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Remark. Thomas O’Hare was a collaborator.

Problem 1. Let L1(X,µ) (shortened to L1(X)) be the space of integrable functions on X w.r.t.
µ. Show that L1(X) is a vector space and that the integral defines a linear functional on it.

Proof. We note that L1(X) ⊂ Fun(X,C) and we have that Fun(X,C) is a vector space, so it suffices
to show that L1(X) is a vector subspace. To see that it is a vector subspace, we need to show that
it’s closed under scaling and under addition. Let f, g ∈ L1(X), then we have by the linearity of the
integral and the triangle inequality that∫

|f + g| ≤
∫

(|f |+ |g|) =

∫
|f |+

∫
|g| <∞,

so f + g ∈ L1(X). Next, if r ∈ C, f ∈ L1(X), we have again by the linearity of the integral that∫
|rf | =

∫
|r||f | = |r|

∫
|f | <∞,

so rf ∈ L1(X). Hence, this is a vector subspace, and so a vector space. The integral is linear (by
last semester/Chapter 2 material) and so we see that it is a linear functional on L1(X). �

Problem 2. If f ∈ L+, then
∫
f = 0 iff f = 0 a.e.

Proof. ( =⇒ ): Assume that
∫
f = 0. Let

M≥1/n :=

{
x : f(x) ≥ 1

n

}
,

M := {x : f(x) > 0} =
⋃
n∈N

M≥1/n.

Notice that

0 =

∫
f ≥

∫
M≥1/n

f ≥
∫
M≥1/n

1

n
= µ(M≥1/n)

1

n
,

so for every n we have that µ(M≥1/n) = 0. Now, notice that

µ(M) = µ

(⋃
n∈N

M≥1/n

)
≤
∑
n∈N

µ(M≥1/n) = 0,

so that µ(M) = 0. Hence, we have that f = 0 a.e.
(⇐= ) Assume f = 0 a.e. Then we have that E := {x : f(x) 6= 0} is such that µ(E) = 0. Notice
that we can write ∫

f =

∫
E
f +

∫
Ec
f =

∫
E
f,

since f = 0 on Ec. Since f ∈ L+, we can construct a sequence of simple functions ϕn such that
ϕn ↗ f . Hence, by the monotone convergence theorem, we have∫

E
f = lim

n→∞

∫
E
ϕn.

Each simple function is bounded above by something, say Mn, and so we have that∫
E
ϕn ≤

∫
E
Mn = Mnµ(E) = 0
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for all n. Thus, we get ∫
E
f = lim

n→∞

∫
E
ϕn = 0,

and hence
∫
f = 0. �

Problem 3. Show that equality holds in Hölder iff α|f |p = β|g|q a.e. for some α, β ∈ C such that
(α, β) 6= (0, 0).

Proof. Recall that Hölder’s inequality states that if 1 < p <∞ and 1/p+ 1/q = 1, f, g measurable
functions on X, then

‖fg‖1 ≤ ‖f‖p‖g‖q.
In the proof of Hölder’s inequality, we used a lemma which states that if a ≥ 0, b ≥ 0, 0 < λ < 1,
then we have

aλb1−λ ≤ λa+ (1− λ)b.

We wish to show the conditions for equality here. In the case that b = 0, we see that we have
equality iff a = 0, so we assume that b 6= 0. Dividing both sides by b grants us

(a/b)λ ≤ λ(a/b) + (1− λ).

Let t = a/b. Then we may rewrite this as

tλ ≤ λt+ (1− λ).

Subtracting from both sides λt, we get

tλ − λt ≤ 1− λ.
We wish to find the value of t when the left hand side is maximized for 0 ≤ t. We see that taking
the derivative and setting it to zero gives

λ(tλ−1 − 1) = 0,

and so we have a critical point at t = 1. Since 0 < λ < 1, we get that for t < 1 this is increasing
(the derivative will be positive), for t > 1 this will be decreasing (the derivative will be negative),
so we have that t = 1 is the maximum; i.e. for t = 1 we have equality. Notice that t = 1 =⇒
a/b = 1 =⇒ a = b. So we have equality here iff a = b.

Going back to Hölder, we see that equality is clear when ‖f‖p = 0, ‖g‖q = 0, ‖f‖p = ∞,
‖g‖q =∞, so it suffices to assume that this is not the case. Going through the proof of Hölder, we
can scale f and g via α and β (non-zero by assumption) respectively so that f ′ = αf , g′ = βg is
such that ‖f ′‖p = ‖g′‖q = 1 (i.e., we normalize these functions with regards to the p and q norm).
Thus, we get Hölder by using the Calculus lemma to get

(1) |f ′(x)g′(x)| ≤ p−1|f ′(x)|p + q−1|g′(x)|q,
we integrate both sides to get

‖f ′g′‖1 ≤ p−1‖f ′‖pp + q−1‖g′‖qq = p−1 + q−1 = 1 = ‖f ′‖p‖g′‖q,
and rewriting this we have

|αβ|‖fg‖1 ≤ |αβ|‖f‖p‖g‖q.
Since α, β non-zero, we can divide this out to get the desired inequality. Notice then that we have
equality in Equation (1) a.e. iff we have equality in Hölder, and by the observation earlier we have
equality in Equation (1) a.e. iff |f ′|p = |g′|q. Writing out the definitions of f ′, g′, we get that this
is true iff |α|p|f |p = |β|q|g|q, and so redefining α and β accordingly gives us that we have equality
iff α|f |p = β|g|q. �

In the following problems, we use Chebychev’s inequality, which we will prove here.
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Claim. For f a measurable function on X, 0 < p <∞ and t > 0, we have

µ({x : |f(x)| ≥ t}) ≤ 1

tp

∫
|f |≥t
|f |p ≤ 1

tp
‖f‖pp.

Proof. Notice that ∫
|f |≥t
|f |p ≥

∫
|f |≥t

tp = µ({x : |f(x)| ≥ t})tp,

so rewriting gives us the desired result. For the final inequality, we simply note that

1

tp

∫
|f |≥t
|f |p ≤ 1

tp

∫
|f |p =

1

tp
‖f‖pp.

�

Problem 4 (Folland 6.3). If 1 ≤ p < r ≤ ∞, Lp ∩ Lr is a Banach space with norm given by
‖f‖ = ‖f‖p + ‖f‖r, and the inclusion map Lp ∩ Lr → Lq is continuous for p < q < r.

Proof. We check that we have closure under finite addition and closure under multiplication by
scalars. This gives us that it is a vector subspace of Lp, and so it is a vector space. We first check
that it is closed under addition. Since ‖ · ‖p, ‖ · ‖r are norms, taking f, g ∈ Lp ∩ Lr, we have that

‖f + g‖p ≤ ‖f‖p + ‖g‖p <∞,

‖f + g‖r ≤ ‖f‖r + ‖g‖r <∞,
so f + g ∈ Lp ∩ Lr as desired. For closure under scalars, let r ∈ C, f ∈ Lp ∩ Lr. We have that

‖rf‖p = |r|‖f‖p <∞,

since f ∈ Lp, and likewise with r, so rf ∈ Lp ∩ Lr. Hence, we have that Lp ∩ Lr is a vector space.
Next, we wish to show that the function ‖ · ‖ defined above is a norm. We need to show that the

four axioms are satisfied:

(1) Notice that ‖ · ‖p, ‖ · ‖r ≥ 0, so we have that ‖ · ‖ = ‖ · ‖p + ‖ · ‖r ≥ 0.
(2) We need to show that ‖f + g‖ ≤ ‖f‖+ ‖g‖. Writing this out, we have

‖f + g‖ = ‖f + g‖p + ‖f + g‖r,

and using the fact that these are norms we get

‖f + g‖ ≤ ‖f‖p + ‖g‖p + ‖f‖r + ‖g‖r.

Regrouping gives

‖f + g‖ ≤ (‖f‖p + ‖f‖r) + (‖g‖p + ‖g‖r) = ‖f‖+ ‖g‖.

(3) For scalars r ∈ C, we need to show that

‖rf‖ = |r|‖f‖.

Using again that ‖ · ‖p, ‖ · ‖r are norms, we get that

‖rf‖ = ‖rf‖p + ‖rf‖r = |r|‖f‖p + |r|‖f‖r = |r| (‖f‖p + ‖f‖r) = |r|‖f‖.

(4) We need to show that ‖f‖ = 0 if and only if f = 0 a.e. Notice that ‖f‖ = 0 implies that
‖f‖p = 0, ‖f‖r = 0 (since these are non-negative), and so we have that f = 0 a.e. since
‖ · ‖p and ‖ · ‖q are norms. The other direction is clear from this as well; if f = 0a.e., then
‖f‖p = ‖f‖r = 0, so ‖f‖ = ‖f‖p + ‖f‖r = 0.
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Hence, we have that Lp ∩Lr is a vector space, and ‖ · ‖ is a norm. To show that this is a Banach
space, we need to show that the norm is complete. Let (fn) ⊂ Lp∩Lr be a Cauchy sequence. That
is to say, for all ε > 0, there exists an N such that for all n,m ≥ N , we have

‖fn − fm‖ < ε.

Since ‖ · ‖p, ‖ · ‖q are non-negative, we have that ‖f‖ ≥ ‖f‖p, ‖f‖ ≥ ‖f‖r. In other words, we have
that the sequence (fn) ⊂ Lp ∩Lr is Cauchy with respect to both the p and r norm. Since these are
Banach spaces (Theorem 6.6/Lecture notes), we have that there is a limit with respect to these
norms. Let g be such that fn → g in Lp, h be such that fn → h in Lr. We now use Chebychev’s
inequality to see that

µ ({|fn − g| > ε}) ≤ 1

εp
‖fn − g‖pp.

Since fn → g in Lp, we get that fn → g in measure by the above. Assuming r < ∞, we get that
fn → h in measure as well. We have that we can construct a subsequence fnk → g a.e., and we can
then refine this subsequence to get that fnkj → h a.e. as well. Hence, g = h a.e. Now assume that

r =∞. We get that fn → h in L∞, which means that ‖fn − h‖∞ → 0. Notice that

‖fn − h‖∞ = inf {a ≥ 0 : µ ({x : |fn(x)− h(x)| > a}) = 0} → 0.

Hence, for all ε > 0, there exists an N such that for all n ≥ N , ‖fn − h‖∞ < ε. Notice that this
means that |fn − h| < ε a.e., so we have that

µ({x : |fn(x)− h(x)| ≥ ε}) = 0.

This applies for all ε > 0, and so we have that fn → h in measure. Hence, we can construct a
subsequence which converges a.e. and the same argument before gives us that g = h a.e. In other
words, we get that g ∈ Lp ∩ Lr. We now wish to show that fn → g with regards to the norm; that
is,

‖fn − g‖ → 0.

But this follows, since

‖fn − g‖ = ‖fn − g‖p + ‖fn − g‖r → 0,

since fn → g in Lp and in Lr. Hence, we get that the norm is complete.
Finally, we need to show that the inclusion map Lp ∩ Lr → Lq is continuous for p < q < r. Let

f ∈ Lp ∩ Lr be such that ‖f‖ = 1. We then wish to show that ‖f‖q ≤ ‖f‖ = 1, which gives us
that the inclusion is bounded, and so by Proposition 5.2 that it is continuous (if ‖f‖ = 0, then
‖f‖q = 0, and otherwise we can normalize for the case where ‖f‖ 6= 1 to get the desired result).
Proposition 6.10 (or the following Remark/Claim) gives us that there is a λ ∈ (0, 1) with

‖f‖q ≤ ‖f‖λp‖f‖1−λr .

Again, using the fact that ‖f‖p ≤ ‖f‖ = 1, ‖f‖r ≤ ‖f‖ = 1, we get that ‖f‖q ≤ 1, as desired. �

Remark. Since Proposition 6.10 wasn’t proven in class, we show it here. That is, we prove the
following claim:

Claim. For 1 ≤ p < q < r ≤ ∞, we have

‖f‖q ≤ ‖f‖λp‖f‖1−λr ,

where λ ∈ (0, 1) is defined by

λ :=
q−1 − r−1

p−1 − r−1
.
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Proof. For r =∞, we have
|f |q = |f |p|f |q−p ≤ |f |p‖f‖q−p∞ ,

and we have

λ :=
q−1

p−1
=
p

q
.

Integrating gives
‖f‖qq ≤ ‖f‖pp‖f‖q−p∞ ,

and taking qth roots gives

‖f‖q ≤ ‖f‖p/qp ‖f‖(q−p)/q∞ = ‖f‖λp‖f‖1−λ∞ ,

as desired. For r <∞, we write

‖f‖qq =

∫
|f |q =

∫
|f |λq|f |(1−λ)q.

We can now apply Hölder with conjugate pairs given by p/λq, r/(1− λ)q. This gives us

‖f‖qq ≤ ‖|f |λq‖p/λq · ‖|f |(1−λ)q‖r/(1−λ)q

=

(∫
|f |p

)λq/p(∫
|f |r
)(1−λ)q/r

= ‖f‖λqp ‖f‖(1−λ)q
r .

Now taking qth roots, we have

‖f‖q ≤ ‖f‖λp‖f‖(1−λ)
r

as desired.
�

Problem 5 (Folland 6.9). Suppose 1 ≤ p <∞. If ‖fn − f‖p → 0, then fn → f in measure and a
subsequence converges to f a.e. On the other hand, if fn → f in measure and |fn| ≤ g ∈ LP for all
n, then ‖fn − f‖p → 0.

Proof. We use Chebychev’s inequality here. We have that

µ({x : |fn(x)− f(x)| > ε}) ≤ 1

εp
‖fn − f‖pp → 0.

Hence, it converges in measure. For the remainder, we use Theorem 2.30 to deduce there is a
subsequence converging to f a.e.

On the other hand, assume that fn → f in measure and that |fn| ≤ g ∈ Lp for all n. Recall from
Folland Exercise 2.34 (a) that if |fn| ≤ g ∈ L1 and fn → f in measure, then∫

f = lim

∫
fn.

Notice that |fn − f |p ≤ 2p(|f |p + |fn|p) ≤ 2p+1|g|p. Notice as well that fn → f in measure implies
that |fn − f |p → 0 in measure as well. Since g ∈ Lp, we have that(∫

|g|p
)1/p

<∞ =⇒
∫
|g|p <∞ =⇒ |g|p ∈ L1,

and moreover 2p+1|g|p ∈ L1. So |fn− f |p ≤ 2p+1|g|p, and we apply Folland Exercise 2.34 (a) to
get

0 = lim

∫
|fn − f |p,

and so

lim

(∫
|fn − f |p

)1/p

= lim ‖fn − f‖p = 0
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Remark. The following is the exercise (and solution) which was used implicitly in the prior prob-
lem.

Claim. Suppose (X,M, µ) is a measure space and fn → f in measure.

(1) Show that if fn ≥ 0 everywhere, then
∫
f ≤ lim inf

∫
fn.

(2) Suppose |fn| ≤ g ∈ L1. Prove that
∫
f = lim

∫
fn and fn → f in L1.

Proof. (1) Fatou’s Lemma gives ∫
lim inf fn ≤ lim inf

∫
fn,

since fn ≥ 0. Thus, we can construct a subsequence fnj → lim inf fn, and so we get∫
lim
j
fnj =

∫
lim inf fn ≤ lim inf

∫
fn.

Now, since fn → f in measure, we have fnj → f in measure as well, so we can construct a
subsequence fnjk → f almost everywhere. Hence, we have∫

f =

∫
lim
k
fnjk =

∫
lim
j
fnj ≤ lim inf

∫
fn.

(2) It suffices to do this for real valued functions, since if fn → f in measure, we have

|fn − f | ≤ |Re(fn)− Re(f)|+ |Im(fn)− Im(f)| ≤ 2|fn − f |,
and so fn → f in measure if and only if Re(fn) → Re(f) and Im(fn) → Im(f) converge in
measure, and so we can consider both separately.

If |fn| ≤ g ∈ L1, we have fn ≤ g and −fn ≤ g, or in other words, 0 ≤ g− fn and 0 ≤ g+ fn.
Using (1), we get∫

g −
∫
f =

∫
(g − f) ≤ lim inf

∫
(g − fn) =

∫
g − lim sup

∫
fn,

and ∫
g +

∫
f =

∫
(g + f) ≤ lim inf

∫
(g + fn) =

∫
g + lim inf

∫
fn.

Since g ∈ L1, we can subtract it from both sides and rearrange terms to get

lim sup

∫
fn ≤

∫
f ≤ lim inf

∫
fn,

or that

lim

∫
fn =

∫
f.

