let F =
⋂
k

⋃
i Fi,k. Then F ⊂

⋃
i Fi,k for every k, and E ⊂ F still, so we have

µ∗(E) ≤ µ∗(F ) ≤ µ∗
(⋂

k

⋃
i

Fi,k

)
< µ∗(E) + 1/k.

Since this applies for every k, we have that for all ε > 0,

µ∗(E) ≤ µ∗(F ) < µ∗(E) + 1/k,

and so therefore µ∗(F ) = µ∗(E). SinceM∗ is closed under countable intersections and unions,
we get that F ∈M∗.

Going the other direction, we have that µ∗(E) ≤ µ+(E), and we assume there is an F ∈M∗
with E ⊂ F and µ∗(E) = µ∗(F ). We would like to show that µ+(E) ≤ µ∗(E). To do so, take
the cover E ⊂ F ∪

⋃∞
2 ∅. Then we have that

µ+(E) ≤ µ(F ) +
∞∑
2

µ(∅) = µ(F ) = µ∗(F ) = µ∗(E).

Hence, µ+(E) = µ∗(E).
(2) If µ∗ is induced from a premeasure µ0, then we have

µ∗ = inf

{ ∞∑
1

µ0(Aj) : Aj ∈ A, E ⊂
∞⋃
1

Aj

}
.

We would like to show that, for arbitrary E ⊂ X, µ∗(E) = µ+(E). From (1), we see that it
suffices to show that there is an F ∈ M∗ so that E ⊂ F and µ∗(E) = µ∗(F ). In the case that
µ∗(E) = ∞, notice that we can take X ∈ M∗. Then E ⊂ X by assumption, µ∗(E) ≤ µ∗(X),
and so µ∗(E) = µ∗(X). Therefore, µ+(E) = µ∗(E).

Assume now that µ∗(E) < ∞. From the claim in Problem 3, we have that we can find
F ∈ Aσ ⊂M∗ so that µ∗(F ) ≤ µ∗(E) + ε. Take ε = 1/k, Fk the corresponding set so that

µ∗(Fk) ≤ µ∗(E) + 1/k,

and let F =
⋂
Fk ∈M∗ to get that µ∗(E) = µ∗(F ). Thus, µ+(E) = µ∗(E).

(3) Notice that P (X) = {∅, {0}, {1}, X}. Then let µ∗(∅) = 0, µ∗(0) = 2, µ∗(1) = 2, µ∗(X) = 3.
We have that µ∗ is subadditive, monotone, and µ∗(∅) = 0, so it is an outer measure. Recall
thatM∗ is the collection of all µ∗ measurable sets, meaning the sets A such that for all E ⊂ X,
we have µ∗(E) = µ∗(A ∩ E) + µ∗(AC ∩ E). We have X,∅ ∈ M, but we see that {1} and {0}
are not in M; this is since

3 = µ∗(X) 6= µ∗(X ∩ {1}) + µ∗(X ∩ {0}) = µ∗({1}) + µ∗({0}) = 4.
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By definition, we see that
µ+({1}) = 3 6= 2 = µ∗({1}),

so µ∗ 6= µ+.
�

Problem 10. Suppose µ0 is a finite premeasure on the algebra A ⊂ P (X), and let µ∗ : P (X) →
[0,∞] be the outer measure induced by µ0. Prove that the following are equivalent for E ⊂ X:

(1) E ∈M∗, the µ∗-measurable sets;
(2) µ∗(E) + µ∗(EC) = µ∗(X).

Proof. Throughout, let M =M(A); the σ-algebra generated by A.
(1) =⇒ (2) : The definition of E ∈M∗ says that for all A ⊂ X, we have

µ∗(A) = µ∗(E ∩A) + µ∗(EC ∩A).

Taking A = X gives us (2).
(2) =⇒ (1) : We want to show that we can write E = F − N for F which is M∗ measurable

and µ∗(N) = 0. We see that the claim from Problem 3 gives us that there is a set F ∈M, E ⊂ F
so that µ∗(F ) ≤ µ∗(E) + ε, and since µ0 is a finite measure, we get µ∗(F )− µ∗(E) ≤ ε. Since E is
not necessarily measurable, we can no longer deduce that µ∗(F )− µ∗(E) = µ∗(F −E), so we need
to proceed a different route.

Choosing ε = 1/n and the respective F which satisfies this as Fn, we get
⋂
n Fn = G ∈ M is

such that µ∗(G)− µ∗(E) = 0; that is, µ∗(G) = µ∗(E). Since G is µ∗ measurable, we have

µ∗(E) + µ∗(EC) = µ∗(X) = µ∗(G) + µ∗(GC).

Since µ∗(E) = µ∗(G) and µ∗(X) < ∞, this gives us µ∗(GC) = µ∗(EC). The measurability of G
then tells us that

µ∗(EC) = µ∗(G ∩ EC) + µ∗(GC ∩ EC),

so that
µ∗(GC) = µ∗(G ∩ EC) + µ∗(GC ∩ EC).

Since E ⊂ G, we have GC ⊂ EC so that GC ∩ EC = GC . Hence, we may rewrite this as

µ∗(GC) = µ∗(G ∩ EC) + µ∗(GC)↔ µ∗(G− E) = 0.

Hence, write E = G− (G− E) to get that E ∈M∗ by Problem 3. �
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James Marshall Reber, ID: 500409166 Math 6211, Homework 3

Problem 11. (1) Show that every open subset of R is a countable union of open intervals where
both endpoints are rational.

(2) Suppose U ⊂ R is open and suppose ((aj , bj))j∈J is a collection of open intervals which cover
U :

U ⊂
⋃
j∈J

(aj , bj)

Show that there is a countable sub-cover, i.e., show that there is a countable subset I ⊂ J such
that

U ⊂
⋃
i∈I

(ai, bi).

(3) Suppose ((ai, bj ])j∈J is a collection of half-open intervals which cover (0, 1]:

(0, 1] ⊂
⋃
j∈J

(aj , bj ].

Show that there is a countable sub-cover, i.e., show that there is a countable subset I ⊂ J such
that

(0, 1] ⊂
⋃
i∈I

(ai, bi].

Proof. (1) We first establish it for open balls, (a, b) where −∞ < a < b < ∞. Since the rationals
are dense, we have a decreasing sequence an ∈ (a, b), an rational, such that an → a as n→∞.
Likewise, we have that there is an increasing sequence bn ∈ (a, b), such that bn → b as n→∞
and the bn are rational. Thus, we need to show that we can write this as

(a, b) =

∞⋃
n=1

(an, bn).

Notice that
∞⋃
n=1

(an, bn) ⊂ (a, b).

For the other direction, take x ∈ (a, b). Then we have either x < a1, a1 ≤ x ≤ b1, or x > b1. If
a1 ≤ x ≤ b1, we get that x ∈

⋃∞
n=1(an, bn) and we’re done. Without loss of generality, assume

that x < a1. Since an → a, and x > a, we have that there must be some n such that x > an; if
otherwise (that is, for all n, x ≤ an), then we notice that for all ε > 0 there is an N such that
for all n ≥ N , we have aN − a < ε. Thus, we have for all ε > 0, a < x ≤ a + ε, which forces
x = a, a contradiction to the choice of x. Thus, there is some n such that x > an, which says
that x ∈ (an, bn), and therefore x ∈

⋃∞
n=1(an, bn). The argument for x > b1 is analogous, and

so we get for all x ∈ (a, b), x ∈
⋃∞
n=1(an, bn). Hence,

(a, b) =
∞⋃
n=1

(an, bn).

Now, we’ve established for open balls, and we notice that open balls form a basis for the
topology of R. So, if U ⊂ R is an open set, then we can write it as

U =
∞⋃
n=1

(an, bn),
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and from our prior step we can write

(an, bn) =

∞⋃
j=1

(an,j , bn,j),

where the an,j , bn,j are rational numbers. Hence, we can write

U =

∞⋃
n,j=1

(an,j , bn,j),

or after reordering indices that

U =
∞⋃
k=1

(ak, bk),

where the ak, bk are rational numbers. This is a countable union.
(2) From (1), we can write U open as

U =

∞⋃
k=1

(pk, qk)

where the pk, qk are rational numbers. Now, let I = {i ∈ N : (pi, qi) ⊂ (aj , bj) for some j ∈ J}.
This is clearly countable, since it is a subset of a countable set. For each i ∈ I, take (ai, bi) so
that (pi, qi) ⊂ (ai, bi). Then we see that

U ⊂
⋃
i∈I

(ai, bi),

since the (pk, qk) cover U , and so we’re done.
(3) Let

U =
⋃
j∈J

(aj , bj).

Then U is an open set, and so by (2) we can refine it so that

U =
⋃
i∈I

(ai, bi),

where I is countable. Now, let’s examine Y := (0, 1]− U . Take x ∈ Y . Notice that x = bj for
some j ∈ J ; if otherwise, we have that it must be in (aj , bj) for some j ∈ J , since these cover
(0, 1], but then this would be in U , a contradiction. So we have that all of the points that we
missed are endpoints.

To get that there are countably many, take some rational number qx ∈ (aj , bj), where j is
such that x = bj . The existence of such a rational number comes from the density of rationals.
Notice that (qx, x) ⊂ U . Construct a function f : Y → Q such that f(x) = qx, where qx is
the associated rational number chosen in the interval given above. If we can show that f is
well-defined and injective, we get that Y is countable, and so we can throw in the intervals of
the form {(aj , bj ] : bj ∈ Y } into U to get a countable cover of (0, 1].

To see that f is well-defined, notice that x = y implies that f(x) = qx = qy = f(y) so long as
we are consistent with our choice of rational. Assuming that we are, we get that this function
is well-defined.

To see that f is injective, we check if f(x) = f(y), then x = y. We do this by contrapositive;
that is, if x 6= y, then f(x) 6= f(y). To do so, assume that x < y, but qy ≤ qx. Then we have
qy ≤ qx < x < y. But this implies that x ∈ (qy, y) which is in U ; a contradiction to the fact
that we chose x, y ∈ Y . Hence, we must have that qy > qx; that is, if x 6= y, then f(x) 6= f(y).
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Since the function is injective and well-defined, we get that Y must be countable. Hence, by
the argument given from prior, we can form I ′ := I ∪ {j ∈ J : bj ∈ Y } to be a countable set,
and we have

(0, 1] ⊂
⋃
i∈I′

(ai, bi].

�

Problem 12. Define the h-intervals

H = {∅} ∪ {(a, b] : −∞ ≤ a < b <∞} ∪ {(a,∞) : a ∈ R}.

Let A be the collection of finite disjoint unions of elements in H. Show directly from the definitions
that A is an algebra. Deduce that the σ-algebra M(A) generated by A is equal to the Borel
σ-algebra BR.

Proof. We proceed from the definition. We need to show three things:

• R ∈ A (not necessary, but useful for future parts);
• If A ∈ A, AC ∈ A;
• If {Ai}ni=1 ⊂ A, then

⋃n
i=1Ai ∈ A.

We first show that R ∈ A. Take some point b ∈ R. Then we have (−∞, b] ∈ H, (b,∞) ∈ H,
(−∞, b] ∩ (b,∞) = ∅, so (−∞, b] t (b,∞) = R ∈ H, since for all x ∈ R we have either x ≤ b or
x > b.

We now show complements. Take A ∈ A. Then we can write A as

A =

n⊔
i=1

Fi,

where the Fi ∈ H. Notice then that

AC =

(
n⊔
i=1

Fi

)
=

n⋂
i=1

F ci .

We have that the Fi could be of three forms; either Fi = ∅, Fi = (a, b], where −∞ ≤ a < b <∞, or
Fi = (a,∞), where a ∈ R. If Fi = ∅, then FCi = R, if Fi = (a, b], then FCi = (−∞, a]t(b,∞), and if
Fi = (a,∞) then FCi = (−∞, a]. In all of the above cases, we still have that the Fi are at most finite
disjoint unions of H intervals. Notice that if we have an FCi of the first form intersected with any
of the other two, we just get a finite disjoint union of H intervals. If we have an FCi of the second
form (say FCi = (−∞, a′] t (b,∞)) intersected with an FCj of the third form (say FCj = (−∞, a]),

then there are three things that can happen: if a < a′, then FCi ∩ FCj = (−∞, a], if a′ ≤ a ≤ b,

we have FCi ∩ FCj = (−∞, a′], and if we have a > b, then we get FCi ∩ FCj = (−∞, a′] t (b, a].
In all of the cases above, we see we get at most a finite disjoint union of H intervals, and so the
intersection under this complement will be at most a finite disjoint union of H intervals; in other
words, AC ∈ A.

Finally, we show it’s closed under finite unions. It suffices to show that if A,B ∈ A, then
A ∪B ∈ A. Write

A =

n⊔
i=1

Fi,

B =

m⊔
j=1

Gj ,
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where Fi, Gi is of one of the forms given above. We can then write

A ∪B =

n⊔
i=1

Fi ∪
m⊔
j=1

Gj .

If the Fi, Gj are disjoint, then we are done. Otherwise, we have that there is an i, j so that
Fi ∩ Gj 6= ∅. We iterate through the three cases (since Fi = ∅ or Gj = ∅ cannot result in this):
If Fi = (a, b], Gj = (c, d], then Fi ∩ Gj 6= ∅ implies that either Gj ⊂ Fi, Fi ⊂ Gj , a < c < b < d,
or c < a < d < b. If Fi ⊂ Gj , then Gj ∪ Fi = Gj , and so we are done. Assume without loss of
generality that a < c < b < d. Then Fi ∪ Gj = (a, b] ∪ (c, d] = (a, d], which is still an H interval.
So, in this case, we have Fi ∪Gj is just a single H interval.

If Fi = (a,∞), Gj = (b, c], then we see that Fi∩Gj 6= ∅ can be due to two things; either Gj ⊂ Fi
or b < a < c. In the first case, we see that Fi ∪Gj = Fi, and so we get a single H interval. In the
second case, we see that Fi ∪GJ = (a,∞)∪ (b, c] = (b,∞), which is still a single H interval. Thus,
we see that the union here is a single H interval.

Finally, we consider the case where Fi = (a,∞), Gj = (b,∞). If Fi ∩ Gj 6= ∅, then we either
have a < b, b < a, or b = a. If a < b, we get that Fi ∪ Gj = (a,∞) ∪ (b,∞) = (a,∞), and an
analogous result for if b < a. If b = a, then Fi ∪ Gj = Fi. So we see that we get that the union
here is a single H interval, like before.

So, iterating this, we see that we can union all of the non-disjoint intervals Fi, Gj to get a disjoint
union of H intervals. Thus, A ∪B ∈ H.

To see why it suffices to show it for two A elements, we proceed by induction on the number of
A elements. It clearly holds for n = 1, 2 from above work, so assume it holds for n − 1. We want
to then show it holds for n. We have

n⋃
i=1

Ai =
n−1⋃
i=1

Ai ∪An = B ∪An ∈ A,

since
⋃n−1
i=1 Ai ∈ A by assumption, we write it as B ∈ A, and from the n = 2 case we see that

B ∪An ∈ A. Thus, it holds for all finite unions.
Since we have the three properties, we get that A is an algebra. Furthermore, notice that we

can write every open ball as a countable union of elements in H; that is, if we have some open ball
(a, b), −∞ ≤ a < b <∞, we can write it as the countable union

∞⋃
n=1

(a, b+ 1/n].

If we have an open ball (a,∞), we see this in H by assumption. Thus, we get all possible open balls
from this construction. Since the open balls form a basis for the topology of R, we can write open
sets in R as countable unions of open balls, and so as countable unions of elements from H. Thus,
BR ⊂ M(A) by the minimality of BR, since we have all of the open sets. For the other direction,
we clearly note that A ⊂ BR, since intersecting open and closed sets will give us H intervals and
we can use the σ-algebra property of BR to get all of the disjoint unions. Thus, by the minimality
of M(A), we have M(A) ⊂ BR, which implies they are equal. �

Problem 13. Assume the notation of the prior problem. Suppose F : R → R is non-decreasing
and right continuous. Extend F to a function [−∞,∞]→ [−∞,∞], still denoted F , by

F (−∞) := lim
a→−∞

F (a), F (∞) := lim
b→∞

F (b).

Define µ0 : H → [0,∞] by

• µ0(∅) = 0,
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• µ0((a, b]) := F (b)− F (a) for all −∞ ≤ a < b <∞, and
• µ0((a,∞)) := F (∞)− F (a) for all a ∈ R.

Suppose (a,∞) =
⊔∞
j=1Hj , where (Hj) ⊂ H is a sequence of disjoint h-intervals. Show that

µ0((a,∞)) =
∞∑
j=1

µ0(Hj).

Proof. One direction follows from the class notes: we have for n ∈ N fixed that
n⊔
j=1

Hj ⊂ (a,∞),

and monotonicity and finite additvity gives gives

µ0

 n⊔
j=1

Hj

 =

n∑
j=1

µ0(Hj) ≤ µ0((a,∞)).

This applies for all n ∈ N, so we can take the limit to get
∞∑
j=1

µ0(Hj) ≤ µ0((a,∞)).

It suffices then to prove the other direction. Notice that, from our work in the prior problem, if we
have a disjoint union of Hj intervals, we must have it’s of the form

(a0,∞) t
∞⊔
j=1

(aj , bj ],

or
∞⊔
j=1

(aj , bj ],

where the bj ↗ ∞ as j → ∞. The fact that we do not have multiple intervals of the form (a,∞)
follows: for all a, a′ ∈ [−∞,∞), we have that (a,∞) ∩ (a′,∞) 6= ∅; this follows from the fact that
either a ≤ a′ or a′ < a. If a ≤ a′, then we have (a,∞) ⊂ (a′,∞), and so they’re not disjoint, and if
a′ < a we have a similar issue.

We can convert sets of the first type to sets of the second type by simply observing that

(a0,∞) =
∞⊔
j=1

(aj , bj ],

where a1 = a0, and the bj are some sequence of rationals increasing to infinity, where aj+1 = bj .
So it suffices to study (Hj) of the second type in order to prove the statement.

We follow the trick from the notes, with a slight modification. Take M finite such that M > a.
Then we have (a,M ] ⊂ (a,∞) =

⊔∞
j=1Hj . So the Hj cover (a,M ]. Take ε > 0 fixed (but arbitrary),

then since we assumed F is right continuous, we have there is a δ > 0 such that F (a+δ)−F (a) < ε/2,
and for every j, there is a δj so that F (bj + δj)− F (bj) < ε/2j+1. Notice that

{(aj , bj + δj)}∞j=1

forms an open cover of [a + δ,M ]. Since this is compact, we can take a finite refinement; that is,
we have

[a+ δ,M ] ⊂
N⋃
j=1

(aj , bj + δj).
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Now, we get

µ0((a,M ]) = F (M)− F (a).

Adding and subtracting F (a+ δ) gives

µ0((a,M ]) = F (M)− F (a+ δ) + F (a+ δ)− F (a).

We chose δ so that F (a+ δ)− F (a) < ε/2, so we substitute this in to get

µ0((a,M ]) < F (M)− F (a+ δ) +
ε

2
.

Now, we can use the fact that µ0((a+ δ,M ]) = F (M)− F (a+ δ) to rewrite this as

µ0((a,M ]) < µ0((a+ δ,M ]) +
ε

2
.

We can now use the open cover, monotonicity, and finite subadditivity to rewrite this as

µ0((a,M ]) < µ0((a+ δ,M ]) +
ε

2
≤ µ0

 N⋃
j=1

(aj , bj + δj ])

+
ε

2

≤
N∑
j=1

µ0((aj , bj + δj ]) +
ε

2
.

We can rewrite this as

µ0((a,M ]) <
N∑
j=1

[F (bj + δj)− F (aj)] +
ε

2
.

Add and subtract F (bj) inside the sum to get

µ0((a,M ]) <

N∑
j=1

[F (bj + δj)− F (bj) + F (bj)− F (aj)] +
ε

2
.

Recall that we had F (bj + δj)− F (bj) < ε/2j+1, so substituting this in gives

µ0((a,M ]) <
N∑
j=1

[ ε

2j+1
+ F (bj)− F (aj)

]
+
ε

2

=
N∑
j=1

[F (bj)− F (aj)] + ε.

These are all positive values, since F is non-decreasing, so we can bound this above by

µ0((a,M ]) <
N∑
j=1

[F (bj)− F (aj)] + ε ≤
∞∑
j=1

[F (bj)− F (aj)] + ε

=
∞∑
j=1

µ0((aj , bj ]) + ε.

Notice now that the left hand side can be written as

F (M)− F (a) <

∞∑
j=1

µ0((aj , bj ]) + ε.
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Since this works for arbitrary M > a, we can take the limit as M →∞ of both sides to get

F (∞)− F (a) = µ0((a,∞)) ≤
∞∑
j=1

µ0((aj , bj ]) + ε.

Since this works for all ε > 0, we get that

µ0((a,∞)) ≤
∞∑
j=1

µ0(Hj),

or in other words,

µ0((a,∞)) =
∞∑
j=1

µ0(Hj).

�

Problem 14 (Folland 1.28). Let F : R→ R be increasing and right continuous, and let µF be the
associated Lebesgue-Stieltjes Borel measure on BR. For a ∈ R, define

F (a−) := lim
b↗a

F (b).

Prove that

(1) µF ({a}) = F (a)− F (a−),
(2) µF ([a, b]) = F (b)− F (a−),
(3) µF ([a, b)) = F (b−)− F (a−), and
(4) µF ((a, b)) = F (b−)− F (a).

Remark. I switched the order around to make things a little easier; what was (2) in the homework
is (3) and vice versa.

Proof. (1) Notice that {a} ⊂ (a− 1/n, a] for all n ∈ N, and we have

∞⋂
n=1

(
a− 1

n
, a

]
= {a}.

Notice that µF (a− 1, a] = F (a)− F (a− 1) <∞. So, using continuity from above, we have

µF ({a}) = lim
n→∞

µ0

((
a− 1

n
, a

])
= lim

n→∞
F (a)− F

(
a− 1

n

)
= F (a)− F (a−).

(2) Write [a, b] = {a} t (a, b]. Then we can use (1) to write this as

µF ([a, b]) = µF ({a}) + µF ((a, b]) = F (a)− F (a−) + F (b)− F (a) = F (b)− F (a−).

(3) We break this up into cases.
Case 1: (b <∞) Notice that we can write this as

∞⋃
n=1

[
a, b− 1

n

]
= [a, b).

Using (2) and continuity from below, we have

µF ([a, b)) = lim
n→∞

µF ([a, b− 1/n]) = lim
n→∞

F (b− 1/n)− F (a−) = F (b−)− F (a−).
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Case 2: (b =∞) Let {qn}∞n=1 be a countable sequence of increasing rational numbers greater
than a which tend to infinity. Then we can write this as

∞⋃
n=1

[a, qn] = [a, b).

Using (2) and continuity from below, as well as the definition of the extension of F to [−∞,∞],
we have

µF ([a, b)] = lim
n→∞

µF ([a, qn]) = lim
n→∞

F (qn)− F (a−) = F (∞)− F (a−) = F (b)− F (a−),

as desired.
(4) We again break this up into cases.

Case 1: (b <∞) We can write this as

∞⋃
n=1

(
a, b− 1

n

]
= (a, b).

Using continuity from below, we have

µF ((a, b)) = lim
n→∞

µF ((a, b− 1/n]) = F (b− 1/n)− F (a) = F (b−)− F (a).

Case 2: (b =∞) Again, take a sequence of rational numbers increasing to∞ which are greater
than a (which may possibly be −∞). We can write this as

∞⋃
n=1

(a, qn] = (a, b).

Using continuity from below and the definition, we get

µF ((a, b)) = lim
n→∞

µF ((a, qn]) = lim
n→∞

F (qn)− F (a) = F (b−)− F (a),

since we defined F (b) = F (b−) in our extension of F .
�

Problem 15. Let (X, ρ) be a metric space. A subset S ⊂ X is called nowhere dense if S does not
contain any open set in X. A subset T ⊂ X is called meager if it is a countable union of nowhere
dense sets.

Construct a meager subset of R whose complement is Lebesgue null.

Proof. We proceed via the construction of a generalized Cantor set, found on page 39 of Folland.
Let {αj}∞j=0 ⊂ (0, 1) be a sequence of decreasing numbers; we can form a decreasing sequence {Kj}
of closed sets by taking K0 = [0, 1] and Kj is recursively defined by remove the open middle αj−1th
from each of the intervals that make up Kj−1. Setting K =

⋂∞
j=1Kj , we get the generalized Cantor

set. Notice that λ(K1) <∞, and so we can use continuity from above to deduce that

λ(K) = λ

 ∞⋂
j=1

Kj

 = lim
j→∞

λ(Kj).

Taking our αj to be constant, say r, we see that

λ(Kj) = 1−
j∑

k=0

2krk+1 = 1−
(
r − 2jrj+1

1− 2r

)
> 0.
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For appropriate choice of r, (that is, take it to be r < 1/3) we have

λ(K) = 1−
(

r

1− 2r

)
.

Thus, fixing ε > 0, for appropriate choice of r we can get that we can construct Kε ⊂ [0, 1] so that

λ(Kε) = 1− ε.
Taking ε = 1/n, n > 0, we have

λ
(
K1/n

)
= 1− 1

n
.

Furthermore, we see that K1/n is nowhere dense; we note that K1/n is closed, since its a countable
intersection of closed sets, and so it suffices to show that it has empty interior (thus saying that
it does not contain any open set, since the interior is the largest open set contained in S). To see
that it has empty interior, we go by contradiction. Take a point x ∈ C, then we can form an open
ball of radius z centered at x, but we can find an p large enough so that rp < z, which contradicts
the existence of the open ball.

Now, we can let G =
⋃∞
n=1K1/n. Then G is meager, and we see that

K1/n ⊂ G ⊂ [0, 1]

for each n, and so
λ(K1/n) ≤ λ(G) ≤ 1,

which implies that

1− 1

n
≤ λ(G) ≤ 1

for all n > 1. Thus, we have λ(G) = 1 and it is a meager set. Furthermore,

λ(Gc) + λ(G) = 1↔ λ(Gc) = 0.

We can now translate this set around; notice that

R =
∞⋃

n=−∞
G+ n.

Call

X :=
∞⋃

n=−∞
G+ n.

Then we see that X is a countable union of nowhere dense sets, since each G is, and so it is meager.
Furthermore, we see that

λ (R−X) ≤
∞∑

n=−∞
λ(Gc) = 0

using the translation invariance property of λ, and so we have a nowhere dense set X whose
complement is Lebesgue null. �
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James Marshall Reber, ID: 500409166 Math 6211, Homework 4

Remark. Thomas O’Hare was a collaborator for this homework set.

Problem 16. Suppose E ∈ L and λ(E) > 0.

(1) Show that for any 0 ≤ α < 1, there is an open interval I ⊂ R such that λ(E ∩ I) > αλ(I).
(2) Apply (1) with α = 3/4 to show that the set

E − E = {x− y : x, y ∈ E}
contains the interval (−λ(I)/2, λ(I)/2).

Proof. (1) Step 1: If α = 0, then it suffices to find an open interval I so that λ(E∩I) > 0. Assume
for contradiction that, for every open interval I, we have λ(E ∩ I) = 0. Cover R with disjoint
open intervals, say

R =

∞⊔
n=1

(pn, qn).

Then we have

E = E ∩ R = E ∩
∞⊔
n=1

(pn, qn) =
∞⊔
n=1

(E ∩ (pn, qn)) .

Hence,

λ(E) = λ

( ∞⊔
n=1

(E ∩ (pn, qn))

)
=

∞∑
n=1

λ(E ∩ (pn, qn)).

But since λ(E ∩ I) = 0 for all open intervals, we have λ(E ∩ (pn, qn)) = 0 for all n. Hence,

λ(E) =
∞∑
n=1

0 = 0.

But this is a contradiction, since we assumed λ(E) > 0. Hence, there must be some open
interval I so that λ(E ∩ I) > 0.

Step 2: Fix 0 < α < 1. Assume that 0 < λ(E) <∞. Then, for every ε > 0, we can find an
open set E ⊂ U such that

λ(U) < λ(E) + ε.

Since 0 < α < 1, we can write

ε =
1

α
λ(E)− λ(E) > 0,

and so there is an open set U so that

λ(U) < λ(E) +
1

α
λ(E)− λ(E) =

1

α
λ(E).

Notice that we can write U as a countable (disjoint) union of open intervals using properties
of R; that is,

U =
∞⊔
n=1

(an, bn).

Step 3: Assume for contradiction that λ(E ∩ I) ≤ αλ(I) for all open intervals I. Since we
chose E ⊂ U , we have that E ∩ U = E. That is,

E = E ∩ U = E ∩
∞⊔
n=1

(an, bn) =
∞⊔
n=1

(E ∩ (an, bn)).
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So,

λ(E) = λ

( ∞⊔
n=1

(E ∩ (an, bn))

)
=

∞∑
n=1

λ(E ∩ (an, bn)).

Now, by assumption, λ(E ∩ (an, bn)) ≤ αλ((an, bn)), so we get

λ(E) ≤
∞∑
n=1

αλ((an, bn)) = α

∞∑
n=1

λ((an, bn)) = αλ

( ∞⊔
n=1

(an, bn)

)
= αλ(U).

But from Step 2, we had

λ(U) <
1

α
λ(E)↔ αλ(U) < λ(E),

so we have

λ(E) < λ(E),

which is a contradiction. Hence, we must have λ(E ∩ I) > αλ(I) for some open interval I.
Step 4: Assume now that λ(E) = ∞. Take a cover of R by bounded disjoint open balls;

that is, write

R =
∞⊔
n=1

(an, bn).

Then we have

E = E ∩ R = E ∩
∞⊔
n=1

(an, bn) =
∞⊔
n=1

(E ∩ (an, bn)).

Notice that

λ(E ∩ (an, bn)) <∞,
and furthermore there is at least one n so that

0 < λ(E ∩ (an, bn)).

For such an n, we can use Step 3 to get that for all 0 < α < 1, there is an interval I so that

λ((E ∩ (an, bn)) ∩ I) > αλ(I).

But montonicity gives

λ(E ∩ I) ≥ λ((E ∩ (an, bn)) ∩ I) > αλ(I),

and so we are done.
Thus, we’ve shown that for all E so that λ(E) > 0 and E ∈ L, and for all α ∈ [0, 1), we can

find an open interval I so that λ(E ∩ I) > αλ(I).
(2) Take α = 3/4. Then we can find an open interval I so that

λ(E ∩ I) >
3

4
λ(I).

Let F := E∩I ⊂ E. Then we have F −F ⊂ E−E. If we can show that (−1/2λ(I), 1/2λ(I)) ⊂
F −F , then we are done. To do that, we need to show that if |z0| < (1/2)λ(I), then z0 ∈ F −F .

We first establish a claim that F ∩ (F + x0) 6= ∅ implies x0 ∈ F − F . If F ∩ (F + x0) 6= ∅,
then we have y ∈ F ∩ (F + x0); that is, y = x, where x ∈ F , and y = z + x0, where z ∈ F .
Then we have x = z + x0, or x− z = x0, and so x0 ∈ F − F .

Since F ∩ (F + 0) = F ∩ F = F 6= ∅, since λ(F ) > αλ(I) > 0, we get that 0 ∈ F . Let z be
such that |z| < (1/2)λ(I). Notice that

λ(F ) + λ(F + z) = λ(F ∩ (F + z)) + λ(F ∪ (F + z))
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from Quiz 1. Since λ is translation invariant, we can bound this below by

3

2
λ(I) ≤ λ(F ∩ (F + z)) + λ(F ∪ (F + z)).

By monotonicity, we can see that

λ(F ∪ (F + z)) ≤ λ(I + (I + z)).

Now, assume |z| = 1
2λ(I). Then writing I = (a, b), since it’s an open interval, we can see that

I ∪ (I + z) = (a, b+ z),

and so

λ(I ∪ (I + z)) = b+ z − a =
3

2
λ(I).

Since this is a strict upper bound, we get

λ(F ∩ (F + z)) > 0,

and so it’s non-trivial for z ∈ (−(1/2)λ(I), (1/2)λ(I)). Hence,(
−1

2
λ(I),

1

2
λ(I)

)
⊂ F − F ⊂ E − E,

as desired.
�

Problem 17. Let BR be the Borel σ-algebra of R. Suppose µ is a translation invariant measure
on BR such that µ((0, 1]) = 1. Prove that µ = λBR , the restriction of the Lebesgue measure on L
to BR.

Proof. Notice first that we have µ((0, x]) = x for all x ∈ Z>0. To see this, we see that we can
decompose (0, x] into

x−1⊔
n=0

(n, n+ 1] = (0, x].

Hence

µ((0, x]) =
x−1∑
n=0

µ((n, n+ 1]).

Translation invariance tells us that µ((n, n+ 1]) = µ((0, 1]) = 1, so we have

µ((0, x]) =

x−1∑
n=0

1 = x.

Translation invariance again tells us that

µ((a, b]) = b− a

for a, b finite integers greater than 0. Similarly, we have

µ((x, 0]) = x,

where x ∈ Z<0. Now, taking n ∈ Z>0, we wish to establish µ((0, 1/n]) = 1/n. Notice that we can
write

n⊔
j=0

(
j

n
,
j + 1

n

]
.
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Then we have

µ

 n⊔
j=0

(
j

n
,
j + 1

n

] =
n∑
j=0

µ

((
j

n
,
j + 1

n

])
= 1.

Translation invariance tells us that all of these intervals have the same measure, though, and so we
get

n · µ
((

0,
1

n

])
= 1↔ µ

((
0,

1

n

])
=

1

n
.

We can further deduce using translation invariance that for all rational numbers a, b with a < b,
we have µ((a, b]) = b− a. Now, take a, b real numbers with a < b. Then there is a rational number
p such that a < p < b, so we have (a, b] = (a, p] t (p, b]. So

µ((a, b]) = µ((a, p]) + µ((p, b]).

Now, recall that the rationals are dense in the reals. So we can form a sequence {qn} of rationals
such that qn ≥ a and qn ↘ a. Hence, we have

(a, p] =
∞⋃
n=1

(qn, p],

Continuity from below then gives us that

µ((a, p]) = lim
n→∞

µ((qn, p]) = lim
n→∞

(p− qn) = p− a.

Likewise, we can write

(p, b) =

∞⋂
n=1

(p, qn],

where {qn} a sequence of rationals where qn ≥ b and qn ↘ b. Noticing b ≤ q1 < ∞, we have
µ((p, q1]) = q1 − p <∞, and so we can use continuity from above to deduce that

µ((p, b]) = lim
n→∞

µ((p, qn]) = lim
n→∞

(qn − p) = b− p.

Chaining these things together, then, we have

µ((a, b]) = (p− a) + (b− p) = b− a.

Let U be a bounded Borel set. Then we can cover it with a half open interval, letting b = sup(U)
and a = inf(U), and noticing that U ⊂ (a, b]. Hence, µ(U) ≤ µ((a, b]) = b−a <∞. So all bounded
Borel sets are µ finite, and so by Theorem 1.16 in the book, we get that for

F (x) :=


µ((0, x]) if x > 0,

0 if x = 0,

−µ((x, 0]) if x < 0,

µ = µF on BR. But notice that

F (x) :=


x if x > 0,

0 if x = 0,

−x if x < 0,

or, in other words, F (x) = x. Hence, µF = λBR , and so we get that λBR = µ. �

Problem 18. Suppose E ∈ L is Lebesgue null, and ϕ : R → R is a C1 function (continuous with
continuous derivative). Prove that ϕ(E) is also Lebesgue null.

28



Proof. We break this up into steps.
Step 1: Let I be a bounded open interval, say (a, b). Then we have that ϕ is Lipschitz on (a, b);
to see this, take the closure, [a, b]. Since ϕ′ is continuous, and this is compact, we have that it is
bounded, which implies that ϕ is Lipschitz on [a, b]. Restricting down to (a, b), we get that ϕ is
Lipschitz on (a, b), as desired.
Step 2: If I is a bounded open interval, we have λ(ϕ(I)) ≤ Kλ(I), where K ≥ 0 is a constant.
Since I is a bounded interval, say (a, b), we have that λ((a, b)) = b− a. Since ϕ is continuous, we
see it maps open intervals to intervals, and so we have λ(ϕ(I)) = ϕ(b)− ϕ(a). By Step 1, since I
is a bounded open interval, we have that ϕ is Lipschitz on it, and so

λ(ϕ(I)) = ϕ(b)− ϕ(a) ≤ K(b− a),

where K is a real constant such that K ≥ 0.
Step 3: Assume that E is a bounded set of Lebesgue measure 0. Since it is bounded, for fixed ε > 0
we can find an open set G such that λ(G) < ε. Furthermore, since E is bounded, we have E ⊂ (a, b)
for some interval. Since ϕ is Lipschitz on this interval, we get that we have a Lipschitz constant
K associated to this interval, and the inequality descends down to the subintervals. Throughout,
then, we use this associated K.

Notice as well we can cover G with disjoint open intervals, and so we get
∞∑
n=1

λ((an, bn)) < ε.

It suffices to show that, for all ε > 0, we can cover ϕ(E) with intervals where the sum of their
measures is less than ε. By Step 2, using this global K on the interval covering E, we get that

λ(ϕ(E)) ≤ λ

( ∞⊔
n=1

ϕ((an, bn))

)
=

∞∑
n=1

λ(ϕ((an, bn))) ≤ K
∞∑
n=1

λ((an, bn)) < Kε.

Since this applies for all ε > 0, we get that

λ(ϕ(E)) = 0,

and so ϕ(E) is Lebesgue null.
Step 4: Assume that E is unbounded and has Lebesgue measure 0. Recall that we can cover R
with disjoint open intervals; that is,

R =
∞⊔
n=1

(an, bn).

Hence, we can write

E = E ∩ R = E ∩
∞⊔
n=1

(an, bn) =

∞⊔
n=1

(E ∩ (an, bn)).

So, we have

ϕ(E) =

∞⊔
n=1

ϕ(E ∩ (an, bn)),

and furthermore

λ(ϕ(E)) =

∞∑
n=1

λ(ϕ(E ∩ (an, bn))).

Notice that E ∩ (an, bn) is bounded and is Lebesgue null by monotonicity. By Step 3, we have

λ(ϕ(E ∩ (an, bn))) = 0
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for all n, and so

λ(ϕ(E)) =
∞∑
n=1

0 = 0.

Putting this all together, if E is a set which is Lebesgue null, and ϕ is a C1 function, then ϕ(E)
is also Lebesgue null. �

Problem 19. Find an uncountable subset of R with Hausdorff dimension 0.

Proof.

Remark. I got inspiration for the solution from a Stackexchange thread
https://math.stackexchange.com/questions/1966537/hausdorff-dimension-of-a-cantor-set
though the details worked out are my own. It also seems to follow along a hint given in the recitation
and discussion with other students.

Recall that we have the following definitions:
If (X, ρ) is a metric space, p ≥ 0, ε > 0, we define

ζp,ε(E) := inf

{ ∞∑
1

[Diam(Bn)]p : {Bn} is a sequence of open balls, Diam(Bn) ≤ ε ∀n, E ⊂
⋃
n

Bn

}
,

where we have the convention inf ∅ =∞. Furthermore, we define

ζp(E) := lim
ε→0

ζp,ε(E).

We showed in class that this is a metric outer measure. We define the Hausdorff dimension of a set
E ∈ BX to be

HDim(E) := {inf p ≥ 0 : ζp(E) = 0}.
So to find a set with Hausdorff dimension 0, it suffices to show that for all p > 0, ε > 0, the infimum
of the sum of the diameter of open balls which cover E to the pth power, where the diameter less
than or equal to ε, is 0. This suggests we think of a generalized Cantor set.

The standard Cantor set has Hausdorff dimension log(2)/ log(3), so it’s clear this will not suffice.
We again use the construction of the generalized Cantor set. Recall that, given some sequence {αn}
of numbers, we define K0 := [0, 1] and Kn to be the middle αn segments removed from Kn−1, and
our Cantor set is defined to be

K :=
⋂
n

Kn.

Notice that step n of this sequence, we have 2n intervals. In the standard Cantor construction, the
length of each of these intervals is 3−n; however, we are not restricted to taking powers of some
number.

Taking away the middle n/(n+ 1) intervals, we see that we can get the Hausdorff dimension to
be zero. Notice that the length at step n of the 2n intervals is given by a recurrence relation;

l(n) =
1

2(n+ 1) 1
l(n−1)

, l(0) = 1.

Solving this recurrence relation gives the formula

l(n) =
1

(n+ 2)!2n
.

Notice that for all k > 0,

lim
n→∞

2nl(n)k = 0
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Hence, for all ε > 0, we can find N sufficiently large so that l(N) < ε, and hence

ζp,ε(K) ≤ 2N l(N)p.

Taking ε→ 0 gives
ζp(K) ≤ lim

n→∞
2nl(n)p = 0.

However, this applies for all p > 0, and so we get that

inf{p ≥ 0 : ζp(K) = 0} = 0.

Hence, we see that
HDim(K) = 0,

or K is a set with Hausdorff dimension zero.
Since K is a generalized Cantor set, it shares the property that it is uncountable (since it is a

perfect set), and so we get that K is an uncountable subset of R with Hausdorff dimension zero. �

Problem 20. Suppose (X,M) is a measurable space, and (Y, τ), (Z, θ) are topological spaces,
i : Y → Z is a continuous injection which maps open sets to open sets (i.e. an open map), and
f : X → Y . Show that f is M−Bτ measurable if and only if i ◦ f is M−Bθ measurable.

Deduce that if f : (X,M) → R only takes values in R, then f is M− BR if and only if f is
M−BR measurable.

Proof. ( =⇒ ) Assume f is M−Bτ measurable. Then this says that if E ∈ τ , then f−1(E) ∈ M.
To show that i ◦ f is M− Bθ measurable, we just need to show that, for all E ∈ θ, (i ◦ f)−1 =
f−1 ◦ i−1(E) ∈M, since the open sets generate Bθ. Notice that since i is a continuous function, we
get i−1(E) is open, i.e. i−1(E) ∈ τ . From our prior remark, f−1(i−1(E)) ∈ M. Since this applies
for all E ∈ θ, we get the desired result.

( ⇐= ) Suppose i ◦ f is M − Bθ measurable. Since i is an open map, for arbitrary E ∈ τ
we have i(E) = F ∈ θ. Since i is an injection, we have that it admits a left inverse, and so
i−1 ◦ i(E) = E = i−1(F ). Hence, for all E ∈ τ , there is an F ∈ θ such that i−1(F ) = E. So, taking
E ∈ τ arbitrary, we get that the associated F pulls back to a measurable; i.e., (i ◦ f)−1(F ) ∈ M.
But this implies that f−1(E) ∈ M for all E ∈ τ , and so we get that f−1(E) ∈ M for all E ∈ Bτ
by the proposition in the class notes, giving us the desired result.

We can take the natural inclusion i : R→ R via i(x) = x. This is clearly injective. We also see
that this maps open balls to open balls, and so therefore maps open sets to open sets. Furthermore,
i−1(±∞) = ∅, so we get that it pulls back open balls to open balls as well. Hence, i is a continuous
injection which is also open, and since f only takes values to R, we have the set up given in the
problem. Hence, we deduce that f is M− BR measurable if and only if f is M−BR measurable,
where here we note that i ◦ f = f . �
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James Marshall Reber, ID: 500409166 Math 6211, Homework 5

Remark. Thomas O’Hare was a collaborator for this homework.

Problem 21. Let (X,M, µ) be a measure space.

(1) Show that a simple function

ψ =

n∑
k=1

ckχEk

where ck > 0 for all k = 1, . . . , n is integrable if and only if µ(Ek) <∞ for all k = 1, . . . , n.
(2) Show that if a simple function

ψ =
n∑
k=1

ckχEk

is integrable with µ(Ek) <∞ for all k, then∫
ψ =

n∑
k=1

ckµ(Ek).

Proof. (1) We have that ψ integrable and the linearity of integration for L+ functions gives∫
ψ <∞ ⇐⇒

∫ ( n∑
k=1

ckχEk

)
<∞ ⇐⇒

n∑
k=1

ck

∫
χEk <∞

⇐⇒
n∑
k=1

ckµ(Ek) <∞,

and since ck > 0 this tells us that this is true if and only if µ(Ek) <∞ for k = 1, . . . , n.
(2) Notice that we have∫

ψ =

∫ n∑
k=1

ckχEk =
n∑
k=1

ck

∫
χEk =

n∑
k=1

ckµ(Ek)

by linearity of the integral for L+ functions.
�

Problem 22. Suppose f : (X,M, µ) → [0,∞] is M-measurable and {f > 0} is σ-finite. Show
that there exists a sequence of simple function {ψn} such that

• ψn ↗ f ,
• ψn is integrable for every n ∈ N.

Proof. If {f > 0} is σ-finite, we can cover it with disjoint measurable sets {Xn} such that µ(Xn) <
∞ for all n; that is, we have

{f > 0} =

∞⊔
n=1

Xn, µ(Xn) <∞.

Define

Ekn :=

{
k − 1

2n
< f ≤ k

2n

}
∩

(
n⊔
k=1

Xn

)
,

Fn := {2n < f ≤ ∞} ∩

(
n⊔
k=1

Xn

)
.
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Then we set

ψn :=
22n∑
k=1

(
k − 1

2n
χEkn

)
+ 2nχFn .

We notice that ψn is integrable for every n, since µ(Ekn) < ∞ and µ(Fn) < ∞. Furthermore, the
proof of the lemma from class gives us that ψn ↗ f . �

Problem 23. Assume Fatou’s Lemma and prove the Monotone Convergence Theorem from it.

Proof. We want to prove if {fn} ⊂ L+ is an increasing sequence and f = limn→∞ fn = supn fn,
then ∫

f = lim
n→∞

∫
fn.

Fatou’s Lemma tells us that ∫
lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn,

and we can note that limn→∞ fn = f = lim infn→∞ fn, so we have∫
f ≤ lim inf

n→∞

∫
fn.

Moreover, we note that fn ≤ f by assumption, so in particular we have∫
fn ≤

∫
f

for all n by the monotonicity of integration. As a result, we have

sup
k≥n

∫
fn ≤

∫
f.

Taking the limit as n→∞ of both sides, we have

lim sup
n→∞

∫
fn ≤

∫
f,

and so

lim sup
n→∞

∫
fn ≤

∫
f ≤ lim inf

n→∞

∫
fn.