To see that fn → f in L1, we need to show that
∫
|fn − f | → 0. Notice that fn → f in

measure implies |fn − f | → 0 in measure as well, and so we can use this and h = g + |f | ≥
|fn|+ |f | ≥ |fn − f | to get that, by what we’ve just shown,

lim

∫
|fn − f | =

∫
0 = 0.

Hence, fn → f in L1.
�

Problem 6 (Folland 6.10). Suppose 1 ≤ p <∞. If fn, f ∈ Lp and fn → f a.e., then ‖fn−f‖p → 0
iff ‖fn‖p → ‖f‖p.
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Proof. ( =⇒ ): We use the reverse triangle inequality to get that

|‖fn‖p − ‖f‖p| ≤ ‖f − fn‖p → 0,

and so ‖fn‖p → ‖f‖p.
(⇐= ): We use the inequality (introduced on page 181 and in the lecture notes)

|f − fn|p ≤ 2p(|f |p + |fn|p).
Integrating both sides gives ∫

|f − fn|p ≤ 2p
(∫
|fn|p + |f |p

)
.

Moving things around, we can rewrite this as

0 ≤ 2p
∫
|fn|p + 2p

∫
|f |p −

∫
|f − fn|p.

We apply Fatou’s Lemma to get∫
lim inf
n→∞

2p (|fn|p + |f |p)− |f − fn|p =

∫
2p+1|f |p ≤ lim inf

n→∞

∫
2p (|fn|p + |f |p)− |f − fn|p.

Distributing and using linearity gives us

2p+1‖f‖pp ≤ 2p lim inf
n→∞

‖fn‖pp + 2p‖f‖pp − lim sup
n→∞

∫
|f − fn|p.

Since ‖fn‖p → ‖f‖p, we get as well that ‖fn‖pp → ‖f‖pp, so that

2p+1‖f‖pp ≤ 2p+1‖f‖pp − lim sup
n→∞

∫
|f − fn|p.

That is,

lim sup
n→∞

∫
|f − fn|p ≤ 0.

Since |f − fn|p ≥ 0, this gives us that

lim
n→∞

∫
|f − fn|p = 0,

or in other words,
‖fn − f‖pp → 0 ⇐⇒ ‖fn − f‖p → 0.

�
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James Marshall Reber, ID: 500409166 Math 6212, Homework 2

Remark. Thomas O’Hare was a collaborator.

Problem 7. Let 0 < α < 1 and (X,µ) be a σ-finite measure space. Set

Lα(X) := {u : X → R : u is measurable and |u|α ∈ L1(X)}
and

[u]α =

(∫
|u|α

)1/α

.

(a) Show that Lα is a vector space and if u, v ∈ Lα(X), u ≥ 0a.e. and v ≥ 0a.e., then

[u+ v]α ≥ [u]α + [v]α,

hence [·]α is not a norm.
(b) Prove that for all u, v ∈ Lα(X),

[u+ v]αα ≤ [u]αα + [v]αα.

Proof. (a) We first show that Lα is a vector space. Notice that Lα ⊂ Fun(X,R), which is a
vector space, so it suffices to show that it’s closed under scaling and addition. For addition, let
u, v ∈ Lα. Then we have |u|α, |v|α ∈ L1, and we notice that

|u+ v|α ≤ (|u|+ |v|)α.
We then claim that, for a, b ≥ 0, we have

(a+ b)α ≤ aα + bα.

If a = 0, we are done. Otherwise, we can divide by ap to get(
1 +

a

b

)α
≤ 1 +

(a
b

)α
.

Let t = a/b, then we can write this as

(1 + t)α ≤ 1 + tα,

with t ≥ 0. If t = 0, we have that both sides are equal, and taking the derivative we see that

d

dt
((1 + t)α − tα) = α

(
(1 + t)α−1 − tα−1

)
,

which we see is less than 0 for t > 0. In other words, we get that it decreases, so we have the
desired inequality. Hence, going back, we have

|u+ v|α ≤ (|u|+ |v|)α ≤ |u|α + |v|α,
and integrating it gives us that |u+ v|α ∈ L1; in other words, u+ v ∈ Lα. For scalars, we see
that for r ∈ R, u ∈ Lα, we have

|ru|α = |r|α|u|α,
and integrating gives us that |ru|α ∈ L1, as desired. Hence, ru ∈ Lα. So Lα is a vector space.

We now show that this is not a norm.1 Assume u ≥ 0a.e., v ≥ 0a.e. We have then that

[u+ v]α =

(∫
|u+ v|α

)1/α

.

1The following argument was adapted from a related Stackexchange post (I don’t think it was proving this
inequality necessarily but something similar), but I now can’t find a link to said post. If you see the link somewhere,
please let me know.
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Since both functions are greater than or equal to 0 a.e., we have that this reduces to

[u+ v]α =

(∫
(u+ v)α

)1/α

.

We first remark on two different cases. If [u]α = 0, this implies that u = 0a.e., and so we
trivially get equality. It is the same with [v]α = 0. Hence, assume both of these are non-zero.
Notice that we can write

(u+ v)α =

(
t
u

t
+ (1− t) v

1− t

)α
,

where t ∈ (0, 1). Since xα is a concave function, we get

(u+ v)α ≥ tu
α

tα
+ (1− t) vα

(1− t)α
.

Choose

t =
[u]α

[v]α + [u]α
,

then

1− t =
[v]α

[v]α + [u]α
.

Hence, after integrating this, we get

[u+ v]αα ≥ t([v]α + [u]α)α + (1− t)([v]α + [u]α)α = ([v]α + [u]α)α.

Hence, taking αth roots on both sides, we get

[u+ v]α ≥ [v]α + [u]α,

contradicting the triangle inequality.
(b) By our observation prior, we have that

[u+ v]αα =

∫
|u+ v|α ≤

∫
(|u|+ |v|)α ≤

∫
(|u|α + |v|α) =

∫
|u|α +

∫
|v|α = [u]αα + [v]αα.

Notice this holds for all u, v ∈ Lα.
�

Problem 8. If p 6= 2, the Lp norm does not arise from an inner product on Lp except in trivial
cases dim(Lp) ≤ 1.

Proof. We proceed as Folland suggests: we wish to show that the parallelogram law does not hold;
i.e.,

‖f + g‖2p + ‖f − g‖2p 6= 2(‖f‖2p + ‖g‖2p).
To do so, we consider some cases. At first, let’s consider 1 ≤ p < ∞, p 6= 2. If we can find sets
A,B ∈ M with A ∩ B = ∅, 0 < µ(A), µ(B) < ∞, then we have that by setting f = µ(A)−1/pχA,

g = µ(B)−1/pχB,

‖f + g‖2p =

(∫
|f + g|p

)2/p

= 22/p,

‖f − g‖2p =

(∫
|f − g|p

)2/p

= 22/p,

and so we have

‖f + g‖2p + ‖f − g‖2p = 22/p+1,
9



while on the other hand, we have

‖f‖2p =

(∫
|f |p

)2/p

= 1,

‖g‖2p =

(∫
|g|p
)2/p

= 1,

and so
2(‖f‖2p + ‖g‖2p) = 2(1 + 1) = 4.

Hence, we see we have equality iff p = 2. For the case p =∞, we simply take f = χA, g = χB, and
we note that

‖f + g‖2∞ = 1,

‖f − g‖2∞ = 1,

‖f‖2∞ = 1,

‖g‖2∞ = 1,

so we have
1 + 1 6= 2(1 + 1)

as desired.
Now, we must show that we can always find these two disjoint sets. Assume first that we only

have the case that, for all A ∈ M, µ(A) = 0 or µ(A) = ∞. Then we note that the only simple
functions in Lp are the trivial ones, and so we have that dim(Lp) = 0. Assume now there exists
only one A such that 0 < µ(A) < ∞, and for all other B ∈ M we have that µ(B) = 0 or ∞.
For there to be f ∈ Lp non-trivial, it must be non-trivial on this A. In other words, we have that
f = a · χAa.e., so that dim(Lp) = 1 in this case. We remark here that if there are two disjoint sets
A and B, but either µ(A) = 0 or µ(B) = 0, then we are still in the case of dimension 1; this is
because Lp is defined up to almost everywhere equivalence. Finally, we have the case where we do
have two disjoint sets A and B such that 0 < µ(A), µ(B) <∞. As shown above, this gives us that
the parallelogram law fails, and so it is not induced by an inner product. �

Problem 9. Show that Lp(Rn) is separable for 1 ≤ p <∞. Show that L∞(Rn) is not separable.

Proof. Let D be the collection of simple functions with rational coefficients over intervals with
rational endpoints. This is clearly countable, so we check that this is dense. We have that simple
functions with compact support are dense, so it suffices to check that this is dense in this space.
Let f =

∑n
1 aiχEi be a function in this space. We wish to show that, for all ε > 0, there is a g ∈ D

with
‖f − g‖p < ε.

Notice that, for each Ei, we can choose a Gi which is a union of rectangles so that we have

µ(Ei4Gi) < ε′

for any ε′ > 0. Moreover, we can choose rational endpoints sufficiently close to the normal endpoints
(call this new set Fi) so that, for each ε′′ > 0.

µ(Gi4Fi) < ε′′.

Combining these two facts together, we get that for any γ > 0, we can choose Fi so that

µ(Fi4Ei) < γ.

Thus, for each 1 ≤ i ≤ n, choose

γ =
εp

2n(max{|ai|}1≤i≤n)p

10



Notice as well for each coefficient ai, we can choose a coefficient bi ∈ Q(i) such that |ai − bi| < β,
for any β > 0. For each i, then, choose

β =
ε

2n(max{µ(Fi)}1≤i≤n)1/p

Writing this out then, for g ∈ D, we have

‖f − g‖p =

∥∥∥∥∥
n∑
1

aiχEi −
n∑
1

biχFi

∥∥∥∥∥
p

=

∥∥∥∥∥
n∑
1

aiχEi −
n∑
1

aiχFi +
n∑
1

aiχFi −
n∑
1

biχFi

∥∥∥∥∥
p

≤

∥∥∥∥∥
n∑
1

ai(χEi − χFi)

∥∥∥∥∥
p

+

∥∥∥∥∥
n∑
1

(ai − bi)χFi

∥∥∥∥∥
p

≤
n∑
1

|ai|‖χEi − χFi‖p +

n∑
1

|ai − bi|‖χFi‖p.

We see that

|ai|‖χEi − χFi‖p = |ai|
(∫
|χEi − χFi |p

)1/p

= |ai|µ(Ei4Fi)1/p <
ε

2n

for each 1 ≤ i ≤ n, and we have

|ai − bi|‖χFi‖p <
ε

2n
for each 1 ≤ i ≤ n. Hence, we get that

‖f − g‖p <
ε

2
+
ε

2
= ε.

We can do this for all ε, so we get that D is dense in the space of simple functions with compact
support, and so D is dense in all of Lp(Rn).

We now want to see that L∞ is not separable. Consider the family of functions F = {χ[0,t]n}.
We have

‖χ[0,t)n − χ[0,s)n‖∞ = 1, t 6= s.

If there were a countable dense subset, we could take a ball of radius 1/3 around the points in this
set (say D). The union of these balls would then be the whole space, and we have that each of
these balls can only contain 1 function from the family, due to the fact that the L∞ norm is 1.
Therefore, we must have that the set is uncountable, a contradiction. �

Problem 10. Suppose supn ‖fn‖p <∞ and fn → fa.e..

(a) If 1 < p <∞, then fn → f weakly in Lp.
(b) The result in (a) is false in general for p = 1. It is true for p = ∞ if µ is σ-finite and weak

convergence is replaced by weak* convergence.

Proof. (a) We follow the hint in Folland. That is, we wish to show three facts: Given g ∈ Lq and
ε > 0 we want to show
(1) There exists a δ > 0 such that

∫
E |g|

q < ε whenever µ(E) < δ.
(2) There exists a A ⊂ X such that µ(A) <∞ and

∫
X−A |g|

q < ε.

(3) For the A in (2), there exists a B ⊂ A such that µ(A − B) < δ and fn → f uniformly on
B.

11



We wish to first show that there exists a δ > 0 such that
∫
E |g|

q < ε whenever µ(E) < δ. To
do this, we apply absolute continuity (Corollary 3.6 in Folland). Next, we wish to show that
there exists a A ⊂ X such that µ(A) <∞ and∫

X−A
|g|q < ε.

Define B = {x : |g(x)| > 0}. We can write Bn = {x : |g(x)| > n−1}, and we have that
Bn ↗ B. Notice that

lim
n→∞

∫
X−Bn

|g|q = lim
n→∞

(∫
|g|q −

∫
Bm

|g|q
)

=

∫
|g|q −

∫
B
|g|q = 0.

Hence, setting A = Bn, we must have that there is a Bn so that∫
X−A

|g|q < ε.

This is finite, since

∞ >

∫
|g|q ≥

∫
Bn

|g|q ≥
∫
Bn

1

nq
=
µ(Bn)

nq
,

so that

µ(Bn) = µ(A) ≤ nq
∫
|g|q <∞.

Finally, we need to show that there is a B ⊂ A such that µ(A−B) < δ and fn → f uniformly
on B. We have that fn → fa.e. on A, so applying Egoroff we find that there is a measurable
subset C ⊂ A such that µ(C) < ε and fn → f uniformly on A− C; denote A− C as B.

We now combine all of the ingredients to show the result. We wish to show that, for all
ε > 0, we have that there is an N such that for all n ≥ N ,∣∣∣∣∫ fng −

∫
fg

∣∣∣∣ < ε.

Notice that we can write∣∣∣∣∫ fng −
∫
fg

∣∣∣∣ =

∣∣∣∣∫ g(fn − f)

∣∣∣∣ ≤ ∫ |g||fn − f |.
Choose the A in (2) such that ∫

X−A
|g|q < εq

2 · 6qM q
.

Choose the B in (3) so that µ(A−B) < δ, which forces∫
E
|g|q < εq

2 · 6qM q
.

We can now consider ∫
|g||fn − f | =

∫
B
|g||fn − f |+

∫
Bc
|g||fn − f |.

Notice that ∫
B
|g||fn − f | ≤

(∫
B
|fn − f |p

)1/p

‖g‖q.

Since fn → f uniformly on B, we can choose N sufficiently large so that this is as small as we
wish. That is, we can choose N so that for all n ≥ N , we have

|fn(x)− f(x)| < εp

3µ(B)‖g‖pq
.
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Notice that this gives us ∫
B
|g||fn − f | <

ε

3
.

On the other hand, examining the other integral, we get∫
BC
|g||fn − f | ≤

(∫
Bc
|g|q
)1/q

‖fn − f‖p.

Since B ⊂ A, we have X − A ⊂ X −B. Furthermore, we can write X −B = X − A t A−B.
So we write this as(∫

Bc
|g|q
)1/q

‖fn − f‖p =

(∫
X−A

|g|q +

∫
A−B

|g|q
)1/q

‖fn − f‖p.

We notice that

‖fn − f‖p ≤ ‖fn‖p + ‖f‖p,
and since supn ‖fn‖p = M <∞, we have that (by Fatou)∫

|f |p ≤ lim inf
n→∞

∫
|fn|p ≤Mp =⇒ ‖f‖p ≤M.

So in particular,(∫
X−A

|g|q +

∫
A−B

|g|q
)1/q

‖fn − f‖p ≤
(∫

X−A
|g|q +

∫
A−B

|g|q
)1/q

2M

<

(
εq

6qM q

)1/q

2M =
ε

3
.

Hence, for the choice of N , we have that for all n ≥ N ,∣∣∣∣∫ g(fn − f)

∣∣∣∣ < 2ε

3
< ε.

(b) We wish to find a counterexample for L1. Consider fn = n · χ[0,1/n], f = 0 (See Folland 6.22
(b)). We have that fn → f almost everywhere, and supn ‖fn‖1 = 1. We wish to show now that
fn 6→ f weakly. Consider g = 1. Then we have that∫

fng =

∫
nχ[0,1/n] = 1,

so that

lim
n→∞

∫
fng = 1,

but ∫
fg =

∫
0 = 0.

Now, assume supn ‖fn‖∞ = M < ∞, fn → f a.e., µ is σ-finite. Then we wish to show that
fn → f in the weak* sense. First, we remark that σ-finite gives that (L1)∗ = L∞. Notice that
we have ∣∣∣∣∫ fng −

∫
fg

∣∣∣∣ ≤ ∫ |g||fn − f |,
where g ∈ L1. Since ‖fn‖∞ ≤M for all n, we have that µ({x : |fn(x)| > M}) = 0. Consider
now µ({x : |f(x)| > M}). Since fn → f almost everywhere, we get that this must also have
measure 0 (we could write the inside as a union of the set where fn → f and where it doesn’t,
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and where it does will have measure zero since it holds for all n, and where it doesn’t will have
measure zero since it converges a.e.), so that ‖f‖∞ ≤M . We use this now to note that

|g||fn − f | ≤ |g|‖fn − f‖∞ ≤ 2M |g|a.e.,

and since g ∈ L1 we have that the dominated convergence theorem gives us that

lim
n→∞

∫
|g||fn − f | = 0.

In other words, we have weak* convergence.
�

Problem 11. Complete the proof of Theorem 6.18 for the cases p = 1 and p =∞.

Proof. We first do the case where p = 1. We wish to show that Tf ∈ L1(µ), ‖Tf‖1 ≤ C‖f‖1. To
see this, notice that

‖Tf‖1 =

∫
|Tf(x)|dµ(x) =

∫ ∣∣∣∣∫ K(x, y)f(y)dν(y)

∣∣∣∣ dµ(x) ≤
∫ ∫

|K(x, y)||f(y)|dν(y)dµ(x).

Tonelli applies here to give us∫ ∫
|K(x, y)||f(y)|dν(y)dµ(x) =

∫ (∫
|K(x, y)|dµ(x)

)
|f(y)|dν(y) ≤

∫
C|f(y)|dν(y)

= C

∫
|f(y)|dν(y) = C‖f‖1.

Hence, we get that Tf ∈ L1 and satisfies the desired inequality. Fubini tells us that it converges
absolutely for almost every x ∈ X, as desired.

We now do the case where p = ∞. We wish to show that Tf ∈ L∞(µ), ‖Tf‖∞ ≤ C‖f‖∞.
However, this follows simply by noting that we have

|Tf(x)| =
∣∣∣∣∫ K(x, y)f(y)dν(y)

∣∣∣∣ ≤ ∫ |K(x, y)|‖f‖∞dν(y) ≤ C‖f‖∞a.e.,

so we must have that
‖Tf‖∞ ≤ C‖f‖∞.

We have that Tf converges absolutely for almost every x ∈ X, as desired. �
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James Marshall Reber, ID: 500409166 Math 6212, Homework 3

Remark. Thomas O’Hare was a collaborator.

Problem 12 (Folland 6.35). Let (X,M, µ) be a measure space and p ∈ (0,∞). Then weak Lp is
a quasi-normed vector space with

[f ]p,∞ :=

(
sup
α>0

αpλf (α)

)1/p

.

Proof. Recall that a norm function is said to be a quasinorm if we replace the triangle inequality
with

‖f + g‖ ≤ K(‖f‖+ ‖g‖).

To check that weak Lp is a vector space, we just check that it is a subspace of Fun(X,C). That
is, it’s closed under scalar multiplication and addition. In doing so, we will also prove two of the
required axioms for showing that the norm function given is a quasinorm. We first check closure
under scalars. Let k ∈ C. We have then that

[kf ]p,∞ =

(
sup
α>0

αpλkf (α)

)1/p

.

Recall that

λkf (α) := µ ({x : |kf(x)| > α})

= µ

({
x : |f(x)| > α

|k|

})
= λf

(
α

|k|

)
.

Hence, rewriting the above, we have

[kf ]p,∞ =

(
sup
α>0

αpλkf (α)

)1/p

=

(
sup
α>0

αpλf

(
α

|k|

))1/p

.

Defining β = α/|k|, we get that α = |k|β, so we can rewrite this as

[kf ]p,∞ =

(
sup
|k|β>0

(|k|β)pλf (β)

)1/p

= |k|

(
sup
β>0

βpλf (β)

)1/p

= |k|[f ]p,∞.

So we have closure under scalar multiplication; if f in weak Lp, then kf in weak Lp, since

[kf ]p,∞ = |k|[f ]p,∞ <∞.

Next, we show the triangle inequality. We write out

[f + g]p,∞ =

(
sup
α>0

αpλf+g(α)

)1/p

.

Recall that

λf+g(α) ≤ λf (α/2) + λg(α/2)
15



by Proposition 6.22 (d) from Folland. So we have that

[f + g]p,∞ =

(
sup
α>0

αpλf+g(α)

)1/p

≤
(

sup
α>0

αp(λf (α/2) + λg(α/2))

)1/p

≤
(

sup
α>0

αpλf (α/2) + sup
α>0

αpλg(α/2))

)1/p

=

(
sup
α>0

αpλ2f (α) + sup
α>0

αpλ2g(α))

)1/p

=
(
[2f ]pp,∞ + [2g]pp,∞

)1/p
= 2([f ]pp,∞ + [g]pp,∞)1/p,

using the same tricks as above. Hence, we get that weak Lp is a vector space, since this gives us
closure under addition.

Notice that it’s clear that this function is positive. If [f ]p,∞ = 0, we see that for all α > 0,
λf (α) = 0, which implies that f = 0 almost everywhere. Likewise, if f = 0 almost everywhere, we
get that [f ]p,∞ = 0. So it suffices to finish showing the quasi-triangle inequality. Notice that we
have

[f + g]p,∞ ≤ 2([f ]pp,∞ + [g]pp,∞)1/p ≤ 21+1/p([f ]p,∞ + [g]p,∞)

via the usual inequality (see page 181 of Folland), and so setting K = 21+1/p, we get the desired
result. �

Problem 13 (Folland 6.36). If f in weak Lp and µ({x : f(x) 6= 0}) <∞, then f ∈ Lq for all q < p.
On the other hand, if f in weak Lp and L∞, then f ∈ Lq for all q > p.

Proof. First assume that f in weak Lp and λf (0) <∞. We wish to show that∫
|f |qdµ <∞.

We have that f in weak Lp implies that

[f ]p,∞ =

(
sup
α>0

αpλf (α)

)1/p

<∞.

We have by Proposition 6.24 that∫
|f |qdµ = q

∫ ∞
0

αq−1λf (α)dα.

Since p > q, write

αq−1 = αq−p−1αp,

so that ∫
|f |qdµ = q

∫ ∞
0

αq−p−1αpλf (α)dα.

We would like to use Hölder’s inequality and conclude, however there is an issue at 0 if we leave it
as is. We then break up the integral to get∫

|f |qdµ = q

(∫ 1

0
αq−1λf (α)dα+

∫ ∞
1

αq−p−1αpλf (α)dα

)
.

For the integral on the right, we use Hölder to get∫ ∞
1

αq−p−1αpλf (α)dα ≤ ‖αpλf (α)‖∞
∫ ∞

1
αq−p−1dα <∞.
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For the integral on the left, we have λf (α) is bounded on [0, 1], so we get that∫ 1

0
αq−1λf (α)dα ≤

(
sup
α∈[0,1]

λf (α)

)∫ 1

0
αq−1dα <∞.

Taking qth roots gives us that f ∈ Lq.
Now, assume f in weak Lp and L∞. Then we have that ‖f‖∞ = M <∞. We wish to show that

f ∈ Lq for all q > p. We again use the proposition which gives∫
|f |qdµ = q

∫ ∞
0

αq−1λf (α)dα.

Breaking up the integral again, we now break it up at the point M ; that is, we have∫
|f |qdµ = q

(∫ M

0
αq−1λf (α)dα+

∫ ∞
M

αq−1λf (α)dα

)
.

For α ≥M , we have
λf (α) = µ({x : |f(x)| > α}) = 0,

by definition of essential supremum. So we can rewrite the above integral as∫
|f |qdµ = q

∫ M

0
αq−1λf (α)dα.

Again, hit it with Hölder –

q

∫ M

0
αq−p−1αpλf (α)dα ≤ q‖αpλf (α)‖∞

∫ M

0
αq−p−1dα <∞,

since f in weak Lp. �

Problem 14 (Folland 6.38). Let (X,M, µ) be a measure space and p ∈ (0,∞), f ≥ 0 a measurable
function. Then f ∈ Lp iff

∞∑
k=−∞

2kpλf (2k) <∞.

Proof. Let Fk = {x : 2k ≤ f(x) < 2k+1}. Notice than that we can write Y = [0,∞) =
⊔∞
k=−∞ Fk.

So we have that∫ ∞
0

αp−1λf (α)dα =
∞∑

k=−∞

∫
Fk

αp−1λf (α)dα =
∞∑

k=−∞

∫ 2k+1

2k
αp−1λf (α)dα.

( =⇒ ) : Assume f ∈ Lp. Then we get that
∞∑

k=−∞

∫ 2k+1

2k
αp−1λf (α)dα ≥

∞∑
k=−∞

(2k)p−1λf (2k+1) · 2k =
∞∑

k=−∞
2kpλf (2k+1)

= 2−p
∞∑

k=−∞
2(k+1)pλf (2k+1) = 2−p

∞∑
k=−∞

2kpλf (2k)

Furthermore, we have

p

∫ ∞
0

αp−1λf (α)dα =

∫
fpdµ

by Proposition 6.24, so using our observation above we have that
∞∑

k=−∞
2kpλf (2k) ≤ 2p

p

∫
fpdµ <∞.
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(⇐= ): Assume that the sum is finite. Then we have that

1

p

∫
fpdµ =

∫ ∞
0

αp−1λf (α)dα ≤
∞∑

k=−∞
(2k+1)p−1λf (2k)2k

=
∞∑

k=−∞
(2k)p−12p−1λf (2k)2k = 2p−1

∞∑
k=−∞

2kpλf (2k) <∞,

so that we have ∫
fpdµ <∞ =⇒ f ∈ Lp.

�

Problem 15 (Folland 6.40). If f is a measurable function on X, its decreasing rearrangement is
the function f∗ : (0,∞)→ [0,∞] defined by

f∗(t) = inf{α : λf (α) ≤ t}.

(a) f∗ is nonincreasing. If f∗(t) <∞, then λf (f∗(t)) ≤ t and if λf (α) <∞ then f∗(λf (α)) ≤ α.
(b) λf = λf∗ .
(c) If λf (α) <∞ for all α > 0 and limα→∞ λf (α) = 0, and ϕ is a nonnegative measurable function

on (0,∞), then ∫
X
ϕ ◦ |f |dµ =

∫ ∞
0

ϕ ◦ f∗(t)dt.

In particular, ‖f‖p = ‖f∗‖p for p ∈ (0,∞).

(d) For p ∈ (0,∞), [f ]p,∞ = supt>0 t
1/pf∗(t).

(e) The name rearrangement for f∗ comes from the case where f is a nonnegative function on
(0,∞). To see why it is appropriate, pick a step function on (0,∞) assuming four or five
different values and draw the graphs of f and f∗.

Proof. (a) We first wish to show that f∗ is nonincreasing; i.e., if α ≥ β, then f∗(β) ≤ f∗(α). Notice
that if α ≥ β, then we have that λf (α) ≤ λf (β), so if t is such that λf (β) ≤ t, then we have
λf (α) ≤ t. In other words, by the infimum property, we have f∗(α) ≤ f∗(β).

Next, assume that f∗(t) <∞. Writing things out, we have

λf (f∗(t)) = λf (inf{α : λf (α) ≤ t}).

Since λf is right continuous, letting M = inf{α : λf (α) ≤ t} = f∗(t), we get that for all ε > 0,

λf (M + ε) ≤ t,

and taking ε→ 0 gives

λf (M) = λf (f∗(t)) ≤ t,
as desired.

Finally, assume that λf (α) <∞. We have

f∗(λf (α)) = inf{β : λf (β) ≤ λf (α)}.

We have λf is nonincreasing as well, so this implies that λf (β) ≤ λf (α) for all β ≥ α. Thus,
the infimum property dictates that

f∗(λf (α)) = inf{β : λf (β) ≤ λf (α)} ≤ α.
18



(b) We have

λf∗(α) = µ({x : f∗(x) > α}).

Notice that we have f∗(x) > α implies inf{t : λf (t) ≤ x} > α, and using the fact that λf is non-
decreasing this tells us that λf (α) > x. Likewise, we have that λf (α) > x implies f∗(x) > α.
So using this, we get

{x : f∗(x) > α)} = {x : λf (α) > x} = (0, λf (α)),

and hence

λf∗(α) = µ((0, λf (α)) = λf (α).

This holds for all α, so we win.
(c) Notice that the assumption that limα→0 λf (α) = 0 implies f∗(t) < ∞ for all t > 0. From

Proposition 6.23 and (b), we get∫
X
ϕ ◦ |f |dµ = −

∫ ∞
0

ϕ(α)dλf (α) = −
∫ ∞

0
ϕ(α)dλf∗(α) =

∫ ∞
0

ϕ ◦ f∗(t)dt.

Thus, taking ϕ(α) = αp, we have

‖f‖pp =

∫
|f |pdµ =

∫ ∞
0

(f∗(t))pdt = ‖f∗‖pp,

and taking pth roots we win.

Remark. The following argument comes from Grafakos’ “Classical Fourier Analysis.”

(d) We first write out the definition:

[f ]p,∞ =

(
sup
α>0

αpλf (α)

)1/p

= sup
α>0

α (λf (α))1/p .

We first wish to establish that

sup
t>0

t1/pf∗(t) ≤ [f ]p,∞.

If f∗(t) = 0, we clearly have

t1/pf∗(t) = 0 ≤ [f ]p,∞.

Now, assume that f∗(t) > 0, pick ε > 0. By definition, this implies that

f∗(t)− ε < f∗(t),

and as long as ε < f∗(t) we have that so we have that

λf (f∗(t)− ε) > t.

Taking everything to the 1/p power, we get

λf (f∗(t)− ε)1/p > t1/p.

Hence, we have

(f∗(t)− ε)λf (f∗(t)− ε)1/p > t1/p(f∗(t)− ε)
Letting α = f∗(t)− ε, this gives

αλf (α)1/p ≤ sup
α>0

αλf (α)1/p = [f ]p,∞.

Since it holds for all such ε, we get that

t1/pf∗(t) ≤ [f ]p,∞.
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Since it holds for arbitrary t > 0 by the cases we considered, we have that

sup
t>0

t1/pf∗(t) ≤ [f ]p,∞.

Now, we want to establish the other direction; that is,

sup
t>0

t1/pf∗(t) ≥ [f ]p,∞ = sup
α>0

αλf (α)1/p.

In the case λf (α) = 0, we clearly have the correct inequality by the same as the above argument,
so assume λf (α) > 0. Pick 0 < ε < λf (α), then we have that

f∗(λf (α)− ε) = inf{β : λf (β) ≤ λf (α)− ε}.

Notice that

f∗(λf (α)− ε) > α;

this follows from the fact that if, it were less than or equal to α, we would have that α is in
the set, which is a contradiction. Hence, we have

f∗(λf (α)− ε) > α.

We use this to then get

αλf (α)1/p < f∗(λf (α)− ε)λf (α)1/p.

So in general, we have that

α(λf (α)− ε)1/p < f∗(λf (α)− ε)(λf (α)− ε)1/p,

and letting t = λf (α)− ε we have

f∗(t)t1/p ≤ sup
t>0

f∗(t)t1/p.

This holds for all ε > 0, and so we have that

sup
t>0

f∗(t)t1/p ≥ [f ]p,∞.

(e) Consider

f(x) = χ(0,1](x) + 2χ(2,3](x) + 0.5χ(4,5](x) + 6χ(6,7](x).

We have the following graph:
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We now wish to calculate the distribution function, λf (a). Recall that

λf (a) = µ({x : f(x) > a}),
where here µ is Lebesgue measure. We get

λf (a) =



4 if 0 ≤ a < 0.5,

3 if 0.5 ≤ a < 1

2 if 1 ≤ a < 2

1 if 2 ≤ a < 6

0 otherwise.

Plotting this, we have
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We now wish to calculate
f∗(t) = inf{α : λf (α) ≤ t}.

So calculating things, we have

f∗(t) =



6 for 0 ≤ t < 1

2 for 1 ≤ t < 2

1 for 2 ≤ t < 3

0.5 for 3 ≤ t < 4

0 otherwise.