In other words, we have

lim
n→∞

∫
fn =

∫
f,

as desired. �

Problem 24. Let (X,M, µ) be a measure space.

(1) Suppose f ∈ L+ and
∫
f <∞. Prove that {f =∞} is µ-null and {f > 0} is σ-finite.

(2) Suppose f ∈ L1(µ,C). Prove that {f 6= 0} is σ-finite.

Proof. (1) Let An = {f > n}. Then we have∫
An

n = nµ(An) <

∫
An

f ≤
∫
f,

and so

µ(An) <
1

n

∫
f

for all n. Since
∫
f = C <∞, we can write this as

µ(An) <
C

n
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for all n. Since A = {f = ∞} ⊂ {f > n} = An, we have that µ(A) ≤ µ(An) for all n. So for
all ε > 0, µ(A) ≤ ε, which implies µ(A) = 0; that is, {f =∞} is µ-null.

Let Xn = {f ≥ 1/n}. Then by an analogous argument, we have∫
Xn

1

n
=
µ(Xn)

n
≤
∫
f,

so

µ(Xn) ≤ n
∫
f <∞.

Moreover, notice that {f > 0} =
⋃∞
j=1Xj , where µ(Xj) <∞. So {f > 0} is σ-finite.

(2) We repeat the argument above, except for Xn = {|f | ≥ 1/n}. Hence, we have∫
Xn

1

n
=
µ(Xn)

n
≤
∫
|f | <∞,

and so we get again

µ(Xn) ≤ n
∫
|f | <∞,

and so

{|f | > 0} = {f 6= 0} =

∞⋃
n=1

Xn, µ(Xn) <∞.

Hence, {f 6= 0} is σ-finite.
�

Problem 25. Suppose (X,M, µ) is a measure space and f ∈ L1(µ,C). Prove that for every ε > 0,
there exists a δ > 0 such that for every E ∈M with µ(E) < δ,∫

E
|f | < ε.

Proof.

Remark. This was adapted from a proof in Royden and Fitzpatrick.
We have f ∈ L1(C, µ), so |f | ∈ L+. Fix ε > 0, then we have there exists a ψ ∈ SF+ such that

0 ≤
∫
|f | −

∫
ψ <

ε

2
.

Now notice that ψ ∈ SF+ tells us that there exists an M such that 0 ≤ ψ ≤ M on X. Hence, we
have ∫

E
|f | =

∫
E
ψ +

∫
E

(|f | − ψ) < Mµ(E) +
ε

2
.

Solving

Mδ +
ε

2
= ε,

we get

δ =
ε

2M
.

So, if E ∈M is such that µ(E) < δ, then we have that∫
E
|f | < ε,

as desired. �
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James Marshall Reber, ID: 500409166 Math 6211, Homework 6

Remark. Thomas O’Hare was a collaborator.

Problem 26. Let µ be a Lebesgue-Stieltjes Borel measure on R. Show that Cc(R), the continuous
functions of compact support, is dense in L1(µ,R). Does the same hold for R and C-valued
functions?

Proof. We follow the proof of Theorem 2.26
Step 1: We want to show that the integrable simple functions are dense in L1(µ,R). Take f ∈
L1(µ,R). Then from prior problems/the lecture notes (Theorem 2.10 b), we can construct
a sequence of integrable simple functions such that |φn| ↗ |f |, since f integrable implies that
{f 6= 0} is σ-finite. Furthermore, we have |φn − f | ≤ |φn| + |f | ≤ 2|f |, and since f ∈ L1(µ,R) we
have |f | ∈ L1(µ,R). The dominated convergence theorem then tells us that

lim

∫
|φn − f |dµ =

∫
lim |φn − f |dµ = 0.

Thus, we have that these integrable simple functions are dense in L1(µ,R).
Step 2: We now want to show that we can use continuous functions with compact support to get
arbitrarily close to simple integrable functions. Write φn =

∑N
j=1 ajχEj . We have that µ(Ej) =

|aj |−1
∫
Ej
|φ| ≤ |aj |−1

∫
|f | <∞ for all j. Examine χE for E measurable where µ(E) <∞. We use

Proposition 1.20 from the book, which tells us that if E measurable with µ(E) < ∞, then for
every ε > 0 we can find a set A that is a finite union of open intervals such that∫

|χE − χA| = µ(E∆A) < ε.

To see this, notice that Theorem 1.18 tells us that µ(E) is the infimum over open sets containing
it and the supremum over compact sets contained in it. Recall that

E∆A = (E −A) t (A− E).

Take K ⊂ E ⊂ U such that K compact, U open, and

µ(U − E) < ε/2, µ(E −K) < ε/2.

Since U is open, we can write it as a union of disjoint open intervals, U =
⊔∞
i=1 Ii. Hence, we have

K ⊂
⊔∞
i=1 Ii, and so using the compactness of K we have K ⊂

⊔N
i=1 Ii. Write A =

⊔n
i=1 Ii. Then

we have K ⊂ A ⊂ U , and furthermore we have

E −A ⊂ E −K,

A− E ⊂ U − E,
and so

µ(E∆A) = µ(E −A) + µ(A− E) ≤ µ(E −K) + µ(U − E) < ε/2 + ε/2 = ε.

So for all ε, we can find this desired construction. Since we have that

µ(E∆F ) =

∫
|χE − χF |,

we can approximate χE in L1 for µ(E) <∞ with χAn , where An is a finite disjoint union of open
intervals.
Step 3: We can approximate open intervals Ik = (a, b) with continuous functions (hε) in L1, where
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hε = 1 on [a + ε/2, b − ε/2], hj = 0 on (∞, a] and [b,∞), and is a linear interpolation between 0
and 1 on [a, a+ ε/2] and [b− ε/2, b]. Notice that in L1, we have that∫

|hε − χIk | < ε,

and these hε have compact support. So we can approximate χIk by a continuous function with
compact support in L1.
Step 4: Let

ψ =

n∑
i=1

anχEn

be an integrable simple function given as in Step 1. Let M = max{|ai|}ni=1; this is finite by the
observation made in Step 1. For each i we can find Ai a finite disjoint union of open intervals such
that ∫

|χEi − χAi | <
ε

2Mn

by Step 2. Write Ai =
⊔ki
j=1 Ii,j . Let J = max{ki}ni=1. By Step 3, for each (i, j), we can find a

continuous function hi,j such that ∫
|hi,j − χIi,j | <

ε

2MJn
.

Let h =
∑n

i=1 ai

(∑ki
j=1 hi,j

)
=
∑n

i=1 aihi, where hi =
∑ki

j=1 hi,j . Notice that h is continuous, since

it is a linear combination of continuous functions. Furthermore, we see that this choice of h gives
us∫
|h−ψ| =

∫ ∣∣∣∣∣
n∑
i=1

ai(χEi − hi)

∣∣∣∣∣ ≤
n∑
i=1

|ai|
∫
|χEi−hi| ≤

n∑
i=1

|ai|
∫
|χEi−χAi |+

n∑
i=1

|ai|
∫ ∣∣∣∣∣∣

ki∑
j=1

χIi,j − hi,j

∣∣∣∣∣∣
≤

n∑
i=1

|ai|
∫
|χEi − χAi |+

n∑
i=1

|ai|
ki∑
j=1

∫
|χIi,j − hi,j | < ε.

We also see that h has compact support. Notice that if f, g ∈ Cc(R), then f + g ∈ Cc(R), since
Supp(f + g) ⊂ Supp(f) ∪ Supp(g), and so Supp(f + g) is bounded and closed and hence compact,
and for α 6= 0, we have Supp(αf) = Supp(f), so we get h has compact support.

Thus, we have that for all integrable simple functions ψ, we can construct a sequence (hn) of
continuous functions with compact support such that hn → ψ in L1.
Step 5: Finally, we wish to use all of these approximations to show that we an approximate our
integrable function f in L1. That is, for all ε > 0, we can find a function with compact support h
such that ∫

|h− f | → 0.

Fix ε > 0. From Step 1, we have that we can find an integrable simple function such that∫
|ψ − f | < ε

2
.

From Step 4, we can find a continuous function h with compact support such that∫
|h− ψ| < ε

2
.
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Hence, we have that for this choice of ε > 0, we get that we can find a continuous function h such
that ∫

|h− f | =
∫
|h− ψ + ψ − f |

≤
∫
|h− ψ|+

∫
|ψ − f | < ε.

Since this applies for all ε > 0, we can construct a sequence (hn) such that hn → f in L1, and
furthermore we see that our choices of hn are such that they have compact support. Since the
choice of f was arbitrary, we get that Cc(R) is dense in L1(µ,R).

For C, the same argument applies; we can approximate the real and imaginary parts with simple
functions by the same theorem, approximate those simple functions with continuous functions with
compact support, and therefore approximate the integrable functions with continuous functions
with compact support.

For R, we have it’s finite almost everywhere, so define f̃ = f where f is finite and f̃ = 0 where f

is infinite. Then the integral is the same, and we can apply the previous cases to f̃ to get compact
functions which approximate it in L1, and therefore also approximate f in L1. �

Problem 27. Suppose f : [a, b] → C is Lebesgue measurable and ε > 0. There is a compact set
E ⊂ [a, b] such that λ(Ec) < ε and f |E is continuous.

Proof.

Remark. Adapted from a proof from old notes.
Step 1: Let

f =

N∑
i=1

aiχEi

be a simple measurable function on [a, b] → C, where [a, b] =
⊔N
i=1Ei. For each i, choose a closed

subset Fi ⊂ Ei such that

µ(Ei − Fi) <
ε

N
,

which we can do by inner regularity. Let F =
⊔N
i=1 Fi; F is closed since we took a finite union of

closed sets. We get

µ(E − F ) = µ

(
n⊔
i=1

(Ei − Fi)

)
=

N∑
i=1

µ(Ei − Fi) <
N∑
i=1

ε

N
= ε.

The Fi are closed and disjoint, so we get

lim
x→x0
x∈F

f(x) = f(x0),

since x0 ∈ Fi for some i, and so for any sequence xn → x0, we must have xn ∈ Fi for n large
enough, and so we must have

lim
x→x0
x∈F

f(x) = ai = f(x0).

Since this holds for all x0 ∈ F , we have f is continuous relative to F .
Step 2: Take f measurable. We can construct ψn such that ψn → f pointwise and the ψn are
simple measurable functions. Since each ψn satisfies the property, we can pick Fn ⊂ [a, b] closed
such that

µ([a, b]− Fn) <
ε

2n+1
.
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Take as well F0 ⊂ [a, b] such that

µ([a, b]− F0) <
ε

2
and ψn → f uniformly on F0, which we can do by Egoroff’s theorem, and take it to be closed,
which we can do using the inner regularity of the measure. Take E =

⋂∞
k=0 Fk ⊂ [a, b]. Then E is

closed, and µ([a, b]−E) < ε. Since ψn → f uniformly on E, ψn continuous on E for all n by Step
1, we have that f is continuous on E. Since E is closed and bounded, it is compact. �

Problem 28. Suppose f ∈ L1([0, 1], λ) is an integrable non-negative function.

(1) Show that for every n ∈ N, n
√
f ∈ L1([0, 1], λ).

(2) Show that ( n
√
f) converges in L1 and compute its limit.

Proof. (1) We can write ∫
[0,1]

n
√
fdλ =

∫
{f≥1}

n
√
fdλ+

∫
{f<1}

n
√
fdλ

and note that this is bounded above by∫
[0,1]

n
√
fdλ ≤

∫
{f≥1}

n
√
fdλ+ 1.

Notice that n
√
x ≤ x for x ≥ 1, so we have∫

{f≥1}

n
√
fdλ ≤

∫
{f≥1}

fdλ ≤
∫
fdλ <∞.

Hence, we have ∫
[0,1]

n
√
fdλ <∞,

or n
√
f is integrable.

(2) We’d like to show that n
√
f → χf 6=0 in L1. Write this as

lim
n→∞

∫
[0,1]
| n
√
f − χf 6=0|dλ = lim

n→∞

∫
{f≥1}

| n
√
f − χf 6=0|dλ+ lim

n→∞

∫
{f<1}

| n
√
f − χf 6=0|dλ.

Notice that based on the bounds we may write this as

lim
n→∞

(∫
{f≥1}

( n
√
f − 1)dλ+

∫
{0<f<1}

(1− n
√
f)dλ

)
,

where we drop the case where f = 0, since both are equal to 0 and give us 0 integral. For the
left integral, we have

| n
√
f − 1| ≤ n

√
f ≤ f

on the domain {f ≥ 1}, and so we can use the dominated convergence theorem to write this as

lim
n→∞

∫
{f≥1}

( n
√
f − 1)dλ = 0.

On the right, we have

|1− n
√
f | ≤ 1,

on the domain {0 < f < 1} ⊂ [0, 1], which is integrable, and so therefore the dominated
convergence theorem again gives us

lim
n→∞

∫
{f<1}

(1− n
√
f)dλ = 0.
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Hence, we have

lim
n→∞

∫
[0,1]
| n
√
f − χf 6=0|dλ = 0,

and so it converges in L1 to 1.
�

Problem 29. Suppose (X,M, µ) is a measure space and fn → f in measure and gn → g in
measure. Show that

(1) |fn| → |f | in measure.
(2) fn + gn → f + g in measure.
(3) fngn → fg if µ(X) <∞ but not necessarily if µ(X) =∞.

Proof. (1) We want to show that for all ε > 0,

µ({||fn| − |f || ≥ ε})→ 0.

Notice that the reverse triangle inequality gives

||fn| − |f || ≤ |fn − f |,
and so we get

{||fn| − |f || ≥ ε} ⊂ {|fn − f | ≥ ε},
and so

µ({||fn| − |f || ≥ ε}) ≤ µ({|fn − f | ≥ ε})→ 0.

Thus, we have convergence in measure.
(2) The triangle inequality gives us, for all ε > 0,

{|fn + gn − f − g| ≥ ε} ⊂ {|fn − f |+ |gn − g| ≥ ε} = {|fn − f | ≥ ε/2} ∪ {|gn − g| ≥ ε/2}.
Since fn → f and gn → g in measure, we have that the measure of both of these on the right
go to 0, and so

µ({|fn + gn − f − g| ≥ ε) ≤ µ({|fn − f | ≥ ε/2}) + µ({|gn − g| ≥ ε/2})→ 0.

Since the choice of ε > 0 was arbitrary, we have fn + gn → f + g in measure.
(3)

Remark. Solution adapted from the old class notes.
Since µ(X) <∞, we can write

X =

∞⋃
n=1

{|f | ≤ n},

The continuity of measure gives

∞ > µ(X) = lim
n→∞

µ({|f | ≤ n}),

and so therefore we have that the tails must go to 0; that is,

lim
n→∞

µ({|f | > n}) = 0.

Hence, for all ζ > 0, we can choose M1 sufficiently large so that we get

µ({|f | > M1}) < ζ.

We can do an analogous argument for |g|. Taking M = max(M1,M2), we have that these
functions are bounded by M outside sets of arbitrarily small measure.

We can write

fngn − fg = (fn − f)(gn − g) + f(gn − g) + g(fn − f).
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This gives us that

{|fngn − fg| ≥ ε} ⊂ {|fn − f ||gn − g| ≥ ε/3} ∪ {|f ||gn − g| ≥ ε/3} ∪ {|g||fn − f | ≥ ε/3}.

Notice as well that

{|fn − f ||gn − g| ≥ ε/3} ⊂ {|fn − f | ≥
√
ε/3} ∪ {|gn − g| ≥

√
ε/3},

and since these converge in measure we have that this goes to 0 as n → ∞. So without loss
of generality, we can take this term to be 0. For the remaining terms, we can use the fact we
derived earlier. Choose ζ > 0. Let F1 be the set where f is bounded by M and F2 be the set
where g is bounded by M , where M is chosen such that µ(FCi ) < ζ/2 for i ∈ {1, 2}. Then we
have

{|f ||gn − g| ≥ ε/3} ⊂ {|gn − g| ≥ ε/3M} ∪ FC1 ,

{|g||fn − f | ≥ ε/3} ⊂ {|fn − f | ≥ ε/3M} ∪ FC2 ,
and so chaining all these together and using the fact that fn → f and gn → g in measure, we
get

lim
n→∞

µ({|fngn − fg| ≥ ε}) ≤ ζ.

Since the choice of ζ > 0 was arbitrary, we can let ζ → 0. Since ε was arbitrary, we get that it
works for all ε > 0. Hence, it converges in measure.

If we assume µ(X) =∞, we do not necessarily have that these functions are bounded. Take
fn(x) = x2 +(1/n)χ(n,n+1), gn(x) = (1/n)χ(n,n+1). We have gn(x)→ 0, fn(x)→ x2 in measure,
and for x ∈ (n, n+ 1), n > 1,

|fngn − fg| = x2(1/n) + (1/n2) > n+ 1/n2 > 1.

So we do not have convergence in measure, since µ({|fngn − fg| ≥ 1} = 1 for all n > 1.
�

Problem 30. Suppose (X,M, µ) is a measure space and fn → f in measure.

(1) Show that if fn ≥ 0 everywhere, then
∫
f ≤ lim inf

∫
fn.

(2) Suppose |fn| ≤ g ∈ L1. Prove that
∫
f = lim

∫
fn and fn → f in L1.

Proof. (1) Fatou’s Lemma gives ∫
lim inf fn ≤ lim inf

∫
fn,

since fn ≥ 0. Thus, we can construct a subsequence fnj → lim inf fn, and so we get∫
lim
j
fnj =

∫
lim inf fn ≤ lim inf

∫
fn.

Now, since fn → f in measure, we have fnj → f in measure as well, so we can construct a
subsequence fnjk → f almost everywhere. Hence, we have∫

f =

∫
lim
k
fnjk =

∫
lim
j
fnj ≤ lim inf

∫
fn.

(2) It suffices to do this for real valued functions, since if fn → f in measure, we have

|fn − f | ≤ |Re(fn)− Re(f)|+ |Im(fn)− Im(f)| ≤ 2|fn − f |,

and so fn → f in measure if and only if Re(fn) → Re(f) and Im(fn) → Im(f) converge in
measure, and so we can consider both separately.
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If |fn| ≤ g ∈ L1, we have fn ≤ g and −fn ≤ g, or in other words, 0 ≤ g− fn and 0 ≤ g+ fn.
Using (1), we get∫

g −
∫
f =

∫
(g − f) ≤ lim inf

∫
(g − fn) =

∫
g − lim sup

∫
fn,

and ∫
g +

∫
f =

∫
(g + f) ≤ lim inf

∫
(g + fn) =

∫
g + lim inf

∫
fn.

Since g ∈ L1, we can subtract it from both sides and rearrange terms to get

lim sup

∫
fn ≤

∫
f ≤ lim inf

∫
fn,

or that

lim

∫
fn =

∫
f.

To see that fn → f in L1, we need to show that
∫
|fn − f | → 0. Notice that fn → f in

measure implies |fn − f | → 0 in measure as well, and so we can use this and h = g + |f | ≥
|fn|+ |f | ≥ |fn − f | to get that, by what we’ve just shown,

lim

∫
|fn − f | =

∫
0 = 0.

Hence, fn → f in L1.
�
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James Marshall Reber, ID: 500409166 Math 6211, Homework 7

Remark. Thomas O’Hare was a collaborator.

Problem 31. Suppose f : R2 → R is such that each x-section fx is Borel measurable and fy is
continuous. Show that f is Borel measurable.

Proof.

Remark. Followed the solution given in
https://math.stackexchange.com/questions/647235/counterexample-to-measurable-in-each-variable-
separately-implies-measurable
which also matches closely the hint given by Stefan in recitation.

We define a sequence of functions fn(x, y) : R2 → R for x ∈ [i/n, (i+ 1)/n), i ∈ Z by

fn(x, y) = f

(
i

n
, y

)
.

Fix ε > 0. Since we have fy is continuous, we have that at each x = i/n it’s continuous, and so we
can find a δ such that ∣∣∣∣x− i

n

∣∣∣∣ < δ =⇒
∣∣∣∣f(x, y)− f

(
i

n
, y

)∣∣∣∣ < ε.

So, for any n > 1/δ, any fixed (x, y) ∈ R2 where x ∈ [i/n, (i+ 1)/n), we get∣∣∣∣x− i

n

∣∣∣∣ < 1

n
< δ,

so

|fn(x, y)− f(x, y)| =
∣∣∣∣f ( in, y

)
− f(x, y)

∣∣∣∣ < ε.

Since ε fixed was arbitrary, we get that fn → f pointwise. We then need to check that fn is
measurable; that is, {fn > a} is measurable for each a ∈ R. But notice that

{fn > a} =
⋃
i∈Z

([
i

n
,
i+ 1

n

)
×
{
y ∈ R : f

(
i

n
, y

)
> a

})
,

which is a union of measurable sets, since x-sections are measurable, and so {fn > a} is measurable.
Hence, we have that f is a limit of measurable functions, and so it’s measurable. �

Problem 32. Suppose (X,M) and (Y,N ) are measurable spaces and (En) ⊂M×N . Prove the
following assertions about x-sections.

(1) [⋃
En

]
x

=
⋃

(En)x,

(2) [⋂
En

]
x

=
⋂

(En)x,

(3) (Em − En)x = (Em)x − (En)x,
(4) χEn(x, y) = χ(En)x(y) for all x ∈ X and y ∈ Y .

Proof. (1) Recall that we define[⋃
En

]
x

=
{
y ∈ Y : (x, y) ∈

⋃
En

}
.
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Take y ∈ {y ∈ Y : (x, y) ∈
⋃
En}. Then we have (x, y) ∈

⋃
En, or in other words

(x, y) ∈ En for some n. But this implies that y ∈
⋃
{y ∈ Y : (x, y) ∈ En} =

⋃
(En)x.

Hence we have [⋃
En

]
x
⊂
⋃

(En)x.

Now take y ∈
⋃

(En)x. By definition, we have (x, y) ∈ En for some n, but this says
(x, y) ∈

⋃
En, or y ∈ {y ∈ Y : (x, y) ∈

⋃
En}. Hence, we have⋃

(En)x ⊂
[⋃

En

]
x
,

and so we have equality.
(2) Let y ∈ [

⋂
En]x. Then we have (x, y) ∈

⋂
En, which says that (x, y) ∈ En for all n, or

y ∈
⋂
{y ∈ Y : (x, y) ∈ En}. Hence,[⋂

En

]
x
⊂
⋂

(En)x.

Now, take y ∈
⋂

(En)x. Then again, for all n we have (x, y) ∈ En, which tells us that
(x, y) ∈

⋂
En. So we get ⋂

(En)x ⊂
[⋂

En

]
x
.

Thus, we have equality.
(3) Take y ∈ (Em−En)x = {y : (x, y) ∈ Em−En}. Then we have that (x, y) ∈ Em, (x, y) /∈ En,

so we have that y ∈ (Em)x ∩ ((En)x)C = (Em)x − (En)x, or (Em −En)x ⊂ (Em)x − (En)x.
Taking y ∈ (Em)x − (En)x = {y : (x, y) ∈ Em} ∩ {y : (x, y) /∈ Em}, we have y is such
that (x, y) ∈ Em and (x, y) /∈ En, which tells us that (x, y) ∈ Em −En, or y ∈ (Em −En)x.
Hence, we have equality.

(4) Assume χEn(x, y) = 1. Then we have that (x, y) ∈ En, and so we get y ∈ (En)x, which
implies that χ(En)x(y) = 1. Assume χEn(x, y) = 0. Then we have (x, y) /∈ En, or y /∈ (En)x,
and so χ(En)x(y) = 0. Hence, χEn(x, y) = χ(En)x(y).

�

Problem 33.

(1) Let X = Y = [0, 1], M = N = B[0,1], µ = λ Lebesgue measure, and ν counting measure.
Let ∆ = {(x, x) : x ∈ [0, 1]} be the diagonal. Prove that∫ ∫

χ∆dµdν,∫ ∫
χ∆dνdµ,

and ∫
χ∆d(µ× ν)

are all unequal.
(2) Let X = Y = N, M = N = P(N), and µ = ν counting measure. Define

f(m,n) =


1 if m = n,

−1 if m = n+ 1

0 otherwise.

Prove that ∫
|f |d(µ× ν) =∞
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and ∫ ∫
fdµdν

and ∫ ∫
fdνdµ

both exist and are unequal.

Proof.

(1) We have ∆ ⊂ [0, 1]2 is closed, since it is closed under sequential limits, and so ∆ ∈ B[0,1]2 .
By a proposition from class, we have that this tells us that ∆ ∈ B[0,1] × B[0,1], and so we
can calculate ∫

χ∆d(µ× ν) = (µ× ν)(∆).

Notice that the outer measure construction gives us

(µ× ν)(∆) = inf

{ ∞∑
n=1

µ(An)ν(Bn) : ∆ ⊂
∞⋃
n=1

(An ×Bn), An ∈M, Bn ∈ N .

}
Observe as well that for any such cover, we have

∆ ⊂
∞⋃
n=1

(An ×Bn).

Since ∆ = {(x, x) : x ∈ [0, 1]}, we get that this is the same as

[0, 1] ⊂
∞⋃
n=1

(An ∩Bn).

Since An, Bn ⊂ [0, 1], taking the Lebesgue measure of both sides gives

λ([0, 1]) = 1 ≤
∞∑
n=1

λ(An ∩Bn).

This implies that, for some N , we have that

λ(AN ∩BN ) > 0 =⇒ λ(AN ) > 0, λ(BN ) > 0.

Recall that λ(BN ) > 0 implies that ν(BN ) = ∞, since we have shown that BN fi-
nite/countable implies λ(BN ) = 0. So, this tells us that for all possible covers of ∆,
we must have that there is an N such that

(µ× ν)(AN ×BN ) =∞.
Hence, we have ∫

χ∆d(µ× ν) = (µ× ν)(∆) =∞.

Now fix some x ∈ X. Then we have∫
Y
χ∆(x, y)dν(y) = ν({x}) = 1,

and so ∫
X

∫
Y
χ∆(x, y)dν(y)dµ(x) =

∫
X
dµ(x) = µ([0, 1]) = 1.

Finally, fix some y ∈ Y . Then we have∫
X
χ∆(x, y)dµ(x) = µ({y}) = 0,
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and so ∫
Y

∫
X
χ∆(x, y)dµ(x)dν(y) =

∫
Y

0dν(y) = 0.

So we have they are all unequal.

Remark. Throughout the next two parts, I use the fact that integrating with counting
measures gives sums. This can be seen by setting ν to be the counting measure and noticing∫

N
f(x)dν(x) =

∞∑
n=1

∫
{n}

f(x)dν(x) =
∞∑
n=1

f(n),

since N =
⊔∞
n=1{n}.

(2) We first show that ∫
|f |d(µ× ν) =∞.

Notice that for sets U, V ⊂ N, we have (µ× ν)(U × V ) = µ(U)ν(V ), since it’s just measure
the sizes of each set. We then write

E =

∞⋃
n=1

{(n, n)} ∪ {(n, n+ 1)},

and this is such that |f | = χE . Hence, we see∫
|f |d(µ× ν) = (µ× ν)(E) =

∞∑
n=1

2 =∞.

Next, we want to calculate
∫ ∫

fdµdν and
∫ ∫

fdνdµ. For the first, we write it as∫
Y

∫
X
f(x, y)dµ(x)dν(y).

Fix y ∈ Y = {1, 2, . . .}, then we have∫
X
f(x, y)dµ(x) = f(y, y) + f(y + 1, y) = 0.

Hence, we get ∫
Y

∫
X
f(x, y)dµ(x)dν(y) =

∞∑
y=1

0 = 0.

Now, fix x ∈ X = {1, 2, . . .}. Then we have∫
Y
f(x, y)dν(y) = f(x, x) + f(x, x− 1) =

{
1 if x = 1

0 otherwise,

since if x = 1 there is no y = x− 1 = 0 ∈ {1, 2, . . .}, and so we just have f(1, 1) = 1. So we
can write this as ∫

X

∫
Y
f(x, y)dν(y)dµ(x) =

∞∑
x=1

∞∑
y=1

f(x, y) = 1.

We have that these are not equal.

�

Problem 34. Show that the conclusions of the Fubini and Tonelli Theorems hold when (X,M, µ)
is an arbitrary measure space (not necessarily σ-finite) and Y is a countable set, N = P(Y ), and
ν is counting measure.
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Proof. We show first that Tonelli’s theorem holds. That is, we want to show for f ∈ L+(X ×
Y,M×N ),

(1)

x 7→
∫
Y
fxdν

is M-measurable and

y 7→
∫
X
fydµ

is N -measurable,
(2) ∫

X×Y
fd(µ× ν) =

∫
X

[∫
Y
fxdν(y)

]
dµ(x) =

∫
Y

[∫
X
fydµ(x)

]
dν(y).

Let’s first show it for characteristic functions. Let f = χE , E ∈M×N . We wish to show that

x 7→
∫
Y
f(x, y)dν(y) = ν(Ex)

is M measurable. Notice that we can write this as

ν(Ex) =
∑
y∈Y

χEy(x)ν({y}) =
∑
y∈Y

χEy(x).

We have that Ey is a measurable set for each y, so χEy is a measurable function for each y. Moreover,
since Y is countable, we get that this is a countable sum of measurable functions, and so measurable
(we have that finite sums of measurable functions are measurable, and limit of measurable functions
are measurable, so the countable sum of measurable functions will be measurable). Hence, ν(Ex)
is measurable.

Clearly, we will have

y 7→ µ(Ey).

is measurable, since N = P(Y ), and so every set is measurable. So (1) holds.
For (2), notice that we can write

E =
⊔
y∈Y

(Ey × {y}),

which is a countable union. Using this and the fact that Y is countable, we get∫
X×Y

fd(µ× ν) = (µ× ν)(E) = (µ× ν)

⊔
y∈Y

(Ey × {y})

 =
∑
y∈Y

(µ× ν)(Ey × {y}) =
∑
y∈Y

µ(Ey)

=
∑
y∈Y

∫
X
χEy(x)dµ(x) =

∫
Y

(∫
X
fydµ(x)

)
dν(y).

We see that Theorem 2.15 gives us∑
y∈Y

∫
X
χEy(x)dµ(x) =

∫
X

∑
y∈Y

χEy(x)dµ(x) =

∫
X

(∫
Y
fx(y)dν(y)

)
dµ(x).

Hence, we have (2).
We now follow the proof of Theorem 2.37. Since we have it for characteristic functions, we

get that it holds for nonnegative simple functions. Take f ∈ L+(µ× ν). Take ψn ⊂ SF+ such that
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ψn ↗ f as in Theorem 2.10. Then MCT gives that the corresponding gn = (ψn)y and hn = (ψn)x
converge to g = fy and h = fx, and they are such that∫

X
fy(x)dµ(x) = lim

∫
gn(x)dµ(x) = lim

∫
ψnd(µ× ν) =

∫
fd(µ× ν),∫

Y
fx(y)dν(y) = lim

∫
hn(y)dν(y) = lim

∫
ψnd(µ× ν) =

∫
fd(µ× ν).

Hence, we have that Tonelli’s theorem holds in this scenario.
Since Tonelli’s theorem holds, we get that Fubini’s theorem holds, since we can apply Tonelli to

the positive and negative part of the real and imaginary parts and then use linearity. Hence, we
have that it holds for f ∈ L1(µ× ν).

�

Problem 35. Suppose f, g ∈ L1(R, λ).

(1) Show that y 7→ f(x− y) is measurable for all x ∈ R and in L1(R, λ) for a.e. x ∈ R.
(2) Define the convolution of f and g by

(f ∗ g)(x) :=

∫
R
f(x− y)g(y)dλ.

Show that f ∗ g ∈ L1(R, λ).
(3) Show that L1(R, λ) is a commutative C-algebra under ·,+, ∗.
(4) Show that ∫

R
|f ∗ g| ≤

∫
R
|f |
∫
R
|g|,

i.e. || · ||1 is submultiplicative.

Proof.

(1) Fix x ∈ R. Then we have that f(x − y) =: h(y) = f ◦ t, where t is the map t(y) = x − y.
Since t is continuous for fixed x, we get that h is the composition of a (Borel) measurable
function with a continuous function, and so is measurable (while f is not necessarily Borel,
we can redefine it using Proposition 2.12 to get that it’s equal almost everywhere to a
Borel measurable function and so we get that it’s Borel measurable almost everywhere,
which is sufficient for all that comes). Since the choice of x was arbitrary, we get that it
applies for all x ∈ R.

Remark. I realize that this part is a typo, but I prove the correct statement in (2) anyways,
so I decided to leave it.

Using Property (7) from the class notes, we have∫
h(y)dλ =

∫
f(x− y)dλ =

∫
f(y)dλ <∞,

so h(y) = f(x− y) ∈ L1(R, λ).
(2) We first need to show that f(x − y)g(y) ∈ L1(R, λ) for almost every x. We first assume

f, g ≥ 0. Then we have that∫
(f ∗ g)(x)dλ(x) =

∫ (∫
f(x− y)g(y)dλ(y)

)
dλ(x)

is such that Tonelli’s theorem applies, since products of measurable functions are measurable
and these are nonnegative. Thus, using the translation invariance of the Lebesgue (found
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on pg. 74 of Folland), we have∫ (∫
f(x− y)g(y)dλ(y)

)
dλ(x) =

∫ (∫
f(x− y)g(y)dλ(x)

)
dλ(y) =

∫
g(y)

(∫
f(x− y)dλ(x)

)
dλ(y)

=

∫
g(y)

(∫
f(x)dλ(x)

)
dλ(y) =

(∫
g(y)dλ(y)

)(∫
f(x)dλ(x)

)
<∞.

For general f, g integrable, this gives us∫ (∫
|f(x− y)||g(y)|dλ(y)

)
dλ(x) =

∫ (∫
|f(x− y)||g(y)|dλ(x)

)
dλ(y)

=

(∫
|f(x)|dλ(x)

)(∫
|g(x)|dλ(x)

)
<∞,

and so f(x − y)g(y) ∈ L1 for a.e. x ∈ R by Tonelli/Fubini. Furthermore, we also see that
f ∗ g ∈ L1, since

|(f ∗ g)(x)| =
∣∣∣∣∫ f(x− y)g(y)dλ(y)

∣∣∣∣ ≤ ∫ |f(x− y)||g(y)|dλ(y)

for a.e. x ∈ R, and so by Proposition 2.22 we have∫
|(f ∗ g)(x)|dλ(x) =

∫ ∣∣∣∣∫ f(x− y)g(y)dλ(y)

∣∣∣∣ dλ(x) ≤
∫ (∫

|f(x− y)||g(y)|dλ(y)

)
dλ(x) <∞

(3) We have that L1 is a Banach space from the recitation notes, hence a vector space, and so
it suffices to show that it satisfies left and right distributivity, compatibility with scalars,
and commutativity. Throughout, let f, g, h ∈ L1, a, b ∈ C.

We first need to check left distributivity; we have

((f + g) ∗ h)(x) =

∫
(f + g)(x− y)h(y)dλ =

∫
f(x− y)h(y)dλ+

∫
g(x− y)h(y)dλ

= (f ∗ h)(x) + (g ∗ h)(x).

We have right distributivity as well;

(f ∗ (g + h))(x) =

∫
f(x− y)(g + h)(y)dλ =

∫
f(x− y)g(y)dλ+

∫
f(x− y)h(y)dλ

= (f ∗ g)(x) + (f ∗ h)(x).

Finally, we have compatibility with scalars;

(af) ∗ (bg)(x) =

∫
af(x− y)bg(y)dλ = ab

∫
f(x− y)g(y)dλ = (ab)(f ∗ g)(x).

Thus, we have that L1 is a C-algebra. To get that it’s commutative, we need to show
(f ∗ g)(x) = (g ∗ f)(x). But this is clear, since we have

(f ∗ g)(x) =

∫
f(x− y)g(y)dλ(y),

and doing a change of variables with u = x− y, we get∫
f(u)g(x− u)dλ(u) = (g ∗ f)(x).

Notice that the change of variable is valid by Theorem 2.47. So we get that L1 is a
commutative C-algebra.
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(4) Notice that in (2) we established that∫
|f ∗ g|dλ =

∫ ∣∣∣∣∫ f(x− y)g(y)

∣∣∣∣ dλ(y)dλ(x) ≤
∫ (∫

|f(x− y)||g(y)|dλ(y)

)
d(λ(x))

=

∫
(|f | ∗ |g|)dλ =

(∫
|f |dλ

)(∫
|g|dλ

)
,

so we have the desired inequality.

�
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James Marshall Reber, ID: 500409166 Math 6211, Homework 8

Remark. Thomas O’Hare was a collaborator for this homework.

Problem 36. For f ∈ L1(λn), let M be the Hardy-Littlewood maximal function

(Mf)(x) := sup

{
1

λn(Q)

∫
Q
|f |dλn : Q ∈ C(x)

}
where C(x) is the set of all cubes of finite length which contain x. Define

f(x) :=

{
1

|x|(ln(|x|)2 if |x| ≤ 1
2

0 if |x| > 1
2 .

Show that f ∈ L1(λn) but Mf /∈ L1
loc.

Proof. To see that f ∈ L1(λn), we have∫
fdλ =

∫ 1/2

−1/2

1

|x| ln(|x|)2
dx =

∫ 1/2

0

1

x ln(x)2
dx+

∫ 0

−1/2
− 1

x ln(−x)2
dx.

If we need to careful about this, we can examine the first integral (and similarly for the second
integral) as

lim
a→0+

∫ 1/2

a

dx

x ln(x)2
=

∫ 1/2

0

dx

x ln(x)2
,

and use Riemann integral tricks to evaluate this.
For the first integral, let u = ln(x), then du = (1/x)dx, so we have∫

du

u2
= − 1

ln(x)

∣∣∣∣1/2
0

=
1

ln(2)
.

Similarly, for the second integral, we have

−
∫ 0

−1/2

1

x ln(−x)2dx
.

let u = ln(−x), then du = (−1/x)dx, so∫
1

u2
du = − 1

ln(−x)

∣∣∣∣0
−1/2

=
1

ln(2)
.

Hence, ∫
fdλ =

2

ln(2)
<∞,

so f is in L1(λ).
To see that Mf /∈ L1

loc, we need to show that for some bounded H we have∫
H
Mfdλ =∞.

Take H = [0, 1/4]. Then we have

(Mf)(x) ≥ 1

x

∫ x

0

dt

t ln(t)2
= − 1

x ln(x)
.
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Notice that on [0, 1/4] we have∫ 1/4

0
(Mf)(x)dx ≥

∫ 1/4

0
− dx

x ln(x)
= − ln(ln(|x|))

∣∣∣∣1/4
0

=∞.

So Mf is not locally integrable. �

Problem 37. Suppose E ⊂ Rn (not assumed to be Borel measurable) and let C be a family of
cubes covering E such that

sup{l(Q) : Q ∈ C} <∞.
Show there exists a sequence (Qk) ⊂ C of disjoint cubes such that

∞∑
k=1

λn(Qk) ≥ 5−n(λn)∗(E).

Remark. Follows the proof given in Wheeden and Zygmund, “Integral and Measure.”

Proof. Let t∗1 = sup{l(Q) : Q ∈ C}. Then we can choose Q1 such that Q1 > (1/2)t∗1. Write
C = C2 ∪ C′2, where we have C2 is the collection of cubes which are disjoint from Q1 and C′2 is the

collection of cubes which intersect Q1. Let Q̂1 be the cube which is concenteric with Q1 and has

edge length 5l(Q1). Hence, since 2l(Q1) > t∗1, we have that every cube in C′2 is contained in Q̂1.
Continue this algorithm, letting t∗j = sup{l(Q) : Q ∈ Cj}, choosing Qj ∈ Cj where l(Qj) >

1
2 t
∗
j ,

and we split Cj = Cj+1 ∪ C′j+1, where the former contains all the cubes disjoint from Qj and the
latter contains all the cubes which intersect Qj . Notice that we have t∗j ≥ t∗j+1 by construction,
and moreover for each j, we have Q1, . . . , Qj are disjoint from eachother and every other cube in

Cj+1, and every cube in C′j+1 is contained in the cube Q̂j . We have that the process terminates if
Cj+1 is empty.

We now break it up into cases. Consider the case where we have Cj+1 is empty for some j. Since

C = Cj+1 ∪ C′j+1 ∪ · · · ∪ C′2,

and E is covered by the cubes in C, it follows that E is covered by the cubes in C′j+1 ∪ · · · ∪ C′2.

Hence, since Q̂j contains all cubes in the respective collection, we get

(λn)∗(E) ≤
j∑
i=1

λn(Q̂i) = 5n
j∑
i=1

λn(Qi).

Hence, we have

5−n(λn)∗(E) ≤
j∑
i=1

λn(Qi).

On the other hand, we have it does not terminate at some point. Since t∗1 ≥ t∗2 ≥ · · · , we either
have that there is a δ > 0 such that t∗j ≥ δ for all j or t∗j → 0. In the first case, we have that

l(Qj) ≥ (1/2)δ for all j, and so we get

∞∑
i=1

λn(Qi) =∞.

Hence, we win.

In the second case, we need to show that every cube in C is contained in
⋃
j Q̂j . This follows,

since if a cube wasn’t contained in this, we would have that there would be a cube Q such that
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it does not intersect any Qj , and so l(Q) ≤ t∗j for every j, and hence would have length 0, a
contradiction. Hence, we have that

5n
∞∑
i=1

λn(Qi) ≥ (λn)∗(E),

as desired. �

Problem 38. Let (X, τ) be a topological space. A net (xi)i∈Λ is called universal if, for every
subset Y ⊂ X, (xi) is either eventually in Y or eventually in Y c.

(1) Show that every net has a universal subnet. (Optional)
(2) Show that (X, τ) is compact if and only if every universal net converges.

Remark. The solution to (1) was inspired by Howes’ “Modern Analysis and Topology.”

Proof. (1) Let C = {A ⊂ X : x is eventually in X}. Notice that C has the property that, if x
is eventually in A ∈ C, x is eventually in B ∈ C, then we have that A ∩B = ∅, since there
is an N such for all n ≥ N , xn ∈ A ∩ B. Notice that this gives us that C has the finite
intersection property from Homework 1; that is, if {Ai}ni=1 ⊂ C is a finite collection of
sets, we have

n⋂
i=1

Ai = ∅

by the above remark. Notice as well that x is frequently in every member of C. Notice that
C is a directed set; that is, it is equipped with the obvious binary relation ⊂, and we have
that, for every A,B ∈ C, there is a C ∈ C (can take it to be X as a whole) such that A ⊂ C
and B ⊂ C.

Examine now P(X), and take S ⊂ P(X) to be the set of collections of sets which contain
C and satisfy the finite intersection property and the fact that x is frequently in each member
of the collection. We can order S via inclusion (⊂). If we take a chain {Kα} in S under
this ordering, then we want to see that

⋃
Kα also has these properties. First, it’s clear that

C is in
⋃
Kα, since it is contained in each Kα. Next, if A,B ∈

⋃
Kα, we have that there is

an α0 such that A,B ∈ Kα0 , and so A ∩ B = ∅. Finally, taking a set A ∈
⋃
Kα, we have

that A ∈ Kα0 for some α0, and so (xi) is frequently in A. Hence,
⋃
Kα ∈ S. We can then

use Zorn’s Lemma to get that there is a maximal collection containing C and which has the
two properties. Call this maximal collection T .

Take A ⊂ X. We wish to show that A ∈ T or Ac ∈ T . Assume for contradiction that
A /∈ T and Ac /∈ T . Since A /∈ T , we must have that there is a B ∈ T such that A∩B = ∅.
However, we have B ⊂ Ac, and so since B ∈ T we have that x is frequently in Ac. Taking
any C ∈ T , we notice that C ∩B ⊂ C ∩Ac by assumption, and hence since C ∩B 6= ∅ we
must have that C ∩ Ac 6= ∅. Thus, Ac ⊂ X is such that it has the desired two properties,
and so we get a contradiction on the maximality of T . Hence, either A ∈ T or Ac ∈ T .

Thus, x is frequently in each member of T , and we wish to construct a subnet such that
it is eventually in every member of T . We can make a space E = {(i, A) ∈ Λ × T : xi ∈
T}. Using the finite intersection property, this is a directed set via the natural choice; if
(i0, A0), (i1, A1) ∈ E, then (i0, A0) ≤ (i1, A1) if i0 ≤ i1 and A1 ⊂ A0. Notice that for all
(i0, A0), (i1, A1) ∈ E, we have that there is a (i2, A2) such that (i0, A0) ≤ (i2, A2) and
(i1, A1) ≤ (i2, A2); this follows by the fact that A0 ∩ A1 6= ∅, A0 ∩ A1 ∈ T , and so x is
frequently in A0 ∩ A1 as well. Define a function f : E → Λ by f(i, A) = i. We need to
check that this gives us a subnet; that is, it’s monotone and for every i1 ∈ Λ, there exists
a (i0, A0) ∈ E such that f(i0, A0) ≥ i (Wikipedia calls this cofinal in the image). To
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see monotonicity, if (i0, A0) ≤ (i1, A1), then we have f(i0, A0) = i0 ≤ i1 = f(i1, A1). The
cofinal property follows immediately from definition.

So we have that {y(i,A) : A ∈ E} is a subnet defined by y(i,A) = xf(i,A). If we establish
that it’s eventually in each member of T , then by the remark earlier we see that since for
all A ⊂ X, either A ∈ T or Ac ∈ T , we have that the subnet is eventually in either A or
Ac, and so is universal.

Take A0 ∈ T . We have that (xi) is frequently in A by one of our two assumptions
on T . Hence, there exists a i0 ∈ Λ such that xi0 ∈ A0, and so (i0, A0) ∈ E. Taking
(i1, A1) ∈ E arbitrarily such that (i0, A0) ≤ (i1, A1), we have that i0 ≤ i1 and A1 ⊂ A0, so
y(i1,A1) = xi1 ∈ A1 ⊂ A0, and so the subnet is eventually in A0. Hence, we have found a
subnet which is either eventually in A or Ac for every A ⊂ X.

(2) ( =⇒ ) If (X, τ) is compact, then by the theorem from the notes we have that this is
equivalent to every net having a cluster point and also equivalent to every net having a
convergent subnet. We need to show that every universal net converges. Let (xi) be a
universal net on (X, τ), and let x ∈ X be a point at which it clusters. Then for every
neighborhood V such that x ∈ V , we have that (xi) is frequently in V . Since (xi) is
universal, we must have that it is eventually in either V or V c. Since it is frequently in V ,
we cannot have that it’s eventually in V c, and so it must eventually be in V . Since this
applies for all neighborhoods of x, we have that (xi) converges to x.
(⇐= ) Assume that every universal net converges. By (1), every net has a universal subnet,
and so we have that every net has a subnet which converges. By the equivalence established
in the notes, this tells us that X is compact.