Plotting this, we have

So we see that this function rearranges the values to a decreasing order, hence the name. The
Maple code for the plots is given below:

f := x−> arrow ; p i e c e w i s e (0 < x and x <= 1 ,

1 , 2 <= x and x < 3 ,

2 , 4 <= x and x < 5 , . 5 , 6 <= x and x < 7 , 6 ) ;

g := x−> p i e c e w i s e (0 <= x and x < . 5 ,

4 , . 5 <= x and x < 1 , 3 ,

1 <= x and x < 2 , 2 , 2 <= x and x < 6 , 1 , 0 ) ;

h := x−>p i e c e w i s e (0 <= x and x < 1 ,

6 , 1 <= x and x < 2 , 2 ,

2 <= x and x < 3 , 1 , 3 <= x and x < 4 , . 5 , 0 ) ;

p l o t ( f ( x ) , x = 0 . . 1 0 ) ;

p l o t ( g ( x ) , x = 0 . . 1 0 ) ;

p l o t (h( x ) , x = 0 . . 1 0 ) ;

�

Problem 16. Let (X,M, µ) be a measure space and p ∈ (0,∞) and q ∈ (0,∞]. The Lorentz
space Lp,q(X) is defined (identifying functions that are a.e. equal) as the space of all measurable
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functions f such that

[f ]p,q =

(∫ ∞
0

(
t1/pf∗(t)

)q dt
t

)1/q

<∞ for q ∈ (0,∞),

and

[f ]p,∞ = sup
{
t1/pf∗(t) : t > 0

}
<∞ for q =∞.

(a) Lp,q(X) is a quasi-normed vector space.
(b) Lp,p = Lp and Lp,∞ is weak Lp.

Proof. (a) We proceed first for the case p ∈ (0,∞), q ∈ (0,∞). We do the (now standard) trick of
viewing this as a subspace of Fun(X,C) and showing that it is a subspace. Let r ∈ C − {0}.
Then we have

[rf ]p,q =

(∫ ∞
0

(
t1/p(rf)∗(t)

)q dt
t

)1/q

.

Notice that
(rf)∗(t) = inf{α : λrf (α) ≤ t} = inf{α : λf (α/|r|) ≤ t},

and so letting β = α/|r|, α = |r|β, we get that

(rf)∗(t) = inf{|r|β : λf (β) ≤ t} = |r| inf{β : λf (β) ≤ t} = |r|f∗(t),
so that we have

[rf ]p,q =

(∫ ∞
0

(
t1/p|r|f∗(t)

)q dt
t

)1/q

= |r|[f ]p,q.

So it is indeed closed under scalar multiplication for non-zero values. For r = 0, notice that

(rf)∗(t) = 0,

so that
[rf ]p,q = 0.

Hence, it holds for all scalars. Now, we need to show that the triangle inequality is satisfied up
to a constant. Notice that we have

[f + g]p,q =

(∫ ∞
0

(
t1/p(f + g)∗(t)

)q dt
t

)1/q

.

We see that
(f + g)∗(t) ≤ f∗(t/2) + g∗(t/2).

This follows by letting α = f∗(t/2), β = g∗(t/2), assuming these values are finite (since
otherwise this is trivial), and noting that we have

λf+g(α+ β) ≤ λf (α) + λg(β) = λf (f∗(t/2)) + λg(g
∗(t/2)) ≤ t/2 + t/2 = t,

so that

(f + g)∗(t) = (f + g)∗(t/2 + t/2) ≤ (f + g)∗(λf+g(α+ β)) ≤ α+ β = f∗(t/2) + g∗(t/2),

here abusing property (a) from the last problem. Thus, we have that

[f + g]p,q ≤
(∫ ∞

0

(
t1/p(f∗(t/2) + g∗(t/2))

)q dt
t

)1/q

.

Letting s = t/2, we have that 2s = t, ds = dt/2, and so(∫ ∞
0

(
t1/p(f∗(t/2) + g∗(t/2))

)q dt
t

)1/q

=

(∫ ∞
0

(
(2s)1/p(f∗(s) + g∗(s))

)q ds
s

)1/q

.
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Now, use the fact that f∗, g∗ maps to [0,∞) (noting the case that f∗ or g∗ hits ∞ gives us
trivially the desired result), we have(∫ ∞

0

(
(2s)1/p(f∗(s) + g∗(s))

)q ds
s

)1/q

≤
(∫ ∞

0
(2s)q/p2q(f∗(s)q + g∗(s)q)

ds

s

)1/q

= 21/p+1([f ]qp,q + [g]qp,q)
1/q ≤ 21/p+1/q+1([f ]p,q + [g]p,q).

Now, to get that this is a quasinorm, we just need to show that [f ]p,q = 0 implies f = 0 a.e.
(the other properties of a norm follow from the prior arguments). If [f ]p,q = 0, then we get
that f∗(t) = 0 a.e., and this in turn implies that

‖f∗‖p = ‖f‖p = 0,

so that f = 0 a.e. Hence, we get that it’s a quasinorm.
Now, let p ∈ (0,∞), q = ∞. We wish to show that it’s a vector space (and in turn, show

that this is a norm). Let r ∈ C, we have that

[rf ]p,∞ = sup
{
t1/p|r|f∗(t) : t > 0

}
= |r| sup

{
t1/pf∗(t) : t > 0

}
= |r|[f ]p,∞,

so it’s closed under scalars. Notice as well we have

[f + g]p,∞ = sup
{
t1/p(f + g)∗(t) : t > 0

}
≤ sup

{
t1/p(f∗(t/2) + g∗(t/2)) : t > 0

}
,

and letting s = t/2 gives

[f + g]p,∞ ≤ sup
{

(2s)1/p(f∗(s) + g∗(s)) : s > 0
}

= 21/p([f ]p,∞ + [g]p,∞).

So it is closed under addition. Furthermore, noticing that

[f ]p,∞ = 0 =⇒ f∗(t) = 0 =⇒ f = 0a.e.,

we have that [·]p,∞ is a quasinorm. That is, we have that Lp,q(X) is a quasi-normed vector
space for p ∈ (0,∞), q ∈ (0,∞].

(b) We now wish to show that Lp,p = Lp, p ∈ (0,∞). It suffices to show that [f ]p,p = ‖f‖p. Notice
that

[f ]p,p =

(∫ ∞
0

f∗(t)pdt

)1/p

,

and, using property (c) along with the same sort of argument as in Proposition 6.24, we have

[f ]p,p =

(∫ ∞
0

f∗(t)pdt

)1/p

=

(∫
|f |p

)1/p

= ‖f‖p.

Thus, the spaces are equal, since f ∈ Lp,p ⇐⇒ [f ]p,p <∞ ⇐⇒ ‖f‖p <∞ ⇐⇒ f ∈ Lp. We
now want to show that Lp,∞ is weak Lp. To differentiate the notation, let

‖f‖p,∞ := sup
α>0

αλf (α)1/p

be for weak Lp,
[f ]p,∞ := sup

t>0
t1/pf∗(t)

be for the Lp,∞ space. We wish to show again that these are equal. This simply follows
from part (d) from the last problem. So we get that these spaces are the same, since f ∈
weak Lp ⇐⇒ ‖f‖p,∞ <∞ ⇐⇒ [f ]p,∞ <∞ ⇐⇒ f ∈ Lp,∞.

�
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James Marshall Reber, ID: 500409166 Math 6212, Homework 4

Remark. Thomas O’Hare was a collaborator.

The goal of the first four problems is to outline the proof of Theorem 1 below (the original
statement of this theorem is Marcinkiewicz’s interpolation theorem).

Theorem. Suppose that (X,µ) and (Y, ν) are measure spaces, with

1 ≤ p0 ≤ q0 ≤ ∞, 1 ≤ p1 ≤ q1 ≤ ∞, q0 6= q1, and

1

p
=

1− t
p0

+
t

p1
and

1

q
=

1− t
q0

+
t

q1
.

If T is a sublinear map from Lp0(µ) + Lp1(µ) to the space of measurable functions on Y that is
weak types (p0, q0) and (p1, q1), then T is strong type (p, q).

We first prove the theorem in the case that p0 = p1.

Claim (Folland 6.42). The Marcinkiewicz theorem holds in the case p = p0 = p1.

Remark. The proof comes out of discussions with Thomas and the REU paper “Interpolation
Theorems and Applications,” by Calista Bernard. The proof in the paper is similar, but doesn’t
quite finish the idea.

Proof. As remarked by Folland, we show that

λTf (α) ≤
(
Cj‖f‖p
α

)qj
.

Notice that we have

αλTf (α)1/qj ≤ [Tf ]qj = sup
α>0

αλTf (α)1/qj ≤ Cj‖f‖p

for all α, so rearranging variables gives us the desired result.
First assume that q0 < q1 < ∞ (the argument also applies for q1 < q0 < ∞). Notice that we

have (by Proposition 6.24)

‖Tf‖qq = q

∫ ∞
0

αq−1λTf (α)dα

= q

∫ ‖f‖p
0

αq−1λTf (α)dα+ q

∫ ∞
‖f‖p

αq−1λTf (α)dα

≤ q
∫ ‖f‖p

0
αq−1

(
C0‖f‖p
α

)q0
dα+ q

∫ ∞
‖f‖p

αq−1

(
C1‖f‖p
α

)q1
dα

= qCq00 ‖f‖
q0
p

∫ ‖f‖p
0

αq−q0−1dα+ qCq11 ‖f‖
q1
p

∫ ∞
‖f‖p

αq−q1−1dα

= qCq00 ‖f‖
q0
p

(
αq−q0

q − q0

∣∣∣∣‖f‖p
α=0

)
+ qCq11 ‖f‖

q1
p

(
αq−q1

q − q1

∣∣∣∣∞
α=‖f‖p

)
.
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Here, we note that q − q0 > 0, q − q1 < 0, so that the evaluation of these integrals makes sense.
Hence, we have

qCq00 ‖f‖
q0
p

(
αq−q0

q − q0

∣∣∣∣‖f‖p
α=0

)
+ qCq11 ‖f‖

q1
p

(
αq−q1

q − q1

∣∣∣∣∞
α=‖f‖p

)

= qCq00 ‖f‖
q0
p

‖f‖q−q0p

q − q0
+ qCq11 ‖f‖

q1
p

‖f‖q−q1p

q1 − q

= ‖f‖qpq
(

Cq00

q − q0
+

Cq11

q1 − q

)
.

Letting Bp be this constant, we have the desired result.
Now, we examine the case where q1 =∞, q0 <∞ (the case q0 =∞, q1 <∞ is the same). Notice

now that we have
[Tf ]∞ = ‖Tf‖∞ ≤ C1‖f‖p,

λTf (α) ≤
(
C0‖f‖p
α

)q0
.

Thus, we see that

‖Tf‖qq = q

∫ ∞
0

αq−1λTf (α)dα

= q

∫ ‖Tf‖∞
0

αq−1λTf (α)dα+ q

∫ ∞
‖Tf‖∞

αq−1λTf (α)dα

= q

∫ ‖Tf‖∞
0

αq−1λTf (α)dα,

since λTf (α) = µ({x : |Tf(x)| > α}) = 0 for α ≥ ‖Tf‖∞. Continuing on, we have

q

∫ ‖Tf‖∞
0

αq−1λTf (α)dα ≤ q
∫ ‖Tf‖∞

0
αq−1

(
C0‖f‖p
α

)q0
dα

= qCq00

∫ ‖Tf‖∞
0

αq−q0−1dα = qCq00

(
αq−q0

q − q0

∣∣∣∣‖Tf‖∞
α=0

)

= qCq00

‖Tf‖q−q0∞
q − q0

≤ qCq00

(C1‖f‖p)q−q0
q − q0

=
qCq00 C

q−q0
1

q − q0
‖f‖q−q0p .

Taking qth roots gives

‖Tf‖q ≤

(
qCq00 C

q−q0
1

q − q0

)1/q

‖f‖(q−q0)/q
p .

Now, we take

sup{‖Tf‖q : ‖f‖p = 1} ≤

(
qCq00 C

q−q0
1

q − q0

)1/q

= Bp.

If ‖f‖p = 0, we have trivially that ‖Tf‖q ≤ Bp‖f‖p. Assume ‖f‖p 6= 0, then we can take

f̂ = f/‖f‖p. Then ‖f̂‖p = 1, so

‖T f̂‖q =
‖Tf‖q
‖f‖p

≤ Bp =⇒ ‖Tf‖q ≤ Bp‖f‖p,
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as desired. �

Remark. With this, we are now able to assume that p0 6= p1 throughout.

Problem 17. Let A > 0 and f ∈ Lp. Define

hA = fχEc(A) +A · sgn(f)χE(A),

gA = f − hA.
For p0 < p1, show that ∫

|gA|p0dµ ≤ p0

∫ ∞
A

βp0−1λf (β)dβ

and ∫
|hA|p1dµ = p1

∫ A

0
βp1−1λf (β)dβ.

Proof. Recall we have the following:

Claim. If gA, hA are defined as above, then we have for E(A) = {x : |f(x)| > A},
λgA(α) = λf (α+A),

λhA(α) =

{
λf (α) if α < A,

0 if α ≥ A.

Proof. Recall that

λgA(α) = µ({x : |gA(x)| > α}).
We check this statement then on sets. If x ∈ E(A), then we have that hA = A · sgn(f), |f(x)| > A,
and f(x)−hA(x) = f(x)−A · sgn(f), so that |gA(x)| = f(x)−A if f(x) > A or |gA(x)| = f(x) +A
if f(x) < −A. Hence, we can write this as

{x : |gA(x)| > α} = {x : f(x) > A, f(x)−A > α} t {x : f(x) < −A, f(x) +A < α}
= {x : f(x) > A, f(x) > α+A} t {x : f(x) < −A, f(x) < α−A}

= {x : |f(x)| > A+ α},
so that

λgA(α) = λf (α+A).

For the other hand, notice that

λhA(α) = µ({x : |f(x)| ≤ A, f(x) > α}) + µ({x : |f(x)| > A,A > α}).
For α < A, we have that this is equal to

λhA(α) = µ({x : a < |f(x)| ≤ A}) + µ({x : |f(x)| > A}) = µ({x : a < |f(x)|}) = λf (α).

For α ≥ A, we have that

λhA(α) = µ({x : |f(x)| ≤ A, f(x) > α}) + µ({x : |f(x)| > A,A > α}) = 0 + 0 = 0.

�

Now, we wish to calculate ∫
|gA|p0dµ.

We can use Proposition 6.24 to write this as∫
|gA|p0dµ = p0

∫ ∞
0

αp0−1λgA(α)dα.
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We now use the claim to get that∫
|gA|p0dµ = p0

∫ ∞
0

αp0−1λf (α+A)dα.

Let u = α+A, u−A = α, du = dα, we have that this translates to∫
|gA|p0dµ = p0

∫ ∞
A

(u−A)p0−1λf (u)du ≤ p0

∫ ∞
A

up0−1λf (u)du.

Changing variables gives the desired result.
Now, on the other hand, we have (by Proposition 6.24)∫

|hA|p1dµ = p1

∫ ∞
0

αp1−1λhA(α)dα.

Using the claim again, we get ∫
|hA|p1dµ = p1

∫ A

0
αp1−1λf (α)dα,

as desired. �

Problem 18. Let

σ =
p0(q0 − q)
q0(p0 − p)

,

and χ0, χ1 characteristic functions of {(α, β) : β > ασ} and {(α, β) : β < ασ} respectively. Show
that

(2) ‖Tf‖qq ≤
1∑
j=0

Cj

[∫ ∞
0

[∫ ∞
0

ϕj(α, β)qj/pjdα

]pj/qj
dβ

]qj/pj
,

where
ϕj(α, β) = χj(α, β)α(q−qj−1)pj/qjβpj−1λf (β).

Note that this reduces the problem of estimating ‖Tf‖q to estimating the expression on the right
hand side of (1) for ϕj .

Proof. We have

‖Tf‖qq =

∫
|Tf |qdµ.

We use Proposition 6.24 again to get∫
|Tf |qdµ = q

∫ ∞
0

αq−1λTf (α)dα.

Now, we remark that by construction we have gA = f − hA so that gA + hA = f . Hence, we get

|T (f)| ≤ |T (hA)|+ |T (gA)|
by sublinearity. Using Proposition 6.22(d), Proposition 6.22(b), and this fact, we have

λTf (α) ≤ λThA(α/2) + λTgA(α/2).

Now we use this to write∫
|Tf |qdµ ≤ q

∫ ∞
0

αq−1 (λThA(α/2) + λTgA(α/2)) dα.

Let β = α/2, then 2β = α, 2dβ = dα, so we have

‖Tf‖qq ≤ q
∫ ∞

0
(2β)q−1(λThA(β) + λTgA(β))2dβ = 2qq

∫ ∞
0

βq−1(λThA(β) + λTgA(β))dβ.
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Now, from the assumptions in the theorem, we have that

[TgA]q0 = sup
β>0

βλTgA(β)1/q0 ≤ C0‖gA‖p0 ,

[ThA]q1 = sup
β>0

βλThA(β)1/q1 ≤ C1‖hA‖p1 ,

so taking everything to the appropriate power, we get

sup
β>0

λTgA(β) ≤ sup
β>0

(
C0‖gA‖p0

β

)q0
,

sup
β>0

λThA(β) ≤ sup
β>0

(
C1‖hA‖p1

β

)q1
.

Hence, we have that

‖Tf‖qq ≤ 2qq

∫ ∞
0

βq−1

[(
C0‖gA‖p0

β

)q0
+

(
C1‖hA‖p1

β

)q1]
dβ.

Since everything so far is true independent of α > 0 and A > 0, it is fine to take A to depend on α.
Choosing A = ασ, where σ defined above, we have that this in conjunction with Problem 1 gives

‖Tf‖qq ≤ 2qq

∫ ∞
0

βq−1

[(
C0‖gA‖p0

β

)q0
+

(
C1‖hA‖p1

β

)q1]
dβ

= 2qqCq00

∫ ∞
0

βq−q0−1‖gA‖q0p0dβ + 2qqCq11

∫ ∞
0

βq−q1−1‖hA‖q1p1dβ

= 2qqCq00

∫ ∞
0

βq−q0−1

(∫
|gA|p0

)q0/p0
dβ + 2qqCq11

∫ ∞
0

βq−q1−1

(∫
|hA|p1

)q1/p1
dβ

≤ 2qqCq00

∫ ∞
0

βq−q0−1

(
p0

∫ ∞
A

αp0−1λf (α)dα

)q0/p0
dβ + 2qqCq11

∫ ∞
0

βq−q1−1

(
p1

∫ A

0
αp1−1λf (α)dα

)q1/p1
dβ

= 2qqCq00 p
q0/p0
0

∫ ∞
0

βq−q0−1

(∫ ∞
A

αp0−1λf (α)dα

)q0/p0
dβ

+2qqCq11 p
q1/p1
1

∫ ∞
0

βq−q1−1

(∫ A

0
αp1−1λf (α)dα

)q1/p1
dβ

= 2qqCq00 p
q0/p0
0

∫ ∞
0

(∫ ∞
0

ϕ0(β, α)dα

)q0/p0
dβ + 2qqCq11 p

q1/p1
1

∫ ∞
0

(∫ ∞
0

ϕ1(β, α)dα

)q1/p1
dβ

= 2qqCq00 p
q0/p0
0

[∫ ∞
0

(∫ ∞
0

ϕ0(β, α)dα

)q0/p0
dβ

]p0/q0q0/p0

+2qqCq11 p
q1/p1
1

[∫ ∞
0

(∫ ∞
0

ϕ1(β, α)dα

)q1/p1
dβ

]p1/q1q1/p1
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Now hit it with Minkowski’s inequality for integrals (and rearrange the variables so that they’re in
the right order) to get

‖Tf‖qq ≤ 2qqCq00 p
q0/p0
0

[∫ ∞
0

(∫ ∞
0

ϕ0(α, β)q0/p0dα

)p0/q0
dβ

]q0/p0

+2qqCq11 p
q1/p1
1

[∫ ∞
0

(∫ ∞
0

ϕ1(α, β)q1/p1dα

)p1/q1
dβ

]q1/p1
.

In other words, we have

‖Tf‖qq ≤
1∑
j=0

Cj

[∫ ∞
0

[∫ ∞
0

ϕj(α, β)qj/pjdα

]pj/qj
dβ

]qj/pj
as desired. �

Problem 19. Show that ∫ ∞
0

[∫ ∞
0

ϕj(α, β)qj/pjdα

]pj/qj
dβ = kj‖f‖pp,

where

kj =
1

p|q − qj |pj/qj
,

and prove Theorem for q0, q1 <∞.

Proof. We first show it for j = 0. Assuming q1 > q0, σ > 0, we have that β > ασ is equivalent to
β1/σ > α, and so we can leverage this to get ∫ ∞

0

[∫ ∞
0

ϕ0(α, β)q0/p0dα

]p0/q0
dβ

=

∫ ∞
0

[∫ ∞
0

(
χ0(α, β)α(q−q0−1)p0/q0βp0−1λf (β)

)q0/p0
dα

]p0/q0
dβ

=

∫ ∞
0

[∫ β1/σ

0

(
α(q−q0−1)p0/q0βp0−1λf (β)

)q0/p0
dα

]p0/q0
dβ

=

∫ ∞
0

βp0−1λf (β)

[∫ β1/σ

0
αq−q0−1dα

]p0/q0
dβ.

Integrating the inside, we get∫ β1/σ

0
αq−q0−1dα =

1

q − q0
αq−q0

∣∣∣β1/σ

α=0
=
β(q−q0)/σ

q − q0
.

Hence, we have the above is equal to

(q − q0)−p0/q0
∫ ∞

0
βp0−1+((q−q0)p0)/(σq0)λf (β)dβ.

Recall that

σ =
p0(q0 − q)
q0(p0 − p)

,

so
p0(q − q0)

σq0
=
p0(q − q0)q0(p0 − p)

p0(q0 − q)q0
= p− p0,
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and hence the above is now equal to

|q − q0|−p0/q0
∫ ∞

0
βp−1λf (β)dβ.

We have Proposition 6.24 gives us∫
|f |p = p

∫ ∞
0

βp−1λf (β)dβ,

so that
‖f‖pp
p

=

∫ ∞
0

βp−1λf (β)dβ.

Substituting this in then gives∫ ∞
0

[∫ ∞
0

ϕ0(α, β)q0/p0dα

]p0/q0
dβ =

‖f‖pp
p|q − q0|p0/q0

= k0‖f‖pp.

Next, assuming q0 > q1, σ < 0, we have that the inequality goes the other direction, i.e., β > ασ

is equivalent to β1/σ < α. Using this, we then get∫ ∞
0

[∫ ∞
0

ϕ0(α, β)q0/p0dα

]p0/q0
dβ

=

∫ ∞
0

[∫ ∞
0

(
χ0(α, β)α(q−q0−1)p0/q0βp0−1λf (β)

)q0/p0
dα

]p0/q0
dβ

=

∫ ∞
0

[∫ ∞
β1/σ

(
α(q−q0−1)p0/q0βp0−1λf (β)

)q0/p0
dα

]p0/q0
dβ

=

∫ ∞
0

βp0−1λf (β)

[∫ ∞
β1/σ

αq−q0−1dα

]p0/q0
dβ.

Integrating the inside, we get∫ ∞
β1/σ

αq−q0−1dα =
1

q − q0
αq−q0

∣∣∣∞
α=β1/σ

=
β(q−q0)/σ

q0 − q
.

Hence, we have the above is equal to

|q0 − q|−p0/q0
∫ ∞

0
βp−1λf (β)dβ.

From the reductions before, we have that∫ ∞
0

[∫ ∞
0

ϕ0(α, β)q0/p0dα

]p0/q0
dβ =

‖f‖pp
p|q − q0|p0/q0

= k0‖f‖pp

again.
Following the same path with the other integral, we have∫ ∞

0

[∫ ∞
0

ϕ1(α, β)q0/p0dα

]p0/q0
dβ = |q − q1|−p1/q1p−1‖f‖pp = k1‖f‖pp.

Thus, combining everything, we have

sup{‖Tf‖q : ‖f‖p = 1} ≤ Bp = 2q1/q

 1∑
j=0

C
qj
j (pj/p)

qj/pj |q − qj |−1

1/q

.
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Hence, if ‖f‖p = 0, we get the desired inequality, and in the case where ‖f‖p 6= 0 we can normalize
it to via

f̂ =
f

‖f‖p
,

so that ‖f̂‖p = 1 and

‖T f̂‖q =
‖Tf‖q
‖f‖p

≤ Bp =⇒ ‖Tf‖q ≤ Bp‖f‖p.

�

Problem 20. Prove Theorem 1 in the three exceptional cases:

(i) p1 = q1 =∞,
(ii) p1 <∞, q1 =∞,

(iii) p1 <∞, q0 =∞.

Proof. (i) Assume p1 = q1 = ∞. Instead of taking A = ασ, take A = α/C1. Then we have (by
the assumptions of the theorem) that

‖ThA‖∞ ≤ C1‖hA‖∞ ≤ α,

so that

λThA(α) = µ({x : |ThA(x)| > α}) = 0.

We then apply the same argument as in Problem 2 to get∫
|Tf |qdµ ≤ q

∫ ∞
0

αq−1 (λThA(α/2) + λTgA(α/2)) dα = q

∫ ∞
0

αq−1λTgA(α/2)dα.

Again, letting β = α/2, we have 2β = α, 2dβ = dα, so∫
|Tf |qdµ ≤ 2qq

∫ ∞
0

βq−1λTgA(β)dβ.

Using the assumptions in the theorem, we get

‖Tf‖qq ≤ 2qq

∫ ∞
0

βq−1

(
C0‖gA‖p1

β

)q1
dβ

= 2qqCq10

∫ ∞
0

βq−q0−1

(∫
|gA|p0

)q0/p0
dβ

≤ 2qqCq0

∫ ∞
0

βq−q0−1

(
p0

∫ ∞
A

αp0−1λf (α)dα

)q0/p0
dβ

= 2qqCq00 p
q0/p0
0

∫ ∞
0

βq−q0−q
(∫ ∞

A
αp0−1λf (α)dα

)q0/p0
dβ

= 2qqCq00 p
q0/p0
0

∫ ∞
0

(∫ ∞
0

ϕ0(β, α)dα

)q0/p0
dβ

= 2qqCq00 p
q0/p0
0

[∫ ∞
0

(∫ ∞
0

ϕ0(β, α)dα

)q0/p0
dβ

]p0/q0q0/p0

.

,

where we now redefine

ϕ0(α, β) = χ0(α, β)α(q−q0−1)p0/q0βp0−1λf (β),
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where χ0(α, β) is the characteristic function of {(α, β) : β > α/C1}. Moving things around
(including changing the order of α and β for notational simplicity), we then have

‖Tf‖qq ≤ 2qqCp00 p
q0/p0
0

[∫ ∞
0

(∫ ∞
0

ϕ0(β, α)dα

)q0/p0
dβ

]p0/q0q0/p0

.

Going through the motions, we get again from Minkowski that

‖Tf‖qq ≤ 2qqCq01 p
q0/p0
0

[∫ ∞
0

(∫ ∞
0

ϕ0(α, β)q0/p0dα

)p0/q0
dβ

]q0/p0
.

We now examine the inner integral, noticing that we have∫ ∞
0

(∫ ∞
0

ϕ0(α, β)q0/p0dα

)p0/q0
dβ

=

∫ ∞
0

(∫ ∞
0

(
χ0(α, β)α(q−q0−1)p0/q0βp0−1λf (β)

)q0/p0
dα

)p0/q0
dβ

=

∫ ∞
0

βp0−1λf (β)

(∫ C1β

0
α(q−q0−1)dα

)p0/q0
dβ.

Evaluating the inner integral, we get∫ C1β

0
αq−q0−1dα =

1

q − q0
αq−q0

∣∣∣∣C1β

0

=
(C1β)q−q0

|q − q0|
,

so going back we have ∫ ∞
0

βp0−1λf (β)

(∫ C1β

0
α(q−q0−1)dα

)p0/q0
dβ

=

∫ ∞
0

βp0−1λf (β)

(
(C1β)q−q0

|q − q0|

)p0/q0
dβ

= |q − q0|−p0/q0C(q−q0)p0/q0
1

∫ ∞
0

βp0−1+(q−q0)p0/q0λf (β)dβ

= |q − q0|−p0/q0Cp0q/q0−p01

∫ ∞
0

βp0q/q0−1λf (β)dβ.

Now, since we have that (for 0 < t < 1),

1

q
=

t

q0
,

we get that
q0

q
= t.

Furthermore, we have that
1

p
=

t

p0

so that

p =
p0

t
=
p0q

q0
.
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Substituting this in, then, gives

|q − q0|−p0/q0Cp0q/q0−p01

∫ ∞
0

βp0q/q0−1λf (β)dβ

= |q − q0|−p0/q0Cp−p01

∫ ∞
0

βp−1λf (β)dβ

= |q − q0|−p0/q0Cp−p01 p−1‖f‖pp.

Going back, we have

‖Tf‖qq ≤ 2qqCq00 p
q0/p0
0

(
|q − q0|−p0/q0Cp−p01 p−1‖f‖pp

)q0/p0
= 2qqCq00 (p0/p)

q0/p0C
(p−p0)q0/p0
1 |q − q0|−1‖f‖pq0/p0p

= 2qqCq00 (p0/p)
q0/p0Cq−q01 |q − q0|−1‖f‖qp.

Taking qth roots gives then

‖Tf‖q ≤ 2
[
Cq00 (p0/p)

q0/p0Cq−q01 |q − q0|−1
]1/q
‖f‖p,

as desired. Using the same argument as the last problem, we then have

sup{‖Tf‖q : ‖f‖p = 1} ≤ 2
[
Cq00 (p0/p)

q0/p0Cq−q01 |q − q0|−1
]1/q

= Bp,

and so if ‖f‖p 6= 0 we normalize to get f̂ = f/‖f‖p, and we have

‖T f̂‖q =
‖Tf‖q
‖f‖p

≤ Bp =⇒ ‖Tf‖q ≤ Bp‖f‖p.

Hence, it holds for all f .
(ii) Now choose A = (α/d)σ, where

d = C1[p1‖f‖pp/p]1/p1 ,

and

σ =
p1

p1 − p
.

Since p1 > p by assumption, we have

‖ThA‖p1∞ ≤ C
p1
1 ‖hA‖

p1
p1 = Cp11 p1

∫ A

0
αp1−1λf (α)dα ≤ Cp11 p1A

p1−p
∫ A

0
αp−1λf (α)dα = αp1 .

We get again that

λThA(α) = 0,

so we have that ϕ1 = 0, and hence going through the the exact same argument as before, we
get

‖Tf‖qq ≤ 2qqCp00 p
q0/p0
0

(∫ ∞
0

[∫ ∞
0

ϕ0(α, β)q0/p0dα

]p0/q0
dβ

)q0/p0
,

noting again that

ϕ0(α, β) = χ0(α, β)α(q−q0−1)p0/q0βp0−1λf (β),
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where now the characteristic function is over the set {(α, β) : β > ασ}. Examining the inner
integral, we have that ∫ ∞

0

[∫ ∞
0

ϕ0(α, β)q0/p0dα

]p0/q0
dβ

=

∫ ∞
0

[∫ ∞
0

(
χ0(α, β)α(q−q0−1)p0/q0βp0−1λf (β)

)q0/p0
dα

]p0/q0
dβ

=

∫ ∞
0

βp0−1λf (β)

[∫ β1/σ

0
α(q−q0−1)dα

]p0/q0
dβ.

Solving, we get ∫ β1/σ

0
αq−q0−1dα =

1

q − q0
αq−q0

∣∣∣∣β1/σ

α=0

=
β(q−q0)/σ

|q − q0|
,

so substituting this in we have∫ ∞
0

βp0−1λf (β)

[∫ β1/σ

0
α(q−q0−1)dα

]p0/q0
dβ

=

∫ ∞
0

βp0−1λf (β)

[
β(q−q0)/σ

|q − q0|

]p0/q0
dβ

= |q − q0|−p0/q0
∫ ∞

0
βp0−1+(q−q0)p0/(σq0)λf (β)dβ.

Now, we have that
1

q
=

1− t
q0

=⇒ q0

q
= 1− t,

p =
p0p1

p0t− p1t+ p1
,

p− p0 =
p0t(p1 − p0)

p0t− p1t+ p1

so that

(q − q0)p0

σq0
=

(q − q0)p0(p1 − p)
p1q0

=
tp0(p− p1)

(t− 1)p1

=
tp0(p1 − p0)

p0t− p1t+ p1
= p− p0.

Substituting this in, we get

|q − q0|−p0/q0
∫ ∞

0
βp0−1+(q−q0)p0/(σq0)λf (β)dβ

= |q − q0|−p0/q0
∫ ∞

0
βp−1λf (β)dβ = |q − q0|−p0/q0p−1‖f‖pp.

Now bounding the original equation, we have

‖Tf‖qq ≤ 2qqCp00 p
q0/p0
0

(
|q − q0|−p0/q0p−1‖f‖pp

)q0/p0
= 2qqCp00 (p0/p)

q0/p0 |q − q0|−1‖f‖pq0/p0p .
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Taking qth roots gives

‖Tf‖q ≤ 2
[
Cp00 (p0/p)

q0/p0 |q − q0|−1
]1/q
‖f‖pq0/(qp0)

p ,

and hence

sup{‖Tf‖q : ‖f‖p = 1} ≤ 2
[
Cp00 (p0/p)

q0/p0 |q − q0|−1
]1/q

= Bp.