�

Problem 39. Suppose (X, τ) is a locally compact Hausdorff topological space, and suppose K ⊂ X
is a non-empty compact set.

(1) Suppose K ⊂ U , where K compact and U open. Show there is a continuous function
f : X → [0, 1] such that f |K = 1 and f |Uc = 0 (in other words, prove the LCH version of
Urysohn’s Lemma).

(2) Suppose f : K → C is continuous. Show there is a continuous function F : X → C such
that F |K = f (in other words, prove the LCH version of the Tietze Extension Theorem).

Proof.

(1) It’s clear that a subset of a Hausdorff space is Hausdorff (if X Hausdorff, A ⊂ X, then for
every x 6= y in A we can find open subsets U, V in X such that x ∈ U , y ∈ V , U ∩V = ∅. In
the relative topology, we have U ∩A, V ∩A are open, they are still disjoint, and x ∈ U ∩A,
y ∈ V ∩A). Moreover, being locally compact means that for all x ∈ X, there is an open U
such that x ∈ U and U is compact.
Step 1: For each x ∈ K, we would like to find Ux such that x ∈ Ux ⊂ Ux ⊂ U . Notice
that we can find x ∈ Vx open where Vx is compact. Since U may not be compact, we set
V := U ∩ Vx ⊂ U . Notice that V is compact and V open. We have V − V is a closed set
of V , and since V is compact this tells us that V − V is compact. For each y ∈ V − V , we
can find disjoint open sets Wy, Ey ⊂ V such that x ∈ Wy, y ∈ Ey. Since V − V compact,

V − V ⊂
⋃
y∈V−V Ey, we can find a finite subcover, V − V ⊂

⋃n
i=1Ei. Corresponding to

each Ei is a Wi, and so setting W =
⋂n
i=1Wi, E =

⋃n
i=1Ei, we have W ∩ E = ∅, W and

E are open relative to V , and x ∈W , V − V ⊂ E. Notice as well

W ⊂ V − E ⊂ V − (V − V ) = V ∩ (V ∩ V c)c = V ∩ (V
c ∪ V ) = V ∩ V = V,

so that W is open in X. Moreover, since V ∩ Ec is closed,

W ⊂ V − E ⊂ V,
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hence W is compact subset of V . So letting Ux = W , we have that for each x ∈ K, we can
find a Ux such that

K ⊂ Ux ⊂ Ux ⊂ U.

Step 2: By Step 1, we have that

K ⊂
⋃
x∈U

Ux ⊂ U,

where Ux is such that K ⊂ Ux ⊂ Ux ⊂ U . Since K is compact, we can choose a finite
subcover; that is, we have

K ⊂
n⋃
i=1

Ui ⊂ U,

where Ui is such that Ui is compact. Set V :=
⋃n
i=1 Ui. Notice that V =

⋃n
i=1 Ui. So we

have K ⊂ V ⊂ V ⊂ U , V is open and V is compact. Since V is closed and compact, as well
as Hausdorff, we have that it’s normal. Furthermore, K compact implies it’s closed, and
K ∩ (V ∩V c) = ∅, so Urysohn’s Lemma from the notes applies to give us a f ∈ C(V , [0, 1])

such that f |K = 1 and f |V ∩V c = 0. We set f = 0 on V
c

to extend it to all of X.
We now need to show that f is continuous. Take E ⊂ [0, 1] closed. If 0 ∈ E, we get that

f−1(E) = (f |V )−1(E)∪V c. Since V open, V c closed, and since f continuous on V we have
that (f |V )−1(E) is closed as well, and finite unions of closed sets are closed. Hence, in this
case, it pulls back closed sets to closed sets. If 0 /∈ E, we have that f−1(E) = (f |V )−1(E),
which is closed since f is continuous on this domain. Hence, it pulls back closed sets to
closed sets, and so is continuous.

(2) From (1), we have that there is a U open such that K ⊂ U ⊂ U , and U is compact. Hence,
U is a normal space. We can use the Tietze Extension Theorem from the notes in this
case, noting that K is closed, to find a F ∈ C(U,C) where F |K = f . We now use a bump
function type of argument to extend this to the whole space. We can find g : X → [0, 1]
continuous such that g|K = 1 and g|Uc = 0 by (1) (that is, the LCH Urysohn’s Lemma).
Define

F̂ (x) :=

{
F (x)g(x) if x ∈ U
0 otherwise.

We would like to then check that this is continuous. Notice that a product of continuous

functions is continuous, and so F̂ is continuous on U . Take E ⊂ C closed. We have

F̂−1(E) = F̂−1([E ∩ {0}] t [E ∩ {0}c]) = F̂−1(E ∩ {0}) t F̂−1(E ∩ {0}c).

Notice that

F̂−1(E ∩ {0}) =

{
(F · g)−1({0}) if E ∩ {0} 6= ∅
∅ otherwise

F̂−1(E − {0}) = F̂−1(E) ∩ U =
(
F̂ |U

)−1
(E),

so the preimage is a union of two closed sets, which is closed. Hence, F̂ is continuous, and

is such that F̂ |K is f .

�

Problem 40. Suppose (X, τ) is a locally compact topological space and (fn) is a sequence of
continuous C-valued functions on X. Show that the following are equivalent:
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(1) There is a continuous function f : X → C such that fn|K → f |K uniformly on every
compact K ⊂ X.

(2) For every compact K ⊂ X, (fn|K) is uniformly Cauchy.

Proof. (1) =⇒ (2): Let K ⊂ X be an arbitrary compact set. Notice that this implies that for all
ε > 0, we have that there is an N such that for all n ≥ N , x ∈ K

|fn(x)− f(x)| < ε.

Fix ε > 0. Then we have that we can find an N such that for all n,m ≥ N , x ∈ K

|fn(x)− f(x)| < ε

2
, |fm(x)− f(x)| < ε

2
.

Notice that this then implies

|fn(x)− fm(x)| = |fn(x)− f(x) + f(x)− fm(x)| ≤ |fn(x)− f(x)|+ |f(x)− fm(x)| < ε

2
+
ε

2
= ε.

Hence, for all ε > 0, we can find an N such that for all n,m ≥ N , x ∈ K, we have

|fn(x)− fm(x)| < ε.

(2) =⇒ (1): Define f(x) := limn→∞ fn(x). We see this is well-defined, since we can take a compact
set K around x and use the fact that (fn|K) is uniformly Cauchy on this. Furthermore, it’s clear
that fn|K → f |K uniformly on every compact K ⊂ X; given some compact subset K ⊂ X, ε > 0,
we have that there is an N such that for all n,m ≥ N , for all x ∈ K,

|fn(x)− fm(x)| < ε,

and so since the norm is continuous we can take the limit as n→∞ to get

|f(x)− fm(x)| ≤ ε.
Since this works for all x ∈ K, all ε > 0, we have uniform convergence. It is a uniform limit of
continuous functions, and so we have that f is continuous on every compact set K ⊂ X.

It remains to show that f is continuous on all of X. That is, we need to show that

lim
n→∞

f(xn) = f(x),

where x = limn→∞ xn. Take the set

E := {xn : n ∈ N} ∪ {x}.
Since X is locally compact, we have that there is an open U such that x ∈ U and U is compact.
Since xn → x, we have that there is an N such that for all n ≥ N , xn ∈ U ⊂ U . Since U is compact,
we have that f is continuous on U , and so we have that limn→∞ f(xn) = f(x), as desired. �
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James Marshall Reber, ID: 500409166 Math 6211, Homework 9

Remark. Thomas O’Hare was a collaborator.

Problem 41. A filter on a set X is a collection F of non-empty subsets of X satisfying

(1) A,B ∈ F implies A ∩B ∈ F , and
(2) A ∈ F and A ⊂ B implies B ∈ F .

Suppose τ is a topology on X. We say a filter converges to x ∈ X if every open neighborhood U
of x lies in F .

(1) Show that A ⊂ X is open if and only if A ∈ F for every filter F that converges to a point
in A.

(2) Show that F and G are filters and F ⊂ G (G is a subfilter of F), then G converges to x
whenever F converges to x.

(3) Suppose (xλ) is a net in X. Let F be the collection of sets A such that (xλ) is eventually
in A. Show that F is a filter. Then show that xλ → x if and only if F converges to x.

Proof. (1) ( =⇒ ) Assume A ⊂ X is open. Let F be a filter which converges to x in A. Then
we have that every open neighborhood of x lies in F , and A is an open neighborhood of x,
so A ∈ F .
( ⇐= ) For every point x ∈ A, take an open neighborhood Ux such that Ux ⊂ A. This is
possible, since A ∈ F , the filter which converges to x, and since every open neighborhood
of x is in F the only way that A ∈ F is if there is an open neighborhood contained in A.
Since we can do this for all x, we have⋃

x∈A
Ux ⊂ A ⊂

⋃
x∈A

Ux,

or in other words, ⋃
x∈A

Ux = A.

Hence, A is open.
(2) If every open neighborhood of x is in F , then this implies that every open neighborhood of

x is in G, and so G converges to x whenever F converges to x.
(3) We first show that A,B ∈ F implies A ∩B ∈ F . If A ∈ F , this implies there is a point λ1

such that, for all t ≥ λ1, we have xt ∈ A. Likewise, B ∈ F implies that there is a λ2 such
that, for all t ≥ λ2, we have xt ∈ B. By assumption, we can find λ′ such that λ′ ≥ λ1 and
λ′ ≥ λ2. Hence, for all t ≥ λ′, we have that xt ∈ A ∩B. So x is eventually in A ∩B.

Now, if A ∈ F , and A ⊂ B, then clearly if (xλ) is eventually in A, it is eventually in B,
so B ∈ F . Finally, F is non-empty, since (xλ) is in X, so X ∈ F .

We now show the if and only if statement.
( =⇒ ) If xλ → x, for all neighborhoods U of x, we have that xλ is eventually in U , so
this in particular holds for all open neighborhoods, and so all open neighborhoods are in
F . Hence, F converges to x.
( ⇐= ) If F converges to x, then for all open neighborhoods U , we have that (xλ) is
eventually in U . For every neighborhood, we have that we can take the interior to get an
open neighborhood about the point, and so (xλ) is eventually in every neighborhood of x,
and so (xλ) converges to x.

�

Problem 42. A filter F is called an ultrafilter if it is not properly contained in any other filter.
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(1) Show that a filter F is an ultrafilter if and only if for every A ⊂ X, we have either A ∈ F
or Ac ∈ F .

(2) Use Zorn’s lemma to prove that every filter is contained in an ultrafilter.

Proof. (1) ( =⇒ ) Let F be an ultrafilter, A ⊂ X. Then if A ∈ F , we win. Otherwise, assume
A /∈ F . We wish to show that Ac ∈ F . If Ac /∈ F , then we can create a bigger filter as
follows: let G be the filter generated by F and Ac. That is, F ⊂ G, Ac ∈ G, and every set
containing Ac ∈ G, G contains B∩E for all E ∈ F , Ac ⊂ B, and G contains all subsets which
contain B ∩ E for E ∈ F , Ac ⊂ B. This is clearly a filter; it’s nonempty since F ⊂ G, we
have that it’s closed under finite intersections by construction, and we have that if E ∈ G,
E ⊂ F , then by construction F ∈ G. Hence, F ⊂ G properly, but this contradicts F being
an ultrafilter, and so we must have had Ac ∈ F .
( ⇐= ) Let F be the filter which for every A ⊂ X, either A ∈ F or Ac ∈ F . Let G be
such that F ⊂ G. We wish to show that G = F . Assume for contradiction it did not; we
have that there is some L ∈ G such that L /∈ F . This implies that Lc ∈ F . However, this
then gives us that L,Lc ∈ G, so ∅ ∈ G, which contradicts G being a filter. Hence, F is not
properly contained in any filter.

(2) We need to create a chain of filters. Let F be a filter on X. If F is an ultrafilter, we
are done. Otherwise, let F0 = F , and since F is not an ultrafilter, it must be properly
contained in some other filter, say F1. Continue this process, creating a chain of filters;

F0 ⊂ F1 ⊂ · · · .
We then want to establish that

F :=
⋃
i

Fi

is also an filter; that is, the chain has an upper bound which is a filter. First, notice that
F is non-trivial, since all the Fi are, and furthermore doesn’t contain any empty subsets of
X. We then show the first condition. Take A,B ∈ F . Then A ∈ Fn, B ∈ Fm. Without
loss of generality, assume n ≥ m. Then A,B ∈ Fn, and we have that A ∩B ∈ Fn ⊂ F . So
the first condition holds.

Next, take A ∈ F . Then we have A ∈ Fn for some n. If B is such that A ⊂ B, then
B ∈ Fn ⊂ F . So the second condition holds as well. Hence, F is a filter. So in the space of
filters on X, every chain has an upper bound which is a filter, say F . Notice that this upper
bound is such that there is no filter G which properly contains F , since this contradicts the
maximality of F . Since we can do this process for any choice of filter G, we have that every
filter is contained in an ultrafilter.

�

Problem 43. Show that the following collections of functions are uniformly dense in the appro-
priate algebras:

(1) For a < b in R, the polynomials R[t] ⊂ C([a, b],R).
(2) For a < b in R, the piecewise linear functions PWL ⊂ C([a, b],R).
(3) For K ⊂ C compact, the polynomials C[z] ⊂ C(K).
(4) For R/Z, the trigonometric polynomials span

{sin(2πnx), cos(2πnx) : n ∈ N ∪ {0}} ⊂ C(R/Z,R).

Remark. We need the following claim throughout (wasn’t sure if we need this, since we covered
something similar in recitation, but I’m leaving it in anyways).

Claim. Let A be a subalgebra of either C(X,R) or C(X,C). The closure of A, denoted A, is still
a subalgebra.
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Proof. Let F = R,C, B = A. We need to show that for all α, β ∈ F , f, g ∈ B, αf + βg ∈ B. Notice
first that f ∈ B implies there is a sequence (fn) ⊂ A such that fn → f . Since αfn ∈ A for all n,
we get αfn → αf ∈ B. So it really suffices to show that for all f, g ∈ B, we have f + g ∈ B. Notice
that f, g ∈ B implies there are (fn) ⊂ A, (gn) ⊂ A such that fn → f , gn → g. Since addition is
continuous and fn + gn ∈ A for all n, we get fn + gn → f + g. Finally, we need to show that for
all f, g ∈ B, fg ∈ B. Let (fn) ⊂ A, (gn) ⊂ A be such that fn → f , gn → g. Notice that

fngn − fg = fn(gn − g) + g(fn − f).

So we have that

||fngn − fg|| ≤ ||fn|| · ||gn − g||+ ||g|| · ||fn − f ||.
Notice that

fn = f + (fn − f),

and so we have

||fn|| ≤ ||f ||+ ||fn − f ||.
Since fn → f , we can choose n sufficiently large so that ||fn − f || ≤ 1, so that

||fn|| ≤ 1 + ||f ||.
Using this, we have

||fngn − fg|| ≤ (1 + ||f ||) · ||gn − g||+ ||g|| · ||fn − f || → 0.

Hence, we get that fngn → fg, and so fg ∈ B. Thus, B is a subalgebra. �

Proof.

(1) We apply the Stone-Weierstrass theorem. Notice that R[t] separates points in [a, b] by
taking p(x) = x ∈ R[t]. Then if x 6= y, we have p(x) = x 6= y = p(y). We then need to
check that R[t] is a subalgebra of C([a, b],R). Notice that if f, g ∈ R[t], then fg ∈ R[t] (the
product of polynomials is a polynomial), and so it suffices to check it is a vector subspace
of C(X,R). Notice that, for α, β ∈ R, f, g ∈ R[t], we have αf + βg ∈ R[t], since scaling a
polynomial is still a polynomial and the sum of polynomials is a polynomial. Hence, the
theorem tells us that R[t] = C([a, b],R), since the constant function is a polynomial, and so
we have that it is uniformly dense.

(2) Let p(x) ∈ C([a, b],R) be some arbitrary continuous function. Partition the interval [a, b]
using the uniform continuity of continuous functions on compact intervals. That is, fix ε > 0.
Then since we are uniformly continuous on [a, b], we can find δ such that |x−y| < δ implies
|p(x)− p(y)| < ε/2. Divide up the interval into n subintervals such that (b− a)/n < δ. Say
we have a = x0 < x1 < · · · < xn = b. Define f to be the piecewise linear function which is
equal to f(xi) = p(xi) for each i = 1, . . . , n, and where for x ∈ (xi, xi+1) we have f is the
line connecting these two points. Then we have that for each x ∈ [a, b], x ∈ [xi, xi+1) for
some i = 1, . . . , n − 1 or x ∈ [xn−1, xn]. Let xi denote the minimum value on the interval.
Thus, we have

|p(x)− f(x)| = |p(x)− f(xi) + f(xi)− f(x)| ≤ |p(x)− f(xi)|+ |f(xi)− f(x)|.
Using the fact that f(xi) = p(xi), we have that this is equal to

|p(x)− p(xi)|+ |f(xi)− f(x)| ≤ |p(xi+1)− p(xi)|+ |f(xi)− f(x)|

= |f(xi+1)− f(xi)|+ |f(xi)− f(x)|.
Now, since |xi+1−xi| < δ by construction, we have that this is bounded above by ε/2+ε/2 =
ε. Since this applied for all x ∈ [a, b], we have that

||f − p|| < ε.
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So PWL = C([a, b],R), since we can approximate functions in C([a, b],R) arbitrarily well
under the uniform norm.

(3) As stated, this problem is not true. Remediating it by throwing in x, we have that it does
hold. To see this, first notice that C is Hausdorff, so K is a compact Hausdorff space, and
we’re examining

C[x, x] ⊂ C(K,C).

We need to check that C[x, x] separates points, it is a subalgebra, and is closed under
complex conjugation. The identity function p(x) = x is in C[x, x], so we have that it
separates points. Next, it’s a subalgebra, since for all α, β ∈ C, f, g ∈ C[x], we have
αf + βg ∈ C[x], and furthermore fg ∈ C[x] (product of polynomials is a polynomial,
scaling and adding polynomials still gives a polynomial). Finally, we need to show that it is
closed under complex conjugation, but this is clear since we’ve thrown in x. Hence, Stone-
Weierstrass applies, and we have that it is uniformly dense since the constant functions are
in C[x, x].

(4) We can interpret this to say that the span of the trigonometric polynomials are dense in
the real-valued functions on R that are periodic with period 2π (the way it’s written is
equivalent, just changing the period to be 1 instead of 2π. I did it this way so I could
use my old Fourier notes). Identifying it this way, we have that it’s a continuous function
f : S1 ∼= [0, 2π)/ ∼→ R, and we note that S1 is compact and Hausdorff under the subspace
topology given by R2. Recall that trig polynomials are functions of the form

c0 +

n∑
k=1

[ak cos(kx) + bk sin(kx)] ,

c0, ai, bi ∈ R. Let A be the space which is the span of all trig polynomials. It’s clear that
this is a vector subspace, since for α, β ∈ R, g, h trig polynomials, we get αg + βh ∈ A.
Next we want to show that products of trig polynomials are trig polynomials. Once we
show that cos(kx) sin(lx), cos(kx) cos(lx), sin(kx) sin(lx) are trig polynomials, we are done
by distributivity. To do this, we use the fact that

eix = cos(x) + i sin(x).

Hence,

e−ix = cos(x)− i sin(x),

eix + e−ix = 2 cos(x)↔ 1

2
(eix + e−ix) = cos(x).

Similarly,
1

2i
(eix − e−ix) = sin(x).

So

cos(kx) sin(lx) =

(
eikx + e−ikx

2

)(
eilx − e−ilx

2i

)
=
ei(k+l)x − ei(k−l)x + e−i(k−l)x − e−i(k+l)x

4i
=

1

2
sin((k + l)x)− 1

2
sin((k − l)x).

So this is a trigonometric polynomial still. Analogously, we have

cos(kx) cos(lx) =

(
eikx + e−ikx

2

)(
eilx + e−ilx

2

)
=
ei(k+l)x + ei(k−l)x + e−i(k−l)x + e−i(k+l)x

4
=

1

2
cos((k + l)x) +

1

2
cos((k − l)x),
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sin(kx) sin(lx) =

(
eikx − e−ikx

2i

)(
eilx − e−ilx

2i

)
=
−ei(k+l)x + ei(k−l)x + e−i(k−l)x − e−i(k+l)x

4
= −1

2
cos((k + l)x) +

1

2
cos((k − l)x).

Hence, these are also trigonometric polynomials, so the product of two trigonometric poly-
nomials is still a trigonometric polynomial. Hence, it’s a subalgebra. Next, we need to
establish that it separates points. That is, for x, y ∈ S1, x 6= y we need to show that there
is a trigonometric polynomial where f(x) 6= f(y). Notice that sin and cos are projections
onto the x and y axis, and so we have that if sin(x) = sin(y) while x 6= y, this means that
cos(x) 6= cos(y), and vice versa. Hence, have that the algebra separates points. Finally, it’s
clear that constant functions are in this algebra, and so we have that A = C(S1,R).

�

Problem 44. Let X,Y be compact Hausdorff spaces. For f ∈ C(X), g ∈ C(Y ), define

(f ⊗ g)(x, y) := f(x)g(y).

Prove that span{f ⊗ g : f ∈ C(X), g ∈ C(Y )} is uniformly dense in C(X × Y ).

Proof. We apply Stone-Weierstrass. First, denote span{f ⊗ g : f ∈ C(X), g ∈ C(Y )} = C(X) ⊗
C(Y ). Then since the constant functions are in C(X), C(Y ), we get that they are in C(X)⊗C(Y ),
and so this does not vanish entirely on any point. Next, let (x, y) 6= (a, b). Then we can find
f ∈ C(X) such that f(x) 6= f(a), g ∈ C(Y ) such that g(y) 6= g(b), and so f(x)g(y) 6= f(a)g(b).
Hence, C(X) ⊗ C(Y ) separates points. Since C(X), C(Y ) are closed under complex conjugation,
we see that C(X)⊗ C(Y ) is as well; taking h ∈ C(X)⊗ C(Y ), we have

h(x) =

(
n∑
i=1

f(xi)g(yi)

)
=

n∑
i=1

f(xi) g(yi) ∈ C(X)⊗ C(Y ).

Moreover, we have that the product of continuous functions is continuous, and so C(X)⊗C(Y ) is
closed under multiplication, and is clearly a vector subspace, so a subalgebra of C(X × Y ). Hence,
the Stone-Weierstrass theorem tells us that

C(X)⊗ C(Y ) = C(X × Y ).

So it’s uniformly dense. �

Problem 45. Suppose X is LCH and noncompact, and A ⊂ C0(X,C) is a subalgebra which
separates points and is closed under complex conjugation. Show that either:

(1) A = C0(X,C)
(2) there is a x0 ∈ X such that A = {f ∈ C0(X,C) : f(x0) = 0}.

Proof. We follow the hint outlined in Folland (and in the lecture notes). First, assume that there
is no x ∈ X such that f(x) = 0 for all f ∈ A. Then we let Y be the one-point compactification
of X, taking the point to be ∞. We have that there is a unique extension of f ∈ C0(X,C) to

f̃ ∈ C0(Y,C) via taking

f̃(x) =

{
0 if x =∞,
f(x) otherwise.

Notice that this is unique, since if there were another g ∈ C0(Y,C) where g(x) = f(x) for all
x ∈ X, then the only thing that can happen is if g(x) = f(x) + c, where c is a constant (see
Proposition 4.36), and this forces c = 0. We can analogously extend all of the functions in A in

the same way, and so we get A′ = {f̃ : f̃ |X ∈ A}. Since A is a subalgebra, closed under complex
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conjugation, and separates points, A′ is a subalgebra, is closed under complex conjugation, and
separates points. So we have A′ satisfies the criteria for Stone-Weierstrass, and so we apply it to
get A′ = {f ∈ C(Y,C) : f(∞) = 0}. By earlier, this is equal to the unique extension of C0(X,C)
to C(Y,C), and so we must have that A = C0(X,C).

Now, assume there is an x0 ∈ X such that f(x0) = 0 for all f ∈ A. We look at the space
X0 = X − {x0}, and take the one-point compactification Y of X0. We can again uniquely extend
all of the functions, and again we get that A′ = {f ∈ C(Y,C) : f(∞) = 0}, and so we have that
this means that A′ = C0(X0,C). Hence, we have A′ = {f ∈ C0(X,C) : f(x0) = 0}. �
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James Marshall Reber, ID: 500409166 Math 6211, Homework 10

Remark. Thomas O’Hare was a collaborator.

Problem 46. Let UN be the set of ultrafilters on N. For a subset S ⊂ N, define

[S] := {F ∈ UN : S ∈ F}.
Show that the function S 7→ [S] satisfies the following properties:

(1) [∅] = ∅ and [N] = UN.
(2) For all S, T ⊂ N,

(a) [S] ⊂ [T ] if and only if S ⊂ T .
(b) [S] = [T ] if and only if S = T .
(c) [S] ∪ [T ] = [S ∪ T ].
(d) [S] ∩ [T ] = [S ∩ T ].
(e) [Sc] = [S]c.

(3) Find a sequence of subsets (Sn) of N such that [
⋃
Sn] 6=

⋃
[Sn].

(4) Find a sequence of subsets (Sn) of N such that [
⋂
Sn] 6=

⋂
[Sn].

Proof. (1) No filter contains the empty set, and so [∅] = ∅. Similarly, every filter must contain
N, so [N] = UN.

(2) Let S, T ⊂ N.
(a) ( =⇒ ) Assume S 6⊂ T . Construct a filter of sets which contain S. Then this is a filter

which does not contain T . In particular, we can append T c and all sets which contain
T c and S ∩ T c, and take the ultrafilter containing this filter (i.e. a filter F ∈ [S ∩ T c]).
Then we have an ultrafilter such that S ∈ F but T /∈ F , and so [S] 6⊂ [T ].
(⇐= ) If S ⊂ T , then, in particular, any filter F which contains S will contain T , and
so we get [S] ⊂ [T ].

(b) ( =⇒ ) If [S] = [T ], we have [S] ⊂ [T ], so S ⊂ T , and [T ] ⊂ [S], so T ⊂ S, and therefore
S = T .
(⇐= ) Similarly, if S = T , we have that S ⊂ T , so [S] ⊂ [T ], and T ⊂ S, so [T ] ⊂ [S].
Hence, [S] = [T ].

(c) Notice that S ⊂ S ∪ T , T ⊂ S ∪ T , so we have [S] ⊂ [S ∪ T ], [T ] ⊂ [S ∪ T ], and hence
[S] ∪ [T ] ⊂ [S ∪ T ]. For the other direction, let F ∈ [S ∪ T ]. Then F is an ultrafilter
containing S ∪ T . Since F is an ultrafilter, we have that it either contains S or Sc,
T , or T c. Notice that it cannot contain Sc and T c, since if it did it would contain
Sc ∩ T c = (S ∪ T )c, and so it would have the empty set, a contradiction. Hence, it
must have either S or T , and so must either be in [S] or [T ]. Thus, [S ∪T ] ⊂ [S]∪ [T ].
We get [S ∪ T ] = [S] ∪ [T ].

(d) Notice that S∩T ⊂ S, S∩T ⊂ T , so we have [S∩T ] ⊂ [S], [S∩T ] ⊂ [T ], and therefore
[S ∩ T ] ⊂ [S] ∩ [T ]. For the other direction, let F ∈ [S] ∩ [T ]. Then F is an ultrafilter
which must contain S and T , and so by filter properties it must contain S ∩T . Hence,
F ∈ [S ∩ T ], and so [S] ∩ [T ] ⊂ [S ∩ T ]. Thus, we get [S ∩ T ] = [S] ∩ [T ].

(e) Notice [Sc] ∪ [S] = [Sc ∪ S] = [N] = UN. Likewise, [Sc] ∩ [S] = [Sc ∩ S] = [∅] = ∅.
Thus, [Sc] = [S]c.

(3) Notice that, by (2), we always have that⋃
[Sn] ⊂

[⋃
Sn

]
,

so it suffices to find a sequence such that the LHS is strictly smaller than the right. Let
Sn = {n}, then we have that [

⋃
Sn] = [N] = UN by (1). Take F ∈ UN; then we have that
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it is any ultrafilter on N . In particular, take F to be an ultrafilter which is not principal
(this exists since N is infinite, and any ultrafilter containing the cofinite filter cannot be
principal). Then we have that F /∈

⋃
[Sn], and so the LHS is strictly smaller.

(4) Using the example from (3), we have[⋂
Scn

]
=
[(⋃

Sn

)c]
=
[⋃

Sn

]c
6=
(⋃

[Sn]
)c

=
⋂

[Sn]c =
⋂

[Scn],

and so we are done.
�

Problem 47. Assume the notation of the prior problem.

(1) Show that {[S] : S ⊂ N} gives a base for a topology on UN.
(2) Show that all the sets [S] are both open and closed in UN.
(3) Show that UN is compact.
(4) For n ∈ N, let Fn = {S ⊂ N : n ∈ S}. Show that Fn is an ultrafilter on N.
(5) Show that {Fn : n ∈ N} is dense in UN.
(6) Show that for every compact Hausdorff space K and every function f : N → K, there is a

continuous function f̃ : UN → K such that f̃(Fn) = f(n) for every n ∈ N. Deduce that
UN is homeomorphic to the Stone-Cech compactification βN.

Proof. (1) We need to show three things for this to be a base:
(a) First, from the prior problem it’s clear that ∅ and UN is in B.
(b) For each a ∈ UN, there is a B ∈ B = {[S] : S ⊂ N} such that a ∈ B. Since a is a

filter, it must either be trivial or contain a non-empty set. If it is trivial, we see that
∅ ⊂ N is such that a ∈ [∅] = ∅. If it is non-trivial, we have that it contains a set S,
and so we get a ∈ [S] = B ∈ B.

(c) For any B0, B1 ∈ B and any x ∈ B0 ∩ B1, there is some B ∈ B such that x ∈ B ⊂
B0∩B1. Take [S0] = B0, [S1] = B1. Then we have that [S0]∩[S1] = [S0∩S1]. Assume it
is not trivial (for if it is, the result is clear). Then we have some a ∈ [S0∩S1] ⊂ [S0]∩[S1],
and [S0 ∩ S1] ∈ B, since S0 ∩ S1 ⊂ N still.

Since the two properties are satisfied, this is does form a base for some topology.
(2) We have that [S] is open in this topology. Furthermore, [Sc] is also open, but by the prior

problem [Sc] = [S]c, so we get that [S] is also closed.
(3) (Following the proof from the notes) Let

⋃
Aα be a cover of UN. Suppose for contradiction

that it admits no finite refinement. Let I be the indexing set for the α. Then we have that
there is no n such that

[Aα1 ∪ · · · ∪Aαn ] = UN = [N].

Notice that, from the properties proven from the last problem, we have

[Aα1 ∪ · · · ∪Aαn ] = [Aα1 ] ∪ · · · ∪ [Aαn ].

So Aα1 ∪ · · · ∪ Aαn 6= N by prior properties. But then we get Acα1
∩ · · · ∩ Acαn 6= ∅ for

any finite n. By properties of filters, we can get a filter generated from {Acα}, and thus an
ultrafilter, say F . Since UN is the space of all ultrafilters, we get that F ∈ UN. Now, we
use the fact that

⋃
Aα = UN to note that this filter must be in [Aα] for some α. But this

implies that Aα, A
c
α ∈ F , which is a contradiction. So there must be some finite refinement.

(4) We first show it’s a filter. First, every set S ∈ Fn must be non-trivial, since n ∈ S. Next,
take A,B ∈ Fn. Then we have that A ∩B 6= ∅ and A ∩B ∈ Fn, since n ∈ A ∩B. Finally,
if A ∈ Fn, B such that A ⊂ B, then n ∈ B, so B ∈ Fn. Hence, it is a filter.
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To see it’s an ultrafilter, let A ⊂ N. Then either n ∈ A or n /∈ A. If n ∈ A, then A ∈ Fn
and we’re done. If n /∈ A, then n ∈ Ac, and so Ac ∈ N. Since this applies for any set A ⊂ N,
we have that the equivalence established earlier gives that this is an ultrafilter.

(5) We wish to show that {Fn : n ∈ N} = UN. Let F ∈ UN. Then we have that, assuming
F non-trivial, there is a set S such that F ⊂ [S]. Since F non-trivial, we get that S ∈ F ,
S 6= ∅. So taking n ∈ S, we get that Fn ∈ [S]. Since the choice of F ∈ UN was arbitrary,
we get that {Fn} is dense.

(6) Step 1: We note that the image of an ultrafilter is an ultrafilter. Let f : X → Y be a
function between sets. Let G be a filter on Y , F an ultrafilter on X, then we want to show
that if f(F) ⊂ G, we have f(F) = G. This, however, follows by the fact that the set U ∈ G,
U /∈ f(F) implies f−1(U) /∈ F , so f−1(U)c = f−1(U c) ∈ F , which means that U c ∈ f(F),
but this means that U,U c ∈ G, which is a contradiction. Hence, there are no U ∈ G which
are not in F , and so f−1(F) = G.
Step 2: We show that if a space K is compact, then every ultrafilter is convergent. We
follow the proof given in the notes linked on the homework. That is, let F be an ultrafilter
on a compact space X without a limit point. Then each x ∈ X has a neighborhood Ux
containing no element of F . Using compactness, we can construct a finite refinement of
the Ux covering X to get {Uxi}ni=1. Fix a set A ∈ F . Then A ⊂

⋃n
i=1 Uxi . Using the quiz

problem, we have that
n⋃
i=1

(A ∩ Uxi) = A ∈ F =⇒ A ∩ Uxi ∈ F for some i,

which is a contradiction. So there is some point where it converges to.

Remark. Recall that a filter on a Hausdorff space can converge to only at most one point.
So every ultrafilter converges to exactly one point. Furthermore, the Hausdorff property
proves that there is only one such extension function.

Step 3: We again follow the proof given in the notes linked in the homework. Let
F ∈ UN. By Step 1, we have that f(F) is an ultrafilter on K. Since f(F) is an ultrafilter
on a compact space, Step 2 tells us that it is convergent to some x ∈ K. Hence, define

f̃(F) = lim f(F). Notice that defining it this way gives us that

f̃(Fn) = {f(S) : S ⊂ N, n ∈ S}, f(n) ∈ {f(S) : S ⊂ N, n ∈ S}

f̃(Fn) = lim(Fn) = f(n).

So this is a well-defined function, and is indeed an extension of f .

Step 4: We need to show that f̃ is continuous. Again, we show it’s continuous the same
way as the notes linked in the homework set. We show it’s continuous in the following way:

Let F ∈ UN be a filter. Since f̃(F) = lim f(F) ∈ K, let U be an open neighborhood of

f̃(F). Since K compact, pick V ⊂ U such that V ⊂ U . Since f(F) converges, we have
that there is a set A ∈ F such that f(A) ⊂ V ⊂ U . Notice as well that A ∈ F implies that
F ∈ [A], and so [A] acts as an open neighborhood of F . We’ll show that all the points in
[A] are mapped into U . Let G ∈ [A]. Then A ∈ G, and furthermore f(A) ∈ f(G). We have

that f̃(G) = lim f(G) ∈ f(A) ⊂ V ⊂ U . Hence, f̃ is continuous.
Step 5: We need to show that UN is Hausdorff. Let F ,G be two filters such that F 6= G.
Then there is a set A ∈ F , such that A /∈ G. Since G is an ultrafilter, we must have that
Ac ∈ G. Hence, F ∈ [A], G ∈ [A]c, [A] ∩ [Ac] = ∅, so the space is Hausdorff.

We deduce that UN is homeomorphic to βN in the following way: let g : N → UN via
g(n) = Fn. This mapping is well-defined and injective. We can then invoke the universal
property using existence and uniquness to get the following (messy) commutative diagram:
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UN βN UN βN

N

f̃

Id

f

Id

f̃

eN g
eN

g

Hence, we have that f̃ ◦ f = Id, f ◦ f̃ = Id, and these are continuous, so we have that they
are homeomorphisms. Hence, the spaces are homeomorphic.

�

Problem 48. Suppose X is a normed space and Y ⊂ X is a subspace. Define Q : X → X/Y by
Q(x) = x+ Y . Define

||Q(x)||X/Y = inf{||x− y||X : y ∈ Y }.
(1) Prove that || · ||X/Y is a well-defined seminorm.
(2) Show that if Y is closed, then || · ||X/Y is a norm.
(3) Show that in the case of (2) above, Q : X → X/Y is continuous and open.
(4) Show that if X is Banach, so is X/Y .

Proof. We first remark that this is sending a point to it’s equivalence class in the quotient space.

(1) It’s clear that it’s well-defined, since regardless of representation in the class, we get the
same result. Next, since || · ||X ≥ 0 for all x ∈ X, we have that || · ||X/Y ≥ 0. Next, letting
c ∈ F − {0}, we note that cQ(x) = c(x+ Y ) = cx+ cY = cx+ Y , so

||cQ(x)||X/Y = inf{||cx− y||X : y ∈ Y } = inf{||c(x− c−1y)||X : y ∈ Y }

= inf{|c|||x− c−1y||X : y ∈ Y } = |c| inf{||x− y||X : y ∈ Y } = |c|||Q(x)||X/Y .
In the case c = 0, we have 0Q(x) = 0(x+Y ) = 0, and ||0||X/Y = 0, which matches. Finally,
let x, z ∈ X, then Q(x+ z) = x+ z + Y = (x+ Y ) + (z + Y ) = Q(x) +Q(z), so

||Q(x+ z)||X/Y = inf{||(x+ z)− y||X : y ∈ Y } = inf{||(x− y) + (z − w)||X : y, w ∈ Y }

≤ inf{||(x− y)||X + ||(z −w)||X : y, w ∈ Y } = inf{||x− y||X : y ∈ Y }+ inf{||z − y||X : y ∈ Y }
= ||Q(x)||X/Y + ||Q(z)||X/Y .

Hence, we have that this is a seminorm.
(2) Let Q(x) be such that ||Q(x)||X/Y = 0. Then this means that

inf{||x− y||X : y ∈ Y } = 0.

Since this is an infimum, this means we can construct a sequence {yn} such that ||x−yn||X →
0. But since || · ||X is a norm, this means that yn → x. Since Y is closed, this means that
x ∈ Y . Hence, ||Q(x)||X/Y = 0 if and only if Q(x) = 0, or x ∈ Y .

(3)

Remark. The second part is based on the following Stackexchange post:
https://math.stackexchange.com/questions/3128639/is-projection-to-quotient-space-an-open-
map

We say in (1) that the projection map was linear. To show continuity, it suffices to show
that it’s bounded. That is, we have ||Q(x)||X/Y ≤ c||x||X for some c ≥ 0. Notice that

||Q(x)||X/Y = inf{||x− y||X : y ∈ Y } ≤ ||x||X + inf{||y||X : y ∈ Y } = ||x||X .

Hence, Q is bounded, and so continuous.
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Next, we need to show that it’s an open map. Let U ⊂ X open. Then we need to show
that Q(U) is open. Let x + Y = Q(x) ∈ Q(U), then x ∈ U . Let ε > 0 be such that
Bε(x) ⊂ U . Let z + Y ∈ Bε(x+ Y ). Then we have that

||Q(x)−Q(z)||X/Y = ||Q(x− z)||X/Y < ε,

so there is a y ∈ Y so that ||x− z − y||X < ε. Hence,

||Q(x− z)||X/Y ≤ ||x− z − y||X < ε,

so we get z − y ∈ Bε(x), but this tells us that Q(z) ∈ Q(Bε(x)) ⊂ Q(U). Since this
applies for all such z in Bε(Q(x)), we have Bε(Q(x)) ⊂ Q(U), and since this applies for all
Q(x) ∈ Q(U), we get that Q(U) is open.

(4) (Presumably here we also take Y to be closed still.) We have that X, X/Y are both normed
vector spaces. In the case that X is Banach, we have that it’s complete. Hence, it suffices
to show that X/Y is complete as well. Theorem 5.1 states that a normed vector space
X/Y is complete if and only if every absolutely convergent series in X/Y converges. Take
an absolutely convergent series {xn + Y } in X/Y . That is, we have∑

||xn + Y ||X/Y =
∑
||Q(xn)||X/Y <∞.

Choose representatives xn ∈ xn + Y such that ||xn||X ≤ ||Q(xn)||X/Y + 2−n. Then we get∑
||xn||X ≤

∑
||Q(xn)||X/Y + 2−n <∞.

Since X is complete, we use this to note that
∑
xn converges to some x ∈ X. Next, notice

that
N∑
1

Q(xn) = Q

(
N∑
1

xn

)
by linearity, and so using the fact that Q is continuous we get

lim
N→∞

N∑
1

Q(xn) = lim
N→∞

Q

(
N∑
1

xn

)
= Q

(∑
xn

)
= Q(x).

So, every absolutely convergent series in X/Y converges, and hence X/Y is complete.

�

Problem 49. Suppose F is a finite dimensional vector space.

(1) Show that for any two norms || · ||1, || · ||2 on F , there is a c > 0 such that ||f ||1 ≤ c||f ||2
for all f ∈ F . Deduce that all norms on F induce the same vector space topology on F .

(2) Show that for any two finite dimensional normed space F1, F2, all linear maps T : F1 → F2

are continuous.
(3) Let X,F be normed space with F finite dimensional, and let T : X → F be a linear map.

Prove that the following are equivalent:
(a) T is bounded (there is an R > 0 such that T (B1(0X)) ⊂ BR(0F ))), and
(b) ker(T ) is closed.

Proof. (1) We follow Exercise 6 in Folland to show the equivalence of norms. Let Dim(F ) = n,
then we have a basis {e1, . . . , en}. Define || · ||1 via∣∣∣∣∣

∣∣∣∣∣
n∑
1

aiei

∣∣∣∣∣
∣∣∣∣∣
1

=
n∑
1

|ai|.
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We first show that this is a norm. We need to show four properties. Let v, w ∈ F be

v =
n∑
1

aiei,

w =
n∑
1

biei.

(a) We have ||v||1 ≥ 0, since | · | ≥ 0.
(b) For c in the field, we have

||cv||1 =

n∑
1

|cai| = |c|
n∑
1

|ai| = |c|||v||1.

(c) We have

||v + w||1 =

n∑
1

|ai + bi| ≤
n∑
1

|ai|+ |bi| = ||v||1 + ||w||1.

(d) If ||v||1 = 0, then this means that |ai| = 0 for all i, which only happens if ai = 0, and
so v = 0.

So || · ||1 is a norm.
Notice that it suffices to show this for || · ||1 and another norm || · ||. Notice we have as

well that

f =
n∑
1

aiei.

Hence,

||f || =

∣∣∣∣∣
∣∣∣∣∣
n∑
1

aiei

∣∣∣∣∣
∣∣∣∣∣ =

n∑
1

|ai|||ei|| ≤ max{||ei||}
n∑
1

|ai| = max{||ei||}||f ||1.

Letting c = max{||ei||} gives us the desired result.
Let K = {x ∈ Cn : ||x||2 = 1}, where || · ||2 is the standard Euclidean norm. This is

compact by assumption. Let T : Cn → F be a isomorphism. Notice that this is continuous
with respect to the norm || · ||, since take z ∈ K we have

||T (z)|| ≤
∣∣∣∣∣∣∑ aiT (ei)

∣∣∣∣∣∣ ≤ |a|∑ ||T (ei)|| ≤
∑
||T (ei)||,

and so it’s bounded since this is finite.
Next, since K is compact, we have that the infimum is realized. Hence, there is some

z ∈ K such that T (z) = ε, and for all other z ∈ K we get T (z) ≥ ε. Now, take f ∈ F
arbitrary. Since T is an isomorphism, there is a z such that T (z) = f . Hence,

||f || = ||T (z)|| = ||T (z/||z||2)|| · ||z||2 ≥ ε||z||.

Notice that we then get

||f || ≥ ε||z|| = ε
√∑

|ai|2,

where the ai are the coefficients, and we have from the arithmetic-geometric inequality

ε
√∑

|ai|2 ≥
ε

n

∑
|ai|2 =

ε

n
||f ||1.

67



So every norm is equivalent to ||f ||1. Every norm being equivalent to ||f ||1 is sufficient,
since for two norms || · ||1, || · ||2,

c||f || ≤ ||f ||1 ≤ C||f ||,

c′||f || ≤ ||f ||2 ≤ C ′||f ||,

and so
c′

C
||f ||1 ≤ ||f ||2 ≤

C ′

c
||f ||1,

hence, they are equivalent. This also gives us the conditions to, for every norm, find a c > 0
such that ||f ||1 ≤ c||f ||2. By Homework 1, the topologies are then equivalent.

(2) Let (F1, || · ||1), (F2, || · ||2) be two normed spaces. Consider the map T : F1 → F2. We wish
to show they are continuous. Letting {ei} be a basis for F1, we have

||T (x)||2 =
∣∣∣∣∣∣T (∑ aiei

)∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∑ aiT (ei)

∣∣∣∣∣∣
2
≤
∑
|ai|||T (ei)||2.

Taking M = max{T (ei)}, we have∑
|ai|||T (ei)||2 ≤M

∑
|ai| ≤M ||x||,

where ||x|| is the norm given in (1) on F1. Since every norm is equivalent to this one by
(1), we have

M ||x|| ≤ CM ||x||1,

where C > 0 is some constant. Hence, T is bounded, and so is continuous.
(3) (a) =⇒ (b): T bounded implies continuous, {0} ⊂ F is closed, so we have T−1({0}) =

ker(T ) is closed.
(b) =⇒ (a): Notice that the isomorphism theorem gives us that

X F

X/ ker(T )

T

Q
T

Since ker(T ) is closed, we have that Problem 3 gives us that Q is continuous (and open).
Since T is linear, we have that T (X) ≤ F is a subspace (so finite dimensional), and so
X/ ker(T ) ∼= T (X) is a finite dimensional vector space. By (2) of this problem, this gives
us that T is continuous. Since this diagram commutes, we get T = T ◦Q, and since Q and
T are both continuous, T must be continuous. By the equivalence, this tells us that T is
bounded.

�

Problem 50. Suppose X is a Banach space and T ∈ L(X) = L(X,X). Let I ∈ L(X) be the
identity map.