Normalizing f when ‖f‖p 6= 0, we set f̂ = f/‖f‖p and get

‖T f̂‖q =
‖Tf‖q
‖f‖p

≤ Bp =⇒ ‖Tf‖q ≤ Bp‖f‖p,

as desired.
(iii) We now have q1 < q0 =∞, p0 < p1 <∞. We want to do the same thing we did in part (ii),

except we now want to choose our d so that λTgA(α) = 0. Setting

d = C0[p0‖f‖pp/p]1/p0 ,

σ =
p0

p0 − p
we have

‖TgA‖p0∞ ≤ C
p0
0 ‖gA‖

p0
p0 ≤ C

p0
0 p0

∫ ∞
A

βp0−1λf (β)dβ

= Cp00 p0

∫ ∞
A

βp0−pβp−1λf (β)dβ

≤ Cp00 p0A
p0−p

∫ ∞
A

βp−1λf (β)dβ

= Cp00

p0

p

(α
d

)σ(p0−p)
‖f‖pp

= Cp00

p0

p

(α
d

)p0
‖f‖pp = αp0 .

Hence, we get that λTgA(α) = 0. This time, we get that ϕ0 = 0, and so going back through
the same argument we have that

‖Tf‖qq ≤ 2qqCp11 p
q1/p1
1

(∫ ∞
0

[∫ ∞
0

ϕ1(α, β)q1/p1dα

]p1/q1
dβ

)q1/p1
,

here ϕ1 is defined to be

ϕ1(α, β) = χ1(α, β)α(q−q1−1)p1/q1βp1−1λf (β),

with χ1(α, β) the characteristic function of the set {(α, β) : β < ασ}. Examining the integral
on the right, we have ∫ ∞

0

[∫ ∞
0

ϕ1(α, β)q1/p1dα

]p1/q1
dβ

=

∫ ∞
0

[∫ ∞
0

(
χ1(α, β)α(q−q1−1)p1/q1βp1−1λf (β)

)q1/p1
dα

]p1/q1
dβ

=

∫ ∞
0

βp1−1λf (β)

[∫ ∞
β1/σ

αq−q1−1dα

]p1/q1
dβ.
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Evaluating the integral on the inside, we have∫ ∞
β1/σ

αq−q1−1dα = − 1

q − q1
αq−q1

∣∣∣∣∞
α=β1/σ

=
β(q−q1)/σ

|q − q1|
.

Substituting this in, we have∫ ∞
0

βp1−1λf (β)

[∫ ∞
β1/σ

αq−q1−1dα

]p1/q1
dβ

=

∫ ∞
0

βp1−1λf (β)

[
β(q−q1)/σ

|q − q1|

]p1/q1
dβ

= |q − q1|−p1/q1
∫ ∞

0
βp1−1+p1(q−q1)/(σq1)λf (β)dβ.

Again, we note that
1

q
=

t

q1
=⇒ q1

q
= t,

p− p1 =
(t− 1)p1(p1 − p0)

p0t− p1t+ p1
,

so that

p1(q − q1)

q1σ
=

(q1 − q)p1(p− p0)

p0q1
=

(t− 1)p1(p− p0)

tp0

=
(t− 1)p1(p1 − p0)

p0t− p1t+ p1
= p− p1.

Substituting this in, we have

|q − q1|−p1/q1
∫ ∞

0
βp1−1+p1(q−q1)/(σq1)λf (β)dβ

= |q − q1|−p1/q1
∫ ∞

0
βp−1λf (β)dβ = |q − q1|−p1/q1p−1‖f‖pp.

Hence, going back, we have

‖Tf‖qq ≤ 2qqCp11 p
q1/p1
1

(
|q − q1|−p1/q1p−1‖f‖pp

)q1/p1
= 2qqCp11 (p1/p)

q1/p1 |q − q1|−1‖f‖pq1/p1p ,

so taking qth roots we get

‖Tf‖q ≤ 2
[
qCp11 (p1/p)

q1/p1 |q − q1|−1
]1/q
‖f‖pq1/(p1q)p .

Again, we have

sup{‖Tf‖q : ‖f‖p = 1} ≤ 2
[
qCp11 (p1/p)

q1/p1 |q − q1|−1
]1/q

= Bp,

so again, as long as ‖f‖p 6= 0, we can normalize to get f̂ = f/‖f‖p, and we have

‖T f̂‖q =
‖Tf‖q
‖f‖p

≤ Bp =⇒ ‖Tf‖q ≤ ‖f‖pBp.

Thus, we have the desired result.
�

Problem 21. If f ∈ S (the Schwartz space), then ∂αf ∈ Lp for all α multi-index and all p ∈ [1,∞].
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Proof. Let p ∈ [1,∞]. We wish to show that

‖∂αf‖pp =

∫
|∂αf |p <∞

for all α. Recall that f ∈ S implies that ‖f‖(N,α) <∞ for all N,α; that is,

‖f‖(N,α) = sup
x∈Rn

(1 + |x|)N |∂αf(x)| <∞.

Let CN = ‖f‖(N,α). We have then that

|∂αf(x)| ≤ CN (1 + |x|)−N

for all x, using the fact that the supremum of the product is the product of the supremum and

(1 + |x|)N ≤ sup
x∈Rn

(1 + |x|)N for all x ∈ Rn,

so

1 ≤ supx∈Rn(1 + |x|)N

(1 + |x|)N
,

and hence

|∂αf(x)| ≤ supx∈Rn(1 + |x|)N

(1 + |x|)N
sup
x∈Rn

|∂αf(x)| = CN (1 + |x|)−N .

Hence, we have

‖∂αf‖pp =

∫
|∂αf(x)|pdx ≤ CpN

∫
(1 + |x|)−pNdx.

By Corollary 2.52 (b) (i.e. polar coordinates), we have that the integral on the right is in L1 if
pN > n; in other words, if N > n/p (n here the dimension of Rn). Since the above holds true for
all N ≥ 0 and α multi-indices, we can choose N sufficiently large so that this holds. �

Problem 22. If 1 ≤ p < ∞, then translation is continuous in the Lp norm, i.e., if f ∈ Lp and
z ∈ Rn, then

lim
y→0
‖τy+zf − τzf‖p = 0.

Proof. We use Proposition 7.9, which says that continuous functions with compact support are
dense in Lp. First, let’s show the result for continuous functions with compact support. We have
that

‖τy+zf − τzf‖pp =

∫
|τy+zf(x)− τzf(x)|pdx =

∫
|f(x+ y + z)− f(x+ z)|pdx.

Let u = x+ z, then du = dx, and so we have that the transformation gives

‖τy+zf − τzf‖pp =

∫
|f(u+ y)− f(u)|pdu.

Since we’re assuming that f is a continuous function with compact support, we have that there is
a compact set K which contains the support of f(u+ y) for all |y| ≤ 1. We want to let y → 0, so
it suffices to consider such y. Thus, we can write∫
|f(u+y)−f(u)|pdu =

∫
K
|f(u+y)−f(u)|pdu ≤

∫
K
‖f(u+y)−f(u)‖pudu = µ(K)‖f(u+y)−f(u)‖pu.

By uniform continuity of continuous functions with compact support (see Lemma 8.4), we get
that this goes to 0 as y → 0. That is, we have that

‖τy+zf − τzf‖pp → 0 as y → 0,

so
‖τy+zf − τzf‖p → 0 as y → 0.
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Now the result holds for continuous functions with compact support. We use the density in Lp

to get the result for general functions. Let f ∈ Lp and fix ε > 0. There is a g which is continuous
and has compact support so that ‖g − f‖p < ε/3 by density, so we have

‖τy+zf − τzf‖p ≤ ‖τy+z(f − g)‖p + ‖τy+zg − τzg‖p + ‖τz(g − f)‖p <
2

3
ε+ ‖τy+zg − τzg‖p.

Using the result prior, we get that we can take y sufficiently small so that

‖τy+zg − τzg‖p < ε/3,

and we get that
‖τy+zf − τzf‖p < ε,

as desired. �

Problem 23 (Folland 8.4). If f ∈ L∞ and

‖τyf − f‖∞ → 0

as y → 0, then f agree a.e. with a uniformly continuous function.

Proof. Since f ∈ L∞, we have f ∈ L1
loc, since for any K bounded we have that∫

K
f(x) ≤ ‖f‖∞

∫
K

= µ(K)‖f‖∞ <∞.

We then follow the hint. Let

Arf(x) =
1

m(B(r, x))

∫
B(r,x)

f(y)dy.

We wish to first establish that Arf is uniformly continuous for r > 0. Notice that we have

|Arf(x)−Arf(y)| =

∣∣∣∣∣ 1

m(B(r, x))

∫
B(r,x)

f(z)dz − 1

m(B(r, y))

∫
B(r,y)

f(z)dz

∣∣∣∣∣
=

∣∣∣∣∣ 1

m(B(r, y))

∫
B(r,y)

f(z + x− y)dz − 1

m(B(r, y))

∫
B(r,y)

f(z)dz

∣∣∣∣∣ ,
where we shift things around so both are at y. Now, we have∣∣∣∣∣ 1

m(B(r, y))

∫
B(r,y)

f(z + x− y)dz − 1

m(B(r, y))

∫
B(r,y)

f(z)dz

∣∣∣∣∣
=

∣∣∣∣∣ 1

m(B(r, y))

∫
B(r,y)

[f(z + x− y)− f(z)]dz

∣∣∣∣∣
≤ 1

m(B(r, y))

∫
B(r,y)

|f(z + x− y)− f(z)|dz

=
1

m(B(r, y))

∫
B(r,y)

|τx−yf(z)− f(z)|dz

≤ 1

m(B(r, y))

∫
B(r,y)

‖τx−yf − f‖∞dz

=
‖τx−yf − f‖∞
m(B(r, y))

∫
B(r,y)

dz = ‖τx−yf − f‖∞.

So since |Arf(x)−Arf(y)| ≤ ‖τx−yf − f‖∞, we can find δ sufficiently small so that for |x− y| < δ,
|Arf(x)−Arf(y)| ≤ ‖τx−yf − f‖∞ < ε. Hence, it’s uniformly continuous.
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Next, we need to show that Arf is uniformly Cauchy as r → 0. Let r = 1/n, then we wish to
show that as n → ∞, A1/nf is uniformly Cauchy. That is, for every ε > 0, there exists an N > 0
so that for all x, n,m ≥ N , we have that

|A1/nf(x)−A1/m(x)| < ε.

Plugging in things directly, letting r = 1/n and s = 1/m, we have

|Arf(x)−Asf(x)| = |Arf(x)− f(x) + f(x)−Asf(x)| ≤ |Arf(x)− f(x)|+ |f(x)−Asf(x)|.
We now examine the first inequality; we have

|Arf(x)− f(x)| =

∣∣∣∣∣ 1

m(B(r, x))

∫
B(r,x)

f(z)dz − f(x)

∣∣∣∣∣
=

∣∣∣∣∣ 1

m(B(r, x))

∫
B(r,x)

f(z)dz − f(x)

m(B(r, x))

∫
B(r,x)

dz

∣∣∣∣∣
≤ 1

m(B(r, x))

∫
B(r,x)

|f(z)− f(x)|dz.

Now we notice that
τx−zf(z) = f(z + x− z) = f(x),

so that we have
1

m(B(r, x))

∫
B(r,x)

|f(z)− f(x)|dz =
1

m(B(r, x))

∫
B(r,x)

|f(z)− τx−zf(z)|dz.

Notice here that z ∈ B(r, x) ∪ B(s, x). Choosing r and s sufficiently small (i.e., n,m sufficiently
large), we have from above that ‖f − τx−zf‖∞ < ε/2 for all such z. Hence, we get that we can
bound the above by ε/2. The second inequality is analogous, so we have that

|Arf(x)−Asf(x)| < ε

2
+
ε

2
= ε ∀x ∈ Rn.

Hence, we have that it’s uniformly Cauchy.
Since (A1/nf) is uniformly Cauchy, it converges uniformly to some function g, and this function

is uniformly continuous since the A1/nf are all uniformly continuous. Hence, applying Theorem
3.18, we get that g = f almost everywhere, with g uniformly continuous. �
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James Marshall Reber, ID: 500409166 Math 6212, Homework 5

Remark. Thomas O’Hare was a collaborator.

Problem 24. If K ⊂ Rn is compact and U is an open set containing K, there exists f ∈ C∞c such
that 0 ≤ f ≤ 1, f = 1 on K, supp(f) ⊂ U .

Proof. We first must establish the existence of smooth bump functions (Equation 8.1 in Folland

and the remarks before (pg. 236), Exercise 8.3 in Folland). Let η(t) := e−1/tχ(0,∞)(t). We wish

to show that this is a smooth function. First, we claim that for k ∈ N, we have that η(k)(t) =

Pk(1/t)e
−1/t when t > 0, where Pk is a polynomial of degree 2k. To see this, we simply induct.

The case k = 0 is clear, and so assume it holds for k − 1. Then we have

η(k−1)(t) = Pk−1(1/t)e−1/t,

and so taking derivatives on each side we have

η(k)(t) = P ′k−1(1/t)(−1/t2)e−1/t + Pk−1(1/t)e−1/t(1/t)2

= e−1/t(1/t2)
[
Pk−1(1/t)− P ′k−1(1/t)

]
.

Letting x = 1/t, we can rewrite this as

e−xx2
[
Pk−1(x)− P ′k−1(x)

]
.

Now, notice that the degree of the polynomial Pk−1(x) − P ′k−1(x) is going to be 2k − 2, since

derivatives drop a degree, and hence multiplying it by x2 we have that the polynomial has degree
2k. In other words, after rewriting terms, we get that

η(k)(t) = e−1/tPk(1/t).

Notice that, for all k ∈ N, we have that

lim
n→∞

nke−n = 0;

to see this, we rewrite this as

lim
n→∞

nk

en

and use L’Hospitals. We proceed by induction on k. For k = 0, we get this clearly is 0, so assume
it holds for k − 1. Applying L’Hospital here, we have

lim
n→∞

nk

en
= lim

n→∞

knk−1

en
= 0

by the induction hypothesis. Thus, we have the desired result.
Going back, we now wish to show that η(k)(0) = 0 for all k. Again, going by induction on k, we

have that the case k = 0 is by definition, and so we assume it holds for k − 1. For the derivative
on the left, it’s clear that we will have 0 (since this is the constant 0 function), so it suffices to
consider the derivative on the right; i.e., consider the limit as h→ 0+. Thus, we have

η(k)(0) = lim
h→0+

η(k−1)(h)− η(k−1)(0)

h
= lim

h→0+

η(k−1)(h)

h
.

Using what we derived prior, we have that writing h = 1/n and taking n→∞, this can be written
as

η(k)(0) = lim
n→∞

nη(k−1)(1/n) = lim
n→∞

nPk−1(n)e−n = 0,

using the fact that nke−n → 0 as n → ∞. Hence, the derivative on the right is also 0, and so we
have the desired result; that is, η(t) ∈ C∞.
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From here on, we follow Folland. To make a smooth bump function, we define

ψ(x) = η(1− |x|2) = e1/(|x|2−1)χ(0,1)(|x|).
We have then that 0 ≤ ψ(x) ≤ 1, and furthermore ψ ∈ C∞c (Rn), since the composition of smooth
functions is smooth. We let δ = d(K,U c) > 0 (note this is positive since K compact). Let
V = {x : d(x,K) < δ/3}. We then wish to construct a nonnegative ϕ ∈ C∞c with

∫
ϕ = 1

and ϕ(x) = 0 for |x| ≥ δ/3. Noting that ψ ∈ L1 (clearly, since it has compact support and is
continuous) we have that a good candidate is

ϕ(x) =
3nψ(3x/δ)

δn
(∫
ψ
) .

Notice that ∫
ϕ =

∫
3nψ(3x/δ)

δn
(∫
ψ
) =

∫
ψ∫
ψ

= 1

after a change of variables (u = 3x/δ, du = (3/δ)ndx)), and notice that, since ψ is non-zero for
|x| < 1, we have ϕ is non-zero for |x| < δ/3. That is, ϕ is 0 for |x| ≥ δ/3. This then fits the criteria
of what we want.