(1) Show that if ||I − T || < 1, then T is invertible.
(2) Show that if T ∈ L(X) is invertible and ||S − T || < ||T−1||−1, then S is invertible.
(3) Deduce that the set of invertible operators GL(X) ⊂ L(X) is open.

Proof. (1) We proceed via the hint. Notice that ||I − T || < 1 implies that the series∑
||I − T ||n <∞.
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Since X is a Banach space, we have that it’s dual L(X) is also a Banach space. Hence, we
have that, since this is an absolutely convergent series, the series

N∑
0

(I − T )n → S ∈ L(X).

We now notice that

||ST − I|| = ||ST − S + S − I|| = ||S(T − I) + S − I||

= lim
N→∞

∣∣∣∣∣
∣∣∣∣∣
(

N∑
0

(I − T )n

)
(T − I) +

N∑
0

(I − T )N − I

∣∣∣∣∣
∣∣∣∣∣ .

Notice that
N∑
0

(I − T )N (T − I) = −
N+1∑

1

(I − T )N ,

and hence we’re left with

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣−

N+1∑
1

(I − T )n +

N∑
0

(I − T )N − I

∣∣∣∣∣
∣∣∣∣∣ = lim

N→∞

∣∣∣∣(I − T )0 − (I − T )N+1 − I
∣∣∣∣

= lim
N→∞

||(I − T )||N+1 = 0.

Hence, we have that ST = I. Analogously, we need to show that TS = I. We see

||TS − I|| = ||TS − S + S − I|| = ||(T − I)S + S − I||

= lim
N→∞

∣∣∣∣∣
∣∣∣∣∣(T − I)

(
N∑
0

(I − T )n

)
+

N∑
0

(I − T )n − I

∣∣∣∣∣
∣∣∣∣∣

= lim
N→∞

∣∣∣∣∣
∣∣∣∣∣−
(
N+1∑

1

(I − T )n

)
+

N∑
0

(I − T )n − I

∣∣∣∣∣
∣∣∣∣∣

= lim
N→∞

∣∣∣∣I − (I − T )N+1 − I
∣∣∣∣ lim
N→∞

||(I − T )||N+1 = 0.

Hence, TS = I, so T is invertible.
(2) Since T is invertible, we have that T−1 is well-defined. Then we get

||T−1S − I|| = ||T−1S − T−1T || ≤ ||T−1|| · ||S − T || < ||T−1|| · ||T−1||−1 = 1.

Hence, T−1S is invertible with inverse A, and so we have

A(T−1S) = (AT−1)S = I,

so S is has left inverse AT−1. Likewise,

S(AT−1) = TT−1SAT−1 = T (T−1S)AT−1 = TT−1 = I,

so S has right inverse AT−1, and so AT−1 is an inverse for S. Hence, S is invertible.
(3) To show that GL(X) is open, we need to show that for every T ∈ GL(X), there is an open

ball U such that U ⊂ GL(X). By (2), we showed that the open ball of radius ||T−1||−1

centered at T is contained in GL(X). Hence, we have that GL(X) is open.
�
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James Marshall Reber, ID: 500409166 Math 6211, Homework 11

Remark. Thomas O’Hare was a collaborator.

Problem 51. Provide examples of the following:

(1) Normed vector spaces X and Y and a discontinuous linear map T : X → Y with closed
graph.

(2) Normed vector spacesX and Y and a family of linear operators {Tλ}λ∈Λ such that (Tλ(x))λ∈Λ

is bounded for every x ∈ X but (||Tλ||)λ∈Λ is not bounded.

Proof. (1) We follow Folland 5.29. Let Y = {f : N→ R :
∑
|f(n)| <∞},

X = {f ∈ Y :
∑
n|f(n)| <∞}, both equipped with the norm || · ||1, given by

||f ||1 =
∑
|f(n)|.

Define T : X → Y by T (f(n)) = nf(n). We wish to show that T is closed but not bounded,
and hence not continuous. To show that T is closed, we need to show that Γ(T ) ⊂ X × Y
is closed. Take a sequence ((xn, T (xn))) ⊂ Γ(T ), and suppose (xn, T (xn)) → y. We wish
to show that y ∈ Γ(T ). Notice that y is of the form (x, z), where xn → x, T (xn) → z,
both converging in L1 norm. We have that for all ε > 0, there exists an N such that for all
n ≥ N ,

|x(k)− xn(k)| ≤ ||x− xn||1 =
∑
|x(k)− xn(k)| < ε.

Hence, we have that xn(k)→ x(k) pointwise. Similarly, we have T (xn)→ z in the L1 norm,
so for all ε > 0 there exists an N such that for all n ≥ N ,

|T (xn(k))− z(k)| ≤ ||T (xn)− z||1 =
∑
|T (xn(k))− z(k)| < ε,

and so we have that T (xn(k)) → z(k) pointwise. Recall that we have T (xn(k)) = kxn(k),
and so taking the limit as n → ∞ gives T (xn(k)) = kxn(k) → kx(k) = T (x(k)) = z(k), so
(x, z) ∈ Γ(T ). Hence, it is closed.

Next, we wish to show that it’s unbounded (unbounded here will be equivalent to dis-
continuous). Recall that being bounded means that, for all x ∈ X, there exists a C > 0
such that

||T (x)||1 ≤ C||x||1,
but we have that

||T (x)||1 =
∑
|T (x(k))| =

∑
|kx(k)| =

∑
k|x(k)|.

So take, for example, the functions δn(x) = δnx, which is 1 if n = x and 0 otherwise. We
have δnx ∈ X, since ∑

n|δk(n)| = n <∞,
but we see that

||T (δk(n)||1 =
∑
n

|T (δk(n)| =
∑
n

|nδk(n)| =
∑
n

n|δk(n)| = n,

while

||δk(n)||1 =
∑
n

|δk(n)| = 1.

So trying to choose such a C is impossible, since we can just take δC+1 to contradict it.
Hence, T is unbounded, and by the equivalence this means that T is not continuous.
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(2) (Royden, Fitzpatrick, Exercise 41, Section 13.5) Let X be the space of all polynomials
defined on R. Let || · || be a norm on X defined by

||a0 + a1x+ · · ·+ anx
n|| =

∑
|ai|.

To show it’s a norm, we need to establish the following:
(a) Notice that if we let

p = a0 + · · ·+ anx
n,

q = b0 + · · ·+ bmx
m,

and without loss of generality take m ≥ n. We have then

p+ q = (a0 + b0) + · · ·+ (an + bn)xn + bn+1x
n+1 + · · ·+ bmx

m.

Hence,

||p+ q|| = |(a0 + a1 + · · ·+ an) + (b0 + · · ·+ bm)| ≤ |a0 + · · ·+ an|+ |b0 + · · ·+ bm| = ||p||+ ||q||.
(b) Let r ∈ R. Then we have

||rp|| =
∑
|rai| =

∑
|r||ai| = |r|

∑
|ai| = |r| · ||p||.

(c) Finally, let p be such that ||p|| = 0. Then this means that∑
|ai| = 0,

but this can only happen if ai = 0 for all i. Hence, p = 0.
Thus, it’s a norm.

For each n, define Tn : X → R via Tn(p) = ∂np
∂xn

∣∣
x=0

= p(n)(0). This is linear, since
derivatives are linear. We then want to show that for all p ∈ X, we have that the sequence
(Tn(p)) is bounded. Notice that

|Tn(p)| ≤ deg(p)! ·max{ai : ai is a coefficient of p}
for all n, and so it is bounded for every p ∈ X. We also have that

||Tn|| = sup{||Tn(p)|| : ||p|| = 1} ≥ n!,

since we can just take the polynomial p = xn, and so (||Tn||) is unbounded.

Remark. Thomas had a clever way of doing this using the same set up but the infinity
norm, which I thought was much cleaner. The result is still the same.

�

Problem 52. Suppose X and Y are Banach space and T : X → Y is a continuous linear map.
Show that the following are equivalent:

(1) There exists a constant c > 0 such that ||T (x)||Y ≥ c||x||X for all x ∈ X.
(2) T is injective and has closed range.

Proof. (1) =⇒ (2): We wish to show that T is injective and has closed range. Recall that a linear
map is injective if its kernel is trivial. Thus, we examine ker(T ) = {x ∈ X : T (x) = 0}. Let
x ∈ X, and assume that T (x) = 0. By assumption, we have

0 = ||T (x)||Y ≥ c||x||X ≥ 0,

so by norm properties this forces x = 0. Hence, ker(T ) = 0, so T injective.
Next, we wish to show that it has closed range. Let (T (xn)) ⊂ Y be a sequence such that

limT (xn) = y, then we wish to show that y ∈ Im(T ). Notice that

||T (xn)− T (xm)||Y ≥ c||xn − xm||X ,
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so we have that (xn) ⊂ X is a Cauchy sequence as well. Hence, we have that xn → x by com-
pleteness, and so by continuity we have that limT (xn)→ T (x) = y, so y ∈ Im(T ). Thus, Im(T ) is
closed.
(2) =⇒ (1) : Let R = Im(T ) ⊂ Y . This is a closed subset by assumption, and so Banach. We
have that T : X → R is an isomorphism, and applying the open mapping theorem gives that it is
a homeomorphism. Hence, ||T−1|| = C <∞, and we have that ||T−1(y)|| ≤ ||T−1|| · ||y|| = C||y||.
Since T is invertible, we have that for all x ∈ X there is a y so that T−1(y) = x and T (x) = y, and
so we have that ||x|| ≤ C||T (x)|| for all x ∈ X. Thus, we get 1

C ||x|| ≤ ||T (x)|| for all x ∈ X. �

Problem 53. Suppose ϕ,ϕ1, . . . , ϕn are linear functionals on a vector space X. Prove that the
following are equivalent:

(1) ϕ =
∑n

k=1 akϕk, where ai ∈ F , F the underlying field (i.e. ϕ ∈ span{ϕ1, . . . , ϕn}).
(2) There is an a > 0 such that for all x ∈ X, |ϕ(x)| ≤ amaxk=1,...,n |ϕk(x)|.
(3)

⋂n
k=1 ker(ϕk) ⊂ ker(ϕ).

Proof. (1) =⇒ (2): Take x ∈ X, then we have

ϕ(x) =
n∑
k=1

akϕk(x).

Let a = n ·maxk=1,...,n |ak|. Then we have for all x ∈ X,

|ϕ(x)| =

∣∣∣∣∣
n∑
k=1

akϕk(x)

∣∣∣∣∣ ≤
n∑
k=1

|ak||ϕk(x)| ≤ max
k=1,...,n

|ϕk(x)|
n∑
k=1

|ak| ≤ a max
k=1,...,n

|ϕk(x)|.

(2) =⇒ (3) : Let x be such that ϕk(x) = 0 for k = 1, . . . , n. Then we have

0 ≤ |ϕ(x)| ≤ a · 0 = 0 =⇒ ϕ(x) = 0,

hence x ∈ ker(ϕ). So we have
⋂n
k=1 ker(ϕk) ⊂ ker(ϕ).

(3) =⇒ (1) (Royden, Fitzpatrick, Proposition 4, Section 14.1): We go by induction. We first show
it for the base case, n = 1. Assume that ϕ 6= 0, since the result holds clearly if ϕ = 0. Choose
x0 6= 0 for which ϕ(x0) = 1. Then by assumption ϕ1(x0) 6= 0. Notice as well that ϕ1 : X → F , so
X = ker(ϕ1)⊕ span(x0). Defining a1 = 1/ϕ1(x0), we get

ϕ(x) = ϕ(y + tx0) = a1ϕ1(y + tx0) = a1ϕ1(x),

so ϕ = a1ϕ1. Hence, it holds for the base case.
Now, assume for the induction hypothesis that it holds up to n − 1. Then assume without loss

of generality that ϕn 6= 0, since the result holds clearly in this case by the induction hypothesis.
Choose x0 ∈ X such that ϕn(x0) = 1. Then, using again the fact that ϕn : X → F is linear, we
get that X = ker(ϕn)⊕ span(x0), so

n−1⋂
i=1

(ker(ϕi) ∩ ker(ϕn)) ⊂ ker(ϕ) ∩ ker(ϕn−1).

By the induction hypothesis,

ϕ =

n−1∑
i=1

aiϕi

on ker(ϕn), ai ∈ F , so letting an = ϕ(x0)−
∑n−1

i=1 aiϕi(x0), we get

ϕ =

n∑
i=1

aiϕi
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on all of X, using a similar substitution to above. �

Problem 54. Let X be a normed space.

(1) Show that every weakly convergent sequence in X is norm bounded.
(2) Show that every weak* convergent sequence in X∗ is norm bounded.

Proof. (1) (Royden, Fitzpatrick, Theorem 12 Section 14.2) Let (xn) be a weakly convergent
sequence in X, and suppose it converges to x. Then this means that, for all ϕ ∈ X∗, we
have that ϕ(xn) → ϕ(x). Per Royden, we let J : X → (X∗)∗ be the map which sends a
point to the evaluation map; that is, J(x) : X∗ → F such that J(x)(ϕ) = ϕ(x). Notice that
for fixed φ ∈ X∗, we get that J(xn)(φ) = φ(xn)→ φ(x) = J(x)(φ), so it pointwise converges
to J(x), so ||J(xn)(ϕ)|| < ∞ for all ϕ. By the Banach-Steinhaus/Uniform Boundedness
Principle, we notice that ||J(xn)|| < ∞. Since J is an isometry (by corollaries of Hahn-
Banach) we have that ||xn|| <∞.

Remark. I believe that for the next part we need to assume X is Banach, since these notes
provide a counterexample to the case where X not Banach.
https://people.math.gatech.edu/∼heil/handouts/weak.pdf

(2) Recall that weak* convergence means that a sequence (ϕn) ⊂ X∗ converges to ϕ ∈ X∗ if, for
all x ∈ X, we have ϕn(x) = ϕ(x). We wish to show that ||ϕn|| < ∞. Since ϕn(x) = ϕ(x),
||ϕ(x)|| <∞ by assumption, we have that supn ||ϕn(x)|| <∞, and since this applies for all
x ∈ X, we get that the Uniform Boundedness Principle implies that ||ϕn|| < ∞. Hence,
the sequence is bounded.

�

Problem 55. Let X be a normed vector space with closed unit ball B. Let B∗∗ be the unit ball
in X∗∗, and let i : X → X∗∗ be the canonical inclusion. Show that i(B) is weak* dense in B∗∗.

Proof. (Royden, Fitzpatrick, Theorem 6, Section 15.3) We have that

B∗∗ = {x̂ : ||x̂|| ≤ 1}.

We first want to establish that B∗∗ is weak* closed.

Remark. The following is what I wanted to initially do, which I think still works. However,
Thomas brought up that this should just be a direct result from Banach-Alaoglu.

Take a net (x̂n) ⊂ B∗∗ which converges weak* to x̂. We wish to show that x̂ ∈ B∗∗. Since
(x̂n) converges weak* to x̂, we get that this means that lim x̂n(ϕ) = x̂(ϕ) = ϕ(x). Notice that the
continuity of norms gives us ||x̂(ϕ)|| = lim ||x̂n(ϕ)|| = lim ||ϕ||||x̂n|| ≤ lim ||ϕ|| = ||ϕ||. Thus, we see
that

||x̂|| := sup{||x̂(ϕ)|| : ||ϕ|| = 1} ≤ 1,

so x̂ ∈ B∗∗. Hence, it is closed.
Recall that we have i is an isometry (corollaries of Hahn-Banach), so i(B) ⊂ B∗∗. So taking the

weak* closure of i(B) and denoting it C, we get that C ⊂ B∗∗, since B∗∗ is closed by above. Notice
that B = {x ∈ X : ||x|| ≤ 1} is convex, and the linear image of a convex set is convex, since
taking a, b ∈ i(B), we have x, y ∈ X such that i(x) = a, i(y) = b, so we see that ta+ (1− t)b ∈ i(B)
for all t ∈ [0, 1], since ti(x) + (1− t)i(y) = i(tx+ (t− y)y) ∈ i(B), using the fact that B is convex.
Notice as well that the closure of a convex set is convex; letting X be our convex set, we take
(xn), (yn) ⊂ X such that xn → x ∈ X, yn → y ∈ X. Then we see that tx + (1 − t)y ∈ X for all
t ∈ [0, 1], since txn + (1− t)yn ∈ X for all n, t ∈ [0, 1], and so taking limits gives us what we want.
Thus, C is a convex closed set with respect to the weak* topology.
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Remark. As Thomas pointed out, there seems to be a typo in what Royden actually does. This
fix comes from
http://mathonline.wikidot.com/goldstine-s-theorem
which, as far as I can tell, still uses the same separation theorem.

Suppose now for contradiction that C 6= B∗∗; that is, i(B) is not weak* dense in B∗∗. Let ϕ ∈
B∗∗−C. Using the so called “Hyperplane Separation theorem,” (page 292 of Royden, Fitzpatrick,
Corollary 26 specifically) we have that there is some linear functional T on C such that ||T || = 1
and T (ϕ) < infα∈C T (α). Since i(B) ⊂ C, we have infα∈C T (α) ≤ infα∈i(B) T (α) = −1. Hence, we
get that T (ϕ) < −1, and so ||T (ϕ)|| > 1. We chose T such that ||T || = 1, and φ was chosen such
that ||φ|| ≤ 1, so we have that ||T (ϕ)|| ≤ ||T || · ||ϕ|| ≤ 1. This gives us a contradiction. Hence,
there cannot exist such a ϕ, and so B∗∗ = C. �
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James Marshall Reber, ID: 500409166 Math 6211, Homework 12

Remark. Thomas O’Hare was a collaborator.

Problem 56. Show that there is a ϕ ∈ (l∞)∗ = L(l∞,R) satisfying the following two conditions:

(1) Letting S : l∞ → l∞ be the shift operator (Sx)n = xn+1 for x = (xn)n∈N, ϕ = ϕ ◦ S.
(2) For all x ∈ l∞, lim inf xn ≤ ϕ(x) ≤ lim supxn.

Proof.

Remark. I used a modified version of these notes:
http://homepages.math.uic.edu/∼furman/4students/Banach-LIM.pdf

We try using the Hahn-Banach theorem. Let

p((xn)) = lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

xi

∣∣∣∣∣ .
We need to show that this gives us a sublinear functional. Notice first that p((xn)) < ∞ for all
(xn) ∈ l∞. This follows, since

p((xn)) = lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

xi

∣∣∣∣∣ ≤ lim sup
n→∞

1

n

n∑
i=1

sup
n
|xn| = sup

n
|xn| <∞.

Next, we need to show that for all y ≥ 0, we have

p(y(xn)) = yp((xn)).

Notice first that

y(xn) = (yxn),

and so we have

p(y(xn)) = p((yxn)) = lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

yxi

∣∣∣∣∣ = y lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

xi

∣∣∣∣∣
= yp((xn)).

Finally, we need to show that

p((xn) + (yn)) ≤ p((xn)) + p((yn)).

Notice that

(xn) + (yn) = (xn + yn),

p((xn + yn)) = lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

(xi + yi)

∣∣∣∣∣ ≤ lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

xi

∣∣∣∣∣+ lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

yi

∣∣∣∣∣ = p((xn)) + p((yn)).

So we get that p is a sublinear functional.
Now, define a linear functional L on c ⊂ l∞ where

L((xn)) = limxn.

This is clearly linear by properties of limits, and furthermore we have

L((xn)) = limxn = lim
1

n

n∑
i=1

xi ≤ lim sup

∣∣∣∣∣ 1n
n∑
i=1

xi

∣∣∣∣∣ = p((xn))
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by Cesàro mean properties. Hence, we can use Hahn-Banach to find a linear functional which
extends L to the entire space, denoted by ϕ. That is, we have

ϕ ≤ p,
ϕ|c = L.

We now need to show ϕ satisfies the desired properties. First, we show (1). That is, we need to
show that

ϕ(S(xn)) = ϕ((xn))

for all (xn) ∈ l∞. This is equivalent to showing that

|ϕ(S(xn))− ϕ((xn))| = |ϕ(S(xn)− (xn))| = 0.

Notice we have
|ϕ(S(xn)− (xn))| ≤ p(S(xn)− (xn)),

since we have that p(−x) = p(x) by construction. Notice as well that

p(S(xn)− (xn)) = lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

(xi+1 − xi)

∣∣∣∣∣ = lim sup
n→∞

∣∣∣∣xn − x1

n

∣∣∣∣ ≤ lim sup
n→∞

2||xn||∞
n

= 0.

So in other words, we have ϕ(S(xn)) = ϕ((xn)).
Next, we need to show that if (xn) ≥ 0, we have ϕ((xn)) ≥ 0. Take (xn) ≥ 0, and write it as

(xn) = c · (yn), where yn ∈ [0, 1]. Now notice that

1− ϕ((yn)) = ϕ(1− (yn)) ≤ lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

(1− yi)

∣∣∣∣∣ ≤ 1,

and so
0 ≤ ϕ((yn)),

and then using linearity, we get it holds for all (xn) ≥ 0.
Next, we need to show that

lim inf xn ≤ ϕ(x) ≤ lim supxn.

Recall that
lim supxn = inf

n≥1
sup
k≥n

xk.

Take α such that
lim supxn = inf

n≥1
sup
k≥n

xk < α.

Then we have that there is a point N so that for all n ≥ N ,

xn < α.

Applying the shift S(N) to x, we have

ϕ(α− S(n)(xn)) = αϕ(1)− ϕ(S(n)(xn)) = α− ϕ((xn)).

Notice as well that α− S(N)((xn)) is a positive bounded sequence, so we get that

0 ≤ α− ϕ((xn)) =⇒ ϕ(xn) ≤ α.
Since this applies for all α > lim supxn, we get that

ϕ(xn) ≤ lim supxn.

Analogously, take
α < lim inf xn = sup

n≥1
inf
k≥n

xk.
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Then there exists a point N such that for all n ≥ N ,

α < xn.

Hence, noting that S(N)(xn)− α is a positive bounded sequence, we have

0 ≤ ϕ((xn))− α =⇒ α ≤ ϕ((xn)),

and so we have that, since this applies for all α,

lim inf xn ≤ ϕ((xn)).

�

Problem 57. Let X be a compact Hausdorff topological space. For x ∈ X, define evx : C(X)→ F
by evx(f) = f(x).

(1) Prove that evx ∈ C(X)∗ and find ||evx||.
(2) Show that the map ev : X → C(X)∗ given by x 7→ evx is a homeomorphism onto its image,

where the image has the relative weak* topology.

Proof. (1) Recall that C(X)∗ = L(C(X), F ). We need to show that evx is linear and is bounded.
We have that

evx(f + g) = (f + g)(x) = f(x) + g(x),

and for α any scalar,

evx(αf) = αf(x) = αevx(f).

So it is indeed linear. Next, notice that

||evx|| = sup{||evx(f)|| : f ∈ C(X), ||f || ≤ 1} = sup{||f(x)|| : ||f || ≤ 1, f ∈ C(X)}.
Since ||f || ≤ 1, this means that −1 ≤ f ≤ 1 on X. Hence, we see that ||evx|| = 1 (just take
a continuous function which is 1). So it is bounded and linear, hence evx ∈ C(X)∗.

(2) We check first that ev : X → C(X)∗ is injective. We can equivalently show that if x 6= y,
there is a f ∈ C(X) so that evx(f) 6= evy(f). The space is Hausdorff, so we can find open
neighborhoods which separate the points. Urysohn’s Lemma then gives us that we can find
a continuous function f so that evx(f) 6= evy(f). So it is injective. It’s clearly surjective
onto its image, so we have it’s a bijection.

We now need to check it’s a homeomorphism. Since it’s with the relative weak* topology,
let (xn) be a net converging to some point x ∈ X. The weak* topology says that for every
f ∈ C(X), we have that f(xn)→ f(x); in other words, evxn → evx in the weak* topology.
So ev is continuous.

Finally, we use Proposition 4.28. We have that X is compact, C(X)∗ is Hausdorff, so
a continuous bijection is a homeomorphism.

�

Problem 58. Suppose X and Y are Banach spaces and T : X → Y a linear transformation.

(1) Show that if T ∈ L(X,Y ), then T is weak-weak continuous.
(2) Show that if T is norm-weak continuous, then T ∈ L(X,Y ).
(3) Show that if T is weak-norm continuous, then T has finite rank.

Proof. (1) This is by the quiz. We need to show that if xn → x weakly (for all ϕ ∈ X∗,
ϕ(xn) → x), then T (xn) → T (x) weakly (for all γ ∈ T ∗, γ(T (xn)) → xn). Take γ ∈ Y ∗
arbitrarily. Then we have that γ ◦ T : X → F , and furthermore it is bounded since both
are bounded. Hence, γ ◦ T ∈ X∗. Since xn → x weakly, we have γ ◦ T (xn) → γ ◦ T (x).
Since γ was chosen arbitrarily, we have that T (xn)→ T (x) for all γ ∈ Y ∗; in other words,
T (xn)→ T (x) weakly.
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(2) According to the quiz solutions, we use the Closed Graph theorem. Suppose (xn, T (xn))→
(x, y) in norm, then we wish to show that x = T (x) for some x ∈ X. Since T is norm-weak
continuous, we have that T (xn) → T (x) weakly. Since T (xn) → y in norm, we get in
particular that T (xn)→ y weakly; to see this, take any ϕ ∈ Y ∗. Then we have

||ϕ(T (xn)− y)|| ≤ C||T (xn)− y|| → 0,

so
ϕ(T (xn))→ ϕ(y).

Hence, T (xn) → y weakly as well. The weak topology is Hausdorff, so we have that
y = T (x), and hence the graph is closed. The Closed Graph theorem then gives that T is
bounded.

(3) Using Proposition 5.15, we get that, since T is weak-norm continuous, there exists
L1, . . . , Ln ∈ X∗ and C > 0 so that

||T (x)|| ≤ C
n∑
i=1

||Li(x)||

So in particular, we get that x ∈
⋂n
i=1 ker(Li) implies that x ∈ ker(T ), so

⋂n
i=1 ker(Li) ⊂

ker(T ). So we see that rank(T ) ≤ n. In other words, the rank is finite.
�

Problem 59. Consider the space L2(T ) := L2(R/Z) of Z-periodic functions R→ C such that∫
[0,1]
|f |2 <∞.

Define

〈f, g〉 :=

∫
[0,1]

fg.

(1) Prove that L2(R/Z) is a Hilbert space.
(2) Show that the subspace C(T ) ⊂ L2(T ) of continuous Z periodic functions is dense.
(3) Prove that

{en(x) := exp(2πinx) : n ∈ Z}
is an orthonormal basis for L2(T ).

(4) Define F : L2(T )→ l2(Z) by

F(f)n := 〈f, en〉L2(T ) =

∫ 1

0
f(x) exp(−2πinx)dx.

Show that if f ∈ L2(T ) and F(f) ∈ l1(Z), then f ∈ C(T ). In other words, f is a.e. equal
to a continuous function.

Proof. (1) To show it’s a Hilbert space, we need to show that this is a vector space, this defines
an inner product, and that with respect to this inner product it is complete. We first check
that this is a vector space over R. Most of these properties are clear; after showing that
it’s closed under addition and scalar multiplication, we have that f + (g+h) = (f + g) +h,
f + g = g + f , 0 ∈ L2(T ), −f ∈ L2(T ), for a, b ∈ R we have a(bf) = (ab)f , 1f = f ,
a(f + g) = af + ag, (a+ b)f = af + bf .

To get closure under addition, we can note that

(f − g)2 = f2 − 2fg + g2 ≥ 0 =⇒ f2 + g2 ≥ 2fg,

so taking absolute values gives

2|f ||g| ≤ |f |2 + |g|2.
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Hence, we have∫
|f + g|2 =

∫
|f |2 + 2

∫
|f ||g|+

∫
|g|2 ≤ 2

∫
|f |2 + 2

∫
|g|2 <∞,

so f + g ∈ L2(T ). We also have∫
|af |2 = |a|2

∫
|f |2 <∞

for all a ∈ R, so it is closed under scalars. Hence, L2(T ) is a vector space.
We now check that this defines an inner product.

(a) We have

〈af + bg, h〉 =

∫
[0,1]

(af + bg)h = a

∫
[0,1]

fh+ b

∫
[0,1]

gh = a〈f, h〉+ b〈g, h〉,

via properties of the integral.
(b) We have

〈g, f〉 =

∫
[0,1]

gf =

∫
[0,1]

fg = 〈f, g〉.

(c) We see

〈f, f〉 =

∫
[0,1]

ff =

∫
[0,1]
|f |2 ∈ (0,∞)

for f non-zero a.e.
Hence, it is an inner product. Next, we need to show that it’s complete with respect to the
norm given by

||f || =
√
〈f, f〉.

We follow the proof of Theorem 6.6 in Folland. By Theorem 5.1, it suffices to show
that every absolutely convergent series in L2(T ) converges. So, take

∞∑
i=1

||fi|| <∞.

Let Fn =
∑n

1 |fi|, F =
∑∞

1 |fi|. Then we see that

‖Fn‖ =

∥∥∥∥∥
n∑
1

|fi|

∥∥∥∥∥ ≤
n∑
1

‖fi‖ <
∞∑
1

‖fi‖.

By the monotone convergence theorem, we get∫
F 2 = lim

∫
F 2
n <∞.

So F ∈ L2(T ), implying that
∑∞

1 fi converges since F (x) < ∞ a.e. Letting G =
∑∞

1 fi,
we get |G| ≤ F , and so G ∈ L2(T ). Using the fact that

|G−
n∑
1

fi|2 ≤ (2F )2 ∈ L1,

we can use dominated convergence theorem to get

‖F −
n∑
1

fi‖2 → 0,

and so we have satisfied the conditions of Theorem 5.1. Hence, it is complete.
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(2) We break it up into steps.
Step 1: (Follow proof of Proposition 6.7 in Folland.) We show that simple functions are
dense in L2(T ). Let

g =
n∑
i=1

aiχEi ,

where µ(Ei) < ∞ for all i, Ei ⊂ T measurable subsets. It’s clear that any such g is in
L2(T ). We then need to show that we can find a sequence (fn) such that fn → f in L2(T ).
By the theorem from class, we can choose fn ↗ f so that |fn| ≤ |f | for all n, fn → f a.e.
We get that

|fn − f |2 ≤ 4|f |2,
since

|fn − f |2 ≤ (|fn|+ |f |)2 = |fn|2 + 2|fn||f |+ |f |2 ≤ |f |2 + 2|f |2 + |f |2 = 4|f |2.
By the dominated convergence theorem, we then have that∫

|fn − f |2 → 0,

or in other words,
‖fn − f‖2 → 0.

Hence,
‖fn − f‖ → 0.

Step 2: (Follow the proof of Theorem 7.9 in Folland.) We show that we can approximate
characteristic functions using continuous functions. Once we have done this, as in prior
homeworks, we can deduce that C(T ) is dense in L2(T ).

Let E be any Borel set with µ(E) < ∞. Using the regularity of the Lebesgue measure
on this, fixing ε > 0, we get that we can find an open U such that E ⊂ U and a compact
K such that K ⊂ U so that µ(E −K) < ε. By Urysohn’s lemma, we can find continuous f
so that χK ≤ f ≤ χU , and so

‖χE − f‖ =

√∫
|χE − f |2 ≤

√∫
|χU − χK |2 ≤

√
ε.

This tells us that we can approximate any simple function arbitrarily well with a continuous
function, and so therefore the continuous functions are dense in L2(T ).

(3) (We follow Theorem 8.20 in Folland) We check that these are orthogonal in L2(T ). We
have

〈en, em〉 =

∫
[0,1]

e2πi(n−m)xdx.

Let u = 2πi(n−m)x, we have du = 2πi(n−m)dx, so∫
eu

2πi(n−m)
du =

e2πi(n−m)x

2πi(n−m)

∣∣∣∣1
x=0

=
e2π(n−m)i − 1

2πi(n−m)
.

Since m,n ∈ Z, we have that

e2πi(n−m) = 1.

Hence, for n 6= m, we get that
〈en, em〉 = 0,

and for n = m, we see that we get

〈en, en〉 = 1.
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So these are indeed orthonormal.
We now check that this is an algebra. However, from our work before (Problem 50), we

can use DeMoivre’s to deduce that this is indeed an algebra. We also can deduce that this
separates points from the solution as well. We have T is compact, and Stone-Weierstrass
gives that this is dense in the uniform norm. Notice that being dense in the uniform norm
also gives being dense in the L2 norm. Fix ε > 0, g ∈ C(T ). Since we have denseness in the
uniform norm, we can find f ∈ A (our the span of the en(x) will be the algebra denoted by
A) so that

‖f − g‖∞ < ε,

then we have that

‖f − g‖2 =

∫
[0,1]
|f − g|2 < ε2,

so that
‖f − g‖ < ε.

So we have that A is dense in C(T ), which is dense in L2(T ), and so A is dense in L2(T ).
Thus, it’s an orthonormal basis by the theorem in the class notes.

(4) We have

F(f) = (f̂n),

where

f̂n = F(f)n =

∫
[0,1]

f(x) exp(−2πinx)dx.

Since F(f) ∈ l1(Z), we have that ∑
|f̂n| <∞.

Furthermore, as Folland defines, we have that∑
n∈Z

f̂nen

is the Fourier series of f , and this property says that the Fourier series of f converges. By the
prior part, we have that the Fourier coefficients f̂ are unique to f (up to a.e. equivalence),
and so any function g which shares the same Fourier coefficients will be equal to f a.e. Let

SN :=
N∑

n=−N
f̂nen.

We have that SN is continuous, and from the condition that F(f) ∈ l1(Z) and by Weierstrass
M-test, we see that SN converges uniformly to a function g which must also be continuous.
Furthermore, we have that the Fourier coefficients of g and f are the same, and so we have
that f and g are equal a.e.

�

Problem 60. Suppose H is a Hilbert space, E ⊂ H is an orthonormal set, and {e1, . . . , en} ⊂ E.
Prove the following assertions.

(1) If

x =

n∑
i=1

ciei,

then
ci = 〈x, ei〉.

(2) The set E is linearly independent.
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(3) For every x ∈ H,
n∑
i=1

〈x, ei〉ei

is the unique element of span{e1, . . . , en} minimizing the distance to x.
(4) (Bessel’s Inequality) For every x ∈ H,

||x||2 ≥
n∑
i=1

|〈x, ei〉|2.

(5) If H is separable, then E is countable.
(6) The set E can be extended to an orthonormal basis for H.
(7) If E is an orthonormal basis, then the map H → l2(E) given by x 7→ (〈x, ·〉 : E → C) is a

unitary isomorphism of Hilbert spaces.

Proof. (1) Since it’s orthonormal, we have that 〈ei, ej〉 = δij . Notice that by linearity in the
first component, we have

〈x, ei〉 =

〈
n∑
j=1

cjej , ei

〉
=

n∑
j=1

cj〈ej , ei〉 = ci〈ei, ei〉 = ci||ei|| = ci.

(2) To show E is linearly independent, we need to show that any finite subset S ⊂ E is linearly
independent. Taking such a finite subset, we can represent it as S = {e1, . . . , en}. We want
to then show that ∑

aiei = 0 =⇒ ai = 0 for all i.

Since it’s orthonormal, we have the Pythagorean theorem applies to give∥∥∥∑ aiei

∥∥∥2
=
∑
|ai|2‖ei‖2 =

∑
|ai|2 = 0.

Hence, we must have that ai = 0 for all i. Since the choice of finite subset was arbitrary,
we get that E is linearly independent.

(3) Write M = span{e1, . . . , en}. Then we have from the class notes that

H = M ⊕M⊥.

Hence, we have that for all x ∈ H, we can write

x = y + z,

where y ∈M , z ∈M⊥. Since y ∈M , we have

y =
∑

aiei,

and so we can write

x =
∑

aiei + z.

Now use the same strategy as before; we have

〈x, ej〉 =
〈∑

aiei + z, ej

〉
=
∑

ai〈ei, ej〉+ 〈z, ej〉 = aj .

Hence, the unique element minimizing distance between M and x is the desired quantity.
(4) (Folland Theorem 5.26) Notice that, by the Pythagorean theorem, we get

0 ≤

∥∥∥∥∥x−
n∑
i=1

〈x, ei〉ei

∥∥∥∥∥
2

= ‖x‖2 − 2Re

〈
x,

n∑
i=1

〈x, ei〉ei

〉
+

∥∥∥∥∥
n∑
i=1

〈x, ei〉ei

∥∥∥∥∥
2
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= ‖x‖2 − 2
n∑
i=1

|〈x, ei〉|2 +
n∑
i=1

|〈x, ei〉|2

= ‖x‖2 −
n∑
i=1

|〈x, ei〉|2.

(5) (Folland Theorem 5.29) Since H is separable, we can show that it has a countable or-
thonormal basis. With this, we have that every orthonormal basis is countable, and by the
theorem from class we have that every orthonormal set is contained in an orthonormal basis
by maximality (we implicitly use (6) here), hence at most countable.

To see that the orthonormal basis has to be countable, let S = {xn} be a countable
dense subset of H. We construct another set as follows: Let y1 = x1, S′1 = {x1}. Let
S′′1 = span(y1)c ∩ S. After reordering, we can write this as S′′1 = {x2, . . .}. Let y2 =
x2, S

′
2 = {y1, y2}, S′′2 = span(y1, y2)c ∩ S, reorder, and continue. We then get a new

countable set S′ =
⋃
S′i = {yn}. We can then apply Graham-Schmidt to this new set to

get an orthonormal sequence {un} which is dense, and so therefore is a basis. Hence, the
orthonormal basis has to be countable.

(6) If E is an orthonormal basis, then we are done. Else, take the collection of all orthonormal
sets, ordered by inclusion, and notice that if we have a chain of orthonormal sets E1 ⊂
E2 ⊂ · · · , then E =

⋃
Ei is an orthonormal set. It’s clear that all a ∈ E have ||a|| = 1,

since a ∈ Ei for some i large enough. Furthermore, taking a, b ∈ E, a 6= b, we have that
a, b ∈ En for some n large enough, and so a ⊥ b. Furthermore, it’s clear we have that it’s
maximal, so by the theorem in the class notes we have E is an orthonormal basis. So if E
is not an orthonormal basis, it is contained in one, and hence it can be extended.

(7) (Folland Proposition 5.30/Exercise 5.55) We check that the map is linear first. Let T :
H → l2(E) be the map which sends T (x) = 〈x, ·〉. Then we need to show that T (ax+ y) =
aT (x) + T (y). We have

T (ax+ y) = 〈ax+ y, ·〉 = a〈x, ·〉+ 〈y, ·〉 = aT (x) + T (y).

By Parseval’s identity, we have

||x||2 =
∑
a∈A
|〈x, ei〉|2

for all x ∈ H. Thus, we have that it’s an isometry.
Taking g ∈ l2(E), we have that∑

e∈E
|g(e)|2 <∞,

and the Pythagorean applies to give that the partial sums of
∑

e∈E g(e)e are Cauchy, so
x =

∑
e∈E g(e)e is in H and T (x) = g. That is, the map is surjective. Isometry gives us

that it is injective, so it is an invertible linear map.
Next, we need to show that it preserves the inner product. We first show the polarization

identity.
Let x, y ∈ H. Then we see that

||x+ y||2 = 〈x+ y, x+ y〉 = 〈x, x+ y〉+ 〈y, x+ y〉 = ||x||2 + 〈x, y〉+ 〈y, x〉+ ||y||2

= ||x||2 + 2Re(〈x, y〉) + ||y||2,
||x− y||2 = 〈x− y, x− y〉 = 〈x, x− y〉 − 〈y, x− y〉 = ||x||2 − 〈x, y〉 − 〈y, x〉+ ||y||2

= ||x||2 − 2Re(〈x, y〉) + ||y||2,
||x+ iy||2 = 〈x+ iy, x+ iy〉 = 〈x, x+ iy〉+ i〈y, x+ iy〉 = ||x||2 − i〈x, y〉+ i〈y, x〉+ ||y||2
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= ||x||2 + 2Im(〈x, y〉) + ||y||2,
||x− iy||2 = 〈x− iy, x− iy〉 = 〈x, x− iy〉 − i〈y, x− iy〉 = ||x||2 + i〈x, y〉 − i〈y, x〉+ ||y||2

= ||x||2 − 2Im(〈x, y〉) + ||y||2.
Combining this together, we get

||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2 = 4〈x, y〉,
as desired. Now notice that

〈T (x), T (y)〉 =
1

4

(
||T (x) + T (y)||2 − ||T (x)− T (y)||2 + i||T (x) + iT (y)||2 − i||T (x)− iT (y)||2

)
=

1

4

(
||T (x+ y)||2 − ||T (x− y)||2 + i||T (x+ iy)||2 − i||T (x− iy)||2

)
=

1

4

(
||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2

)
= 〈x, y〉

by isometry properties, so we have that it is unitary.
�
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James Marshall Reber, ID: 500409166 Math 6211, Homework 13

Remark. Thomas O’Hare was a collaborator.

Problem 61. Let X be a LCH space and suppose ϕ : C0(X)→ C is a linear functional such that
ϕ(f) ≥ 0 whenever f ≥ 0. Prove that ϕ is bounded.

Proof. We follow the hint; that is, we wish to show that

{ϕ(f) : 0 ≤ f ≤ 1, f ∈ C0(X)}
is bounded. Recall that C0(X) is the collection of continuous functions which vanish at infinity;
for every ε > 0, {f ≥ ε} is compact. By the hint in the class, we proceed by contradiction: that is,
ϕ is not bounded. Then we can construct a sequence (fn) ⊂ C0(X) so that 0 ≤ fn ≤ 1 for all n,
but ϕ(fn)→∞. We use the Weierstrass M-test here. Choose ϕ(fn) > n2. Then we get that

∞∑
n=1

1

n2
fn

converges uniformly, since 0 ≤ fn ≤ 1, so taking Mn = 1
n2 we have a convergent series and so the

M-test applies. Since it’s a uniformly convergent series of continuous functions, we get that

f =
∞∑
n=1

1

n2
fn

is a continuous function. We check now that f ∈ C0(X). Fix ε > 0 and examine the set

{x ∈ X : f ≥ ε} =

{
x ∈ X :

∞∑
n=1

1

n2
fn ≥ ε

}
.

For fixed ε, there exists an N large enough so that

1

N2
< ε.

Since 0 ≤ fn ≤ 1 for each n, this means that none of the x contribute with regards to fn for n
sufficiently large. So we have

{x ∈ X : f ≥ ε} ⊂
N−1⋃
n=1

{x ∈ X : fn ≥ εn2}.

Now, notice that f is continuous, so this means that the set on the left is closed. Since it’s a finite
union of compact sets on the right, this means it is compact. We have a closed subset of a compact
set, and so this must be compact. Hence, f ∈ C0(X).

Normalizing f to get

g(x) :=
6

π2
f(x),

we have g ∈ C0(X) and 0 ≤ g ≤ 1. We have that

ϕ(g) = ϕ

(
6

π2

∞∑
n=1

1

n2
fn

)
.

Since everything is positive, we have

ϕ(g) ≥ 6

π2

N∑
n=1

1

n2
ϕ(fn).
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We chose fn so that ϕ(fn) > n2, so we have

ϕ(g) ≥ 6

π2

N∑
n=1

1

n2
ϕ(fn) >

6

π2

N∑
n=1

1.

This holds for all N , but this means that ϕ(g) =∞. This is a contradiction, and so we must have
that this set is bounded.

�

Problem 62. Let X be a LCH space, K ⊂ X compact, and U1, . . . , Un open sets such that

K ⊂
n⋃
i=1

Ui.

Show that there exists g1, . . . , gn ∈ Cc(X) such that gi ≺ Ui for all i and
∑n

1 gi = 1 on K.

Proof. Choose x ∈ K such that there are compact neighborhoods Nx ⊂ Uj for some j. We have
that

K ⊂
⋃
No
x ,

so by compactness we get

K ⊂
m⋃
i=1

No
xi ⊂

m⋃
i=1

Nxi .

Taking Fj =
⋃k
l=1Nxl , where Nxl ⊂ Uj , we get that the Fj are compact (since they are finite unions

of compact things), and moreover we have Fj ⊂ Uj for each j ∈ {1, . . . , n}. By LCH Urysohn, we
have that we can find continuous hj such that hj = 1 on Fj and hj = 0 outside of a compact subset
V ⊂ Uj . Moreover, this gives us that hj ≺ Uj for each j. Notice that we have that

n∑
i=1

hj ≥ 1

on K. Use LCH Urysohn to define f so that f = 1 on K and supp(f) ⊂ {x :
∑
hi > 0}. Letting

hn+1 = 1− f , we have that
∑n+1

i=1 gi > 0 on all X. Let

gj =
hj∑n+1
i=1 hi

for j ∈ {1, . . . , n}.s Then we have that gj ≺ Uj still, and furthermore we have that

n∑
j=1

gj = 1

on K by construction. �

Problem 63. Suppose X is a LCH space, µ is a σ-finite Radon measure on X, and E is a Borel
set. Prove that for every ε > 0, there is an open set U and a closed set F with F ⊂ E ⊂ U such
that

µ(U − F ) < ε.

Proof. Using disjointification, write E as

E =
∞⊔
n=1

En,
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where µ(En) <∞. By the class notes (or Proposition 7.5 in Folland), we have that we can find
open Un so that

µ(Un) < µ(En) + ε2−n−1.

Write

U =

∞⋃
n=1

Un.

U is open, and furthermore E ⊂ U ,

µ(E − U) ≤
∞∑
n=1

µ(Un − En) <
ε

2
.

We have that Ec is also a Borel set, and so we can write

Ec =

∞⊔
n=1

Gn,

where µ(Gn) <∞. For each Gn, find open Vn so that

µ(Vn) < µ(Gn) + ε2−n−1.

Write

V =

∞⋃
n=1

Vn.

Then we have that

µ(Ec − V ) <
ε

2
.

Letting F = V c, we have that F is closed and F ⊂ E. Notice as well that

µ(U − F ) = µ(U − E) + µ(E − F ) = µ(U − E) + µ(V − Ec) < ε.

�

Problem 64. Suppose X is an LCH space and ϕ ∈ C0(X)∗. Prove that there are finite Radon
measures µ0, µ1, µ2, µ3 on X such that

ϕ(f) =

3∑
k=0

ik
∫
fdµk

for all f ∈ C0(X).