Now, we can set f = χV ∗ ϕ. Notice that f ∈ C∞, since ϕ ∈ C∞c and χV ∈ L1, so we can
apply Proposition 8.10 to get the desired result. Notice as well that f has compact support by
Proposition 8.6 (d). Hence, f ∈ C∞c . We then check that all the properties for Urysohn are
satisfied:

(1) We see that 0 ≤ f ≤ 1, since (letting V ′x be V shifted by x) we have

f(x) =

∫
χV (x− y)ϕ(y)dy =

∫
V ′x

ϕ(y)dy,

and by what we’ve done earlier we have that

0 ≤
∫
V ′x

ϕ(y)dy ≤
∫
ϕ(y)dy = 1,

so that
0 ≤ f(x) ≤ 1

for all x.
(2) Taking z ∈ K now, we have

f(z) =

∫
V
ϕ(z − y)dy =

∫
V

3nψ(3(z − y)/δ)

δn
(∫
ψ
) dy.

Let u = 3(z − y)/δ, then du = (−3/δ)ndy, so we have

f(z) = −
∫
V

ψ(u)∫
ψ
du = −

∫
Rn

ψ(u)∫
ψ
du =

∫
Rn

ψ(u)∫
ψ
du = 1.

So f(z) = 1 for all z ∈ K.
(3) Finally, we note that Proposition 8.6 (d) gives

supp(f) ⊂ {x+ y : x ∈ supp(χV ), y ∈ supp(ϕ)} ⊂ U.
To see this, simply note that

supp(χV ) + supp(ϕ) = V + {x : |x| ≤ δ/3} ⊂ {x : d(x,K) ≤ 2δ/3} ⊂ U,
since V = K + {x : |x| < δ/3}, so V + {x : |x| ≤ δ/3} ⊂ K + {x : |x| ≤ 2δ/3} = {x :
d(x,K) ≤ 2δ/3}, and taking the closure of everything preserves containment.

Hence, we have that f satisfies all of the criteria. �
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Problem 25. Suppose that p ∈ (1,∞) and f ∈ Lp(R). If there exists h ∈ Lp(R) such that

lim
y→0

∥∥∥∥τ−yf − fy
− h
∥∥∥∥
p

= 0,

we call h the strong Lp derivative of f . Suppose that p and q are conjugate exponents, f ∈ Lp(R),
g ∈ Lq(R), and the Lp derivative Df exists. Then D(f ∗ g) exists (in the ordinary sense) and is
equal to (Df) ∗ g.

Proof. We wish to show that D(f ∗ g) = (Df) ∗ g. To see this, we pick a point x and examine

|D(f ∗ g)(x)− (Df) ∗ g(x)|.

We write out the function to get

lim
y→0

∣∣∣∣τ−y(f ∗ g)(x)− (f ∗ g)(x)

y
− ((Df) ∗ g)(x)

∣∣∣∣
= lim

y→0

∣∣∣∣((τ−yf) ∗ g)(x)− (f ∗ g)(x)

y
− ((Df) ∗ g)(x)

∣∣∣∣
= lim

y→0

∣∣∣∣(((τ−yf)− f) ∗ g)(x)

y
− ((Df) ∗ g)(x)

∣∣∣∣
= lim

y→0

∣∣∣∣(((τ−yf)− f)

y
∗ g
)

(x)− ((Df) ∗ g)(x)

∣∣∣∣
= lim

y→0

∣∣∣∣[(((τ−yf)− f)

y
−Df

)
∗ g
]

(x)

∣∣∣∣
= lim

y→0

∣∣∣∣∫ g(x− z)
(

((τ−yf)− f)

y
−Df

)
(z)dz

∣∣∣∣
≤ lim

y→0

∫
|g(x− z)|

∣∣∣∣(((τ−yf)− f)

y
−Df

)
(z)

∣∣∣∣ dz
≤ lim

y→0
‖g‖q

∥∥∥∥((τ−yf)− f)

y
−Df

∥∥∥∥
p

= 0.

Hence, we have D(f ∗ g)(x) = (Df) ∗ g(x) for all x, and so we have the desired result. �

Problem 26. For p ∈ (1,∞) if f ∈ Lp(R) then the Lp derivative h of f exists iff f is absolutely
continuous on every bounded interval up to a modification on a null set and its pointwise derivative
f ′ is in Lp, in which case h = f ′ a.e.

Proof. ( =⇒ ): Assume f has Lp derivative h. We follow the hint in Folland. Choose g ∈ Cc(R) with∫
g = 1. Define gt(x) in the usual way. By the prior problem, we have D(f ∗gt) = D(f)∗gt = h∗gt,

so this is differentiable with derivative h∗gt. Notice now that for every pair x ≤ y ∈ R, we get that

(f ∗ gt)(y)− (f ∗ gt)(x) =

∫ y

x
(h ∗ gt)(z)dz.

Now, by Theorem 8.14 (a), we note that h ∗ gt → h as t→ 0 in the Lp norm, and f ∗ gt → f in
the Lp norm as t→ 0. We note that we also have

lim
t→0

∫ y

x
h ∗ gt(z) =

∫ y

x
h(z)dz.

To see this, use the Lp convergence and Hölder to get that

‖(h ∗ gt)χ[x,y] − hχ[x,y]‖ = ‖[(h ∗ gt)− h]χ[x,y]‖ ≤ ‖h ∗ gt − h‖p‖χ[x,y]‖q → 0.
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Writing things out, we have ∣∣∣∣∫ y

x
[(h ∗ gt)(z)− h(z)]dz

∣∣∣∣→ 0,

giving us the desired result.
From prior homework (Homework 1, Problem 5 or Folland 6.9), we have that f ∗ gt → f in

the Lp norm implies there is a subsequence (tj) so that f ∗ gtj → f almost everywhere. Fix some
x so that f ∗ gj(x)→ f(x). For all y, then, we have

(f ∗ gtj )(y) = (f ∗ gtj )(x) +

∫ y

x
(h ∗ gtj )(z)dz.

Define a function

p(y) = lim
j→∞

[
f ∗ gtj (x) +

∫ y

x
(h ∗ gtj )(z)dz

]
= f(x) +

∫ y

x
h(z)dz.

Noting that h ∈ L1([a, b]) for any bounded interval [a, b] (since things are finite), we get that p
is absolutely continuous on any bounded interval by the Fundamental Theorem of Lebesgue
Integrals (Theorem 3.35). Furthermore, p = f almost everywhere, and so p′ = h = f ′ pointwise
almost everywhere (Corollary 3.31). So redefining f to be p on some null set, we get that f is
absolutely continuous, pointwise differentiable, and the derivative will be h.
(⇐= ): We again follow Follands hint. Assume that f is absolutely continuous on every bounded
interval and its pointwise derivative is f ′, which is in Lp. We wish to show that the Lp derivative
of f exists. Note that

f(x+ y)− f(y)

y
− f ′(x) =

1

y

∫ y

0
f ′(x+ t)dt− f ′(x)

=
1

y

∫ y

0
f ′(x+ t)dt− 1

y

∫ y

0
f ′(x)dt =

1

y

∫ y

0
[f ′(x+ t)− f ′(x)]dt.

Taking the p norms of both sides gives∥∥∥∥f(x+ y)− f(x)

y
− f ′(x)

∥∥∥∥
p

=

(∫ ∣∣∣∣1y
∫ y

0
[f ′(x+ t)− f ′(x)]dt

∣∣∣∣p dx)1/p

≤
((

1

y

∫ y

0
|f ′(x+ t)− f ′(x)|dt

)p
dx

)1/p

≤ 1

y

∫ y

0

(∫
|f ′(x+ t)− f ′(x)dx

)1/p

dt

=
1

y

∫ y

0
‖τ−t(f ′)− f ′‖pdt,

where the first inequality follows from the triangle inequality and the second from Minkowski’s
inequality for integrals. Fix ε > 0. By Proposition 8.5, since f ∈ Lp, we can find δ > 0 so that
for |t| < δ, we have ‖τ−t(f ′)− f ′‖p < ε. Choosing |y| < δ, we have∥∥∥∥f(x+ y)− f(x)

y
− f ′(x)

∥∥∥∥
p

≤ 1

y

∫ y

0
εdt = ε.

Letting ε→ 0 gives us the desired result. �

Problem 27. Show that {e2πiκ·x}κ∈Zn is an orthonormal basis in L2(Tn).
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Proof. We first show that this is an orthonormal set. Let κ, γ ∈ Zn. We have that

〈e2πiκ·x, e2πiγ·x〉 =

∫
Tn
e2πiκ·xe−2πiγ·xdx =

∫
Tn
e2πi(κ−γ)·xdx.

If κ = γ, then κ− γ = 0, and so we are left with∫
Tn
dx = 1.

That is, ‖e2πiκ·x‖ = 1. Now, if κ 6= γ, we have that κ − γ = (α1, . . . , αn), αi ∈ Zn, and the

non-equality forces αi 6= 0 for some i. Since |e2πi(κ−γ)·x| ≤ 1, we have that the function is in L1,
and so Fubini applies to give us∫

Tn
e2πi(κ−γ)·xdx =

∫ 1

0
e2πiα1x1dx1 · · ·

∫ 1

0
e2πiαnxndxn.

Assume without loss of generality that α1 6= 0. Letting u = 2πiα1x1, du = 2πiα1dx1 gives us∫ 1

0
e2πiα1x1dx1 =

1

2πiα1

∫ 2πiα1

0
eudu =

e2πiα1 − 1

2πiα1
,

and we note that for any integer k ∈ Z, we have

e2πik = 1,

which we can deduce easily from DeMoivre:

e2πik = cos(2πik) + i sin(2πik) = 1.

Hence, we have that ∫ 1

0
e2πiα1x1dx1 = 0,

and so our entire integral is 0. That is, we have that this is indeed an orthonormal set.
Next, we wish to apply Stone-Weierstrass to get that this is a dense set in L2(Tn). To do so,

we need to verify that the span of these forms an algebra. First, notice that we have it’s a vector
subspace; multiplying still gives us a linear combination, and adding linear combinations still gives
us finite linear combinations. Next, we need to show that the product of finite linear combinations
is still in the space. Notice that for κ, γ ∈ Zn we have

e2πiκ·x · e2πiγ·x = e2πi(κ+γ)·x,

and κ + γ ∈ Zn still. Expanding over products of linear combinations, then, still gives us a linear
combination. So it’s an algebra.

We then need that it separates points. Let x 6= y ∈ Tn. Notice that this implies that there
is a dimension where these two points disagree; i.e., this reduces down to just considering x 6= y
on S1. Using DeMoivre’s again, we see this boils down to using the fact that sine and cosine are
projections onto the x and y axis (viewing S1 in R2), and so if x 6= y on the circle, we have that at
least one of sin(x) 6= sin(y) or cos(x) 6= cos(y). Hence, there is a trigonometric polynomial f where
f(x) 6= f(y).

Now, e2πi0·x = 1 is in in this algebra, so all constant functions are in the algebra, and we have

that the complex conjugation of e2πiκ·x = e−2πiκ·x which is still in this algebra, since −κ is an
integer still. Hence, it’s closed under complex conjugation, and so if we have that the algbera is A,

we have that A‖·‖u = C(Tn); i.e. they are dense in the space of continuous functions in the uniform
norm. Using Proposition 7.9, we have Cc(Tn) ⊂ C(Tn) is dense in L2(Tn). By last semesters
notes (https://people.math.osu.edu/penneys.2/6211/FunctionalAnalysis.pdf, pg. 20, last theorem)
we have the being dense is equivalent to being an orthonormal basis, and so this set is indeed an
orthonormal basis. �
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Problem 28. The Fourier transform maps the Schwarts class S continuously into itself.

Remark. I tried following Folland but have only a slight idea on how he got what he did. The first
proof is based on https://math.stackexchange.com/questions/78441/fourier-transform-of-schwartz-
space?noredirect=1&lq=1. The second proof is based on a long discussion with Thomas, and
hopefully mimics whatever Folland was trying to say (the solution on Stackexchange that follows
this is mine).

Proof. We first wish to show that ·̂ : S → S is linear. It’s clear that it is finitely additive, since

f̂ + g(m) =

∫
Rn

(f + g)(x)e−2πim·xdx =

∫
Rn
f(x)e−2πim·xdx+

∫
Rn
g(x)e−2πim·xdx = f̂(m) + ĝ(m),

and so we just need to check that if r ∈ C is a scalar, then r̂f = rf̂ . Notice that

r̂f(m) =

∫
Rn

(rf)(x)e−2πim·xdx = r

∫
Rn
f(x)e−2πim·xdx = rf̂(m).

So the operator is linear.
Now, we have a family of (semi)norms on S given by ‖ · ‖(N,α). We wish to show that for each

(N,α), there is some constant C so that

‖f̂‖(N,α) ≤ C
k∑
1

‖f‖(Nk,αk).

This will give us continuity by Proposition 5.15. Writing out thedefinition, we have

‖f̂‖(N,α) = sup
x∈Rn

(1 + |x|)N |∂αf̂ |.

We now follow the proof of Proposition 8.3 to get a bound. Notice that
∑n

1 |xj |N is strictly
positive on |x| = 1, so admits a positive minimum δ > 0 (since this is compact and the function
continuous), and so since |x/|x|| = 1, we get

n∑
1

∣∣∣∣ xj|x|
∣∣∣∣N > δ =⇒

n∑
1

|xj |N

|x|N
> δ =⇒

n∑
1

|xj |N > δ|x|N .

Hence, we have

(1 + |x|)N ≤ 2N (1 + |x|N ) ≤ 2N

[
1 + δ−1

N∑
1

|xj |N
]
≤ 2Nδ−1

∑
|β|≤N

|xβ|.

Substituting this in, we get

‖f̂‖(N,α) ≤ sup
x∈Rn

2Nδ−1
∑
|β|≤N

|xβ∂αf̂ |

 ≤ 2Nδ−1
∑
|β|≤N

‖xβ∂αf̂‖u.

We now turn to inspecting xβ∂αf̂ . Fixing x and using Proposition 8.22 (d) we have

|xβ∂αf̂(x)| = |xβ ̂[(−2πit)αf(x)]|

=

∣∣∣∣xβ ∫
Rn

(−2πit)αf(t)e−2πix·tdt

∣∣∣∣
=

∣∣∣∣∫
Rn
xβ(−2πit)αf(t)e−2πix·tdt

∣∣∣∣
= (2π)α

∣∣∣∣∫
Rn
xβtαf(t)e−2πix·tdt

∣∣∣∣ .
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Now examine the inner integral. We have∫
Rn
xβtαf(t)e−2πix·tdt.

Let’s first normalize; letting u = −2πx, we may rewrite the integral as∫
Rn

(
u

−2π

)β
tαf(t)eu·tdt

=
1

(−2π)|β|

∫
Rn
uβtαf(t)eiu·tdt.

Now notice that
∂βeiu·t = i|β|uβeiu·t;

to prove this, we go by induction. For one variable, we have

d

dt1
eiu·t =

d

dt1
ei(u1t1+···+untn)

=
d

dt1
eiu1t1 · · · eiuntn = iu1e

iu·t.

Inducting for n is clear based off of this. We have

dn

dtn1
eiu·t =

d

dt

dn−1

dtn−1
1

eiu·t =
d

dt
in−1un−1

1 eiu·t = inun1e
iu·t.

Inducting on the length of β follows as well. Assuming we have it for length n − 1, write β =
(β1, . . . , βn) = (β1, . . . , βn−1, 0) + (0, . . . , βn), letting γ = (β1, . . . , βn−1, 0). Applying the induction
hypothesis then gives

∂βeiu·t =
dβn

dtβnn
∂γeiu·t =

dβn

dtβnn
i|γ|uγeiu·t = i|γ|+βnuγ+(0,...,βn)eiu·t = i|β|uβeiu·t.

So we have
∂βeiu·t

i|β|
= uβeiu·t,

and so substituting this in gives us

1

(−2πi)|β|

∫
Rn

(∂βeiu·t)f(t)tαdt.

Examine this in just one variable. We have then∫
R

(
dn

dtn
eiut
)
f(t)tαdt.

We then do integration by parts here, letting dv = (dn/dtn)eiutdt, v = (dn−1/dtn−1)eiut, u = f(t)tα,
du = ((d/dt)f(t)tα + αtα−1f(t))dt. We can then rewrite the above as

dn−1

dtn−1
eiutf(t)tα

∣∣∣∣∞
t=−∞

−
∫ [

dn−1

dtn−1
eiut
]

((d/dt)f(t)tα + αtα−1f(t))dt

= −
∫ [

dn−1

dtn−1
eiut
]

((d/dt)f(t)tα + αtα−1f(t))dt,

since f is a Schwarz function and |(dn−1/dtn−1)eiut| ≤ C < ∞. Iterating and using the product
rule then gives us

(−1)n
∫
eiut

[
n∑
k=0

n!

k!(n− k)!
f (k)

(
d(n−k)

dt(n−k)
tα

)
.