Proof. Consider the case where ϕ ∈ C0(X,R)∗. By the class notes, we have that there are positive
linear functionals ϕ± ∈ C0(X,R)∗ such that ϕ = ϕ+ − ϕ−. We also get that positive linear
functionals are of the form

ϕ± =

∫
·dµ±,

where µ± are finite Radon measures.
Examining the case where ϕ ∈ C0(X)∗, we take f ∈ C0(X) and notice that it can be written as

f = Re(f) + iIm(f), where Re(f), Im(f) ∈ C0(X,R). Using linearity, we have

ϕ(f) = ϕ(Re(f)) + iϕ(Im(f)).

Hence, we can write ϕ1 = ϕ ◦ Re and ϕ2 = ϕ ◦ Im to write this as

ϕ(f) = ϕ1(f) + iϕ2(f).
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Now, we notice that ϕ1, ϕ2 ∈ C0(X,R)∗, and so by the previous discussion we get that we can
decompose them as

ϕ1 =

∫
·dµ0 −

∫
·dµ2,

ϕ2 =

∫
·dµ1 −

∫
·dµ3.

Expanding this, we have

ϕ(f) =

∫
fdµ0 −

∫
fdµ2 + i

∫
fdµ1 − i

∫
fdµ3.

Rearranging terms, we have

ϕ(f) =
3∑

k=0

ik
∫
fdµk,

as desired.
�
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James Marshall Reber, ID: 500409166 Math 6211, Homework 14

Remark. Thomas O’Hare was a collaborator.

Problem 65. Suppose µ is a positive measure on (X,M) and ν is a signed measure on (X,M).

(1) Prove that the following are equivalent:
(a) ν ⊥ µ
(b) |ν| ⊥ µ
(c) ν+ ⊥ µ and ν− ⊥ µ

(2) Prove that the following are equivalent:
(a) ν � µ
(b) |ν| � µ
(c) ν+ � µ and ν−≪ µ.

Proof. (1) (a) =⇒ (b): Assume ν ⊥ µ. Then we have that we can write

X = E t F, µ(E) = ν(F ) = 0.

We can write ν = ν+ − ν−. Hahn decomposition gives us

X = P tN, ν+(N) = ν−(P ) = 0.

Notice that |ν| = ν+ + ν−, where ν+(E) = ν(E ∩P ), ν−(E) = −ν(E ∩N). Notice now that

|ν|(F ) = ν+(F ) + ν−(F ) = ν(F ∩ P )− ν(F ∩N).

Since ν(F ) = 0 (moreover, F is ν-null), we have ν(F ∩ P ) = 0, ν(F ∩N) = 0, so

|ν|(F ) = 0.

Hence, we have |ν| ⊥ µ.
(b) =⇒ (c): We can write

X = E t F, µ(E) = |ν|(F ) = 0.

Again, write

X = P tN, ν+(N) = ν−(P ) = 0.

Write

X = (E ∩N) t (E ∩ P ) t (F ∩N) t (F ∩ P ).

Notice that

0 ≤ µ(E ∩ P ) ≤ µ(E) = 0,

so µ(E ∩ P ) = 0. Similarly, we have

ν+(E ∩N) + ν+(F ∩N) + ν+(F ∩ P ) = 0,

since each respective component is 0. Thus, ν+ ⊥ µ. An analogous argument shows that
ν− ⊥ µ.
(c) =⇒ (a): Since ν+ ⊥ µ, we can write

X = E t F, µ(E) = ν+(F ) = 0.

Similarly, write

X = G tH, µ(H) = ν−(G) = 0.

Intersecting these gives

X = (E ∩G) t (E ∩H) t (F ∩G) t (F ∩H).
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Let P = F ∩G, N = (E ∩G) t (E ∩H) t (F ∩H). Write as well

X = K t L, ν+(L) = ν−(K) = 0.

Then we have

ν(P ) = ν+(F ∩G ∩K)− ν−(F ∩G ∩ L).

Since ν+(F ) = 0, ν+(F ∩G ∩K) ≤ ν+(F ), we have that ν+(F ∩G ∩K) = 0. Likewise, we
get ν−(F ∩G ∩ L) = 0. Hence, ν(P ) = 0.

Similarly, we see that

µ(N) = µ(E ∩G) + µ(E ∩G) + µ(F ∩H) ≤ µ(E) + µ(E) + µ(H) = 0.

Hence, µ(N) = 0. Thus, since X = P tN , we have that ν ⊥ µ.
(2) (a) =⇒ (b): Assume ν � µ. We have then that if µ(E) = 0, then ν(F ) = µ(F ) = 0 for all

F with F ⊂ E, by the monotonicity of µ. Writing

X = P tN, ν+(N) = ν−(P ) = 0,

and we have

ν+(E) = ν(E ∩ F ) = 0,

ν−(E) = ν(E ∩N) = 0,

so |ν|(E) = ν+(E) + ν−(E) = 0. Hence, |ν| � µ.
(b) =⇒ (c): Assume |ν| � µ. Take E ∈ M such that µ(E) = 0, then we have |ν|(E) =
ν+(E) + ν−(E) = 0. Since |ν| is a positive measure, and ν+, ν− ≤ |ν|, we get that ν+ � µ
and ν− � µ as well.
(c) =⇒ (a): Take E ∈M with µ(E) = 0. We have that

ν(E) = ν+(E)− ν−(E) = 0− 0 = 0.

Hence, ν � µ.
�

Problem 66. Let ν be a signed measure on (X,M). Prove the following assertions:

(1) L1(ν) = L1(|ν|).
(2) If f ∈ L1(ν), ∣∣∣∣∫ fdν

∣∣∣∣ ≤ ∫ |f |d|ν|.
(3) If E ∈M,

|ν|(E) = sup

{∣∣∣∣∫
E
fdν

∣∣∣∣ : −1 ≤ f ≤ 1

}
.

Proof. (1) Take f ∈ L1(ν). We wish to show that f ∈ L1(|ν|). Again, write ν = ν+ − ν−, and
write

X = P tN, ν+(N) = ν−(P ) = 0.

We have ∫
|f |dν+ =

∫
P
|f |dν <∞,∫

|f |dν− = −
∫
N
|f |dν > −∞,

so ∫
|f |d|ν| =

∫
|f |(dν+ + dν−) =

∫
|f |dν+ +

∫
|f |dν− <∞.
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Thus, f ∈ L1(|ν|). The other direction is clear, since if f ∈ L1(|ν|), we have∫
|f |d|ν| =

∫
|f |(dν+ + dν−) =

∫
|f |dν+ +

∫
|f |dν− <∞,

so ∫
|f |dν+,

∫
|f |dν− <∞,

and hence f ∈ L1(ν+) ∩ L1(ν−) = L1(ν).
(2) We write out the definition;∣∣∣∣∫ fdν

∣∣∣∣ =

∣∣∣∣∫ fdν+ −
∫
fdν−

∣∣∣∣ ≤ ∣∣∣∣∫ fdν+

∣∣∣∣+

∣∣∣∣∫ fdν−

∣∣∣∣
≤
∫
|f |dν+ +

∫
|f |dν− =

∫
|f |d|ν|.

(3) Let

K(E) := sup

{∣∣∣∣∫
E
fdν

∣∣∣∣ : −1 ≤ f ≤ 1

}
.

Take f measurable so that −1 ≤ f ≤ 1. Then we have∣∣∣∣∫
E
fdν

∣∣∣∣ ≤ ∫
E
|f |d|ν| ≤

∫
E
d|ν| = |ν|(E).

So K(E) ≤ |ν|(E). For the other direction, write

X = P tN, ν+(N) = ν−(P ) = 0.

We have

|ν|(E) =

∫
E
d|ν| =

∫
E
dν+ +

∫
E
dν− =

∫
E
χPdν−

∫
E
χNdν =

∫
E

(χP −χN )dν ≤
∣∣∣∣∫
E

(χP − χN )dν

∣∣∣∣ ,
and since

−1 ≤ χP − χN ≤ 1

by disjointedness, we have that

χP − χN ∈
{∣∣∣∣∫

E
fdν

∣∣∣∣ : −1 ≤ f ≤ 1

}
,

so
|ν|(E) ≤ K(E).

Hence, |ν|(E) = K(E), as desired.
�

Problem 67. Suppose

ν(E) :=

∫
E
fdµ, E ∈M

where µ is a positive measure on (X,M) and f is an extended µ-integrable function. Describe the
Hahn decompositions of ν and the positive, negative, and total variations of ν in terms of f and µ.

Proof. First, we wish to describe a Hahn decomposition of ν in terms of f and µ. That is, we need
to find sets P and N so that

X = P tN,
and where P is ν positive and N is ν negative. Write

P = {f ≥ 0},
N = {f < 0}.

91



Then clearly P ∩N = ∅, P tN = X. Let E ⊂ P , then we have

ν(E) =

∫
E
fdµ =

∫
f · χEdµ ≥ 0.

So we see that ν is positive on P . Likewise, E ⊂ N implies that

ν(E) =

∫
E
fdµ =

∫
f · χEdµ ≤ 0,

so that ν is negative on N . Hence, we have a Hahn decomposition of ν.
With this, we can find the positive and negative variations of ν. Write

ν+(E) = ν(E ∩ P ) =

∫
E
f · χPdµ,

ν−(E) = −ν(E ∩N) = −
∫
E
f · χNdµ.

Thus, we write ν = ν+ − ν−. The total variation then is

|ν| = ν+ + ν−,

which we write as

|ν|(E) =

∫
E
f · χPdµ−

∫
E
f · χNdµ

=

∫
E
f(χP − χN )dµ.

�

Problem 68. Suppose µ is a positive measure on (X,M). Suppose {νj} is a sequence of positive
measures on (X,M). Prove the following assertions:

(1) If {νj} is a sequence of positive measures on (X,M) with νj ⊥ µ for all j, then
∑
νj ⊥ µ.

(2) If ν1, ν2 are positive measures on (X,M) with at least one of ν1, ν2 is finite and νj ⊥ µ for
j = 1, 2, then (ν1 − ν2) ⊥ µ.

(3) If {νj} is a sequence of positive measures on (X,M) with νj � µ for all j, then
∑
νj � µ.

(4) If ν1, ν2 are positive measures on (X,M) with at least one of ν1, ν2 is finite and νj � µ for
j = 1, 2, then (ν1 − ν2)� µ.

Proof. (1) For each j, we have that

X = Ej t Fj ,

with µ null on Ej and νj null on Fj . Let E =
⋃∞
j=1Ej , F =

⋂∞
j=1 Fj . Notice first that

X = E t F , since these are compliments and DeMorgans applies. Letting G ⊂ E, we can
write Gj = G ∩ Ej , and we have that

µ(G) = µ

⋃
j

Gj

 ≤∑
j

µ(Gj) = 0.

Hence, µ(G) = 0, and since this applies for all subsets we have that E is µ null. Letting
G ⊂ F , we see that ∑

j

νj(G) =
∑
j

0 = 0,

since νj(G) ≤ νj(Ej) = 0 for each j. Hence, we have that
∑

j νj is null on F , so we have

that
∑
νj ⊥ µ.
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(2) We have
X = E1 t F1 = E2 t F2,

where µ is null on E1, E2 and νj is null on F1, F2. Let E = E1 ∪ E2, F = F1 ∩ F2. From
above, we see that

X = E t F,
and µ is null on E. Furthermore, we see that ν1 − ν2 is null on F by the same argument
above, so we have that (ν1 − ν2) ⊥ µ.

(3) Let E ∈ M be such that µ(E) = 0, then we have for all j νj(E) = 0, so
∑
νj(E) = 0.

Hence,
∑
νj � µ.

(4) The same idea as above: take E ∈ M such that µ(E) = 0, then ν1(E) = 0, ν2(E) = 0, so
(ν1 − ν2)(E) = 0. Since the choice of E was arbitrary, we have (ν1 − ν2)� µ.

�

Problem 69. Let F : R→ R be a non-decreasing continuously differentiable function, and let µF
be the corresponding Lebesgue-Stieltjes measure on R. Prove that µF � λ (Lebesgue measure)
and

dµF
dλ

= F ′ λ-a.e.

In other words, prove that

µF (E) =

∫
E
F ′dλ ∀E ∈ BR.

Proof. We can define a measure ν such that

ν(E) :=

∫
E
F ′dλ

or in other words, dν = F ′dλ. Write the real line as a countable disjoint union of half open intervals
(a, b]. Observe that

ν((a, b]) =

∫
(a,b]

F ′dλ = F (b)− F (a) = µF ((a, b]) <∞.

Let Π be the collection of half open intervals on R, along with the empty set. By what we’ve just
shown, we see that µ = ν on Π. Notice that, by argument laid out in Problem 12, we get that
this is actually a Π system (simply go through the cases and see that intersecting two half open
intervals gives either a half open interval or the empty set, use this and induction to get that it
holds for a finite number of half open intervals). Hence, using Problem 6, we get that µ = ν on

BR. So we have dµ = F ′dλ, This gives us that F ′ = dµF
dλ λ-a.e. Next, notice that if λ(E) = 0, we

have that

µF (E) =

∫
E
F ′dλ ≤ λ(F ) · ||F ′||∞ = 0,

so µF � λ. �
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James Marshall Reber, ID: 500409166 Math 6211, Homework misc

Problem 70. If fn → f in measure, and if there is a function φ such that fn ≤ φ a.e. for all n ≥ 1,
prove that f ≤ φ a.e. as well.

Proof. By definition, fn → f in measure implies that for all ε > 0,

µ({x : |fn(x)− f(x)| ≥ ε})→ 0.

Examine the set
Eε := {x : f − φ ≥ ε}.

Then we can write this as

Eε = {x : f − fn + fn − φ ≥ ε} ⊂ {x : f − fn ≥ ε/2} ∪ {x : fn − φ ≥ ε/2}.
Notice that we can write

{x : fn(x)− f(x) ≥ ε} ⊂ {x : |fn(x)− f(x)| ≥ ε},
and so we see that we can make the measure arbitrarily small. Hence, take it so that the measure
is 0.

Since fn ≤ φ a.e. for all n ≥ 1, we have that 0 ≤ φ − fn a.e., or in other words the set where
fn − φ ≤ ε has measure 0 for all ε > 0.

So, we have that Eε = 0. Notice now that Eε ↗ E := {x : f − φ ≥ 0} = {x : f ≥ φ}, and so
µ(E) = 0 by continuity from below. �

Problem 71. Show that convergence in L1 implies convergence in measure.

Proof. Convergence in L1 says ∫
|f − fn| → 0.

Notice that we have ∫
|f − fn| =

∫
E
|f − fn|+

∫
Ec
|f − fn|,

where E = {x : |f(x)− fn(x)| ≥ ε} for some ε > 0. Hence,∫
E
|f − fn| ≤

∫
|f − fn|.

Furthermore, since |f − fn| ≥ ε on E, we have∫
E
|f − fn| ≥

∫
E
ε = εµ(E).

So we have

µ(E) ≤ 1

ε

∫
|f − fn|.

The right hand side goes to 0, and so we see that the left hand side goes to 0. Since this applies
for all ε > 0, we win. �

Problem 72. Suppose A ⊂ B are Lebesgue measurable subsets and λ(A) = λ(B). Then show
that any set C such that A ⊂ C ⊂ B is also measurable and that λ(C) = λ(A).

Proof. Notice that
λ(A) ≤ λ(C) ≤ λ(B) = λ(A) =⇒ λ(C) = λ(A).

Notice that we have λ(B − A) = 0. Furthermore, we get that C − A ⊂ B − A, and so C − A
is measurable by completeness. Hence, C = A ∪ (C − A) is a union of measurable sets, and so
measurable. �

94



Problem 73 (Axler 2.1). Suppose that A,B ⊂ R, λ(B) = 0, then λ(A ∪B) = λ(A) (λ here is the
Lebesgue measure).

Proof. Montonicity says

A ⊂ A ∪B =⇒ λ(A) ≤ λ(A ∪B).

Subadditivity gives

λ(A ∪B) ≤ λ(A) + λ(B) = λ(A).

Hence, we have

λ(A) ≤ λ(A ∪B) ≤ λ(A) =⇒ λ(A ∪B) = λ(A).

�

Problem 74 (Axler 2.3). Prove that if A,B ⊂ R, λ(A) <∞, then λ(B −A) ≥ λ(B)− λ(A).

Proof. Notice that we have

B = A t (B −A),

so we have

λ(B) ≤ λ(A) + λ(B −A).

Since λ(A) <∞, we can subtract from both sides to get

λ(B)− λ(A) ≤ λ(B −A).

�

Problem 75 (Axler 2.17). Suppose X is a Borel subset of R, and f : X → R is a function such
that

F := {x ∈ X : f is not continuous at x}
is a countable set. Prove f is a Borel measurable function.

Proof. Let E ⊂ R open. Then we have that f−1(E) = (f−1(E) ∩ F ) ∪ (f−1(E) ∩ F c). Since λ is
a complete measure, we have that f−1(E) ∩ F is measurable, since it has measure 0, and since f
is continuous on F c, we get that f−1(E) ∩ F c is measurable. Hence, f−1(E) is measurable. Since
this works for all E ⊂ R open, we have that f is measurable. �

Problem 76. Let M be an algebra. If M is closed under countable disjoint unions, then it is a
σ-algebra.

Proof. Recall that an algebra is a collection of sets which is closed under complements and finite
unions and M 6= ∅. We also give it the property that it is closed under countable disjoint unions;
that is, if {Ei} ⊆ M is a collection of disjoint sets (that is, Ei ∩ Ej = ∅ if i = j), then

⊔
Ei ∈M.

We want to show that M is a σ-algebra. Recall that a σ-algebra is a collection of sets Y such
that

• X ∈ Y ,
• Y is closed under complements,
• Y is closed under countable unions.

So we have that M satisfies the first two properties, and so it suffices to show it satisfies the
last. Notice that DeMorgans gives us (

⋃n
i=1E

C
i )C =

⋂n
i=1Ei, and so M is also closed under finite

intersections.

Let {Ei} be a collection of sets inM. Let F1 = E1, Fn = En ∩
(⋃n−1

i=1 Ei

)C
. Since the Ei ∈M,

we get that Fi ∈ M for all i. Moreover, Fi ∩ Fj = ∅; they are disjoint. So by assumption,⊔
Fi ∈ M. But notice as well that

⊔
Fi =

⋃
Ei, and hence

⋃
Ei ∈ M. So M is closed under

countable unions. �
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Problem 77 (Folland 1.5). If M is a σ-algebra generated by E, then M is the union of the
σ-algebras generated by F as F ranges over all countable subsets of E.

Proof. We proceed via the hint. That is, we first wish to show that

G :=
⋃

F⊂P(E)
F countable

σ(F )

is a σ-algebra. First, notice that ∅ ∈ G clearly. Next, let A ∈ G. Then we have that A ∈ σ(F )
for some F , and so Ac ∈ σ(F ), which implies it’s in the union. Finally, let {Ai} be a collection
of subsets of G. We wish to then show that

⋃
Ai ∈ G. Notice that Ai ∈ Fi for some i, where we

may have Fi = Fj for i 6= j. Since this is a countable union, we have that we can take a union over
these Fi to have a countable union; that is,⋃

Ai ∈ σ
(⋃

Fi

)
⊂ G.

So G is closed under countable unions, and so is a σ-algebra.
Now, we see thatM⊂ G, since G is a σ-algebra which contains E. For the other direction, just

note that σ(F ) ⊂M for all F , and so
⋃
σ(F ) = G ⊂M. Hence, M = G. �

Problem 78 (Folland 1.6). Complete the proof of Theorem 1.9. That is, the following:
Suppose that (X,M, µ) is a measure space. Let N = {N ∈M : µ(N) = 0}, andM = {E∪F :

E ∈ M and F ⊂ N for some N ∈ N}. Then M is a σ-algebra, and there is a unique extension µ
of µ to a complete measure on M.

Proof. SinceM and N are closed under countable unions, we clearly getM is as well. If E∪F ∈M
where E ∈M and F ⊂ N ∈ N , we can assume that E ∩N = ∅, otherwise disjointify them. Then
E ∪ F = (E ∪N) ∩ (NC ∪ F ), so (E ∪ F )c ∈M. Hence, its a σ-algebra.

We then want to show that ν = µ is a complete measure on M. To check that it’s a measure,
we need to show two things:

(1) ν(∅) = 0: This follows, since ∅ = ∅ ∪∅, and so ν(∅) = µ(∅) = 0.
(2) If Ei is a disjoint collection of sets in M, we have that Ei = Ai ∪ Fi, where Ai ∈ M and

Fi ⊂ Ni for some Ni ∈ N . Hence, we have⊔
Ei =

⊔
(Ai ∪ Fi) =

(⊔
Ai

)
∪
(⊔

Fi

)
,

and so

ν
(⊔

Ei

)
= µ

(⊔
Ai

)
=
∑

µ(Ai) =
∑

ν(Ei).

So ν is a measure. Moreover, we see ν is a complete measure; we see that if N ⊂ X is such that
N ⊂ F , µ(F ) = 0, then we have that

N = ∅ ∪N ∈M, ν(N) = 0.

So it is a complete measure. Finally, we check the uniqueness of ν. Assume that we have another
measure, γ, which is equal to µ on M. Given A ∈ M, we have that A = E ∪ F , where E ∈ M,
F ⊂ N ∈M, µ(N) = 0. Hence, we have that E ⊂ A ⊂ E ∪N , and so we get

γ(E) = µ(E) ≤ γ(A) ≤ γ(E ∪N) = µ(E ∪N) = µ(E) = γ(E),

and so we have γ(A) = γ(E) = ν(E). Hence, the measure is unique. �

Problem 79 (Folland 1.7). If µ1, . . . , µn are measures on (X,M), and a1, . . . , an ∈ [0,∞), then∑
aiµi is a measure.
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Proof. We need to check the two assumptions. Notice that∑
aiµi(∅) =

∑
ai(0) = 0,

and so the first assumption holds. Next, take {Ej} ⊂ M disjoint. Then we have that

µi

(⊔
Ej

)
=
∑

µi(Ej),

and so ∑
aiµi

(⊔
Ej

)
=
∑
i

ai

∑
j

µi(Ej)

 =
∑
j

∑
i

aiµ(Ej).

Hence, it’s a measure. �

Problem 80 (Folland 1.8). If (X,M, µ) is a measure space, and {Ej} ⊂ M, then

µ (lim inf Ej) ≤ lim inf µ(Ej).

Also,

µ(lim supEj) ≥ lim supµ(Ej),

provided that

µ
(⋃

Ej

)
<∞.

Proof.

(1) Recall that

lim inf Ej =

∞⋃
j=1

∞⋂
m=j

Em.

By subadditivity, we see that

µ

 ∞⋂
m=j

Em

 ≤ µ(Ej)

for all j ≥ m, and so in particular we have

µ

 ∞⋂
m=j

Em

 ≤ inf
m≥j

µ(Em).

Taking the limit as j →∞ of both sides gives

µ(lim inf Ej) ≤ lim inf µ(Ej).

(2) This is proven analogously. Notice that

µ

⋃
m=j

Em

 ≥ µ(Ej)

for all j ≥ m. Hence, we get

µ

⋃
m=j

Em

 ≥ sup
m≥j

µ(Em)

Since the union has finite measure, we get the desired result by taking limits.

�
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Problem 81 (Folland 1.9). If (X,M, µ) is a measure space and E,F ∈ M, then µ(E) + µ(F ) =
µ(E ∪ F ) + µ(E ∩ F ).

Proof. Recall that we can write

E = (E ∩ F ) t (E ∩ FC).

Hence,

µ(E) = µ(E ∩ F ) + µ(E ∩ FC).

Likewise, we can write

E ∪ F = (E ∩ F c) t F.
So we have

µ(E ∪ F ) + µ(E ∩ F ) = µ(F ) + µ(E ∩ F c) + µ(E ∩ F ) = µ(F ) + µ(E).

�

Problem 82 (Folland 1.10). Given a measure space (X,M, µ) and E ∈ M, define µE(A) =
µ(A ∩ E) for A ∈M. Then µE is a measure.

Proof. Notice that

µE(∅) = µ(E ∩∅) = µ(∅) = 0.

Notice as well that if {Ei} ⊂ M is such that it is disjoint, then

µE

(⊔
Ei

)
= µ

((⊔
Ei

)
∩ E

)
= µ

(⊔
(Ei ∩ E)

)
=
∑
i

µ(Ei ∩ E) =
∑
i

µE(Ei).

Hence, it is a measure. �

Problem 83 (Folland 1.11). A finitely additive measure µ is a measure if and only if it satisfies
the conclusion of Theorem 1.8c. If µ(X) is finite, µ is a measure if and only if it satisfies the
conclusion of Theorem 1.8d.

Proof. ( =⇒ ) Clear.
(⇐= ) It suffices to show that if Ei ⊂M is disjoint, then µ (

⋃
Ei) =

∑
µ(Ei). By finite additivity,

we get

µ

(
n⋃
i=1

Ei

)
=

n∑
i=1

µ(Ei).

We can then do limits to get

µ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

µ(Ei).

�

Problem 84 (Folland 1.12). Let (X,M, µ) be a finite measure space.

(1) If E,F ∈M and µ(E∆F ) = 0, then µ(E) = µ(F ).
(2) Say that E ∼ F if µ(E∆F ) = 0; then ∼ is an equivalence relation on M.
(3) For E,F ∈M, define ρ(E,F ) = µ(E∆F ). Then ρ(E,G) ≤ ρ(E,F ) + ρ(F,G), and hence ρ

defines a metric on the space M/ ∼ of equivalence classes.

Proof.
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(1) Recall that
E∆F = (E − F ) t (F − E).

Hence, we have
µ(E∆F ) = µ(E − F ) + µ(F − E) = 0.

This implies that µ(E − F ) = µ(F −E) = 0. But notice that E ⊂ F t (E − F ), and so we
get

µ(E) ≤ µ(F ) + µ(E − F ) = µ(F ).

Likewise, F ⊂ E t (F − E), and so µ(F ) ≤ µ(E). Thus, µ(E) = µ(F ).
(2) We first see that E∆E = ∅, and so E ∼ E. Likewise, if E ∼ F , then µ(E∆F ) =

µ(E − F ) + µ(F − E) = µ(F − E) + µ(E − F ) = µ(F∆E) = 0, and so F ∼ E. Finally, if
E ∼ F , F ∼ G, then we have that

µ(E∆G) = µ(E −G) + µ(G− E).

Notice that E − G ⊂ (E − F ) ∪ (F − G), and so µ(E − G) = 0. An analogous argument
applies for G− E.

(3) By the observation prior, we have

µ(E∆G) = µ(E−G)+µ(G−E) ≤ µ(E−F )+µ(F−G)+µ(G−F )+µ(F−E) = µ(E∆F )+µ(G∆F ).

Hence, we get the triangle inequality. On the quotient space, it’s clear that this will be a
metric, then.

�

Problem 85 (Folland 1.13). Every σ-finite measure is semifinite.

Proof. Since µ is σ-finite, we can write

X =
⋃
Fi,

where µ(Fi) <∞. Take E ⊂ X such that µ(E) =∞. Then we have that

E =
⋃

(Fi ∩ E),

and so
∞ = µ(E) ≤

∑
i

µ(Fi ∩ E),

and hence
∑

i µ(Fi ∩ E) = ∞. So there must be at least one N such that µ(FN ∩ E) > 0.
Furthermore, we have µ(FN ∩ E) ≤ µ(FN ) <∞. So, we have

FN ∩ E ⊂ F, 0 < µ(FN ∩ E) <∞.
The choice of E was arbitrary, and so our measure is semifinite. �

Problem 86 (Folland 1.17). If µ∗ is an outer measure on X and {Aj} is a sequence of disjoint
measurable sets, then

µ∗
(
E ∩

⋃
Aj

)
=
∑

µ∗(E ∩Aj).

Proof. Notice immediately that we have

µ∗
(
E ∩

⋃
Aj

)
= µ∗

(⋃
(E ∩Aj)

)
≤
∑

µ∗(E ∩Aj),

by properties of outer measure. We then need to show the other direction.
Let Bn =

⋃n
1 Aj , B =

⋃∞
n=1Bn. Since Aj measurable, we have

µ∗(E ∩Bn) = µ∗(E ∩Bn ∩An) + µ∗(E ∩Bn ∩Acn)

= µ∗(E ∩An) + µ∗(E ∩Bn−1).
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By induction we have

µ∗(E ∩Bn) =

n∑
1

µ∗(E ∩Aj).

Monotonicity tells us that

µ∗(E ∩B) ≥
n∑
1

µ∗(E ∩Aj).

Since this applies for all n, we have

µ∗
(
E ∩

⋃
Aj

)
≥
∑

µ∗(E ∩Aj),

as desired. �

Problem 87 (Folland 1.18). Let A be an algebra, Aσ the collection of countable unions of things
in A, and Aσδ the collection of countable intersections of sets in Aσ. Let µ0 be a premeasure and
µ∗ be the induced outer measure.

(1) For any E ⊂ X and ε > 0, there exists A ∈ Aσ with E ⊂ A and µ∗(A) ≤ µ∗(E) + ε.
(2) If µ∗(E) <∞, then E is µ∗ measurable if and only if there exists B ∈ Aσδ with E ⊂ B and

µ∗(B − E) = 0.
(3) We could take µ0 to be σ-finite instead of µ∗(E) <∞.

Proof.

(1) This follows by definition of the induced outer measure; we have

µ∗(E) = inf
{∑

µ0(Aj) : Aj ∈ A, E ⊂
⋃
Aj

}
.

Hence, for all ε > 0, there is a B ∈ Aσ such that

µ∗(B) ≤ µ∗(E) + ε.

(2) ( =⇒ ) Assume that E is µ∗ measurable and has finite measure. From above, we can find
B such that

µ∗(B) ≤ µ∗(E) + ε.

Let Bn be such that

µ∗(Bn) ≤ µ∗(E) + 1/n.

We have that

µ∗(Bn) = µ∗(Bn ∩ E) + µ∗(Bn ∩ Ec),
and since E ⊂ Bn, we get

µ∗(Bn) = µ∗(E) + µ∗(Bn − E).

Since µ∗(E) is finite, this means

µ∗(Bn)− µ∗(E) = µ∗(Bn − E).

Furthermore, we have

µ∗(Bn)− µ∗(E) = µ∗(Bn − E) ≤ 1/n.

Let B =
⋂
Bn. Then

µ∗(B − E) ≤ µ∗(Bn − E) ≤ 1/n

for all n, and so we have

µ∗(B − E) = 0.
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Furthermore, since E ⊂ Bn for all n, we have E ⊂ B, as desired.
(⇐= ) Assume we have that there is a B such that E ⊂ B and µ∗(B −E) = 0. Hence, we
see that µ∗(B) = µ∗(E). Let F be any subset of X.

µ∗(F ∩E)+µ∗(F ∩Ec) ≤ µ∗(F ∩B)+µ∗(F ∩Ec) ≤ µ∗(F ∩B)+µ∗(F ∩Bc)+µ∗(B∩Ec) = µ∗(F ).

Since this applies for all F , we have that E is measurable.
(3) Let X =

⋃
nXn, µ∗(Xn) < ∞. Take E ⊂ X, then E =

⋃
n(E ∩ Xn) =

⋃
En. Notice

that µ∗(En) < ∞ for each n. For each n, choose Anj such that µ∗(Anj − En) ≤ 1/j2−n.
Then Bj =

⋃
nAnj is such that µ∗(Bj − E) < 1/j. Hence, taking B =

⋂
j Bj , we have

µ∗(B − E) = 0. The rest follows.

�

Problem 88 (Folland 1.19). Let µ∗ be an outer measure on X induced from a finite premeasure µ0.
If E ⊂ X, define the inner measure of E to be µ∗(E) = µ0(X)− µ∗(Ec). Then E is µ∗ measurable
if and only if µ∗(E) = µ∗(E).

Proof. ( =⇒ ) Assume that E is µ∗ measurable. Then we have that

µ∗(X) = µ∗(E) + µ∗(Ec).

Since X is µ0 measurable, we have that µ0(X) < ∞. Hence, µ∗(E) + µ∗(Ec) < ∞, and so each is
finite. We then have that we can subtract things, and so

µ0(X) = µ∗(E) + µ∗(Ec) ⇐⇒ µ∗(E) = µ∗(E).

(⇐= ) Assume that µ∗(E) = µ0(X)− µ∗(Ec). We have that there are E ⊂ An such that

µ∗(An) ≤ µ∗(E) + 1/n.

Notice that

µ∗(Ec) = µ∗(Acn) + µ∗(An − E).

Notice as well that

µ∗(X) = µ∗(An) + µ∗(Acn),

and so we have

µ∗(E) = µ0(X)− µ∗(Ec) = µ∗(An) + µ∗(Acn)− µ∗(Acn)− µ∗(An − E).

Hence,

µ∗(An)− µ∗(E) = µ∗(An − E).

Taking A =
⋂
An, we have that

µ∗(A− E) = 0,

and so E is µ∗ measurable. �

Problem 89 (Folland 1.24). Let µ be a finite measure on (X,M), and let µ∗ be the outer measure
induced by µ. Suppose that E ⊂ X satisfies µ∗(E) = µ∗(X).

(1) If A,B ∈M and A ∩ E = B ∩ E, then µ(A) = µ(B).
(2) LetME = {A∩E : A ∈M}, and define the function ν onME defined by ν(A∩E) = µ(A).

Then ME is a σ-algebra on E and ν is a measure on ME .

Proof.
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(1) Recall from Folland 1.12, µ(E∆F ) = 0 implies µ(E) = µ(F ). So it suffices to show that
µ(B −A) = 0 and µ(A−B) = 0.

Notice that (A − B) ∩ E = A ∩ Bc ∩ E = (A ∩ E) ∩ Bc = (B ∩ E) ∩ Bc = ∅, so
A−B ⊂ Ec, or E ⊂ (A−B)c. This implies that µ∗(E) = µ∗(X) ≤ µ∗((A−B)c) ≤ µ∗(X),
and so µ∗((A−B)c) = µ∗(X). Since (A−B) ∈M, this implies that

µ∗((A−B)c) + µ∗(A−B) = µ∗(X),

and since it’s a finite measure we get µ∗(A − B) = 0. An analogous argument gives us
µ∗(B −A) = 0, so we have µ(A) = µ(B).

(2) We need to check three things for a σ-algebra. First, it’s clear to see that ∅ ∈ME , so it’s
nonempty. Second, we check it’s closed under complements. That is, if A ∩E ∈ME , then
(A ∩ E)c ∩ E ∈ME . Use DeMorgans to write this as

(A ∩ E)c = Ac ∪ Ec,
and so

(A ∩ E)c ∩ E = (Ac ∪ Ec) ∩ E = Ac ∩ E ∈ME .

Finally, we need to check it’s closed under countable unions. This, however, follows directly
from the fact that M is a σ-algebra.

Next, we need to check that ν is a measure. First, we see that ν(∅) = ν(∅∩E) = µ(∅) =
0. Second, let Fi ∩ E be a disjoint collection in ME . Then

ν
(⊔

Fi ∩ E
)

= ν
((⊔

Fi

)
∩ E

)
= µ

(⊔
Fi

)
=
∑

µ(Fi).

�

Problem 90 (Folland 1.25). Complete the proof of Theorem 1.19. That is, suppose E ∈ Mµ

is arbitrary. Show that this implies that E = V − N , where V is a Gδ set and µ(N) = 0 (this is
sufficient for establishing (c)).

Proof. We have it for the case µ(E) <∞. Since we are working over R, we have that it is σ-finite.
Let En = [−n, n] ∩ E. We can find Un open such that µ(Un) ≤ µ(En) + ε/2n, and so taking
U =

⋃
Un, we have

µ(U − E) = µ

(⋃
n

(Un − En)

)
≤
∑

µ(Un − EN ) < ε.

Take Vn to be U such that ε = 1/n. Intersecting over all Vn gives

µ(V − E) = 0.

Hence,
E = V − (V − E).

�

Problem 91 (Folland 1.26). If E ∈Mµ and µ(E) <∞, then for every ε > 0 there is a set A that
is a finite union of open intervals such that µ(E∆A) < ε.

Proof. We have that there are compact K and open U such that K ⊂ E ⊂ U , and µ(U) ≤
µ(E) + ε/2, µ(E) ≤ µ(K) + ε/2. We can write U =

⊔
n In, where In are disjoint open intervals.

Since K compact, and these cover K, we have that we can get a finite subcover
⋃N

1 In which cover
K. Furthermore, calling this A, we have K ⊂ A ⊂ U . So, we get

µ(E∆A) = µ(E −A) + µ(A− E) ≤ µ(E −K) + µ(U − E) < ε.

�
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Problem 92 (Folland 1.29). Let E be a Lebesgue measurable set.

(1) If E ⊂ N , whereN is the nonmeasurable set described in 1.1 (the Vitali set), thenm(E) = 0.
(2) If m(E) > 0, then E contains a nonmeasurable set.

Proof.

(1) We have that ⋃
r∈R

Er ⊂
⋃
r∈R

Nr = [0, 1).

So ∑
r∈R

m(E) ≤ 1.

Since R is infinite, this forces m(E) = 0.
(2) Omitted (tedious but doable) TODO

�

Problem 93 (Folland 2.1). Let f : X → R and Y = f−1(R). Then f measurable if and only if
f−1({∞}) ∈M, f−1(∞) ∈M, and f measurable on Y .

Proof. ( =⇒ ) If f measurable, we have f−1(±∞) ∈M, and furthermore f measurable on Y .
(⇐= ) Suppose we have the following conditions. Then we need to show that for every A ∈ B(R),
f−1(A) ∈M. Notice we can write A = (A∩ {∞}c ∩ {−∞}c)t (A∩ {∞}∩ {−∞}c)t (A∩ {∞}c ∩
{−∞}). Hence, f−1 ((A ∩ {∞}c ∩ {−∞}c) t (A ∩ {∞} ∩ {−∞}c) t (A ∩ {∞}c ∩ {−∞})) = f−1(A∩
{∞}c∩{−∞}c)tf−1(A∩{∞}∩{−∞}c)tf−1(A∩{∞}c∩{−∞}). Naturally the first is measurable,
since it’s in Y , and the second is measurable, since it’s either the empty set or the point at ±∞.
So we have that it’s measurable �

Problem 94 (Folland 2.3). If {fn} a sequence of measurable functions onX, then {x : lim fn(x) exists}
is measurable.

Proof. Since {fn} measurable, we have g = lim inf fn and h = lim sup fn are both measurable.
Furthermore, k = h− g is measurable, and this set is described as k−1({0}). �

Problem 95 (Folland 2.4). If f : X → R and f−1((r,∞]) ∈ M for each r ∈ Q, then f is
measurable.

Proof. By the density of the rationals, we can write

(a,∞] =
⋃
r∈X

(r,∞], X = {r ∈ Q : r > a} ⊂ Q.

Hence, we have

f−1((a,∞]) =
⋃
r∈X

f−1((r,∞]).

�

Problem 96 (Folland 2.5). If X = A ∪ B where A,B ∈ M, a function f on X is measurable if
and only if f is measurable on A and on B.

Proof. ( =⇒ ) Assume f is measurable, then we clearly have for all E measurable that f−1(E)∩A
is measurable. Same for B.
( ⇐= ) Assume it is measurable on A and B. That is, for all E measurable, we have f−1(E) ∩ A
is measurable and f−1(E) ∩B is measurable. Since A ∪B = X, we have

f−1(E) = f−1(E) ∩X = f−1(E) ∩ (A ∪B) = (f−1(E) ∩A) ∪ (f−1(E) ∩B),

and so this is measurable. Hence, f is measurable. �
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Problem 97 (Folland 2.6). The supremum of an uncountable family of measurable R-valued
functions on X can fail to be measurable.

Proof. Let V ⊂ [0, 1] ⊂ R be the Vitali set. Take fx = χ{x} to be the family of functions, where
here x ∈ V . Then each fx is measurable (since it’s the characteristic function of a point), but the
uncountalbe supremum gives you χV , which is non-measurable. �

Problem 98 (Folland 2.10). Prove Proposition 2.11. That is, prove the following statement:
We have the following if and only if µ is complete:

(1) If f is measurable and f = g µ-a.e., then g is measurable.
(2) If fn is measurable for n ∈ N and fn → f µ-a.e., then f is measurable.

Proof. (1) ( =⇒ ) Assume µ is complete. Let A = {f = g}, B = {f 6= g}, then A t B = X.
Take F ∈ N , we wish to show that g−1(F ) ∈M. Notice we can write

g−1(F ) =
(
g−1(F ) ∩A

)
t
(
g−1(F ) ∩B

)
.

The set on the left is measurable, since f is measurable, and the set on the right is measur-
able, since µ is complete. Hence, we have it’s measurable.
( ⇐= ) Assume we have the condition. Let F ⊂ X be such that µ(F ) = 0. Let f = 0,
g = χF . Then g = f µ-a.e., so g is measurable, and furthermore g−1({1}) = F ∈ M.
Hence, µ is complete.

(2) ( =⇒ ) Let A = {fn → f} and B = {fn 6→ f}. Again, A t B = X. The same argument
applies here; taking F ∈ N , we get

f−1(F ) =
(
f−1(F ) ∩A

)
t
(
f−1(F ) ∩B

)
is measurable. (To be more rigorous, let g be the pointwise limit of fn; we have that g is
measurable, and then use (1) to get the desired result).
( ⇐= ) Assume we have the condition. Let fn = 0, f = χF , where F ⊂ X is such that
µ(F ) = 0. Then fn → f µ-a.e., and again we get that f−1({1}) = F is measurable.

�

Problem 99 (Folland 2.11). Suppose that f is a function on R×Rk such that fx is Borel measurable
for each x ∈ R and fy is continuous for each y ∈ Rk. For n ∈ N, define fn as follows: for i ∈ Z, let
ai = i/n, and for ai ≤ x ≤ ai+1 let

fn(x, y) :=
f(ai+1, y)(x− ai)− f(ai, y)(x− ai+1)

ai+1 − ai
.

Then fn is Borel measurable and fn → f pointwise; hence, f is Borel measurable on R× Rk.

Proof. We first show that f is Borel measurable. Notice that, after fixing i, we get

fn,i(x, y) =
f(ai+1, y)(x− ai)− f(ai, y)(x− ai+1)

ai+1 − ai
is measurable. Hence, we can write

fn(x, y) =
∑
i∈Z

fn,i(x, y)χ[ai,ai+1)×Rk(x, y),

and so fn is measurable.
Next, we need to show that fn → f pointwise. Let t = (x− ai)/(ai+1 − ai). Then we have that

fn(x, y) = tf(ai+1, y) + (1 − t)f(ai, y). Using the continuity of fy, we get that n → ∞ implies
ai, ai+1 → x, t→ 0, and so fn(x, y)→ f(x, y). �

Problem 100. If f is measurable, and f = g µ almost everywhere, then g is measurable as long
as µ is a complete measure.
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Proof. Let N = {x : f(x) = g(x)}. Then µ(N c) = 0. If A is measurable, we need to show that
g−1(A) is measurable. Notice that

g−1(A) = (g−1(A) ∩N) t (g−1(A) ∩N c) = (f−1(A) ∩N) t (g−1(a) ∩N c).

We have g−1(A)∩N c ⊂ N c, µ(N c) = 0, so monotonicity tells us that the right part is measurable,
and since f is measurable we have f−1(A) ∩N is measurable, so we get g−1(A) is measurable. �

Problem 101. Let (X,M) be a measurable space.

(1) Prove that the Borel σ-algebra BC on C is generated by the open rectangles.
(2) Prove directly from the definitions that f : X → C is M − BC measurable if and only if Re(f)

and Im(f) are measurable.
(3) Prove that the M−BC measurable functions form a C-vector space.
(4) Show that if f : X → C is M−BC measurable, then |f | : X → [0,∞) is M−BR measurable.
(5) Show that if (fn) is a sequence ofM−BC measurable functions X → C and fn → f pointwise,

then f is M−BC measurable.

Proof. (1) Clear; use the topology given to C by R2.
(2) Since BC is generated by the open rectangles, we have f is measurable if and only if f−1(E),

where E is an open rectangle, is measurable. Notice that we can view f = Re(f) × Im(f), so
we have f−1(E) = Re(f)−1(E1) × Im(f)−1(E2), where E1 and E2 are open balls in R1 and
E1 × E2 = E, an open rectangle. Hence, we have f is measurable if and only if Re(f) and
Im(f) are measurable.

(3) We need to show a few things. Denote the space ofM−BC measurable functions as V . Then if
we have f, g ∈ V , we need to show f +g ∈ V . But we have f +g = (Re(f)+Re(g))+ i(Im(f)+
Im(g)), and since addition of M−BR measurable functions is again measurable, we get that
f+g are measurable using (2). Next, we need to show that for all c ∈ C, f ∈ V , cf ∈ V . We can
write c = a+bi. Then cf = (a+bi)(Re(f)+ iIm(f)) = (aRe(f)−bIm(f))+ i(aIm(f)+bRe(f)),
and since M− BR is a vector space we get that Im(cf) and Re(cf) are both measurable, so
using (2) gives that f is measurable. Hence, it is a vector space.

(4) Recall that we define |f | =
√

Re(f)2 + Im(f)2. Notice that f beingM−BR measurable implies
f2 isM−BR measurable, and so we get Re(f)2 + Im(f)2 isM−BR measurable. Finally,

√
is

continuous on the positive domain, which these are on, so we get that |f | isM−BR measurable.
(5) We have lim supn→∞ fn = f is measurable if (fn), f are real valued. We can write fn =

Re(fn) + iIm(fn). Then fn → f implies Re(fn) → Re(f), Im(fn) → Im(f). So using (2), we
get that f is M−BC measurable.

�

Problem 102. Show that almost uniform convergence implies convergence in measure.

Proof. Almost uniform convergence tells us that for all ε > 0, there exists an E ∈ M such that
µ(E) < ε and fnχEc → fχEc uniformly. Fix ε′, ε > 0. Then we have A ∈ M as above, where
µ(A) < ε. Hence, we have

{|fn − f | ≥ ε′} = ({|fn − f | ≥ ε′} ∩A) t ({|fn − f | ≥ ε′} ∩Ac).

Notice as well that

{|fn − f | ≥ ε′} ∩A ⊂ A,
and so it’s measure is less than ε. Furthermore, since fn → f uniformly on Ac, we can take N
sufficiently large so that µ({|fn − f | ≥ ε′}) = 0. Hence, we have

µ({|fn − f | ≥ ε′}) < ε.
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Since the choice of ε > 0 was arbitrary, we get

µ({|fn − f | ≥ ε′}) = 0.

Since the choice of ε′ > 0 was arbitrary, we get that this holds for all ε′ > 0. �

Problem 103 (Folland 2.13). Suppose (fN ) ⊂ L+, fn → f pointwise, and
∫
f = lim

∫
fn < ∞.

Then
∫
E f = lim

∫
E fn for all E ∈M. This need not be true if

∫
f = lim

∫
fn =∞.

Proof. Notice we can write ∫
E
fn =

∫
fnχE .

Notice as well that Fatou’s Lemma gives us∫
lim inf fnχE =

∫
fχE =

∫
E
f ≤ lim inf

∫
fnχE = lim inf

∫
E
fn.

Similarly, we have ∫
Ec
f ≤ lim inf

∫
Ec
fn.

Now, notice that∫
E
f =

∫
f −

∫
Ec
f ≥

∫
f − lim inf

∫
Ec
fn = lim sup

(∫
fn −

∫
Ec
fn

)
= lim sup

∫
E
fn.

So we have

lim sup

∫
E
fn ≤

∫
E
fn ≤ lim inf

∫
E
fn =⇒

∫
E
fn = lim

∫
E
fn.

For a counterexample, use f = χ(0,∞), fn = χ(0,∞ + n2χ(−1/n,0]. �

Problem 104 (Folland 2.14). If f ∈ L+, let λ(E) =
∫
E fdµ for E ∈ M. Then λ is a measure on

M, and for any g ∈ L+,
∫
gdλ =

∫
fgdµ.

Proof. We show the first part. That is, λ is a measure. Clearly, we have λ(∅) =
∫
∅ fdµ =∫

fχ∅dµ = 0. Next, if En is a collection of disjoint sets, we have
⋃
En = E is such that

λ(E) =

∫
E
fdµ =

∫
fχEdµ =

∫
f
∞∑
n=1

χEndµ =
∞∑
n=1

∫
fχEndµ =

∞∑
n=1

λ(En).

So λ is indeed a measure. Next, we want to show that∫
gdλ =

∫
fgdµ.

Let g be a simple function; i.e., g =
∑N

n=1 anχEn . Then we have∫
gdλ =

∫ N∑
n=1

anχEndλ =

N∑
n=1

an

∫
χEndλ =

N∑
n=1

anλ(En)dλ =

N∑
n=1

an

∫
fχEndµ

=

∫
fgdµ.

We can do this for all simple functions, then. Now, let g be a positive measurable function. Then
we can construct a sequence ψn ↗ g, ψn simple functions. Let fn = fψn. Then we have

lim
n→∞

∫
ψndλ =

∫
gdλ,

and

lim
n→∞

∫
ψndλ = lim

n→∞

∫
fndµ =

∫
fgdµ.
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Hence, ∫
gdλ =

∫
fgdµ.

�

Problem 105 (Folland 2.15). If (fn) ⊂ L+, fn decreasing pointwise to f , and
∫
f1 < ∞, then∫

f = lim
∫
fn.

Proof. We have f1 − fn is increasing pointwise to f1 − f , and f1 − fn ∈ L+, and so we have the
monotone convergence theorem gives

lim

∫
(f1 − fn) =

∫
f1 − lim

∫
fn =

∫
f1 −

∫
f.

Since
∫
f1 <∞ and f1 ≥ fn ≥ f , we have that we can subtract everything from both sides to get

lim

∫
fn =

∫
f.

�

Problem 106 (Folland 2.16). If f ∈ L+ and
∫
f < ∞, for every ε > 0 there exist E ∈ M such

that µ(E) <∞ and
∫
E f > (

∫
f)− ε.

Proof. We can find a simple function ψ ∈ SF+ such that 0 ≤ ψ ≤ f and
∫
ψ >

∫
f − ε. Notice that

monotonicity of the integral says
∫
ψ ≤

∫
f < ∞, so

∫
ψ < ∞. Taking E to be the support of ψ,

we get that ∫
E
f ≥

∫
E
ψ =

∫
ψ >

∫
f − ε.

�

Problem 107 (Folland 2.18). Fatou’s lemma remains valid if the hypothesis that fn ∈ L+ is
replaced by the hypothesis that fn ∈ L+ is replaced by the hypothesis that fn is measurable and
fn ≥ −g where g ∈ L+ ∩ L1. What is the analogue of Fatou’s lemma for nonpositive functions?

Proof. If we replace the hypothesis in Fatou’s lemma as above, we get fn + g ≥ 0 for all n, and so
writing hn = fn + g, we can use Fatou’s Lemma to get∫

lim inf hn ≤ lim inf

∫
hn.

Expanding hn gives∫
lim inf fn +

∫
g ≤ lim inf

∫
fn +

∫
g ↔

∫
lim inf fn ≤ lim inf

∫
fn,

since g ∈ L+ ∩ L1. �

Problem 108 (Folland 2.19). Suppose (fn) ⊂ L1(µ) and fn → f uniformly.

(a) If µ(X) <∞, then f ∈ L1(µ) and
∫
fn →

∫
f .

(b) If µ(X) =∞, the conclusion of (a) can fail.

Proof. (a) Notice that, since fn → f uniformly, we can choose N sufficiently large so that |fn−f | ≤
1 for all x ∈ X, n ≥ N . Hence, we have∫

|f | ≤
∫
|f − fN |+

∫
|fN | ≤ µ(X) +

∫
|fN | = µ(X) +

∫
|fN | <∞.
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So, we have f ∈ L1(µ). We now want to leverage this to get that
∫
fn →

∫
f . To do so, we

want to use the dominated convergence theorem. Let g = 1 + |f |. Then∫
g = µ(X) +

∫
|f | <∞,

and so we have |fn| ≤ g for all n ≥ N . Using the dominated convergence theorem, we get∫
fn →

∫
f .

(b) Let fn(x) = 1
nχ(0,n). Then ∫

fn(x) = 1

for all n, however fn(x)→ 0 uniformly.
�

Problem 109 (Folland 2.20). If fn, gn, f, g ∈ L1, fn → f and gn → g a.e., |fn| ≤ gn and
∫
gn →

∫
g,

then
∫
fn →

∫
f .

Proof. In this case, it suffices to check it for positive real functions. Hence, we have gn + fn ≥ 0
and gn − fn ≥ 0 for all n. Hence, we have∫

g +

∫
f ≤ lim inf

∫
(gn + fn) = lim inf

∫
gn + lim inf

∫
fn.

Since
∫
gn → g, we have ∫

g +

∫
f ≤

∫
g + lim inf

∫
fn.

Notice as well that∫
g −

∫
f ≤ lim inf

∫
(gn − fn) = lim inf

∫
g − lim sup

∫
fn =

∫
g − lim sup

∫
fn.

Hence, we have

lim sup

∫
fn ≤

∫
f ≤ lim inf

∫
fn,

which says ∫
fn →

∫
f.

�

Problem 110 (Folland 2.21). Suppose fn, f ∈ L1 and fn → f a.e. Then
∫
|fn − f | → 0 if and

only if
∫
|fn| →

∫
|f |.

Proof. ( =⇒ ) Assume
∫
|fn − f | → 0. Then we have that the reverse triangle inequality gives

|fn| − |f | ≤ |fn − f | ↔ |fn| ≤ |fn − f |+ |f |.
By the prior problem, this gives us that ∫

|fn| →
∫
|f |.

(⇐= ) We have
|fn − f | ≤ |fn|+ |f |,

so the prior problem tells us that ∫
|fn − f | → 0

since
fn → f a.e.
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Problem 111 (Folland 2.22). Use µ as the counting measure on N to interpret Fatou’s lemma and
monotone and dominated convergence theorem as statements about infinite series.

Proof. Fatou’s Lemma: The original statement is∫
(lim inf fn)dµ ≤ lim inf

∫
fndµ.

We can interpret the integral as ∫
fndµ =

∞∑
k=1

fn(k),

and so we have ∫
(lim inf fn)dµ =

∞∑
k=1

lim inf
n→∞

fn(k) ≤ lim inf
n→∞

∞∑
k=1

fn(k).

MCT: ∫
fdµ =

∞∑
k=1

f(k) = lim
n→∞

∫
fn(x)dµ = lim

n→∞

∞∑
k=1

fn(k).

etc. �

Problem 112 (Folland 2.24). Let (X,M, µ) be a measure space with µ(X) <∞, and let (X,M, µ)
be its completion. Suppose f : X → R is bounded. Then f isM measurable iff there exist sequence
φn and ψn ofM-measurable simple functions such that φn ≤ f ≤ ψn and

∫
(ψn − φn)dµ < n−1. In

this case, lim
∫
φndµ = lim

∫
ψndµ =

∫
fdµ.

Proof. ( =⇒ ) Assume that f non-negative, bounded, and M measurable. Let g = f a.e., where
g is M measurable. Let N = {x : |f(x)− g(x)| 6= 0}. Then using Theorem 2.10b, we can find
simple functions φn ↗ g and ψn ↘ g, where on N we let φn = 0 and ψn = M , where |f | ≤ M .
Furthermore, using Chebychev, we have that∫

(ψn − φn)dµ < µ(X)ε

for n sufficiently large. Reorder the n to get the desired bound we want. Taking positive and
negative parts respectively gives it for general f .
(⇐= ) Take Φn = max{φ1, . . . , φn}, Ψn = min{ψ1, . . . , ψn}. �

Problem 113 (Folland 2.27). Let fn(x) = ae−nax − be−nbx where 0 < a < b. Show the following.

(a)
∞∑
1

∫ ∞
0
|fn(x)|dx =∞.

(b)
∞∑
1

∫ ∞
0

fn(x)dx = 0.

(c)
∞∑
1

fn ∈ L1([0,∞),m),

and ∫ ∞
0

∞∑
1

fn(x)dx = log(b/a).
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Proof. (a) Since we’re taking the absolute value, we want to find the point c where

be−nbc = ae−nac.

This will give us the domain (0, c) where fn < 0 and (c,∞) where fn > 0. Solving gives

b

a
= enc(b−a),

log(b/a) = nc(b− a),

c =
1

n(b− a)
log(b/a).

We can now write ∫ ∞
0
|fn|dx = −

∫ c

0
fndx+

∫ ∞
c

fndx.

This comes out to
∫∞

0 |fn| being proportional to 1/n, and so it diverges.
�

Problem 114 (Folland 2.32). Suppose µ(X) < ∞. If f and g are complex-valued measurable
functions on X, define

ρ(f, g) =

∫
|f − g|

1 + |f − g|
dµ.

Then ρ is a metric on the space of measurable functions if we identify functions that are equal a.e.,
and fn → f with respect to this measure if and only if fn → f in measure.

Proof. We establish the first part; that is, ρ is a metric on this space of functions. To show it’s a
metric, we need to establish three things:

(1) ρ(f, g) = 0 if and only if f = g a.e.:
( =⇒ ) If ρ(f, g) = 0, this wells us ∫

|f − g|
1 + |f − g|

dµ = 0.

Recall that
∫
hdµ = 0 if and only if h = 0 a.e., so we have

|f − g|
1 + |f − g|

= 0

almost everywhere. Hence, we have |f − g| = 0 almost everywhere, which tells us that f = g
almost everywhere.
( ⇐= ) If f = g almost everywhere, then clearly |f − g| = 0 almost everywhere and so we get
ρ(f, g) = 0.

(2) ρ(f, g) = ρ(g, f): This is clear by the symmetry of | · |.
(3) ρ(f, g) ≤ ρ(f, h) + ρ(h, g): By a prior homework problem, we know that

|f − g|
1 + |f − g|

≤ |f − h|
1 + |g − h|

+
|h− g|

1 + |h− g|
.

Integral respects monotonicity, so we get ρ(f, g) ≤ ρ(f, h) + ρ(h, g), as desired.

For the next part, we need to establish that fn → f with respect to this metric if and only if
fn → f in measure.
( =⇒ ) Assume fn → f with respect to this metric. That is, for all ε > 0, there exists an N such
that for all n ≥ N , we have ρ(fn, f) < ε. We want to establish that fn → f in measure, which says
that µ({|fn − f | ≥ ε})→ 0 for all ε > 0. Notice that ρ(fn, f) < ε implies that∫

|fn − f |
1 + |fn − f |

< ε.
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Notice as well that for all ε′ > 0, we have

ρ(fn, f) =

∫
{|fn−f |≥ε′}

|fn − f |
1 + |fn − f |

+

∫
{|fn−f |<ε′}

|fn − f |
1 + |fn − f |

.

So we have

µ({|fn − f | ≥ ε′})
(

ε′

1 + ε′

)
<

∫
{|fn−f |≥ε}

|fn − f |
1 + |fn − f |

< ε.

Since we have that this inequality applies for all ε > 0, we can take ε → 0 to get µ({|fn − f | ≥
ε′})→ 0, as desired.
(⇐= ) Assume fn → f with respect to measure. Notice that we can write

ρ(fn, f) =

∫
{|fn−f |≥ε′}

|fn − f |
1 + |fn − f |

+

∫
{|fn−f |<ε′}

|fn − f |
1 + |fn − f |

.

We can bound this above by

ρ(fn, f) ≤ µ({|fn − f | ≥ ε′}) + ε′µ(X).

Since µ(X) <∞ and the choice of ε′ arbitrary, we can make the right hand side as small as possible
using the convergence in measure. Hence,

ρ(fn, f)→ 0,

as desired. �

Problem 115 (Folland 2.33). If fn ≥ 0 and fn → f in measure, then∫
f ≤ lim inf

∫
fn.

Proof. We can use Theorem 2.30. Notice that we have a subsequence fi → lim inf fn. Further-
more, we get fi → f in measure as well. So we can take a subsequence of this by the theorem,
denoted by fij , which converges to f a.e. So Fatou’s lemma gives∫

f =

∫
lim
j→∞

fij ≤ lim inf
j→∞

∫
fij = lim inf

n→∞

∫
fn.

�

Problem 116 (Folland 2.34). Suppose |fn| ≤ g ∈ L1 and fn → f in measure.

(a) ∫
f = lim

∫
fn.

(b) fn → f in L1.

Proof. (a) Using the prior problem, we have∫
f ≤ lim inf

∫
fn.

Notice that g − fn ≥ 0, g + fn ≥ 0, and so we can use this to get∫
(g − f) ≤ lim inf

∫
(g − fn) =

∫
g − lim sup

∫
fn,∫

(g + f) ≤
∫
g + lim inf

∫
fn.

Hence, we have

lim sup

∫
fn ≤

∫
f ≤ lim inf

∫
fn,
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as desired.
(b) Since fn → f in measure, we have for all ε > 0

µ({|fn − f | ≥ ε})→ 0.

Notice that fn → f in measure implies |fn − f | → 0 in measure. Notice as well that |fn − f | ≤
|fn|+ |f | ≤ g + |f |. Since g + |f | ∈ L1, we can use (a) to get that∫

0 = 0 = lim

∫
|fn − f |,

which gives convergence in L1.
�

Problem 117 (Folland 2.35). We have fn → f in measure if and only if for every ε > 0, there
exists N ∈ N such that

µ({|fn − f | ≥ ε}) < ε

for n ≥ N .

Proof. ( =⇒ ) Follows from the definition.
(⇐= ) Assuming the condition, we want to show that µ({|fn − f | ≥ ε})→ 0 for all ε > 0. Notice
that for ε′ < ε, we have

{|fn − f | ≥ ε} ⊂ {|fn − f | ≥ ε′},
so

µ({|fn − f | ≥ ε}) ≤ µ({|fn − f | ≥ ε′}) < ε′.

Since this applies for all ε′ < ε, we get that it goes to 0. Hence, we have convergence in measure. �

Problem 118 (Folland 2.36). If µ(En) < ∞ and χEn → f in L1, then f is a.e. equal to the
characteristic function of a measurable set.

Proof. Since it converges in L1, we have∫
|χEn − f | → 0.

Notice this implies convergence in measure, and so we have

µ({|χEn − f | ≥ ε})→ 0.

Using the theorem from the book, we have there is a subsequence χEnj which converges to f a.e.,

which means that f is equal to a characteristic function of a measurable set a.e. �

Problem 119. Let α : R→ R be a right continuous, increasing, bounded function. Show that∫
R

(α(x+ c)− α(x))dx = c

∫
R
dα for each c > 0,

where
∫
fdx is the Lebesgue integral and

∫
fdα is the Lebesgue-Stieltjes integral.

Proof. Notice that
α(x+ c)− α(x) = µα((x, x+ c]),

so we have ∫
R

(α(x+ c)− α(x))dx =

∫
R
µα((x, x+ c])dx =

∫
R

∫
R
χ(x,x+c])dαdx.

Invoke Tonelli to get this is equal to∫
R

∫
R
χ(x,x+c]dxdα =

∫
R
cdα

as desired. �
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Problem 120. Suppose µ is a positive measure on (X,M) and f ∈ L1(X).

(1) Prove that if E ⊂ X with µ(E) = 0, then
∫
E fdµ = 0.

(2) Prove that if
∫
E fdµ = 0 for all E ∈M, then f = 0 µ-a.e.

Proof. (1) Assume that f ≥ 0. We can construct a sequence of simple measurable functions φn
such that φn ↗ f . Assume first that f = χF , where F is some measurable set. Then∫

E
χFdµ = µ(E ∩ F ) ≤ µ(E) = 0.

So it holds for characteristic functions. By linearity, this extends to simple measurable
functions, and applying the monotone convergence theorem, we have

0 = lim
n

∫
E
φndµ =

∫
E
fdµ.

In the case where f is not strictly positive, write f = f+− f− and use linearity again to get
that it holds for these functions.

(2) We proceed by the contrapositive; assume f 6= 0 µ-a.e. Then F = {f 6= 0} is such that
µ(F ) > 0. Furthermore, let F = F1 t F2, F1 = {f > 0}, F2 = {f < 0}. Then we have that∫

F
fdµ =

∫
F1

fdµ+

∫
F2

fdµ.

Notice that since µ(F ) >), we must have at least one of µ(F1), µ(F2) > 0. Assume without
loss of generality it’s F1, then we get that∫

F1

fdµ > 0.

Thus, we have that there exists a set E ∈M so that
∫
E fdµ 6= 0.

�

Problem 121. Let (X,M, µ) be a measure space with µ(X) < ∞. Let f and g be real-valued
integrable functions such that

∫
X fdµ =

∫
X gdµ. Prove that either f = g a.e., or there exists an

E ∈M such that
∫
E fdµ >

∫
E gdµ.

Proof. Assume f 6= g a.e.,
∫
X f =

∫
X g. Then we have that there is a measurable F so that

F = {f 6= g} and µ(F ) > 0. Write F1 = {f > g}, F2 = {f < g}. Then we must have that
µ(F1) > 0 or µ(F2) > 0, since µ(F ) = µ(F1) + µ(F2). Assume for contradiction that µ(F1) = 0.
Then we have that ∫

X
f =

∫
X
g =

∫
F2

g +

∫
F c
g =

∫
F2

f +

∫
F c
f.

Since µ(X) <∞, f, g integrable, it’s fine to move things around to get∫
F2

g =

∫
F2

f.

In other words, ∫
F2

(f − g) = 0.

But this can happen only if f = g a.e. on F2, which force µ(F2) = 0, a contradiction. Hence, we
must have µ(F1) > 0, and so there is a measurable set so that∫

F1

f >

∫
F1

g.

�
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Problem 122. Let (X,M, µ) be a measure space.

(1) Suppose µ(X) <∞. Let f : X → R be measurable, (fn) a sequence of measurable functions,
and suppose fn → f in µ-measure. Let g : R → R be continuous. Let h = g ◦ f , and for
each n let hn = g ◦ fn. Prove that hn → h in measure.

(2) Show by an example that finiteness cannot be dropped.

Proof. (1) Recall that convergence in measure means that, for all ε > 0, we have that

µ(|hn − h| ≥ ε)→ 0 as n→∞.
Since fn → f in measure, we can find a subsequence fnk → f almost everywhere. Hence,
hnk → h almost everywhere, since g is continuous.

(2)
�

Problem 123 (Folland 2.37). Suppose that fn and f are measurable complex-valued funtions and
φ : C→ C.

(a) If φ is continuous and fn → f a.e., then φ ◦ fn → φ ◦ f a.e.
(b) If φ is uniformly continuous and fn → f uniformly, almost uniformly, or in measure, then

φ ◦ fn → φ ◦ f uniformly, almost uniformly, or in measure, respectively.
(c) There are counterexamples when the continuity assumptions on φ are not met.

Proof. (a) We have fn → f a.e. implies that E = {fn → f} is such that µ(Ec) = 0. We want to
show that F = {x ∈ X : φ ◦ fn(x)→ φ ◦ f(x)} is such that µ(F c) = 0. Notice that, since φ is
continuous, we have

lim
n→∞

φ(fn(x)) = φ(f(x)).

Hence, we get E ⊆ F , which implies FC ⊆ EC , and so µ(FC) = 0.
(b) For uniformly, we see that fn → f uniformly implies that for all ε > 0, there is an N such that

for all n ≥ N ,
|fn − f | < ε.

Since φ is uniformly continuous, we have that for all ε > 0, there exists a δ such that

|x− y| < δ =⇒ |φ(x)− φ(y)| < ε.

We then see that we can choose N sufficiently large so that |fn − f | < δ, which implies that
|φ ◦ fn − φ ◦ f | < ε. Hence, we have that φ ◦ fn → φ ◦ f uniformly. Almost uniformly is the
same argument. For measure, we see that we have

µ({|fn − f | ≥ ε})→ 0.

Notice that uniform continuity tells us that

|φ(x)− φ(y)| ≥ ε =⇒ |x− y| ≥ δ.
Hence,

{|φ ◦ fn − φ ◦ f | ≥ ε} ⊂ {|fn − f | ≥ δ},
and so

µ({|φ ◦ fn − φ ◦ f | ≥ ε})→ 0.

Hence, it converges in measure.
(c) Omitted

�

Problem 124 (Lecture notes). Consider the canonical projections πX , πY on X × Y .

(1) If X,Y topological spaces, prove πX , πY are open maps.
(2) If these are measurable spaces, do they map measurable sets to measurable sets?
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Proof. (1) We need to show that πX(G) ∈ τ for all G ∈ τ × θ. Since G ∈ τ × θ, we have
G =

⋃
i

⋂
j Fi,j ×Hi,j , where Fi,j ∈ τ , Hi,j ∈ θ. Hence,

πX

⋃
i

⋂
j

Fi,j ×Hi,j

 =
⋃
i

πX

⋂
j

Fi,j ×
⋂
j

Hi,j

 =
⋃
i

⋂
j

Fi,j ∈ τ,

where the intersections are finite.
(2) The answer is no. See below.

�

Problem 125 (Lecture notes). Use the proposition to prove that L×L is not equal to L2 := (λ×λ)∗

measurable sets.

Proof. Let V be the Vitali set in [0, 1], and let {x} be some point. Take some E mble such that
V ⊂ E. Then, since λ is a complete measure, we have

(λ× λ)∗(E × {x}) = 0 =⇒ (λ× λ)∗(V × {x}) = 0,

and so V × {x} is measurable. However, πx(V × {x}) = V is not a measurable set, and so we
cannot have L × L = L2. �

Problem 126 (Folland 2.40). In Egoroff’s theorem, the hypothesis “µ(X) <∞” can be replaced
by |fn| ≤ g for all n, where g ∈ L1(µ).”

Proof. We follow the proof. We have fn → f almost everywhere on X. For k, n ∈ N let

En(k) =
∞⋃
m=n

{x : |fm(x)− f(x)| ≥ k−1}.

Then for fixed k, En(k) decreases as n increases, and
⋂∞
n=1En(k) = ∅. Now, we have that |fn| ≤ g.

Notice that this gives us |fn− f | ≤ |fn|+ |f | ≤ g+ |f |. Since |fn| ≤ g for all n, we have |f | ≤ g, so
we can write this as |fn − f | ≤ 2g. Now, let

A(k) := {x : 2|g| ≥ k−1}.
We have that

E1(k) ⊂ A(k).

Furthermore,

∞ > 2

∫
|g| ≥ 2

∫
A(k)
|g| ≥ 2

∫
A(k)

1/k = 2µ(A(k))1/k−1.

So for fixed k, we have µ(A(k)) <∞. Hence, µ(E1(k)) <∞. Thus, as in the original proof, we can
conclude that µ(En(k))→ 0 as n→∞. The rest of the proof is the same. �

Problem 127 (Folland 2.42). Let µ be counting measure on N. Then fn → f in measure if and
only if fn → f uniformly.

Proof. ( =⇒ ) We have fn → f in measure implies µ({x ∈ N : |fn(x)−f(x)| ≥ ε})→ 0 as n→∞.
Since µ is counting measure, this implies that for N sufficiently large, we have that for all n ≥ N ,

µ({x ∈ N : |fn(x)− f(x)| ≥ ε}) = 0.

In N, the only µ-null set is ∅, so this implies that |fn(x) − f(x)| < ε for all n ≥ N . Hence,
we have uniform convergence; for all ε > 0, there exists an N such that for all n ≥ N , we have
|fn(x)− f(x)| < ε.
(⇐= ) Fix ε > 0. Then there is an N such that for all n ≥ N , |fn − f | < ε. Hence, we have

µ({|fn − f | ≥ ε}) = 0
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for N sufficiently large. Thus,
lim
n→∞

µ({|fn − f | ≥ ε}) = 0.

The choice of ε > 0 was arbitrary, and so we have convergence in measure. �

Problem 128 (Folland 2.47). Let X = Y be an uncountable linearly ordered set such that for
each x ∈ X, {y ∈ X : y < x} is countable. Let M = N be the σ algebra of the countable or
cocountable sets, and let µ = ν be defined on M by µ(A) = 0 if A is countable and µ(A) = 1 if A
is cocountable. Let

E = {(x, y) ∈ X ×X : y < x}.
Then Ex and Ey are measurable for all x, y, and∫ ∫

χEdµdν

and ∫ ∫
χEdνdµ

exist but are not equal.

Proof. Fix x. Then we have that Ex = {y : (x, y) ∈ E} = {y : y < x} is countable by assumption,
so it is measurable. Fix y. Then we have that Ey = {x : (x, y) ∈ E} = {x : y < x}. Notice that
the complement (Ey)C = {x : y > x} ∪ {y} is countable, and so Ey is cocountable. Hence, it is
measurable.

Now, we wish to compute ∫ ∫
χEdµdν.

Notice that ∫
χEydµ(x) = µ(Ey) = 1,

and so ∫ ∫
χEdµdν =

∫
dν(y) = ν(Y ) = 1.

Similarly, we get ∫
χExdν(x) = ν(Ex) = 0,

and so ∫ ∫
χEdνdµ =

∫
0dµ = 0.

Thus, they are unequal. �

Problem 129 (Folland 2.49). Prove Theorem 2.39 in Folland in the following way:

(1) If E ∈M ×N and (µ× ν)(E) = 0, then ν(Ex) = µ(Ey) = 0 for a.e. x and y.
(2) If f is L measurable and f = 0 λ a.e., then fx and fy are integrable for a.e. x and y.

Furthermore,
∫
fxdν =

∫
fydµ = 0 for almost every x and y.

(3) Use Proposition 2.12 and finish the proof.

Proof. (1) We have ∫
χEd(µ× ν) = (µ× ν)(E).

Notice that Tonelli’s theorem gives∫
χEd(µ× ν) = (µ× ν)(E)

∫ (∫
χEy(x)dµ(x)

)
dν(y) = 0.
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This then tells us that ∫
χEy(x)dµ(x) = µ(Ey) = 0

for almost every y. We have a similar argument for ν(Ex).
(2) Let F = {(x, y) ∈ X × Y : f(x, y) 6= 0}. We have (µ × ν)(F ) = 0, and so we can find

F ⊂ E so that E ∈ L and (µ × ν)(E) = 0. From (1), we have µ(Ey) = 0, ν(Ex) = 0, and
so µ(F y) = 0 and ν(Fx) = 0. Finally, we see that∫

|fx|dν(y) =

∫
χFx(y)|fx(y)|dν(y) = 0,

so fx is integrable for a.e. x, and likewise for fy. Furthermore, this tells us that their
integrals are 0.

(3) Proposition 2.12 tells us that we have a f̃ = f a.e., where f̃ is M×N measurable. We
now use (1) and (2) to deduce that Tonelli/Fubini’s theorem still applies.

�

Problem 130 (Folland 2.50). Suppose (X,M, µ) is a σ-finite measure space and f ∈ L+(X). Let

Gf = {(x, y) ∈ X × [0,∞] : y ≤ f(x)}.

Show that Gf is M×BR measurable and µ×m(Gf ) =
∫
fdµ.

Proof. As in the hint, we have that (x, y) 7→ (f(x), y) is measurable, since the pullback of an open
set E × F will be f−1(E)× F , which is measurable using the measruablitiy of f .

Next, we see that the map (x, y) 7→ x− y is measurable, since subtraction is continuous and so
measurable. Then g(x, y) = f(x)− y, which is their composition, is measurable, and so notice that
Gf = {(x, y) : 0 ≤ f(x)− y} = {∞ > g ≥ 0} which is measurable.

Let h = χGf . Then we have that h is measurable, since Gf is measurable, and furthermore we
have that Tonelli gives ∫

χGfd(µ×m) =

∫ (∫
χGfdm

)
dµ.

Notice that ∫
χGf (x, y)dm(y) = m((Gf )x),

where

(Gf )x = {y ∈ Y : (x, y) ∈ Gf} = {y ∈ [0,∞] : y ≤ f(x)}.
Hence, we have

m((Gf )x) = m([0, f(x)]) = f(x),

and so ∫ (∫
χGfdm

)
dµ =

∫
fdµ.

�

Problem 131 (Folland 2.51). Let (X,M, µ) and (Y,N , ν) be arbitrary measure spaces.

(1) If f : X → C is M-measurable, g : Y → C is N measurable, and h is defined on X × Y by
h(x, y) = f(x)g(y), then h is M×N measurable.

(2) If f ∈ L1(µ), g ∈ L1(ν), then h ∈ L1(µ× ν) and∫
hd(µ× ν) =

∫
fdµ

∫
gdν.
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Proof. (1) Let F (x, y) := f(x), G(x, y) := g(y). We have that F is M×N measurable; taking
E ⊂ C open, we have F−1(E) = f−1(E) × Y , and since f is M measurable we have that
this is measurable. The same argument applies to G. Notice that h(x, y) = F (x, y)G(x, y).
Since the product of measurable functions is measurable, we have that h is measurable.

(2) Notice that ∫
|h|d(µ× ν) =

∫
|F (x, y)||G(x, y)|d(µ× ν).

Since we’re in L+, we can use Tonelli to get∫
|h|d(µ× ν) =

(∫
|g(y)|dν(y)

)(∫
|f(x)|dµ(x)

)
<∞,

since f, g ∈ L1. Now, since h is integrable, we apply Fubini to get∫
f(x)g(y)d(µ× ν) =

∫
f(x)dµ(x)

∫
g(y)dν(y).

�

Problem 132 (Folland 2.56). If f is Lebesgue integrable on (0, a) and g(x) =
∫ a
x t
−1f(t)dt, then

g is integrable on (0, a) and
∫ a

0 g(x)dx =
∫ a

0 f(x)dx.

Proof. Notice that ∫ a

x
t−1f(t)dt =

∫ a

0
χ(x,a)(t)t

−1f(t)dt,

and so ∫ a

0
|g(x)|dx ≤

∫ a

0

∫ a

0
χ(x,a)(t)t

−1|f(t)|dtdx.

We use Fubini/Tonelli to get that this is equal to∫ a

0

∫ a

0
χ(x,a)(t)t

−1|f(t)|dtdx =

∫ a

0

(∫ a

0
χ(x,a)(t)dx

)
t−1|f(t)|dt.

Notice that ∫ a

0
χ(x,a)(t)dx

is 1 if t ∈ (x, a) and 0 if t /∈ (x, a). So we get that it’s equal to∫ a

0
χ(x,a)(t)dx =

∫ a

0
χ(0,t)(x)dx = t.

So we get ∫ a

0
|g(x)|dx ≤

∫ a

0
(t)t−1|f(t)|dt =

∫ a

0
|f(t)|dt <∞.

So it’s integrable on (0, a), and we go back and apply Fubini to get desired result.
�

Problem 133.

(1) Let E be a measurable subset of R2 such that for almost every x, Ex = {y : (x, y) ∈ E}
has R measure zero. Show that E has measure zero, and that for almost every y ∈ R,
Ey = {x : (x, y) ∈ E} has measure zero.

(2) Let f(x, y) be non-negative and measurable in R2. Suppose that for almost every x ∈ R,
f(x, y) = fx is finite for almost every y. Show that for almost every y ∈ R, f(x, y) is finite
for almost every x.

Proof.
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(1) Examine χE . We have that

µ(E) =

∫
χEd(µ× µ).

Tonelli’s theorem gives us that∫
χEd(µ× µ) =

∫ (∫
χEx(y)dµ(y)

)
dµ(x) =

∫
µ(Ex)dµ(x) = 0.

Hence, E has measure zero. Notice as well this tells us that µ(Ey) = 0.
(2) Let E = {(x, y) : f(x, y) = ∞}. Then Ex = {y : fx(y) = ∞} has measure zero, and so

by the prior problem we get E has measure zero and Ey has measure zero.

�

Problem 134. Show that f ∗ g = g ∗ f , assuming the integral in question exists.

Proof. We have

(f ∗ g)(x) =

∫
f(x− y)g(y)dy.

Let z = x− y, then we have∫
f(x− y)g(y)dy =

∫
f(z)g(x− z)dz =

∫
g(x− z)f(z)dz = (g ∗ f)(x).

�

Problem 135. Show that (f ∗ (g ∗ h))(x) = ((f ∗ g) ∗ h)(x), assuming the integral exists.

Proof. Notice that

(f ∗ (g ∗ h))(x) =

∫
f(x− y)(g ∗ h)(y)dy =

∫
f(x− y)

(∫
g(y − z)h(z)dz

)
dy.

By Fubini, we have ∫ ∫
f(x− y)g(y − z)h(z)dzdy.

Let t = x− y, then we can rewrite this as∫ ∫
f(t)g(x− t− z)h(z)dzdt.

Since f ∗ (g ∗ h) = (g ∗ h) ∗ f , we have∫ ∫
f(t)g(x−t−z)h(z)dtdz =

∫
h(z)

∫
f(t)g(x−t−z)dtdz =

∫
h(z)(g∗f)(x−z)dz = h∗(g∗f)(x),

and using commutativity again we have

(h ∗ (g ∗ f))(x) = ((f ∗ g) ∗ h)(x).

Hence,

f ∗ (g ∗ h) = (f ∗ g) ∗ h.
�

Problem 136 (Royden 17.1.2). LetM be a σ-algebra of sets of X, and the set function µ :M→
[0,∞) be finitely additive. Prove that µ is a measure if and only if it satisfies continuity from below.
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Proof. ( =⇒ ) Assume µ is a measure. Then we wish to show that if E1 ⊂ E2 ⊂ · · · is a sequence
of increasing sets, we have

µ
(⋃

Ei

)
= limµ(En).

We can disjointify Ei to get

Fn = En −

(
n−1⋃
i=1

Ei

)
,⋃

Fi =
⋃
Ei,

µ
(⋃

Fi

)
= µ

(⋃
Ei

)
=
∑

µ(Fi).

Furthermore, we see that
n∑
i=1

µ(Fi) = µ(En);

going by induction, assuming it holds for n− 1, we have

n∑
i=1

µ(Fi) =

n−1∑
i=1

µ(Fi) + µ(Fn) = µ(En−1) + µ(Fn).

Since
En = En−1 t En − En−1,

we get that
µ(En) = µ(En−1) + µ(Fn),

and so we have

µ
(⋃

Ei

)
= limµ(En).

(⇐= ) Assume that it satisfies continuity from below. Since it’s finitely additive, notice that

µ(∅) = 2µ(∅),

and since its a finite additive function we have that this means it’s 0. Next, we need to show that
if Ei is a disjoint collection of sets, we have

µ
(⋃

Ei

)
=
∑

µ(Ei).

Let Fn =
⋃n
i=1Ei. Then we have that Fn is an increasing sequence of sets, and furthermore⋃

Fn =
⋃
En.

Hence, we have

µ
(⋃

Ei

)
= µ

(⋃
Fi

)
= limµ(Fn).

Using the fact that Ei are disjoint and µ is finitely additive, we have

µ(Fn) =
n∑
i=1

µ(Ei),

and so we get

µ
(⋃

Ei

)
=
∑

µ(Ei),

as desired. �

Problem 137 (Royden 17.1.11). Let µ nad ν be measure on a measurable space (X,M). For
E ∈M, define ζ(E) = max{µ(E), ν(E)}. Is ν a measure?

120



Proof. To be a measure, we need to satisfy two properties.

(1) Notice that ζ(∅) = max(0, 0) = 0.
(2) Let A = {0, 1}. Define µ({0}) = ν({1}) = 1, and µ({1}) = ν({0}) = 0. Then

ζ({1}) = 1, ζ({0}) = 1,

but

ζ(A) = 1 6= 2 = ζ({0}) + ζ({1}).
�

Problem 138 (Royden 17.4.19). Show that any measure that is induced by an outer measure is
complete.

Proof. To be complete, we need that µ(N) = 0 =⇒ N ∈ M. If µ∗ is an outer measure, we have
that it is a function P(X) → [0,∞] which satisfies properties of being an outer measure. Then µ
is a measure if we restrict it to the µ∗ measurable sets, which are the sets A that satisfy for all
E ⊂ X,

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac).
Let F be a set where µ∗(F ) = 0. Then

µ∗(E ∩ F ) + µ∗(E ∩ F c) ≤ µ∗(E ∩ F c) ≤ µ∗(E),

µ∗(E) ≤ µ∗(E ∩ F ) + µ∗(E ∩ F c),
and so

µ∗(E) = µ∗(E ∩ F ) + µ∗(E ∩ F c).
Hence, F ∈M is measurable. So the measure is complete. �

Problem 139 (Royden 17.5.29). Show that a set function on a σ-algebra is a measure if and only
if it is a premeasure.

Proof. Recall that to be a measure, we require two things:

(1) µ(∅) = 0,
(2) If Ei is a disjoint collection of mble sets, then

µ
(⋃

Ei

)
=
∑

µ(Ei).

To be a premeasure on an algebra, we require that:

(1) µ(∅) = 0,
(2) If Ei is a disjoint collection of sets in the algebra, and

⋃
Ei in the algebra, then

µ
(⋃

Ei

)
=
∑

µ(Ei).

( =⇒ ) If µ is a measure on M, the σ-algebra, then we have that it is clearly a premeasure.
( ⇐= ) If µ is a premeasure on the σ-algebra M, notice that for any disjoint collection of sets
Ei ∈M, we have

⋃
Ei ∈M, and so we have that it is a measure. �

Problem 140 (Royden 18.1.2). Suppose (X,M, µ) is not complete. Let E be a subset of a set of
measure zero that does not belong to M. Let f = 0 on X and g = χE . Show that f = g a.e. on
X, while f is measurable and g is not.

Proof. We first show that f = g a.e. Notice that {x : f(x) = g(x)} = Ec, and since E has
null measure we get that f = g a.e. Next, we see that f is measurable, {f > a} is either nothing
or the whole set depending on a, and so is measurable either way. We see that g is not, since
{g > 1/2} = E, which is not measurable by assumption. �
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Problem 141 (Royden 18.1.4). Let E be a measurable subset of X and f an extended real-valued
function on X. Show that f is measurable if and only if its restriction to E and X − E are
measurable.

Proof. ( =⇒ ) We see that, for all open U , we have f−1(U)∩E is measurable and f−1(U)∩(X−E)
is measurable, since f and E are measurable.
(⇐= ) Notice that, for U open, f−1(U) = (f−1(U) ∩ E) t (f−1(U) ∩ Ec). Since each of these are
measurable, we have f−1(U) is measurable. �

Problem 142 (Royden 18.1.6). Consider two extended real-valued measurable functions f, g on
X that are finite a.e. on X. Define X0 to be the set of points in X at which both f and g are
finite. Show that X0 is measurable and µ(X −X0) = 0.

Proof. Let A = {|f | < ∞} and B = {|g| < ∞}, then X0 = A ∩ B. Furthermore, since f, g are
measurable, we have that A and B are measurable, since A = {f > −∞} ∩ {f <∞} and likewise
for B. Hence, X0 is an intersection of measurable sets, and so measurable.

Notice as well that (X0)c = (A ∩B)c = Ac ∪Bc. By subadditivity, we have

µ((X0)c) ≤ µ(Ac) + µ(Bc) = 0.

�

Problem 143 (Borel-Cantelli Lemma). If∑
µ(Ei) <∞,

then

µ (lim supEi) = 0.

Proof. Recall that

lim supEi =
∞⋂
n=1

∞⋃
m=n

Em.

Notice as well that ∑
µ(Ei) <∞ =⇒ lim

n→∞

∞∑
m=n

µ(Em) = 0;

that is, the tails converge to 0. Using continuity from above, and the fact that µ(E1) <∞, we have

µ(lim supEi) = lim
n→∞

µ

( ∞⋃
m=n

Em

)
≤ lim

n→∞

∞∑
m=n

µ(Em) = 0.

Thus, we have the desired result. �

Problem 144 (Royden 18.2.1). Prove the following statements:∫
X
αgdµ = α

∫
X
gdµ,

if g ≤ h a.e. on X, then

∫
X
gdµ ≤

∫
X
hdµ,∫

X
gdµ =

∫
X0

gdµ if µ(X −X0) = 0.
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Proof. Recall that ∫
α · g = sup

{∫
ψ : ψ ⊂ SF+, 0 ≤ ψ ≤ α · g

}
.

However, we could also write this as∫
α · g = sup

{∫
αψ : ψ ⊂ SF+, 0 ≤ ψ ≤ ·g

}
,

and we clearly see that
∫
αψ = α

∫
ψ, since∫

αψ =
∑

αciµ(Ei) = α
∑

ciµ(Ei) = α

∫
ψ.

Hence,∫
αg = sup

{∫
αψ : ψ ⊂ SF+, 0 ≤ ψ ≤ ·g

}
= α sup

{∫
ψ : ψ ⊂ SF+, 0 ≤ ψ ≤ ·g

}
= α

∫
g.

For the next, we clearly have that if 0 ≤ ψ ≤ g, then 0 ≤ ψ ≤ h, and so we get
∫
g ≤

∫
h.

Finally, notice that∫
gdµ =

∫
g(χX0 + χXc

0
)dµ =

∫
gχX0 +

∫
gχXc

0
=

∫
X0

gdµ,

since ∫
gχXc

0
≤ ||g||∞µ(Xc

0) = 0.

�

Problem 145 (Royden 20.1.2). Let N be the set of natural numbers, M = P(N), and c the
counting measure. Prove that every function f : N → R is measurable with respect to c and that
f is integrable over N with respect to c if and only if the series

∑∞
k=1 f(k) is absolutely convergent.

Proof. It’s clear that every f is measurable, since the inverse image will be a set, and all sets are
measurable in this σ-algebra.

( =⇒ ) Assume f is integrable. We have∫
N
|f(x)|dc(x) <∞.

Notice that N =
⊔∞
n=1{n}, so we have∫

N
|f(x)|dc(x) =

∞∑
n=1

∫
{n}
|f(x)|dc(x) =

∞∑
n=1

|f(n)| <∞,

so the series is absolutely convergent.
(⇐= ) If the series is absolutely convergent, then by the relation above, we have that the function
is integrable. �

Problem 146 (Folland 4.1). If Card(X) ≥ 2, there is a topology on X that is T0 but not T1.

Proof. Recall that T0 states that if x 6= y, there is an open set containing x but not y or an open set
containing y but not x. Recall that T1 is if x 6= y, there is an open set containing y but not x. Take
the topology which is all but one element; i.e. if X = {a, b}, take the topology τ = {∅, {a}, {a, b}}.
Then we see this is T0 but not T1. We extend this in the obvious way. �
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Problem 147 (Folland 4.2). If X is an infinite set, the cofinite topology on X is T1 but not T2,
and it is first countable if X is countable.

Proof. Recall that a space is T2 if for x 6= y, there are disjoint open sets U, V such that x ∈ U and
y ∈ V . A space is first countable if there is a countable neighborhood base for every x. The cofinite
topology on X is

τ = {U ⊂ X : U = ∅ or U c is finite}.
We check first that this is a topology. Notice that ∅ ∈ τ , X ∈ τ since Xc = ∅ is finite. Next, if
{Uα} is a collection of sets in the topology, we need to show that

⋃
Uα is in the topology as well.

Notice that (⋃
Uα

)c
=
⋂
U cα.

If Uα is finite for some α, we have that this is finite, and so it is in τ . If they are all the empty
set, it is clearly in τ . Hence, it is closed under arbitrary union. Finally, we need to check it is
closed under finite intersection. Let {Uα}nα=1 be a finite collection of sets in τ . Then we have that⋂n
α=1 Uα is either the empty set (if one of them is), or we have that(

n⋂
α=1

Uα

)c
=

n⋃
α=1

U cα.

A finite union of finite things is finite, and so this is in τ . Hence, it’s closed under finite intersection,
and so it is a topology.

Next, we need to show that it is T1. Take x 6= y. Notice that the set Ux = {t ∈ X : t 6= x} is in
the topology, since the complement is x, and y ∈ Ux. We argue by symmetry that Uy is the same
situation. We see it is not T2; assume U was an open set containing x, V an open set containing y.
For them to be disjoint, we need U ∩ V = ∅, but this implies that U c ∪ V c = X, which is infinite,
contradicting that U c and V c are finite. So this is impossible.

Next, we show it is first countable. That is, we have a countable base at every point x. Since X
is countable, enumerate the values {xn : n ∈ N}, with x0 = x. Then we can define a neighborhood
base via

B =

{
En ⊂ X : E = X −

n⋃
i=1

{xi}

}
.

These sets are clearly open, since they will always be finite, and they all contain x. Furthermore,
we get that it’s a base by noticing that if x ∈ U , U open, then we have that it must be missing
a finite number of values {xj}, and so we can take N sufficiently large so that these are excluded,
and hence EN ⊂ U . �

Problem 148 (Folland 4.3). Every metric space is normal.

Proof. Recall that a space is normal if it is T4; that is, X is a T1 space, and for any disjoint closed
sets A,B in X, there are disjoint open sets U, V with A ⊂ U and B ⊂ V . A metric space is T2

(Hausdorff), and so it is T1. Next, let A,B be disjoint closed sets in X. We first prove the following
claim.

Claim. If D is a closed subset of X, x ∈ X, we have d(x,D) = 0 if and only if x ∈ D.

Proof. ( =⇒ ) If d(x,D) = 0, then we can construct a sequence xn of points in D such that
d(x, xn) < 1/n. Hence, we have that x ∈ D = D.
(⇐= ) If x ∈ D, then d(x,D) = 0. �

Now, for each x ∈ A, let Ux := B(x, r), where we take r = d(x,B)/3. Likewise, for each x ∈ B,
let Vx := B(x, r), where we take r = d(x,A)/3. Let U =

⋃
x∈A Ux, V =

⋃
x∈B Vx. U and V are

open, and we clearly have A ⊂ U , B ⊂ V . We then need to check that U ∩ V = ∅. Let z ∈ U ∩ V .
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Then we have that z ∈ U , which implies that there is an x ∈ A such that d(x, z) < d(x,B)/3 =: r,
and a y ∈ B such that d(y, z) < d(y,A)/3 =: s. Now, without loss of generality take r ≥ s. Then
we have that

3r = d(x,B) ≤ d(x, y) ≤ d(x, z) + d(y, z) ≤ r + s ≤ 2r.

This can only happen if r = 0, but if r = 0 this implies z ∈ A. A symmetric argument gives z ∈ B
as well, which is impossible. �

Problem 149 (Folland 4.4). Let X = R and let τ be the family of all subsets of R of the form
U ∪ (V ∩Q), where U and V are open in the usual sense. Then τ is a topology that is Hausdorff,
but not regular.

Proof. First, recall that regular implies that it is T3; that is, X is a T1 space, and for any closed
set A ⊂ X and any x ∈ Ac, there are disjoint open sets U, V with x ∈ U and A ⊂ V .

We first show that τ is a topology. First, X ∈ τ , since X = X ∪ (∅ ∩Q) = X. We have ∅ ∈ τ
as well. Let {Eα} be an arbitrary collection of sets in τ , then⋃

Eα =
⋃

(Uα ∪ (Vα ∩Q)) =
⋃
Uα ∪

(⋃
(Vα) ∩Q

)
∈ τ.

Finally, we have that if {Eα}nα=1 is a finite collection, then⋂
Eα =

⋂
(Uα ∪ (Vα ∩Q)) =

⋂
Uα ∪

(⋂
Vα ∩Q

)
∈ τ.

Hence, it’s a topology.
Next, we check that it is Hausdorff. That is, for x 6= y, we can find open sets U, V such that

U ∩ V = ∅. Since X is Hausdorff under the usual topology, find Ux, Vx, Uy, Vy all of the differing
letters are disjoint. Then it’s clear that x ∈ Ux, Vx, y ∈ Uy, Vy, and

[Ux ∪ (Vx ∩Q)]∩[Uy ∪ (Vy ∩Q)] = (Ux∩Uy)∪(Ux∩(Vy∩Q))∪((Vx∩Q)∩Uy)∪((Vx∩Q)∩(Vy∩Q)) = ∅.
Finally, we see it’s not T3. �

Problem 150 (Folland 4.5). Every separable metric space is second countable.

Proof. Let (X, ρ) be our metric space, let A be a countable dense subset of X. We wish to show
that X is second countable; that is, there exists a countable base for X. Define the base as

B =
{
B1/n(x) : x ∈ A,n ∈ N

}
.

We see that B is countable, and so it suffices to show that this is a base. If we can show that every
x ∈ X is in

⋃
U∈B U , we win. Let y ∈ X arbitrary. By the density property of A, we get that, for

every open neighborhood of y, A ∩ {U − {y}} 6= ∅. The open balls are the base of the topology
of (X, ρ), so it suffices to work with Bε(y) for our open sets. We can find an n sufficiently large so
that 2/n < ε, hence B2/n(y) ⊂ Bε(y). Notice that we have that A ∩ (B1/n(y)− {y}) 6= ∅. Take x
in this intersection. Examine the open set B1/n(x). Take z in this. We have that

ρ(z, y) ≤ ρ(z, x) + ρ(x, y) < 2/n,

so B1/n(x) ⊂ B2/n(y) ⊂ Bε(y). Since we can do this for all open balls, we win. �

Problem 151 (Folland 4.7). If X is a topological space, a point x is called a cluster point of a
sequence (xj) if, for every neighborhood U of x, xj ∈ U for infinitely many j. If X is first countable,
x is a cluster point of (xj) if and only if some subsequence of (xj) converges to x.

Proof. X is first countable, so we have a countable neighborhood basis at x, call it Nx. Assume x is
a cluster point of (xj). Then for every neighborhood U of x, xj ∈ U for infinitely many j. Since Nx
is countable, we can define a subsequence as follows: Let Uk be a nested countable neighborhood

basis at x; i.e. set Uk =
⋂k
i=1Ni, Ni ∈ Nx. We can choose xnk such that nk ≥ nk−1 and xnk ∈ Uk.
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Since this is a neighborhood basis, we have that for every neighborhood V of x, there is a Uk such
that Uk ⊂ V , and so xnk is eventually in V . Hence, xnk converges to x.

For the other direction, it’s clear that if a subsequence converges to x, then xn is in every
neighborhood of U infinitely often. �

Problem 152 (Folland 4.30). If A is a directed set, a subset B of A is called cofinal in A if for
each α ∈ A, there exists a β ∈ B such that β ≥ α.

(1) If B is cofinal in A and 〈xα〉 is a net, the inclusion map B ↪→ A makes 〈xβ〉 a subnet of
〈xα〉.

(2) If 〈xα〉 is a net in a topological space, then 〈xα〉 converges to x if and only if for every
cofinal B ⊂ A, there is a cofinal C ⊂ B such that 〈xγ〉 converges to x.

Proof. (1) Recall a subnet is a net 〈yβ〉 with a map f : B → A such that for every α0 ∈ A,
there is a β0 ∈ B such that αβ ≥ α0 whenever β ≥ β0, and yβ = xαβ . We want to check
that 〈xβ〉 is a subnet of 〈xα〉. We check the first property: take α0 ∈ A. Then since B is
cofinal, there is a β such that β ≥ α. Take β0 = β (this beta); then for all β ≥ β0, we have
that f(β) = β ≥ α. Furthermore, it’s clear that xβ = xβ, and so it’s a subnet.

(2) ( =⇒ ) Let V be a neighborhood of x. Then 〈xα〉 converges to x implies that 〈xα〉 is
eventually in V . Let B ⊂ A be cofinal. Then it’s clear that taking C = B gives a net which
converges to x, and so the result finals.
(⇐= )

�

Problem 153. f : X → Y is continuous if and only if for all convergent nets xi → x in X,
f(xi)→ f(x) in Y .

Proof. ( =⇒ ) Assume f is continuous. Let xi → x be a convergent net. Then for all open V such
that x ∈ V , we have that xi is eventually in V . Let U be an open neighborhood of f(x). Then
f−1(U) is open, since f continuous, and x ∈ f−1(U), so xi is eventually in f−1(U), and so f(xi) is
eventually in U . Since this applies for all neighborhoods, f(xi) converges to f(x).
(⇐= ) We wish to show that for all closed A ⊂ Y , B := f−1(A) is closed. That is, B = B. A set
is closed if and only if it contains the limits of all convergent nets in it. So take xi → x, xi ∈ B,
then x ∈ B. However, notice that f(B) ⊂ A, and so f(xi)→ f(x) ∈ A. So x ∈ B. Since we can do
this for all x ∈ B, we have that B = B. So B is closed.
Folland proof Assume f not continuous at x for contradiction. Then we have that there is a
neighborhood V of f(x) such that f−1(V ) is not a neighborhood of x, so x ∈ f−1(V c). We can
construct a net in f−1(V c) which converges to x, since it’s closed, but this gives us the contradiction,
since this implies that f(xi) 6→ f(x). �

Problem 154. Prove that second countable implies separable.

Proof. Second countable means that there is a countable base for the topology. Separable means
there is a countable dense subset. Let B be the base. For each U ∈ B, choose an x ∈ U and let
T be this set. Notice that (T )c = ∅, since every point x ∈ X is such that an open neighborhood
intersects some y ∈ T . Thus, T = X, and T is countable. �

Problem 155. Suppose X is first countable, A ⊂ X. Then x ∈ A if and only if there exists a
sequence xj ⊂ A such that xj → x.

Proof. Let x ∈ A. Then this implies that x is an accumulation point of A; that is, for every
open neighborhood of x, say U , we have U ∩ A 6= ∅. Let {Bi} be a countable base at x. Let
Un =

⋂n
i=1Bi. Then we have that Ui+1 ⊂ Ui by construction. Notice as well we have Ui ∩ A 6= ∅

for all i, so choose xi ∈ Ui ∩ A. Then for every open neighborhood V of x, we get that there’s
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some n so that Un ⊂ V , since this is a basis, and so we have that xn is eventually in V . Hence, xi
converges to x.

On the other hand, take a sequence xj → x, (xj) ⊂ A. Let U be a neighborhood of x. Since
xj → x, we have that xj is in U eventually. Hence, U∩A 6= ∅. Since this works for all neighborhoods

of x, we get that x ∈ A. �

Problem 156. If (X, d) is a metric space, the following are equivalent:

(1) X is compact.
(2) X is sequentially compact.
(3) X is complete and totally bounded.

Proof. (1) =⇒ (2): Recall that a space is sequentially compact if every sequence of points in X
has a convergent subsequence to a point in X. Take (xn) ⊂ X a sequence, X compact. Let

Fn := {xk : k ≥ n},
Un := F cn.

If ⋂
Fn = ∅,

then we have ⋃
Un = X,

and since X is compact we can form an open subcover;

X =

n⋃
i=1

Uni .

Notice that this implies that
n⋂
i=1

Fni = ∅.

However, we have that (xn) is an infinite sequence, and so this is a contradiction. Hence, we must
have

x ∈
⋂
Fn.

Since x is in the closure, this means that we must have that

B(x, 1/n) ∩ {xk : k ≥ n} 6= ∅.
Hence, picking xnk from these, we get a converging subsequence.
(2) =⇒ (3): Let {xn} be a Cauchy sequence; then xn has a convergent subsequence, and since
limits of Cauchy sequences are unique, this implies that xn converges. To see this, let x be where
the subsequence xnk converges. Then since it’s Cauchy, we have that there is an N such that for
all n,m ≥ N , d(xn, xm) < ε/2, and since it’s convergent there is an N ′ such that for all nk ≥ N ′,
we have d(xnk , x) < ε/2. Hence, taking N ′′ to be the max, we have that for all n ≥ N ′′,

d(xn, x) ≤ d(xn, xN ′′) + d(xN ′′ , x) < ε.

So xn → x.
Next, we need to show that X is totally bounded. Recall that totally bounded implies that

for ε > 0, there is a sequence of points x1, . . . , xn such that X =
⋃n
i=1B(xi, ε). Assume for

contradiction it is not totally bounded. Then there is an ε so that there is no collection of elements
xi where X =

⋃n
i=1B(xi, ε). Choose x1 ∈ X. Since X 6= B(x1, ε), there is an x2 ∈ X − B(x1, ε);

that is, d(x1, x2) ≥ ε. For {x1, . . . , xn}, choose xn+1 such that d(xk, xn+1) > ε for all k ∈ {1, . . . , n}.
We have a sequence which has no convergent subsequences by construction, contradicting the fact
that X is sequentially compact. Hence, X must be totally bounded.
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(2) =⇒ (1): Assume X is sequentially compact. Take a cover X ⊂
⋃
Ui. Assume that X cannot

be covered by a finite refinement. Let Fn =
⋃n
i=1 Ui. Then we can choose xn ∈ F cn, and this gives us

a sequence. Since X is sequentially compact, it has a subsequence which converges to something,
say x. But this implies that there is some m such that x ∈ Um, so xi ∈ Um for infinitely many
values, but this contradicts the choice of the sequence.
(3) =⇒ (1) : Take an open cover X =

⋃
Ui. Assume it cannot be finitely refined. Since X is

totally bounded, choose ε = 1 to get

X =
n⋃
i=1

B(xi, 1).

If each of these balls were covered by a finite subcollection of Ui, we win. So assume that B(x1, 1)
is not. Since B(x1, 1) is still totally bounded, we can cover it with balls with radius 1/2;

B(x1, 1) =

n1⋃
i=2

B(xi, 1/2).

One of these cannot be covered by a finite subcollection of Ui, so choose it to be B(x2, 1/2).
Continue down the line, getting a sequence (xn) where d(xn, xn+1) ≤ 2−n + 2−n−1, and where
B(xn, 2

−n) is not in any finite collection of Ui. Notice that xn converges, since it is Cauchy, and
so it must converge to some point x. We must have that x ∈ Ui for some i. Notice that there is
an r sufficiently small so that B(x, r) ⊂ Ui, for if not then we have that x /∈ Ui, a contradiction.
By construction, we can find n sufficiently large so that 2−n < r, but this forces B(x, 2−n) ⊂ U ,
which contradicts our choice. Since we have a contradiction, we must have that it can be finitely
refined. �

Problem 157. Let (X, d) be a complete metric space, A ⊂ X. Prove that A is compact if and
only if A is totally bounded.

Proof. ( =⇒ ) If A is compact, then it is complete and totally bounded by the theorem from the
class notes. For ε > 0, take a cover of A via

A ⊂
m⋃
i=1

B(xi, ε/2).

Assume B(xi, ε/2) ∩A 6= ∅ for i = 1, . . . , n. Choose yi ∈ B(xi, ε/2). Then we want to show that

A ⊂
n⋃
i=1

B(yi, ε).

Let y ∈ A. Then y ∈ B(xi, ε/2). Notice that

d(y, yi) ≤ d(y, xi) + d(xi, yi) < ε,

so y ∈ B(yi, ε). Hence, A is totally bounded.
(⇐= ) Assume that A is totally bounded. Then we want to show that A is also totally bounded.
Let ε > 0. Then we have that

A ⊂
n⋃
i=1

B(xi, ε/2).

We want to show that

A ⊂
n⋃
i=1

B(xi, ε).
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Take y ∈ A. Then we have that B(y, ε/2)∩A 6= ∅. Take x in this intersection; then d(y, x) < ε/2.
Furthermore, x ∈ B(xi, ε/2) for some i, so we have

d(y, xi) ≤ d(y, x) + d(x, xi) < ε.

Hence, y ∈ B(xi, ε). So A is totally bounded.
Next, we want to show that A is complete. However, this is clear; let (xn) be a Cauchy sequence

in A. Then it has a convergent subsequence, and so it must also converge. So every Cauchy
sequence converges. �

Problem 158 (Folland 4.10). Prove that, for a connected set, the only open and closed sets are
∅ and X.

Proof. Recall that a set is disconnected if there exists nonempty open sets U and V such that
U ∪ V = X and U ∩ V = ∅, and is connected otherwise. Let X be connected, and assume that
U is both open and closed. Then we have that U c is also open and closed, which means that
U ∪ U c = X, U ∩ U c = ∅. However, the only sets which satisfy this are U = ∅ or U = X. �

Problem 159 (Folland 4.11). If E1, . . . , En are subsets of a topological space, the closure of
⋃n
i=1Ei

is
⋃n
i=1Ei.

Proof. It suffices to show it for the case of two subsets and then induct. That is, we wish to show
that

E1 ∪ E2 = E1 ∪ E2.

One direction is clear, we have that

E1 ∪ E2 ⊂ E1 ∪ E2,

and the RHS is a closed set, so we must have

E1 ∪ E2 ⊂ E1 ∪ E2.

Analogously, we have

E1 ⊂ E1 ∪ E2,

so

E1 ⊂ E1 ∪ E2,

and likewise

E2 ⊂ E1 ∪ E2,

so

E1 ∪ E2 ⊂ E1 ∪ E2.

Hence

E1 ∪ E2 = E1 ∪ E2,

as desired. �

Problem 160 (Folland 4.13). If X a topological space, U is open in X, and A is dense in X, then
U = U ∩A.

Proof. First, remark that

U ∩A ⊂ U,
and so therefore

U ∩A ⊂ U.
We then wish to show the other direction; that is, U ⊂ U ∩A. Next, we have that U is open, so
U c is closed. Notice as well that U ∩A is closed as well. A finite union of closed sets is closed,
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so U c ∪ U ∩A is closed. Notice that A ⊂ U c ∪ U ∩A (take x ∈ A, either x ∈ U ∩ A ⊂ U ∩A or
x ∈ U c ∩A ⊂ U c), and since A is dense, we have that

A = X ⊂ U c ∪ U ∩A ⊂ X =⇒ U c ∪ U ∩A = X.

Hence, we get

U = X ∩ U = U ∩
(
U c ∪ U ∩A

)
= (U ∩ U c) ∪ (U ∩ U ∩A) = U ∩ U ∩A.

In other words, we have
U ⊂ U ∩A.

This then gives us
U ⊂ U ∩A

as desired. �

Problem 161 (Folland 4.14). If X and Y are topological space, the following are equialent:

(1) f : X → Y is continuous.

(2) f(A) ⊂ f(A) for all A ⊂ X.

(3) f−1(B) ⊂ f−1(B) for all B ⊂ Y .

Proof. (1) =⇒ (2) : If f is continuous, we have pullback of closed sets are closed. Hence, we

have f−1(f(A)) is closed. Notice that A ⊂ f−1(f(A)), and so A ⊂ f−1(f(A)) by minimality of the

closure. Applying f to both sides gives f(A) ⊂ f(A).
(2) =⇒ (3) : Since it applies for all A, take B ⊂ Y and notice that f−1(B) ⊂ X. Then

f(f−1(B)) ⊂ f(f−1(B)) ⊂ B. Hence, f−1(B) ⊂ f−1(B).
(3) =⇒ (1): Let B ⊂ Y be a closed set. Then we have

f−1(B) ⊂ f−1(B) ⊂ f−1(B) =⇒ f−1(B) = f−1(B).

Hence, it pulls back closed sets to closed sets, which means f is continuous. �

Problem 162 (Folland 4.15). If X is a topological space, A ⊂ X is closed, and g ∈ C(A) satisfies
g = 0 on ∂A, then the extension of g to X defined by g(x) = 0 for x ∈ Ac is continuous.

Proof. We assume the codomain is C for now. Let E ⊂ C be open; we have that g−1(E) ⊂ A is
open with respect to the subspace topology. Letting ĝ denote the extension to X, we need to show
that ĝ−1(E) is open. Let B = {x : ĝ(x) 6= 0} ⊂ A, Bc = {x : ĝ(x) = 0}. Then we have

ĝ−1(E) =
(
ĝ−1(E) ∩B

)
t
(
ĝ−1(E) ∩Bc

)
.

Since B is open, we get that the left hand side is open. We then wish to establish that the right
hand side is open as well. We examine

(ĝ−1(E) ∩Bc ∩Ao) ∪ (ĝ−1(E) ∩Bc ∩ ∂A) ∪ (ĝ−1(E) ∩Ac).
Notice that the left most set is open, the right most set is open (either E contains 0 or it doesn’t),
so it suffices to check that the middle set is open, but this follows by g ∈ C(A). �

Problem 163 (Folland 4.16). Let X be a topological space, Y a Hausdorff space, and f, g contin-
uous maps from X to Y .

(1) {x : f(x) = g(x)} is closed.
(2) If f = g on a dense subset of X, then f = g on all of X.

Proof.

(1) Let (xn) ⊂ F := {x : f(x) = g(x)} be a convergent net. Then, since f, g are continuous, we
have f(xn)→ f(x), g(xn)→ g(x). Since f(xn) = g(xn) for all n, we must have f(x) = g(x)
(since Y is Hausdorff), and so x ∈ F . Since this is true for all convergent nets, we have
that F is closed.
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(2) This condition tells us that F is dense. Since F is closed, we have that the closure is the
whole set, but F = F = X.

�

Problem 164 (Folland 4.18). If X and Y are topological spaces, y0 ∈ Y , then X is homeomorphic
to X × {y0}, where the latter has the relative topology as a subset of X × Y .

Proof. We wish to construct f : X × {y0} → X which is bijective, continuous, and has continuous
inverse. First, notice that f(x, y0) = x is the projection map, which is clearly well-defined and
surjective. For injective, notice that f(x, y0) = f(x′, y0) ⇐⇒ x = x′, and so (x, y0) = (x′, y0).
Finally, we need to show it’s continuous. Take U ⊂ X open, then f−1(U) = U × {y0}. This is an
open subspace of X × {y0}, since we can write it as (U × Y ) ∩ (X × {y0}). Hence, f is bijective
and continuous.

Notice f−1(x) = g(x) = (x, y0). We need to show that this is continuous as well. Let U ⊂
X×{y0} be open, then we have that U = U ′∩ (X×{y0}), where U ′ is open. Notice that U ′ is open
in the product topology, so we have that the projection map is continuous on it; hence, πX(U ′)
is open. This tells us that g−1(U) is open, and so this is a continuous map. Hence, f we have a
homeomorphism. �

Problem 165 (Folland 4.32). A topological space X is Hausdorff if and only if every net in X
converges to at most one point.

Proof. ( =⇒ ) Assume X is Hausdorff. Then we need to show that every net in X converges to
at most one point. Assume (xi) is a convergent net in X. This means that xi → x, which means
that for every neighborhood V of x, we have that xi is eventually in V . Assume for contradiction
that xi → y as well. Since X Hausdorff, we can find disjoint open neighborhoods U, V such that
x ∈ U , y ∈ V . Since xi is eventually in U , we have that there is an N such that for all n ≥ N ,
xn ∈ U . But this means that (xi) is not eventually in V , and so we have that xi cannot converge
to y. Hence, there’s at most one.
( ⇐= ) Assume X is not Hausdorff. Then there are x, y ∈ X such that there are no open neigh-
borhoods U, V where x ∈ U , y ∈ V , U ∩ V = ∅. Consider the directed set Nx ×Ny, where Nx, Ny
are the families of neighborhoods of x, y. Notice we can make this an ordered set in the following
way; we have (Ux, Uy) ≥ (Vx, Vy) if Vx ⊂ Ux and Vy ⊂ Uy. Notice that for any (Ux, Uy), (Vx, Vy),
we have that there is a (Tx, Ty) such that (Tx, Ty) ≥ (Ux, Uy) and (Tx, Ty) ≥ (Vx, Vy); if there were
not any, we would have that there were open neighborhoods about x and y which were disjoint.
We can define a subnet (xNx,Ny)(Nx,Ny)∈Nx×Ny which converges to both x and y. �

Problem 166 (Folland 4.38). Suppose that (X, τ) is a compact Hausdorff space, and τ ′ is another
topology on X. If τ ′ is strictly stronger than τ (read: contains more elements, i.e. τ ⊂ τ ′), then
(X, τ) is Hausdorff but not compact. If τ ′ is strictly weaker than τ , then (X, τ ′) is compact but
not Hausdorff.

Proof. If τ ′ is stronger, then we clearly see that for every x, y ∈ X, we can find open Ux, Uy so that
Ux ∩ Uy = ∅ and the elements are in their respective sets. Take f : (X, τ ′) → (X, τ) defined by
f(x) = x (the identity). Then for all U ⊂ τ , we have f−1(U) = U ∈ τ ′, since τ ′ is stronger, so f
is continuous. Furthermore, it is a bijection. However, it is not a homeomorphism, since there are
U ∈ τ ′ such that f(U) = U /∈ τ . By the contrapositive of Proposition 4.28, we get that since X
is Hausdorff, X must not be compact under the stronger topology.

Next, assume τ ′ is weaker. Then by the same argument, we get that f : (X, τ) → (X, τ ′)
defined by the identity is continuous, bijective, and so f(X) = X is compact by Proposition
4.26. However, it is not a homeomorphism by the same argument above, and so we have that
(X, τ ′) must not be Hausdorff. �
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Problem 167 (Folland 4.40). If X is countably compact, then every sequence in X has a cluster
point. If X is also first countable, then X is sequentially compact.

Proof. Let (xn) be a sequence in X. Let Ek =
⋃∞
n=k{xn}. If

⋂∞
k=1Ek = ∅, then we have that⋃∞

k=1Ek
c

= X, and so we can take a finite refinement to get
⋃N
j=1Ekj

c
= X, which implies

that
⋂N
j=1Ekj = ∅. This tells us that the sequence terminates after a finite number of steps,

contradicting the fact that it’s a sequence. Hence, we must have that
⋂∞
k=1Ek 6= ∅. Take x in this

intersection. Let V be a neighborhood of x. We have that (V − {x0}) ∩Ek 6= ∅ for some k, so for
all n ≥ k, we have that xk ∈ V . This tells us that x is a cluster point of (xk).

If X is first countable, by Folland 4.7, we have that every sequence has a cluster point if and
only if every sequence has a convergent subsequence. Since every sequence has a cluster point, we
get that every sequence has a convergent subsequence, and so it is sequentially compact. �

Problem 168 (Folland 4.44). If X is countably compact and f : X → Y continuous, then f(X)
is countably compact.

Proof. Let {Vα} be an open cover of f(X). Then we have

f(X) ⊂
⋃
α

Vα.

Notice that this implies

X ⊂
⋃
α

f−1(Vα).

Since X compact, we have

X ⊂
n⋃
i=1

f−1(Vαi).

Taking the image gives

f(X) ⊂
n⋃
i=1

Vαi .

Hence, f(X) is compact. �

Problem 169 (Folland 4.45). If X is normal, then X is countably compact iff C(X) = BC(X).

Proof. Recall a space is normal if it is T1 and for any disjoint closed sets A,B in X, there are disjoint
open sets U, V with A ⊂ U and B ⊂ V . Recall as well that C(X) = {f : X → F : f is continuous},
BC(X) = {f : X → F : f is bounded and continuous.}.

Assume X is normal and countably compact. Let f ∈ C(X). Notice that f(X) is compact by
the prior problem, and compact in F = R or C implies closed and bounded. Hence, f is bounded,
and so we have BC(X) = C(X).

Assume X is not compact. Let {Vα} be a cover of X which does not admit a finite refinement.
Define a sequence via selecting xn ∈ (

⋃n
α=1 Vα)c. We want to show that (xn) has no accumulation

points. If x ∈ X, we have that x ∈ Vn for some n. So taking a neighborhood U ⊂ Vn of x, we
have that for N sufficiently large, xk /∈ U for all k ≥ N . Hence, x is not cluster point of (xn).
Since the set of cluster points is empty, we have that C := {xn} is closed. Define f : C → R by
f(x) = max{n : x = xn}. We see that this is unbounded, and furthermore we use Corollary
4.17 to find F ∈ C(X) such that F |C = f . so C(X) 6= BC(X). �

Problem 170 (Folland 4.47). If X,X∗ are such that X∗ = X ∪ {∞}, and τ is the collection of
all subsets of X∗ such that either U is an open subset of X or ∞ ∈ U and U c is a compact subset
of X, then (X∗, τ) is a compact Hausdorff space, and the inclusion i : X → X∗ is an embedding.
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Moreover, if f ∈ C(X), then f extends continuously to X∗ if and only if f = g+c, where g ∈ C0(X)
and c is a constant, in which case the continuous extension is given by f(∞) = c.

Proof. We break this up into parts.

(1) We first show that (X∗, τ) is compact. Let {Vα} be an open cover of X∗; that is,

X∗ ⊂
⋃
α

Vα.

Since Vα are open and cover X∗, there must be a Vβ such that ∞ ∈ Vβ and V c
β is compact.

Since

X∗ = Vβ ∪ V c
β ,

we get

Vβ ∪ V c
β ⊂

⋃
α

Vα ∪ Vβ.

Notice that this means

V c
β ⊂

⋃
α

(Vα ∩ V c
β ),

and so taking a finite refinement we have

V c
β ⊂

n⋃
i=1

(Vαi ∩ V c
β ),

hence

X∗ = Vβ ∪ V c
β ⊂

n⋃
i=1

Vαi ∪ Vβ.

So we have that there is a finite refinement, and so it is compact.
(2) We now show it is Hausdorff. Take x, y ∈ X∗. If x 6= y and both are not infinite, we have

that we can use the Hausdorff property from X to find the open sets. Suppose y = ∞,
x 6= y. Since X LCH, find compact neighborhood U of x. Then U c is an open neighborhood
containing ∞ such that U c ∩ U = ∅. So we win.

(3) We show that i : X → X∗ is an embedding. Clearly, it’s injective. We see it’s also a
homeomorphism onto it’s image, since i(U) = U is open in τ , and the only open sets in
i(X) are the ones already open in X. So, it’s an embedding.

(4) Omitted.

�

Problem 171 (Folland 4.49). Let X be a compact Hausdorff space and E ⊂ X.

(1) If E is open, then E is locally compact in the relative topology.
(2) If E is dense in X and locally compact in the relative topology, then E is open.
(3) E is locally compact in the relative topology iff E is relatively open in E.

Proof.

(1) Take x ∈ E. By Proposition 4.30, since x ∈ E, E open, we have that there is a compact
neighborhood N of x such that N ⊂ E. We can then find an open neighborhood U of x so
that U ⊂ N . Now U ∩E open in the relative topology of E, so we get that N is a compact
neighborhood of x in the relative topology as well.

(2) If, for all x ∈ E, we can find an open U such that x ∈ U ⊂ E, then we have that E is
open. Take x ∈ E arbitrarily, then. Since E LCH in the relative topology, we get that we
can find a compact neighborhood N such that x ∈ N ⊂ E. Thus, we can find a relatively
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open neighborhood U of x such that x ∈ U ⊂ N . Since U is relatively open, we have that
U = V ∩ E, where V is open. Since E open, we have that V = V ∩ E. Hence, we have

x ∈ V ⊂ V = V ∩ E ⊂ N ⊂ E.
Thus, we win.

(3) Omitted

�

Problem 172 (Folland 4.50). Let U be an open subset of a compact Hausdorff space X and U∗

its one-point compactification. If φ : X → U∗ is defined by φ(x) = x if x ∈ U and φ(x) = ∞ if
x ∈ U c, then φ is continuous.

Proof. Let V ⊂ U∗ be open. There are two cases to consider: either ∞ ∈ V or not. If ∞ /∈ V , we
have that V ⊂ U is open, and so φ−1(V ) = V ⊂ U open. Since U open, we get that V open in
X. Now, if ∞ ∈ V , we have that V c ⊂ U ⊂ X is compact. Since X Hausdorff, we get that V c is
closed, so φ−1(V c) = φ−1(V )c is closed. This gives us that φ−1(V ) is open, as desired. �

Problem 173 (Folland 5.2). We have L(X,Y ) = {T : X → Y : T is bounded} is a vector space,
and the function || · || defined by

||T || = sup{||Tx|| : ||x|| = 1}
is a norm. Moreover, prove that

sup{||Tx|| : ||x|| = 1} = sup

{
||Tx||
||x||

: ||x|| 6= 0

}
= inf{C : ||Tx|| ≤ C||x|| for all x}

Proof. It’s clear that L(X,Y ) is a vector space; we have that for all f, g ∈ L(X,Y ), f−g is linear and
bounded, (since ||(f − g)(x)|| = ||f(x)− g(x)|| ≤ ||f(x)||+ ||g(x)|| ≤ C||x||+D||x|| = (C+D)||x||),
and it’s also closed under scaling (||cf(x)|| ≤ |c|||f(x)|| ≤ |c|C||x||). The other properties are clear
after similar calculations.

To see it’s a norm, we need to show three things.

(1) Notice that

||cT || = sup{||cT (x)|| : ||x|| = 1} = sup{|c| · ||T (x)|| : ||x|| = 1} = |c| sup{||T (x)|| : ||x|| = 1}

= |c| · ||T ||.
(2) We have that

||T + S|| = sup{||(T + S)(x)|| : ||x|| = 1} = sup{||T (x) + S(x)|| : ||x|| = 1}

≤ sup{||T (x)||+ ||S(x)|| : ||x|| = 1} ≤ ||T ||+ ||S||.
(3) Finally, let ||T || = 0. Then we have

sup{||T (x)|| : ||x|| = 1} = 0.

Since 0 ≤ ||T (x)|| for all x ∈ X, this gives

0 ≤ ||T (x)|| ≤ 0 =⇒ ||T (x)|| = 0.

for all x such that ||x|| = 1. Hence, T (x) = 0 for all x such that ||x|| = 1. By scaling, we
see that this gives us T (x) = 0 for all x, and so T = 0.

Hence, we have that this is a norm.
Finally, we check that these sets are equal. Notice that

||T (x)||
||x||

=

∣∣∣∣∣∣∣∣T ( x

||x||

)∣∣∣∣∣∣∣∣ ,
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and norm of x/||x|| is 1. Hence, the first two values are clearly equal. Let C be the infimum, r the
supremum. Then we have

||T (x)|| ≤ C||x|| =⇒ ||T (x)||
||x||

≤ C,

so taking the sup of the left hand side yields that r ≤ C. For the other direction, for all x, we have

||T (x)||
||x||

≤ r =⇒ ||T (x)|| ≤ r||x||,

and so C ≤ r. Hence, r = C. �

Problem 174 (Folland 5.3). Complete the proof of Proposition 5.4. That is, prove that if Y is
complete, then so is L(X,Y ).

Proof. Let (Tn) be a Cauchy sequence in L(X,Y ). If x ∈ X, then (Tn(x)) is Cauchy in Y , since
||Tn(x) − Tm(x)|| ≤ ||Tn − Tm||||x||. Define T : X → Y by T (x) = limn Tn(x). We need to show
that T ∈ L(X,Y ); that is, it’s linear and bounded. To see linear, notice that

T (x− y) = lim
n
Tn(x− y) = lim

n
Tn(x)− lim

n
Tn(y) = T (x)− T (y),

and for α in the underlying field,

T (αx) = lim
n
T (αx) = α lim

n
Tn(x) = αT (x).

To see it’s bounded, take x ∈ X. Then we have

||T (x)|| = || lim
n
Tn(x)|| ≤ lim

n
Cn||x|| = C||x||,

since (||Tn||) = (Cn) is Cauchy as real numbers (to see this: notice that the reverse triangle
inequality gives |‖Tn|| − ‖Tm||| ≤ ||Tn − Tm||). Finally, we need to show that Tn → T . Take x ∈ X
arbitrary. Let ε > 0, then since (Tn) Cauchy we have that there is an N such that for all n,m ≥ N ,
we have

||Tn(x)− T (x)|| = ||(Tn − T )(x)|| = lim
m→∞

||(Tn − Tm)(x)|| < ε||x||,

so letting ε→ 0 gives ||Tn − T || → 0. To get the in fact, notice that |||Tn|| − ||T ||| ≤ ||Tn − T ||, so
||Tn|| → ||T ||. �

Problem 175 (Folland 5.4). If X,Y are normed vector spaces, the map (T, x) 7→ Tx is continuous
from L(X,Y )×X to Y .

Proof. We need to show that if Tn → T , xn → x, then Tn(xn)→ T (x). Notice that we can write

||Tn(xn)− T (x)|| = ||Tn(xn)− Tn(x) + Tn(x)− T (x)|| ≤ ||Tn(xn)− Tn(x)||+ ||Tn(x)− T (x)||.

On the left, we have

||Tn(xn − x)|| ≤ ||Tn||||xn − x|| → 0.

On the right, we have

||Tn(x)− T (x)|| ≤ ||Tn − T ||||x|| → 0.

�

Problem 176 (Folland 5.12 b). Let X be a normed vector space and M a proper closed subspace
of X. Let ||x + M || = inf{||x + y|| : y ∈ M} be the norm on X/M . For any ε > 0, there exists
x ∈ X such that ||x|| = 1 and ||x+M || ≥ 1− ε.
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Proof. Since M proper, we have that X −M is non-empty. Hence, take x ∈ X −M . If ε ≥ 1, then
we are done, simply by normalizing x/||x||. Otherwise, we have 0 < ε < 1, and so 0 < 1 − ε < 1,
and hence 1 < 1/(1 − ε), so ||x + M || < (||x + M ||)/(1 − ε). Since this is an infimum, we have
that there is a y ∈M such that ||x+ y|| < (||x+M ||)/(1− ε). Let z = (||x+ y||)−1(x+ y). Then
||z|| = 1, and furthermore we have

||z +M || = ||(x+ y) +M ||
||x+ y||

=
||x+M ||
||x+ y||

> 1− ε.

�

Problem 177 (Folland 5.12 c). Given the conditions of the last problem, prove that the canonical
projection map π : X → X/M has norm 1.

Proof. Recall that

||π|| = sup{||π(x)|| : ||x|| = 1}.
Writing this out, we get

||π|| = sup{||x+M || : ||x|| = 1}.
It’s clear that ||π|| ≤ 1. It suffices, then, to show that ||π|| ≥ 1. To see this, we use the prior
problem, taking the infimum over all ε. �

Problem 178 (Folland 5.15). Suppose that X and Y are normed vector spaces and T ∈ L(X,Y ).

(1) Show that ker(T ) is a closed subspace.
(2) There is a unique S ∈ L(X/ ker(T ), Y ) such that T = S ◦ π where π is the canonical

projection. Moreover, ||S|| = ||T ||.

Proof. (1) Note that T is continuous. Let xn ∈ ker(T ), and suppose xn → x. Then we need to
show that x ∈ T . But this is clear, since

T (x) = T (limxn) = limT (xn) = lim 0 = 0,

so x ∈ ker(T ).
(2) The uniqueness is clear from the universal property of quotients. Notice that ||T || ≤ ||S||,

and ||S|| ≤ ||T || is a simple calculation which I’ll omit.
�

Problem 179 (Folland 5.17). A linear functional f on a normed vector space X is bounded iff
f−1({0}) is closed.

Proof. ( =⇒ ) If f is bounded, then f is continuous, and so f−1({0}) is closed.
( ⇐= ) If f−1({0}) is closed, then this means that ker(f) is closed in X. If ker(f) = X, then this
means that f is the zero map, and so is clearly bounded. Hence, assume its proper. By 5.12(b),
we see that there exists a x ∈ X such that ||x|| = 1 and ||x + ker(f)|| ≥ 1

2 . In particular, for all

y ∈ ker(f), we have ||x+ y|| ≥ 1
2 . So, if y is such that ||y|| ≤ 1/2, we have x+ y /∈ ker(f). Notice

that {f(y) : ||y|| ≤ 1/2} is connected and symmetric about zero, so it is either bounded or it is
all of R. If it is all of R, then we have f(x+ y) ∈ R, so f(x+ y) = f(x) + f(y) = 0, but this means
that x+ y ∈ ker(f) for ||y|| ≤ 1/2, contradicting what we noted earlier. �

Problem 180 (Folland 5.18). Let X be a normed vector space.

(1) If M is a closed subspace and x ∈ X −M , then M + Cx is closed.
(2) Every finite-dimensional subspace of X is closed.

Proof. (1) Since M is closed, x /∈ M , we have that there is a f ∈ X∗ = L(X,C) such that
f(x) 6= 0 and f |M = 0. In particular, ||f || = 1 and f(x) = infy∈M ||x − y||. We want to
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show that M + Cx is closed, so take a sequence (yn + αnx) ⊂ M + Cx, and suppose it
converges to z ∈ X. Then we wish to show that z ∈M + Cx. Notice that

f(z) = f
(

lim
n→∞

(yn + αnx)
)

= lim
n→∞

f(yn + αnx) = lim
n→∞

αnf(x),

so

lim
n→∞

αn =
f(z)

f(x)
=: α.

Hence,
lim
n→∞

αnx = αx.

Notice that
lim
n→∞

yn = lim
n→∞

(yn + αnx)− αnx = z − αx,

and furthermore notice that z − αx ∈ M since M is closed. Hence, z ∈ M + Cx, and so
M + Cx is closed.

(2) Notice M = {0} is clearly closed, and so M1 = {0}+ Cx = Cx is closed by (1). Inducting
gives every finite dimensional vector space is closed.

�

Problem 181 (Folland 5.19). Let X be an infinite dimensional normed vector space.

(1) There is a sequence (xj) in X such that ||xj || = 1 and ||xj − xk|| ≥ 1 for all j 6= k.
(2) X is not locally compact.

Proof. (1) Select x1 ∈ X and normalize so that ||x1|| = 1. Now, notice that M1 := Cx1 is a
closed vector space by the prior problem. Choose y ∈ X −M1, let f1 := infz∈M ||y − z||.
Notice f1 > 0, since y /∈ M1. Choose u ∈ M1 such that ||y − u|| < 2f1. Let x2 :=
(y − u)/(||y − u||). Then we have ||x2|| = 1, and for all v ∈M1,

||x2 − v|| =
∣∣∣∣∣∣∣∣ y − u||y − u||

− v
∣∣∣∣∣∣∣∣ =

1

||y − u||
||y − u− v||y − u|||| > 1

2f1
f1 =

1

2
.

So in particular, notice that ||x2 − x1|| ≥ 1/2. Induct using the same procedure.
(2) Scale around things, notice that we can make a sequence with no convergent subsequences.

�

Problem 182 (Folland 5.20). If M is a finite-dimensional subspace of a normed vector space X,
there is a closed subspace N such that M∩N = {0} and M+N = X.

Proof. Let e1, . . . , en be a base of M. Consider T : kn → M via T (a1, . . . , an) =
∑
aiei. We get

that T is bounded (equipping kn with the norm ||(a1, . . . , an)|| =
∑
|ai|); notice that

||T (x)|| =
∥∥∥T (∑ aiei

)∥∥∥ =
∥∥∥∑ aiT (ei)

∥∥∥ ≤M∑
|ai|,

where M = max{‖T (ei)‖}. So T is continuous. Furthermore, the same argument gives us that T−1

is also continuous (bounded). Let π1, . . . , πn : kn → k be the canonical projection maps. Then we
have that fm := T−1 ◦ πm is a linear functional from M to k. We see that

||fm(x)|| = ||T−1 ◦ πm(x)|| ≤ ||T−1||||x||,
and so we can use Hahn-Banach to extend this to F1, . . . , Fn : X → k. Taking N =

⋂n
i=1 ker(Fi),

we see that this is closed (since the kernel is closed), and we see that

M∩N =M∩
n⋂
i=1

ker(Fi) =
n⋂
i=1

ker(fi) = {0}.

Furthermore, M+N = X. �
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Problem 183 (Folland 5.22). Suppose that X and Y are normed vector spaces and T ∈ L(X,Y ).
Define T † : Y ∗ → X∗ by T †f = f ◦ T . Then T † ∈ L(Y ∗, X∗) and ||T †|| = ||T ||. (This is the
adjoint).

Proof. We check linearity first. Notice that T †(f +g) = (f +g)◦T = f ◦T +g ◦T = T †(f) +T †(g).
Notice as well that T †(af) = (af) ◦ T = a(f ◦ T ) = aT †(f). Next, pick f such that ||f || = 1. Then
we have that

||T †f || = ||f ◦ T || ≤ ||f ||||T || = ||T ||,
so it is bounded. Finally, we need to show that ||T || ≤ ||T †||. Pick x such that ||x|| = 1 and
||Tx|| > ||T || − ε (such an x exists by supremum properties). Then Hahn-Banach gives us an f
with ||f || = 1 and f(T (x)) = ||T (x)||. Hence,

||T †(f)(x)|| = ||f ◦ T (x)|| = ||T (x)|| > ||T || − ε.
We can do this for all ε > 0, so we get that ||T †|| ≥ ||T ||. �

Remark. Something worth noting (but not worth doing) is that a closed subspace of a Banach
space is Banach, and a subspace of a Banach space which is also Banach is closed.

Problem 184 (Folland 5.35). Let X and Y be Banach spaces, T ∈ L(X,Y ), N = ker(T ), M =
Im(T ). Then X/N is isomorphic to M iff M is closed.

Proof. First, notice that N is closed since T is continuous. Hence, X Banach gives us that X/N is
Banach. Denote by π the canonical quotient map, i.e. π : X → X/N .
( =⇒ ) Suppose X/N is isomorphic toM. Since X/N is Banach by the above remark, we get that
M is Banach, which means it’s closed.
(⇐= ) Suppose that M is closed. We have the following commutative diagram:

X M

X/N

π

T

T

where T is defined in the canonical way; T (π(x)) = T (x + N ) = T (x). Notice that T is linear
apriori, and we have that ||T || = ||T || by prior exercises, so T is bounded. Furthermore, T is
injective (by construction) and T is surjective (by construction), so it is a bounded bijective linear
map. The open mapping theorem gives us that this is an isomorphism. �

Problem 185 (Folland 5.36). Let X be a separable Banach space and let µ be the counting
measure on N. Suppose that (xn) is a countable dense subset of the unit ball of X, and define
T : L1(µ)→ X by T (f) =

∑∞
1 f(n)xn.

(1) Show that T is bounded.
(2) Show that T is surjective.
(3) Show that X is isomorphic to a quotient space of L1(µ).

Proof. (1) We wish to show that, for all f ∈ L1(µ), ||T (f)|| ≤M ||f ||. Here, the norm on L1(µ)
is defined by

‖f‖ =

∫
|f |dµ =

∑
|f(n)|.

Hence,

‖T (f)‖ =

∥∥∥∥∥
∞∑
1

f(n)xn

∥∥∥∥∥ ≤
∞∑
1

|f(n)|‖xn‖ ≤
∞∑
1

|f(n)| = ‖f‖.

Hence, it is bounded. (Moreover, it is continuous)
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(2) Let’s show that it’s surjective onto the unit ball of X. Notice that by linearity we will get
that it’s surjective onto X, and so we are actually done if we can do this.

Pick x ∈ B1(0) ⊂ X. We can find xn1 ∈ (xn) such that ||x − xn1 || < 2−1. Let y1 =
2(x− xn1). Then we have that y1 ∈ B1(0), since

‖y‖ = ‖2(x− xn1)‖ = 2‖x− xn1‖ < 1.

Now choose xn2 ∈ (xn) such that ‖y1 − xn2‖ < 2−1. Furthermore, notice that

‖y1 − xn2‖ = ‖2(x− xn1)− xn2‖ = 2‖x− xn1 − 2−1xn2‖ < 2−1,

so that

‖x− xn1 − 2−1xn2‖ < 2−2.

Continue inductively like this. Then we have that∥∥∥∥∥x−
n∑
1

21−kxnk

∥∥∥∥∥ < 2−n.

Define f ∈ L1(µ) by

f(j) =

{
21−k if xj = xnk
0 otherwise.

We see that f ∈ L1(µ), since∑
f(j) =

∑
21−k <∞,

and

T (f) =
∑

f(n)xn =
∑

21−kxnk = x.

So T is surjective.
(3) T is continuous, so ker(T ) is closed. T is surjective, so Im(T ) = X, which is closed. By the

prior problem, L1(µ)/ ker(T ) ∼= X.
�

Problem 186 (Folland 5.37). Let X and Y be Banach spaces. If T : X → Y is a linear map such
that f ◦ T ∈ X∗ for every f ∈ Y ∗, then T is bounded.

Proof. We would like to establish the closed graph theorem. Let (xn, T (xn)) → (x, y). We want
to show that y = T (x). We have that (f ◦ T (xn)) → (f ◦ T (x)) for all f ∈ Y ∗, and we have that
(f ◦T (xn))→ (f ◦y). So for all f ∈ Y ∗, we have that f(y) = f(T (xn)). We have that Y ∗ separates
points, so this implies that y = T (xn). �

Problem 187 (Folland 5.38). Let X and Y be Banach spaces, and let (Tn) be a sequence in
L(X,Y ) such that limTnx exists for every x ∈ X. Let Tx = limTnx, then T ∈ L(X,Y ).

Proof. The idea is to use the Steinhaus boundedness principle. We first need to show that T is
linear. Let x, y ∈ X, a a scalar, then

T (ax+ y) = limTn(ax+ y) = lim aTn(x) + lim
n
Tn(y) = aT (x) + T (y).

So it’s indeed linear. Now, we need to show that T is bounded. Notice that

||T || ≤ sup
n
||Tn||,

and by the Steinhaus boundedness principle we have that

||Tn(x)|| <∞ ∀x ∈ X =⇒ sup
n
||Tn|| <∞,
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so

||T || <∞.

Hence, T ∈ L(X,Y ). �

Problem 188 (Folland 5.42). Let En ⊂ C([0, 1]) be the space of functions f such that there is an
x0 ∈ [0, 1] such that |f(x)− f(x0)| ≤ n|x− x0| for all x ∈ [0, 1].

(1) Prove that En is nowhere dense in C([0, 1]).
(2) Show that the subset of nowhere differentiable functions is residual in C([0, 1]).

Proof. (1) Recall that a set A is nowhere dense if (A)o = ∅. Per Royden (Exercise 10.20), we
should show first that this set is closed. Take a sequence (fi) ⊂ En where fi → f ∈ C([0, 1]).
We wish to show that f ∈ En. From the definition, for each fi there exists an xi ∈ [0, 1]
such that |fi(x) − fi(xi)| ≤ n|x − xi| for all x ∈ [0, 1]. Notice that this is a sequence of
points (xi) ⊂ [0, 1], so we can extract a convergent subsequence (xik) ⊂ [0, 1] such that
xik → x0 ∈ [0, 1]. We then would like to show that this is the appropriate choice of x0 for f
such that |f(x)−f(x0)| ≤ n|x−x0| for all x ∈ [0, 1]; that is, f ∈ En. Since fi → f ∈ C([0, 1]),
we have that for ε > 0, there exists N such that for all n ≥ N , ||f − fn||∞ < ε/2.
Furthermore, we can choose i ≥ N such that we have |fi(x) − fi(x0)| ≤ n|x − x0| by
uniform continuity. Hence, we get that

|f(x)− f(x0)| = |f(x)− fi(x) + fi(x)− fi(x0) + fi(x0)− f(x0)|

≤ |f(x)− fi(x)|+ |fi(x)− fi(x0)|+ |fi(x0)− f(x0)|.

By the infinity norm, we get that this is less than or equal to

|f(x)− f(x0)| ≤ 2||f − fi||+ |fi(x)− fi(x0)| < ε+ n|x− x0|.

Since this applies for all ε > 0, we get that

|f(x)− f(x0)| ≤ n|x− x0|

as desired; f ∈ En. Hence, En is closed, and so it is sufficient to show that (En)o is empty.
By prior homework, we have that PWL are uniformly dense in C([0, 1]), hence, for all

f ∈ C([0, 1]), ε > 0 fixed, we can find a piecewise linear function h such that ||f−h||∞ < ε/2.
If we can approximate h with a piecewise linear function g whose linear pieces have slope
±2n such that ||h − g||∞ < ε/2, then we get that ||f − g||∞ < ε, and so we can uniformly
approximate f ∈ C([0, 1]) with piecewise linear functions whose linear pieces have slope
±2n. It suffices to show that we can find such a g for a line of arbitrary slope, since
we can just subdivide the problem into the piecewise linear components and apply this
appropriately.

To see that we can find such a g for a line of arbitrary slope on the interval [a, b], we can do
a sort of oscillating approach, drawn below. There will only be finitely many components,
and we see that by subdividing it up more, we can approximate it arbitrarily well.
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Thus, we can find g with components whose slope is ±2n where ||f − g||∞ < ε. To show
that En has empty interior, we need to show that we cannot find an ε > 0 such that the
ball centered at any f ∈ En with radius ε is contained in En. Take f ∈ En, fixed ε > 0,
and examine Bε(f). Then this is the collection of g ∈ C([0, 1]) such that ||f − g||∞ < ε.
With our construction before, we see that we can fined a piecewise linear function g with
components whose slopes are ±2n such that g ∈ Bε(f). But notice that this means that
g /∈ En. Hence, we see that Bε(f) 6⊂ En for any ε > 0, any f ∈ En, and so (En)o = ∅.
Hence, it is nowhere dense.

(2) Recall that being residual means being the complement of a meager set. Recall that being
meager means that you are a union of nowhere dense sets. Take g ∈ C([0, 1]) such that it is
differentiable at a point x ∈ [0, 1]. This means that for all ε > 0, there exists a δ > 0 such
that for all y ∈ [0, 1] with |y − x| < δ, we have∣∣∣∣g(y)− g(x)

y − x
− g′(x)

∣∣∣∣ < ε,

or

|g(y)− g(x)| − |y − x||g′(x)| ≤ |g(y)− g(x)− (y − x)g′(x)| < |y − x|ε.
Choosing ε = 1, we have that

|g(y)− g(x)| < |y − x|(|g′(x)|+ 1).

So for |y − x| ≥ δ, we get that

|g(y)− g(x)| ≤ |g(y)|+ |g(x)| ≤ ||g||∞ + ||g||∞ = 2||g||∞,

so

|g(y)− g(x)| ≤ 2
|y − x|
δ
||g||∞.
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Hence, letting n = max{2δ−1||g||∞, |g′(x)|+ 1}, we have that

|g(y)− g(x)| ≤ n|y − x|
for all y ∈ [0, 1]. Thus, g ∈ En for some n sufficiently large. To be nowhere differentiable
means that g is not differentiable at any point, and so g /∈ En for any n. Hence, g /∈

⋃∞
n=1En,

or g ∈ (
⋃∞
n=1En)c. But since this works for all nowhere differentiable functions, we have

that Γ ⊂ (
⋃∞
n=1En)c. In other words, Γ is the complement of a meager set, and so residual.

�

Problem 189. Suppose X and Y are Banach.

(1) Show that if T ∈ L(X,Y ) is bounded, then T is weak-weak continuous.
(2) Show that if a linear map T : X → Y is norm-weak continuous, then T ∈ L(X,Y ).

Proof. (1) Recall that weak convergence says that for all ϕ ∈ X∗, ϕ(xn) → ϕ(x). Let xn → x
weakly. Taking T bounded, we wish to show that, for all ϕ ∈ Y ∗, ϕ(T (xn)) → ϕ(T (x)).
Notice that ϕ ◦ T : X → F , so ϕ ◦ T ∈ X∗. Hence, ϕ(T (xn))→ ϕ(T (x)).

(2) We wish to show it is bounded; hence, we wish to use the closed graph theorem. Let xn → x,
T (xn)→ y, then we wish to show that T (x) = y. Since we have norm-weak continuity, we
have that for all ϕ ∈ Y ∗, ϕ(T (xn)) → ϕ(T (x)). Since ϕ ∈ Y ∗ is continuous, we have that
ϕ(T (xn))→ ϕ(y) as well. Since this applies for all ϕ ∈ Y ∗, and Y ∗ separates points, we get
that we must have y = T (x), as desired. So T is bounded by the closed graph theorem.

�

Problem 190. If X is finite dimensional, prove that the weak topology is the norm topology .

Proof. X is finite dimensional, so we have that X ∼= Fn, where F the underlying field. Without
loss of generality, it suffices to prove the statement for Fn. Let πi denote the canonical projection
maps onto F ; these are clearly continuous, and so in L(Fn, F ). Consider an open set Bε(x) under
the norm topology. Then we have that

Bε(x) = {y ∈ X : ‖x− y‖ < ε}.
We can rewrite this as

Bε(x) =

n⋂
i=1

π−1(Uε(x)).

Since both of these generate the topologies, we have the open sets with regards to either topology
are open with respect to the other topology. Hence, they have equivalent topologies. �

Problem 191. Prove that if X is not finite dimensional, then the weak topology is different from
the norm topology.

Proof. Consider the open ball of radius one centered at 0 with respect to the norm; i.e.

B1(0) = {x ∈ X : ||x|| < 1}.
We wish to show that this is not open with respect to the weak topology. Assume for contradiction
it were. Then we have that there are linear functionals f1, . . . , fn such that

{x ∈ X : |fk(x)| < 1 for k = 1, . . . , n} ⊂ B1(0).

That is, we have that for all x such that |x| < 1, |fk(x)| < 1. Construct a linear function f : X → Fn

via f(x) = (f1(x), . . . , fn(x)). We have then that we can find a vector x with f(x) = 0. We can
scale this vector to get that B1(0) is unbounded, which is a contradiction. �

Remark. Chaining the last two statements together, we have that the weak and norm topology
are equivalent iff X is finite dimensional.
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Problem 192 (Folland 5.47). Suppose that X and Y are Banach spaces.

(1) If (Tn) ⊂ L(X,Y ) and Tn → T weakly, then supn ||Tn|| <∞.
(2) Every weakly convergent sequence in X, and every weak*-convergent sequence in X∗, is

bounded.

Proof. (1) Let T̂ denote the adjoint of T ; that is, the map so that f(T ) = T̂ (f). Since Tn → T
weakly, we have that for all f ∈ Y ∗, f(Tn(x))→ f(T (x)). We can rewrite this as

f(Tn(x)) = x̂ ◦ T̂n(f),

x̂ ◦ T̂n(f)→ x̂ ◦ T̂ (f).

Fix x ∈ X. Since this converges for all f ∈ Y ∗, we get that

||x̂ ◦ T̂n(f)|| <∞
for all f ∈ Y ∗, and so

||x̂ ◦ T̂n|| <∞
by the Uniform Boundedness principle. Fix n ∈ N. If Tn(x) = 0, we are done. Otherwise,
by Hahn-Banach, we have that there exists a linear functional f so that

f(T (x)) = ||T (x)||.
In other words, we get

||Tn(x)|| = ||f(Tn(x))|| = ||x̂ ◦ T̂n(f)|| ≤ ||x̂ ◦ T̂n|| <∞.
Since this applies for all x ∈ X, n ∈ N, we get that the uniform boundedness principle
applies to give us

sup
n
||Tn|| <∞.

(2) Let xn → x weakly. Then fixing f ∈ X∗, we have that f(xn)→ f(x). Hence, we get that

||f(xn)|| = ||x̂n(f)|| <∞
for all f ∈ X∗. Uniform boundedness applies to give us ||x̂n|| < ∞. ˆ is an isometry, so
||x̂n|| = ||xn|| <∞.

Let fn → f in the weak* topology. Then we have that, for all x ∈ X, fn(x) → f(x).
In other words, ||fn(x)|| < ∞ for all n, and so Uniform Boundedness applies to give us
supn ||fn|| <∞.

�

Problem 193 (Folland 5.48). Suppose that X is a Banach space.

(1) The norm-closed unit ball B = {x ∈ X : ||x|| ≤ 1} is also weakly closed.
(2) If E ⊂ X is bounded (with respect to the norm), so is its weak closure.
(3) If F ⊂ X∗ is bounded (with respect to the norm), so is its weak* closure.

Proof. (1) Let xn → x weakly, (xn) ⊂ B. We wish to show that x ∈ B. Weak convergence
implies that for all f ∈ X∗, f(xn) → f(x). We can rewrite this as x̂n(f) → x̂(f). Notice
that

||x̂|| = sup{||x̂(f)|| : f ∈ X∗}.
Taking f such that ||f || = 1, we get that

||x̂(f)|| = ||f(x)|| = || lim
n
f(xn)|| = || lim

n
x̂n(f)|| ≤ 1.

Since this holds for all ||f || = 1, we get that ||x̂|| ≤ 1, and the isometry gives us ||x|| ≤ 1.
Hence, it’s closed.
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(2) Let E be bounded. Then for all x ∈ E, we have that ||x|| ≤ M for some M > 0. Take a
specific x ∈ E, then we have that

||x|| ≤M =⇒ ||x||
M
≤ 1.

Hence, M−1E ⊂ B. Taking it’s closure, we have that M−1E ⊂ B. Multiplication is
weakly-continuous, so M−1E ⊂M−1E ⊂ B. Hence, E is bounded by M .

(3) Let fn → f in the weak* topology. Then for all x ∈ X, fn(x) → f(x). Assuming that
||fn|| ≤M for all n, we’d like to show that ||f || ≤M . Choose x with ||x|| = 1, then

||f(x)|| = || lim
n
fn(x)|| = lim ||fn(x)|| ≤ sup

n
||fn(x)|| ≤ sup

n
||fn|| ≤M.

Since this applies for all x, we get ||f || ≤M as well.
�

Problem 194 (Folland 5.53). Suppose that X is a Banach space and (Tn), (Sn) are sequences in
L(X,X) such that Tn → T strongly and Sn → S strongly.

(1) If (xn) ⊂ X and ||xn − x|| → 0, then ||Tnxn − Tx|| → 0.
(2) TnSn → TS strongly.

Proof. (1) We have

||Tnxn − Tnx+ Tnx− Tx|| ≤ ||Tn(xn − x)||+ ||x̂(Tn − T )||
≤ ||Tn|| · ||xn − x||+ ||x̂|| · ||Tn − T ||.

Notice that supn ||Tn|| is finite by earlier, so we get

||Tn|| · ||xn − x||+ ||x̂|| · ||Tn − T || ≤M · ||xn − x||+ ||x̂|| · ||Tn − T ||.
Letting the sequences go to 0, we win.

(2) Notice that, for fixed x ∈ X, Sn(x)→ S(x), and from the first part we get that Tn(Sn(x))→
Tn(S(x))→ T (S(x)).

�

Problem 195. Show that 〈·, ·〉 is self-adjoint iff 〈x, x〉 ∈ R for all x ∈ H.

Proof. ( =⇒ ) If 〈·, ·〉 is self adjoint, then this means that 〈x, x〉 = 〈x, x〉, which can only happen if
〈x, x〉 ∈ R.

( ⇐= ) Suppose 〈x, x〉 ∈ R for all x ∈ H. We wish to show that 〈x, y〉 = 〈y, x〉. Write x = a + bi,
y = c+ di, where a, b, c, d ∈ R. Then

〈x, y〉 = 〈a+ bi, c+ di〉 = 〈a, c+ di〉+ i〈b, c+ di〉
= 〈a, c〉 − i〈a, d〉+ i〈b, c〉+ 〈b, d〉
= 〈c, a〉 − i〈d, a〉+ i〈c, b〉+ 〈d, b〉,

〈y, x〉 = 〈c− di, a− bi〉 = 〈c, a− bi〉 − i〈d, a− bi〉
= 〈c, a〉+ i〈c, b〉 − i〈d, a〉+ 〈d, b〉,

and we see that they are equal. �

Problem 196. Prove that if 〈·, ·〉 is positive (i.e. 〈x, x〉 ≥ 0 for all x ∈ H), then it is self-adjoint.

Proof. Follows by the prior problem (〈x, x〉 ∈ [0,∞) ⊂ R). �

Problem 197. Suppose H is a Hilbert space, S, T : H → H are linear operators such that for all
x, y ∈ H, 〈Sx, y〉 = 〈x, Ty〉.

(1) Prove that ||S|| = ||T ||.
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(2) Prove that S and T are bounded.

Proof. (1) We have that
||S|| = sup{||S(x)|| : ||x|| = 1}.

Recall that

‖S(x)‖2 = |〈S(x), S(x)〉| = |〈x, T (S(x))〉| ≤ ‖x‖‖T (S(x))‖ ≤ ‖T‖‖S‖.
So

‖S‖2 ≤ ‖T‖‖S‖,
which gives us that

‖S‖ ≤ ‖T‖.
An analogous argument gives

‖T‖ ≤ ‖S‖ =⇒ ‖S‖ = ‖T‖.
(2) Again, we want to use closed graph theorem. Let xn → x, consider S(xn) → y. We want

to show that S(x) = y. We have that, for all z ∈ H,

〈S(xn), z〉 = 〈xn, T (z)〉 → 〈x, T (z)〉 = 〈S(x), z〉,
and

〈S(xn), z〉 → 〈y, z〉.
So

〈S(x)− y, z〉 = 0

for all z ∈ H. Recall that H⊥ ∩ H = 0, so we have that S(x) = y. Hence, closed graph
theorem tells us that S is bounded. (1) tells us that T is bounded.

�

Problem 198. Suppose X0 ⊂ X, X Banach, is a dense subspace. Let T0 : X0 → Y be such
that T0 bounded, Y Banach. Then there exists a unique extension T : X → Y bounded such that
||T || = ||T0|| and T |X0 = T0.

Proof. Let x ∈ X, and take a sequence (xn) ⊂ X0 such that xn → x. Since T is linear and bounded,
we get that

||T0(xn)− T0(xm)|| ≤ C||xn − xm|| → 0,

so (T0(xn)) is a Cauchy sequence, and we have that T0(xn) → y. Define T : X → Y by T (x) = y,
where y is given as above. We need to check four things.
(1) The definition of T is independent of the sequence: Let (xn), (yn) be two sequences such that
xn → x, yn → x. Then we have

lim
n→∞

(xn − yn) = 0,

lim
n→∞

T0(xn − yn) = lim
n→∞

T0(xn)− lim
n→∞

T0(yn) = 0,

so
lim
n→∞

T0(xn) = lim
n→∞

T0(yn) = T (x).

(2) T is well-defined: Assume x1 = x2. Then take a sequence (zn) such that zn → x1, (gn) such
that gn → x2. Then we have

T (x1) = lim
n→∞

T0(zn),

T (x2) = lim
n→∞

T0(gn),

T (x1)− T (x2) = lim
n→∞

T0(zn − gn) = T0(x1 − x2) = 0,
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so T (x1) = T (x2).
(3) T is linear, and is an extension of T0: Let x, y ∈ X, a ∈ F . Then we need to show that
T (ax + y) = aT (x) + T (y). Take (xn) such that xn → x, (yn) such that yn → y. Then we have
that axn + yn → ax+ y, and so we see

T (ax+y) = lim
n→∞

T0(axn+yn) = lim
n→∞

aT0(xn)+T0(yn) = a lim
n→∞

T0(xn)+ lim
n→∞

T0(yn) = aT (x)+T (y).

Let x ∈ X0, take a sequence (xn) such that xn → x, then we have

T0(x) = lim
n→∞

T0(xn) = T (x).

(4) T is bounded: Let x ∈ X, then we have a sequence (xn) ⊂ X0 so that xn → x, and we have
that

||T (x)|| = lim
n→∞

||T0(xn)|| ≤ lim
n→∞

C||xn|| = C||x||,

by norm continuity.
Next, we need to show that ||T || = ||T0||. Clearly ||T0|| ≤ ||T ||, so it suffices to show that

||T || ≤ ||T0||. This follows simply by noting that

||T || = sup{||T (x)|| : ||x|| = 1} ≤ C = sup{||T0(x)|| : ||x|| = 1, x ∈ X0}.

�

Problem 199 (Folland 5.56). If E is a subset of a Hilbert space H, (E⊥)⊥ is the smallest closed
subspace of H containing E.

Proof. In other words, we want that E = (E⊥)⊥.
Step 1: We first show that E ⊂ (E⊥)⊥. Recall that

E⊥ = {x ∈ H : 〈x, y〉 = 0 for all y ∈ E}.

If we take x ∈ E, we see that, for all y ∈ E⊥, 〈x, y〉 = 0, so x ∈ (E⊥)⊥. Hence, E ⊂ (E⊥)⊥.
Step 2: We now want to show that (E⊥)⊥ is closed. Let (yn) ⊂ (E⊥)⊥ such that yn → y. Then
we have that, for all x ∈ E⊥,

〈y, x〉 = 〈lim
n
yn, x〉 = lim

n
〈yn, x〉 = 0.

Hence, y ∈ (E⊥)⊥, so it is closed. Notice this argument also shows that E⊥ is closed.
Step 3: We want to show that if S ⊂ T , then T⊥ ⊂ S⊥. This follows from simply noting that if
x ∈ T⊥, then 〈x, y〉 = 0 for all y ∈ T , which in particular means for all y ∈ S, and so x ∈ S⊥.

Step 4: We now want to show that E
⊥

= E⊥. Clearly E⊥ ⊂ E
⊥

. For the other direction, note
that

E ⊂ E⊥⊥ =⇒ E⊥⊥⊥ ⊂ E⊥,
and

E
⊥ ⊂ E⊥⊥⊥,

so E⊥ = E
⊥

.
Step 4: Write

H = E ⊕ E⊥.
Then for every element y ∈ H, we have that it decomposes uniquely into (x,m), where x ∈ E and
m ∈ E⊥. Hence, for every y ∈ E⊥⊥, we have that y = x+m. We wish to show that m = 0. Notice
that for z ∈ E⊥, we have

0 = 〈y, z〉 = 〈x+m, z〉 = 〈x, z〉+ 〈m, z〉 = 〈m, z〉.
146



Since this applies for all z ∈ E⊥, taking in particular m, we have

0 = 〈m,m〉,
which implies that m = 0. Hence, y ∈ E, but this implies that E⊥⊥ ⊂ E, which gives us
equality. �

Problem 200 (Folland 5.58). Let M be a closed subspace of the Hilbert space H, and for x ∈ H
let Px be the element of M such that x− Px ∈M⊥. Show that P ∈ L(H,H).

Proof. Let x, y ∈ H. We want to show that P (x + y) = P (x) + P (y). Notice that Px, Py ∈ M,
and we have that

x+ y − (Px− Py) ∈M⊥,
so by uniqueness we must have that P (x+ y) = P (x) +P (y). Similarly, P (ax) is an element ofM,
and we have that

ax− a(P (x)) = a(x− P (x)) ∈M⊥,
so P (ax) = aP (x) by uniqueness. Hence, P is linear. We now want to show that P is bounded.

Take x ∈ M. Then we have that x = m + y, where m ∈ M, y ∈ M⊥. Hence, we can identify
P (x) = y. Notice that

||P (x)|| = ||y|| ≤ ||x||,
so it is bounded, and hence continuous. �

Problem 201. Let H be a Hilbert space. Show that a closed subspace S ⊂ H is a Hilbert space,
with operation inherited from H.

Proof. It suffices to show that it’s complete with respect to the norm given by

‖x‖ =
√
〈x, x〉.

Let (xn) ⊂ S be a Cauchy sequence. Then xn → x by the completeness of H, but since S closed
this implies that x ∈ S. �

Problem 202. Suppose I is a positive linear functional on Cc(X), for each compact K ⊂ X there
is a constant CK such that

|I(f)| ≤ CK ||f ||u
for all f ∈ Cc(X) such that supp(f) ⊂ K.

Proof. Take f ∈ Cc(X). It suffices to look at real valued f by breaking it up into the real and
complex parts. Now, use Urysohn to find φ ∈ Cc(X, [0, 1]) such that φ|K = 1. Then we have that,
if supp(f) ⊂ K,

|f | ≤ ||f ||uφ.
Then

−f ≤ ||f ||uφ, f ≤ ||f ||uφ,
so

0 ≤ ||f ||uφ+ f, 0 ≤ ||f ||uφ− f,
so since I is a positive linear functional we have

I(||f ||uφ+ f) = I(||f ||uφ) + I(f) ≥ 0,

I(||f ||uφ− f) = I(||f ||uφ)− I(f) ≥ 0,

so

|I(f)| ≤ ||f ||uI(φ).

�
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Problem 203 (Folland 7.1). Let X be a LCH space, Y a closed subset of X, and µ a Radon
measure on Y . Then I(f) =

∫
(f |Y )dµ is a positive linear functional on Cc(X), and the induced

Radon measure ν on X is given by ν(E) = µ(E ∩ Y ).

Proof. Linearity follows from the fact that∫
(f |Y )dµ =

∫
Y
fdµ

and the linearity of the integral. For positivity, take f ≥ 0. Measures are positive, so we see that∫
Y
fdµ ≥ 0.

Hence, it’s a positive linear functional on Cc(X). Notice that we can write

I(f) =

∫
f · χY dµ.

Notice there exists a positive Radon measure ν on X such that

I(f) =

∫
fdν.

Take E ∈M, f = χE . Then we have

I(χE) =

∫
χE · χY dµ = µ(E ∩ Y ),

I(χE) =

∫
χEdν = ν(E),

so we have

ν(E) = µ(E ∩ Y ).

�

Problem 204 (Folland 7.2). Let µ be a Radon measure on X.

(1) Let N be the union of all open U ⊂ X such that µ(U) = 0. Then N is open and µ(N) = 0.
The complement of N is called the support of µ.

(2) x ∈ supp(µ) iff
∫
fdµ > 0 for every f ∈ Cc(X, [0, 1]) such that f(x) > 0.

Proof. (1) Clearly N is open (arbitrary union of open sets is open). Using the fact that µ is a
Radon measure, since N is open, we have that

µ(N) = sup{µ(K) : K ⊂ N,K compact.}.
Let K ⊂ N , K compact. Then we have

K ⊂
⋃
Uα,

where Uα is such that µ(Uα) = 0. Since K is compact, we have

K ⊂
n⋃
j=1

Uj .

Hence,

µ(K) = µ

 n⋃
j=1

Uj

 ≤ n∑
j=1

µ(Uj) = 0.

Since this applies for all K, we get µ(N) = 0.
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(2) Take x ∈ supp(µ) = N c. Let f(x) = c > 0. Since f is continuous, we have f−1((c/2, 1)) is
an open set (say V ), and we have x ∈ V . Since V is an open set, V 6⊂ N , we must have
µ(V ) > 0. Hence, ∫

fdµ ≥
∫
V
fdµ >

c

2
µ(V ) > 0.

Now, assume that ∫
fdµ > 0

for every f ∈ Cc(X, [0, 1]) such that f(x) > 0. Notice {x} is a compact set, take an open
set U such that x ∈ U . Use LCH Urysohn to get a g ∈ Cc(X, [0, 1]) so that g(x) = 1 and
supp(g) ⊂ U . Then

µ(U) ≥
∫
gdµ > 0.

�

Problem 205 (Folland 7.3). Let X be the one-point compactification of a set with the discrete
topology. If µ is a Radon measure on X, then supp(µ) is countable, where supp(µ) = N c, with N
being the union of all open U such that µ(U) = 0.

Proof. Let Y be a set, τ = P(Y ) the discrete topology on Y . Let X be the one-point compactifi-
cation of Y ; i.e. the open sets are subsets of X or sets with infinity such that their complements
is open. We have that µ is a Radon measure, which means that it’s finite on compact sets, outer
regular on all Borel sets, inner regular on open sets. Examine

N := supp(µ)c =
⋃
{U : U ⊂ P(Y ), µ(U) = 0}.

For all y ∈ Y such that µ({y}) = 0, we have that y ∈ N . So

Y ∩N c = {y ∈ Y : µ(y) > 0}.

Since X is compact, µ finite on all compact sets, µ(X) < ∞. If supp(µ) was uncountable, then
supp(µ) ∩ Y is also uncountable. So

µ(Y ) ≥ µ(supp(µ) ∩ Y ) =
∑

y∈supp(µ)∩Y

µ({y}) =∞.

This is a contradiction. �

Problem 206 (Folland 7.4). Let X be a LCH space.

(1) If f ∈ Cc(X, [0,∞)), then f−1([a,∞)) is a compact Gδ set for all a > 0.
(2) If K ⊂ X is a compact Gδ set, there exists f ∈ Cc(X, [0, 1]) such that K = f−1({1}).

Proof. (1) We have

f−1([a,∞)) =

∞⋂
n=1

f−1((a− 1/n,∞)),

where f−1((a− 1/n,∞)) are open sets. So this is a Gδ set. To see it’s compact, we notice
that f−1([a,∞)) is a closed set (by continuity, using the subspace topology), so we have a
closed subset of a compact set, which is then compact.

(2) Since K is a Gδ set, we can write

K =

∞⋂
i=1

Ui.
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For each i, we have that we can find precompact open W so that

K ⊂W ⊂W ⊂ U1.

Write

Vn =

(
n⋂
i=1

Ui

)
∩W.

This is an open subset for each n. Using LCH Urysohn’s lemma, for each n, we can find
fn ∈ Cc(X) so that 0 ≤ fn ≤ 1, supp(fn) ⊂ Vn, f = 1 on K. Write

f =
∞∑
1

1

2k
fk.

We have supp(f) ⊂W , so f ∈ Cc(X, [0, 1]). If x /∈ K, then we have that there is some n so
that x /∈ Vn, so fn(x) = 0, and therefore f(x) < 1. So K = f−1({1}).

�

Problem 207. If µ is a σ-finite Radon meausre on X and E ⊂ X is Borel, then for all ε > 0, there
exists a F ⊂ E ⊂ U with F closed and U open such that µ(U − F ) < ε.

Proof. Suppose µ(E) < ∞, µ is outer regular on E, fix ε > 0. We can find U such that µ(U −
E) < ε/2. We can then by Proposition 7.5 find closed F so that µ(E − F ) < ε/2. Then
µ(U − F ) < µ(U − E) + µ(E − F ) < ε.

Suppose µ(E) =∞. We have E =
⋃
Ej , µ(Ej) <∞. Find Uj such that Ej ⊂ Uj , µ(Uj −Ej) <

ε2−j−1. Then
µ(U − E) <

∑
µ(Uj − Ej) <

∑
ε2−j−1 < ε/2.

Apply the same argument to Ec to find V with µ(V −Ec) < ε/2, and so we get µ(E − V c) < ε/2,
and V c ⊂ E. �

Problem 208 (Folland 7.7). If µ is a σ-finite Radon measure on X and A ∈ BX , the Borel measure
µA defined by µA(E) = µ(E ∩A) is a Radon measure.

Proof. From prior exercises, we know this is a measure. It suffices to show it is a Radon measure;
that is, finite on compact sets, outer regular on Borel sets, and inner regular on open sets. Let K
be compact. Then µA(K) = µ(A∩K) ≤ µ(K) <∞, so it is finite on all compact sets. Let F ∈ BX ,
then we get that µ is outer regular on A ∩ F . So there is an open set U such that A ∩ F ⊂ U , and
µ(U) < µ(A ∩ F ) + ε.

Suppose µA(F ) =∞, then we’re done. Otherwise, suppose µA(F ) <∞. Write F ⊂ (F ∩A)∪Ac.
We can find open U such that F ∩A ⊂ U , and µ(U) < µ(F ∩A) + ε/2. So we need to find an open
V such that Ac ⊂ V . Use the outer regularity of µ to get µ(V − F ) < ε/2, where V is open and F
closed, F ⊂ Ac ⊂ V . We have U ∪ V is open, and hence we get

µA(U∪V ) = µ((U∪V )∩A) = µ((U∩A)∪(V ∩A)) ≤ µ(U∩A)+µ(V ∩A) ≤ µ(U)+µ(V ∩F c) < µA(F )+ε.

Hence, we get outer regularity.
Finally, we need to get inner regularity. This follows by using the inner regularity of µ. �

Problem 209 (Folland 7.8). Suppose that µ is a Radon measure on X. If φ ∈ L1(µ) and φ ≥ 0,
then ν(E) =

∫
E φdµ is a Radon measure.

Proof. Again, we must show the properties that it is finite on compact sets, outer regular on Borel
sets, and inner regular on open sets. Let K compact. Then we have that∫

K
φ ≤

∫
φ <∞.
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Next, we wish to show that it is outer regular on Borel sets. We can use the absolute continuity to
get that there is a δ > 0 such that if µ(F ) < δ, then∫

F
φdµ = ν(F ) < ε/2.

Let E be a Borel set. Let En = {x : φ(x) > 1/n}. We have that µ(En) < ∞. Let F =
⋃
En =

{x : φ(x) 6= 0}, then E − F = {x : φ(x) = 0}. Hence, ν(E) = ν(E − F ) + ν(F ) = ν(F ).
Since ν finite, we get that there exists an n so that ν(F − En) < ε/2. Find compact K ⊂ En with
µ(En −K) < δ. Hence, ν(En −K) < ε/2. So K ⊂ En ⊂ F ⊂ E,

ν(E −K) = ν(E − F ) + ν(F − En) + ν(En −K) < ε,

so K is compact and we conclude inner regular.
We now want to show outer regular. Given a Borel set E, we have that there is a compact

K ⊂ Ec with µ(Ec −K) < ε. Hence, µ(Kc −E) < ε, and Kc open. So we get that it’s Radon. �

Problem 210. Complete the proof of Proposition 3.1.

Proof. Let ν be a signed measure on (X,M). If (Ej) is an increasing sequence in M, then

ν
(⋃

Ej

)
= lim ν(Ej).

If (Ej) is a decreasing sequence, with E1 finite, then

ν
(⋂

Ej

)
= lim ν(Ej).

�

Proof. Assume first of all that
⋃
Ej is finite; otherwise, we must have that ν(En) is infinite for

some n, and so the result is clearly true. Write

G1 = E1,

G2 = E2 − E1,

· · ·

Gn = En −

(
n−1⋃

1

Ej

)
.

Then we have that ⋃
Ej =

⊔
Gj ,

and furthermore

ν
(⋃

Ej

)
= ν

(⊔
Gj

)
=
∑

ν(Gj).

Notice now that

ν(Gj) = Ej − Ej−1,

so rewriting the right hand side we have∑
ν(Gj) = lim

n∑
1

ν(Gj) = lim

(
ν(E1) +

n∑
2

ν(Ej)− ν(Ej−1)

)
.

Hence, we have ∑
ν(Gj) = ν(En),

and so

ν
(⋃

Ej

)
= lim ν(En).
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We can use the first part and the finiteness of E1. Write

F1 = E1,

F2 = E1 − E2,

· · ·
Fn = E1 − En.

Then Fn is now an increasing sequence, and so applying the first part we get

ν(E1)− ν
(⋂

En

)
= ν

(
E1 −

⋂
En

)
= ν

(⋃
Fj

)
= lim ν(Fn) = ν(E1)− lim ν(En).

The finiteness of E1 let’s us add and subtract things to get the desired result. �

Problem 211 (Folland 3.2).

(1) If ν is a signed measure, E is ν null if and only if |ν|(E) = 0.
(2) If ν and µ are signed measures, TFAE:

(a) ν ⊥ µ,
(b) |ν| ⊥ µ,
(c) ν+ ⊥ µ, ν− ⊥ µ.

Proof. (1) ( =⇒ ) Assume E is ν null. Write ν = ν+ − ν−, X = P tN , ν+(N) = ν−(P ) = 0.
Then |ν| = ν+ + ν−, and we have

|ν|(E) = ν+(E) + ν−(E) = ν(E ∩ P )− ν−(E ∩N),

and since E is ν-null, each respective component is 0. Hence, |ν|(E) = 0.
( ⇐= ) Assume |ν|(E) = 0. Since |ν| a positive measure, for all F ⊂ E, |ν|(F ) = 0.
Furthermore, this gives that ν+(F ), ν−(F ) = 0 for all F ⊂ E. Using this, we get

ν(F ) = ν+(F )− ν−(F ) = 0.

Hence, E is ν-null.
(2) See HW14.

�

Problem 212 (Folland 3.5). If ν1, ν2 are signed measures that both omit the value ∞ or −∞,
then |ν1 + ν2| ≤ |ν1|+ |ν2|.

Proof. Since ν1, ν2 are signed measures, we have

ν1 = ν+
1 − ν

−
1 ,

ν2 = ν+
2 − ν

−
2 .

We see that ν1 + ν2 is also a signed measure, and so we write

ν1 + ν2 = λ− µ.
Hence,

|ν1 + ν2| = λ+ µ.

Notice as well that
ν1 + ν2 = ν+

1 − ν
−
1 + ν+

2 − ν
−
2 .

Hence, we have that
ν+

1 + ν−1 ≥ λ,
ν+

2 + ν−2 ≥ µ,
so

|ν1 + ν2| = λ+ µ ≤ ν+
1 + ν−1 + ν+

2 + ν−2 = |ν1|+ |ν2|.
�
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Problem 213. Suppose that ν is a signed measure on (X,M) and E ∈M.

(1)

ν+(E) = sup{ν(F ) : F ∈M,F ⊂ E}
and

ν−(E) = − inf{ν(F ) : F ∈M, F ⊂ E}.
(2)

|ν|(E) = sup

{
n∑
1

|ν(Ej)| : n ∈ N, E1, . . . , En are disjoint, and

n⋃
1

Ej = E

}
.

Proof. (1) Write

ν = ν+ − ν−
where

X = P tN, ν+(N) = ν−(P ) = 0.

We have that, for E ∈M,

ν+(E) = ν(E ∩ P ).

Notice that P is positive, so we can use this to deduce that

ν+(F ) ≤ ν+(E)

for all F ∈M, F ⊂ E. Hence,

sup{ν(F ) : F ∈M, F ⊂ E} ≤ ν+(E).

For the other direction, use the fact that

E ∩ P ∈ {F : F ∈M, F ⊂ E}

to get that

ν+(E) ≤ sup{ν(F ) : F ∈M,F ⊂ E}.
Hence,

ν+(E) = sup{ν(F ) : F ∈M,F ⊂ E}.
The argument is analogous for ν−(E).

(2) Let E ∈M. Then we have that

|ν|(E) = |ν|(E ∩ P ) + |ν|(E ∩N) = ν+(E ∩ P ) + ν−(E ∩ P ) + ν+(E ∩N) + ν−(E ∩ P )

= ν+(E ∩ P ) + ν−(E ∩N) = | − ν−(E ∩N)|+ |ν+(E ∩ P )| = |ν(E ∩ P )|+ |ν(E ∩N)|.
Hence,

|ν|(E) ≤ sup

{
n∑
1

|ν(Ej)| : n ∈ N, E1, . . . , En are disjoint, and

n⋃
1

Ej = E

}
.

Now, notice that∑
|ν(Ej)| ≤

∑
|ν+(Ej)|+ |ν−(Ej)| =

∑
|ν|(Ej) = |ν|(E),

since |ν| is a positive measure. Hence,

|ν|(E) ≥ sup

{
n∑
1

|ν(Ej)| : n ∈ N, E1, . . . , En are disjoint, and
n⋃
1

Ej = E

}
.

�
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Problem 214. Let µ be a σ-finite signed measure, show that∣∣∣∣ dµd|µ|
∣∣∣∣ = 1 |µ| a.e.

Proof. We define

dµ =
dµ

d|µ|
d|µ|.

We first want to show that µ� |µ|. Since µ is a signed measure, we have a decomposition

µ = µ+ − µ−, X = P tN, µ+(N) = µ−(P ) = 0.

We have then that
|µ| = µ+ + µ−.

Take E ∈M such that
|µ|(E) = 0 = µ+(E) + µ−(E) = 0.

Since µ+, µ− are positive measures, we see that this forces µ+(E) = µ−(E) = 0, which then forces
µ(E) = 0. So µ� |µ|.

By the LRN theorem, we get that there is a function dµ
d|µ| such that

dµ =
dµ

d|µ|
d|µ|,

and it is unique up to |µ|-a.e. Let f = χP − χN . Then we have

µ(E) = µ(E ∩ P ) + µ(E ∩N),

µ(E ∩ P ) = µ+(E) =

∫
E
χPdµ+ =

∫
E
χPd|µ|,

µ(E ∩N) = −µ−(E) = −
∫
E
χNdµ− = −

∫
E
χNd|µ|,

so

µ(E) =

∫
E

(χP − χN )d|µ|.

Hence,
dµ

d|µ|
= f

|µ|-a.e., and we see that ∣∣∣∣ dµd|µ|
∣∣∣∣ = |f | = 1

since X = P tN . �

Problem 215 (Folland 3.10). Theorem 3.5 may fail when ν is not finite.

Proof. Recall the statement of Theorem 3.5:
Let ν be a finite signed measure and µ a positive measure on (X,M). Then ν � µ if and only if
for every ε > 0, there exists a δ > 0 such that |ν(E)| < ε whenever µ(E) < δ.

Consider dν(x) = dx
x and dµ(x) = dx on (0, 1). We first check that ν � µ. Take E ∈ M such

that ∫
E
dx = 0 = µ(E).

Then we have that

ν(E) =

∫
E

dx

x
= 0.
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However, we see that for all δ,

ν((0, δ)) =

∫ δ

0

dx

x
= lim

m→0
log(δ)− log(m) ≥ lim

m→0
− log(m) =∞.

So ν is not finite. Furthermore, given any ε > 0, δ, let E = (0, δ/2). Then

µ(E) < δ,

while

|ν(E)| =

∣∣∣∣∣
∫ δ/2

0

dx

x

∣∣∣∣∣→∞.
�

Problem 216 (Folland 3.11). Let µ be a positive measure. A collection of function {fα} ⊂ L1(µ)
is called uniformly integrable if for every ε > 0 there exists a δ > 0 such that∣∣∣∣∫

E
fαdµ

∣∣∣∣ < ε

for all α ∈ A whenever µ(E) < δ.

(1) Any finite subset of L1(µ) is uniformly integrable.
(2) If {fn} is a sequence in L1(µ) that converges in the L1 metric to f ∈ L1(µ), then {fn} is

uniformly integrable.

Proof. (1) Take f ∈ L1(µ). Then we have that f is uniformly integrable; to see this, notice that
the measure ν(E) :=

∫
E fdµ is a finite signed measure. Furthermore, we see that ν � µ;

take E ∈M such that µ(E) = 0, then we have

ν(E) =

∫
E
fdµ =

∫
(f · χE)dµ =

∫
0dµ = 0.

So by Theorem 3.5, we have the desired result. Now, take a finite collection {fk}nk=1. Then
for ε > 0, we have δ1, . . . , δn such that∣∣∣∣∫

E
fkdµ

∣∣∣∣ < ε

assuming µ(E) < δk. Taking δ = min{δ1, . . . , δn}, we have the desired result.
(2) We have that

||fn − f ||1 =

∫
|fn − f | → 0.

Choose ε > 0 and N sufficiently large so that for all n ≥ N + 1,∫
|fn − f |dµ <

ε

2
.

Let I = {j}Nj=1. Then we have that {fk}k∈I is uniformly integrable by (a), so we have a δ
so that ∣∣∣∣∫

E
fkdµ

∣∣∣∣ < ε

2

for k ∈ I. For k ∈ N− I, we have∣∣∣∣∫
E
fkdµ

∣∣∣∣ =

∣∣∣∣∫
E

(fk − f) + fdµ

∣∣∣∣ ≤ ∫
E
|fk − f |dµ+

∣∣∣∣∫
E
fdµ

∣∣∣∣ ,
and we see that this gives us that by the same δ above, we have∣∣∣∣∫

E
fkdµ

∣∣∣∣ < ε

2
+
ε

2
= ε.
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Problem 217 (Folland 3.12). For j = 1, 2 let µj , νj be σ-finite measures on (Xj ,Mj) such that
νj � µj . Then ν1 × ν2 � µ1 × µ2, and

d(ν1 × ν2)

d(µ1 × µ2)
(x1, x2) =

dν1

dµ1
(x1)

dν2

dµ2
(x2).

Proof. For the first one, we let E ∈M1 ×M2 be such that (µ1 × µ2)(E) = 0. Then we have that

(µ1 × µ2)(E) = inf
{∑

µ1(Ai)µ2(Bi) : E ⊂
⋃
Ai ×Bi, Ai ∈M1, Bi ∈M2

}
.

Notice for this to be 0, we must have that µ1(Ai), µ2(Bi) = 0 for all i, and so by the absolute
continuity of νi we get that ν1(Ai), ν2(Bi) = 0, and hence

(ν1 × ν2)(E) = 0.

So ν1 × ν2 � µ1 × µ2.
For the second part, we write

(ν1 × ν2)(E) =

∫
E

d(ν1 × ν2)

d(µ1 × µ2)
d(µ1 × µ2) =

∫
E
d(ν1 × ν2).

We rewrite this as∫
E
d(ν1 × ν2) =

∫
χEd(ν1 × ν2) =

∫∫
χEy(x)dν1(x)dν2(y) =

∫∫
χE(x, y)dν1(x)dν2(y).

Using Fubini in multiple successions, we get∫∫
χE(x, y)dν1(x)dν2(y) =

∫∫
χE(x, y)

dν1

dµ1
(x)dµ1(x)dν2(y) =

∫∫
χE(x, y)

dν2

dµ2
(y)dµ2(y)

dν1

dµ1
(x)dµ1(x)

=

∫
E

dν1

dµ1
(x)

dν2

dµ2
(y)d(µ1 × µ2).

By uniqueness, we have the result. �

Problem 218 (Folland 3.13). Let X = [0, 1], M = B[0,1], m Lebesgue measure, and µ counting
measure on M.

(1) m� µ but dm 6= fdµ for any f .
(2) µ has no Lebesgue decomposition with respect to m.

Proof. (1) We have µ(E) = 0 iff E = ∅, and m(∅) = 0. So m� µ. Assume dm = fdµ. Then
we have

m(E) =

∫
E
fdµ.

Take E = {x}, then

m({x}) = 0 =

∫
{x}

fdµ = f(x),

and since this applies for all x we have that f = 0. However, we see∫
X
fdµ = m(X) = 1,

which is a contradiction.
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(2) Assume that
µ = λ+ ρ,

where λ ⊥ m, ρ� m. Since ρ� m, we have that ρ({x}) = 0. Hence, since µ({x}) = 1, we
get that λ({x}) = 1. This then applies for all x ∈ X. Since λ ⊥ m, we have that we can
write X = A t B, where A is λ null and B is m null. By the prior remark, we see that it
forces A = ∅, but this is a contradiction since m(B) = 1.

�
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