]
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Now, since |∂αeiu·t| ≤ C < ∞, f(t)tα ∈ L1(Rn) since f is Schwarz (use the fact that |f(t)| ≤
CN (1 + |t|)−N for all N and pick N sufficiently large), and ∂αf ∈ S for all α, we get that Tonelli
tells us Fubini applies, and so we can use this to iterate the integral above. Moreover, we get that
we can iterate integration by parts. Using what we proved for one variable above, then, we get that
the integral is equal to

1

(2πi)|β|

∫
Rn
eiu·t

 ∑
η+γ=β

β!

η!γ!
(∂ηf)(∂γtα)dt


=

1

(2πi)|β|
α!

(α− β)!

∑
η+γ=β

β!

η!γ!

[∫
Rn
eiu·t(∂ηf)tα−γdt

]
.

Substituting back in u = −2πx, multiplying in the (2π)|α|, and taking the absolute value, we get
that this is ∣∣∣∣∣∣(2π)|α|−|β|

α!

(α− β)!

∑
η+γ=β

β!

η!γ!

[∫
Rn
e−2πix·t(∂ηf)tα−γdt

]∣∣∣∣∣∣
≤ (2π)|α|−|β|

α!

(α− β)!

∑
η+γ=β

β!

η!γ!

[∫
Rn
|∂ηf ||t|α−γdt

]
.

Divide and multiply by (1 + |t|)n+1 on the inside of the integral. This give

(2π)|α|−|β|
α!

(α− β)!

∑
η+γ=β

β!

η!γ!

[∫
Rn

(1 + |t|)n+1

(1 + |t|)n+1
|∂ηf ||t|α−γdt

]

≤ (2π)|α|−|β|
α!

(α− β)!

∑
η+γ=β

β!

η!γ!

[∫
Rn

1

(1 + |t|)n+1
dt

]
‖|∂ηf(t)|(1 + |t|)n+1|t|α−γ‖u

≤ (2π)|α|−|β|
α!

(α− β)!

∑
η+γ=β

β!

η!γ!

[∫
Rn

1

(1 + |t|)n+1
dt

]
‖|∂ηf(t)|(1 + |t|)n+1+|α−γ|‖u

=
∑

η+γ=β

(2π)|α|−|β|
α!

(α− β)!

β!

η!γ!

[∫
Rn

1

(1 + |t|)n+1
dt

]
‖f‖n+1+|α−γ|,η.

Letting

Cη,γ = (2π)|α|−|β|
α!

(α− β)!

β!

η!γ!

[∫
Rn

1

(1 + |t|)n+1
dt

]
,

we can more concisely write this as ∑
η+γ=β

Cη,γ‖f‖n+1+|α−γ|,η.

Notice as well this does not depend on x, so we get that

‖xβ∂αf̂‖u ≤
∑

η+γ=β

Cη,γ‖f‖n+1+|α−γ|,η,

and so substituting this in to the above, we have

‖f̂‖(N,α) ≤ 2Nδ−1
∑
|β|≤N

∑
η+γ=β

Cη,γ‖f‖n+1+|α−γ|,η.
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These are all finite sums, so choosing C ′ to be the maximum of Cη,γ over all γ, η, β and letting
C = 2Nδ−1C ′, we have

‖f̂‖(N,α) ≤ C
∑
|β|≤N
η+γ=β

‖f‖n+1+|α−γ|,η,

which satisfies the criteria for Proposition 5.15. Thus, the Fourier transform is continuous on
S. �

Proof following Folland. Recall from Folland Exercise 8.1 that we have

∂α(xβf) = xβ∂αf +
∑

cγδx
δ∂γf,

where the cγδ vanish for |γ| ≥ |α|, |δ| ≥ |β|. To prove this, we use the product rule (which we
discussed in recitation). We induct on the length of β. First, assume that β has length 1. Using
general Leibniz rule (without loss of generality assuming that β is non-zero in the first coordinate),
we have

∂α(xk1f) =
∑

γ+δ=α

α!

γ!δ!
(∂γf)(∂δxk1).

This will evaluate to 0 for all δ which are non-zero outside of the first coordinate, and so we get
that this amounts to

∂α(xkf) = xk∂αf +
∑

γ+(j,0,...,0)=α
j 6=0

α!

γ!j!
(∂γf)

(
dj

dxj1
xk

)

= xk∂αf +
∑

γ+(j,0,...,0)=α
j 6=0

α!

γ!j!
(∂γf)

(
k!

(k − j)!
xk−j

)

= xk∂αf +
∑

cγδ(∂
γf)xδ.

Assuming it holds for length of β being n− 1, we have that getting it for n is a matter of writing
β = (β1, . . . , βn−1, 0) + (0, . . . , 0, βn) and letting γ = (β1, . . . , βn−1, 0). This then gives us

∂α(xβf) = ∂α(xβnn xγf) = xβnn ∂α(xγf) +
∑

cδη(∂
δf)xη.

Using the induction hypothesis now, we get

∂α(xβf) = xβnn xγ(∂αf) +
∑

cδη(∂
δf)xη = xβ(∂αf) +

∑
cδ′η′(∂

δ′f)xη
′
,

as desired. Note that the properties on the constants vanishing are clear by the derivation.
By definition, we have that

‖f‖(N,α) = sup
x∈Rn

(1 + |x|)N |∂αf |,

and using what we’ve derived earlier we have

‖f‖(N,α) ≤ sup
x∈Rn

2Nη−1
∑
|β|≤N

|xβ∂αf |

 ,
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where we now write η instead of δ for the minimum for notational convenience. Notice now that

‖f̂‖(N,α) ≤ sup
x∈Rn

2Nη−1
∑
|β|≤N

|xβ∂αf̂ |


(Use Folland 8.22 (d) on ∂αf̂) = sup

x∈Rn

2Nη−1
∑
|β|≤N

|xβ ̂(−2πix)αf |


(Use linearity and the absolute value to pull out constants) = sup

x∈Rn

2Nη−1
∑
|β|≤N

(2π)|α|||xβx̂αf |


(Use Folland 8.22 (e) on xβx̂αf , pull constants out with linearity) = sup

x∈Rn

2Nη−1
∑
|β|≤N

(2π)|α|−|β||∂̂βxαf |


(Use the product rule to rewrite ∂βxαf) = sup

x∈Rn

2Nη−1
∑
|β|≤N

(2π)|α|−|β|
∣∣∣∣[xα∂βf +

∑
cγδx

δ∂γf
]∧∣∣∣∣


(Use linearity of Fourier transform) = sup
x∈Rn

2Nη−1
∑
|β|≤N

(2π)|α|−|β|
∣∣∣x̂α∂βf +

∑
cγδx̂δ∂γf

∣∣∣


(T.I.) ≤ 2Nη−1
∑
|β|≤N

(2π)|α|−|β|
[
‖x̂α∂βf‖u +

∑
cγδ‖x̂δ∂γf‖u

]
(Inequality from Folland) ≤ 2Nη−1

∑
|β|≤N

(2π)|α|−|β|
[
C‖(1 + |x|)n+1xα∂βf‖u +

∑
cγδC‖(1 + |x|)n+1xδ∂γf‖u

]
(Use the fact that |x|δ ≤ (1 + |x|)|α|) ≤ 2Nη−1

∑
|β|≤N

(2π)|α|−|β|
[
C‖(1 + |x|)n+|α|+1∂βf‖u+

∑
cγδC‖(1 + |x|)n+1+|α|∂γf‖u

]
(By definition) = 2Nη−1

∑
|β|≤N

(2π)|α|−|β|
[
C‖f‖(n+|α|+1,β) +

∑
cγδC‖f‖(n+|α|+1,γ)

]
,

where the constants in the last sum are such that cγδ = 0 unless |γ| < |β| and |δ| < |α|. Now,
absorbing constants and maybe letting some constants be zero, we can write this as

‖f̂‖(N,α) ≤
∑

|γ|≤|β|≤N
|δ|≤|α|

Cβ,δ,γ‖f‖(|α|+n+1,γ).

This is a finite sum, so we can find some constant denoted by CN,α which bounds above all constants
and gets rid of multiplicity, and this gives us

‖f̂‖(N,α) ≤ CN,α
∑
|γ|≤N

‖f‖|α|+n+1,γ ,

which is now what Folland has. To see where the inequality comes from, notice that we have

‖x̂α∂βf‖u = ‖x̂α∂βf‖∞ ≤ ‖xα∂βf‖1,
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and furthermore calculating the last part, we have∫
Rn
|xα∂βf | =

∫
Rn

(1 + |x|)n+1

(1 + |x|)n+1
|xα∂βf |dx ≤

(∫
Rn

dx

(1 + |x|)n+1

)
‖(1 + |x|)n+1xα∂βf‖u.

Setting

C =

∫
Rn

dx

(1 + |x|)n+1
<∞,

we have the desired inequality. �

Problem 29. Let f, g ∈ L1(Tn), m ∈ Zn, and y ∈ Tn. Then we have

(1) ̂(f + g)(m) = f̂(m) + ĝ(m),

(2) τ̂yf(m) = f̂(m)e−2πim·y,

(3) f̂ ∗ g(m) = f̂(m)ĝ(m).

Proof. We first check that if f, g ∈ L1(Tn), then f ∗ g is periodic with period 1. Writing things out,
we have

(f ∗ g)(x) =

∫
Tn
f(x− y)g(y)dy.

Now, we check that this has period 1. We see that

(f ∗ g)(x+ 1) =

∫
Tn
f(x+ 1− y)g(y)dy =

∫
Tn
f(x− y)g(y)dy = (f ∗ g)(x),

since f is a function with period 1. So the convolution is still in the space of functions on T1.

(1) We have

̂(f + g)(m) =

∫
Tn

(f + g)(x)e−2πim·xdx

=

∫
Tn

[
f(x)e−2πim·x + g(x)e−2πim·x] dx

=

∫
Tn

[
f(x)e−2πim·xdx+

∫
Tn
g(x)e−2πim·x

]
dx

= f̂(m) + ĝ(m).

(2) Notice that

τ̂yf(m) =

∫
Tn

(τyf)(x)e−2πim·xdx =

∫
Tn
f(x− y)e−2πim·xdx,

where here we use the alternate definition of translation given in the chapter so that the
equation makes sense (i.e. we now have τyf(x) = f(x− y) rather than τyf(x) = f(x+ y)).
Let u = x− y, du = dx, then we can rewrite the above as∫

Tn
f(u)e−2πim·(u+y)du = e−2πim·yf̂(m).

(3) We have

f̂ ∗ g(m) =

∫
Tn

(f ∗ g)(x)e−2πim·xdx =

∫
Tn

(∫
Tn
f(x− y)g(y)dy

)
e−2πim·xdx

=

∫
Tn

∫
Tn
f(x− y)g(y)e−2πim·xdydx.
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Taking the absolute value, we see that by Tonelli we have∫∫
|f(x− y)||g(y)|d(y × x) =

∫ (∫
|f(x− y)|dx

)
|g(y)|dy = ‖f‖1‖g‖1 <∞,

so the functions are in L1(y×x). Hence we can use Fubini to change the order of integration.
Thus, we have∫

Tn

∫
Tn
f(x− y)g(y)e−2πim·(x−y)e−2πim·ydxdy =

∫
Tn

(∫
Tn
f(x− y)e−2πim·(x−y)dx

)
e−2πim·yg(y)dy

=

∫
Tn
f̂(m)e−2πim·yg(y)dy = f̂(m)ĝ(m).

�
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James Marshall Reber, ID: 500409166 Math 6212, Homework 6

Remark. Thomas O’Hare was a collaborator.

Remark. I guess there is a discrepancy between Grafakos’ second and third edition, I am using
the third edition (which can be found easily through a google search).

Problem 30 (Folland 9.16). Let

sinc(x) =

{
sin(πx)
πx if x 6= 0,

1 if x = 0.

(a) If a > 0, then (χ[−a,a])
∧(x) = (χ[−a,a])

∨(x) = 2asinc(2ax).
(b) Let

Ha = {f ∈ L2 : f̂(ζ) = 0 a.e. for |ζ| > a}.
Then Ha is a Hilbert space and

{
√

2asinc(2ax− k) : k ∈ Z}
is an orthonormal basis for Ha.

(c) If f ∈ Ha, then f ∈ C0 after a modification on a null set, and

f(x) =

∞∑
−∞

f(k/2a)sinc(2ax− k),

where the series converge both uniformly and in L2.

Proof. (a) Assume x 6= 0. We have

(χ[−a,a])
∧(x) =

∫
R
χ[−a,a](z)e

−2πix·zdz

=

∫ a

−a
e−2πix·zdz.

Letting u = −2πixz, du = −2πixdz, we have that the above integral is equal to

e−2πixz

−2πix

∣∣∣∣a
z=−a

=
−e−2πixa + e2πixa

2πix
.

By DeMoivre,
eix = cos(x) + i sin(x),

e−ix = cos(x)− i sin(x),

and subtracting the second from the first and dividing by 2i gives

eix − e−ix

2i
= sin(x).

Using this, we can rewrite the above as

−e−2πixa + e2πixa

2πix
=

2 sin(2πxa)

2πx
=

2a sin(2πxa)

2πxa
=

2a sin(π[2ax])

π[2ax]
= 2asinc(2ax),

as desired. Similarly,

(χ[−a,a])
∨(x) = (χ[−a,a])

∧(−x) =

∫
R
χ[−a,a](z)e

2πixzdz

=

∫ a

−a
e2πixzdz.
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Letting u = 2πixz, du = 2πixdz, we have that the integral evaluates to

e2πixz

2πix

∣∣∣∣a
z=−a

=
e2πixa − e−2πixa

2πix
,

and the same argument as above gives that this comes out to 2asinc(2ax). For x = 0, we have
that (

χ[−a,a]

)∧
(0) =

∫ a

−a
dx = 2a = 2asinc(0) =

(
χ[−a,a]

)∨
(0).

Hence, we have (χ[−a,a])
∧(x) = (χ[−a,a])

∨(x) = 2asinc(2ax) for all x.

(b) We recall that L2 is a Hilbert space from prior homework, and so it suffices to show that this
is a closed subspace. First, if f, g ∈ Ha, then we have that

f̂ + g(ζ) = f̂(ζ) + ĝ(ζ) = 0 a.e. for |ζ| > a,

so f + g ∈ Ha. If r is a scalar, we see that

r̂f(ζ) = rf̂(ζ) = 0 a.e. for |ζ| > a,

so it is a subspace.
Next, we wish to show that it is closed. Let (fn) ⊂ Ha be a sequence such that fn → f in L2.

The goal is to show that f ∈ Ha; that is, f̂(ζ) = 0 a.e. for all |ζ| > a. Notice that Plancherel’s

theorem says that ·̂ extends uniquely to a unitary isomorphism on L2, so we have that f̂n → f̂

in L2; furthermore, we can extract some subsequence f̂nj → f̂ almost everywhere. Hence, we

have f̂(ζ) = 0 a.e. for |ζ| > a.
Now, we need to show that

{
√

2asinc(2ax− k) : k ∈ Z}
is an orthonormal basis for Ha. First, we show that the set is actually orthonormal. Letting
Ek(x) =

√
2asinc(2ax− k), we note that this is the same as showing that

〈Ek(x), Ek′(x)〉 =

{
0 if k 6= k′

1 if k = k′.

Since the Fourier transform is a unitary isomorphism, we get

〈Ek, Ek′〉 = 〈Êk, Êk′〉.
Recall that part (a) tells us that

(χ[−a,a])
∨(x) = 2asinc(2ax),

where here we interpret the Fourier inverse in terms of the L2 Fourier transform as well as in
terms of the L1 Fourier transform (so that we may ignore issues of the transform being L1 for
Fourier inversion). We note such an interpretation is valid by Plancherel.

Taking the Fourier transform (to help with notation, we will denote the Fourier transform
with F instead of ·̂ and the inverse Fourier transform with G instead of ·∨) we have that

F(2asinc(2ax− k)) = 2aF(sinc(2a(x− k/2a))).

Writing this in terms of the translation function gives(
τk/2aF(G(χ[−a,a]))

)
= 2aF(τk/2asinc(2ax)) = 2aF(sinc(2ax− k)).

We must be careful here. We’d like to just use Theorem 8.22 (a) and conclude the desired
result, however this only works for L1 functions and, as we’ve noted in recitation, sinc is not an
L1 function. We can salvage this by extending the result to a.e. equivalence (or L2 equivalence)
in the following way.

54



Claim. If f ∈ L2(Rn), we have that

F(τyf)(m) = e−2πim·yF(f)(m) as functions in L2.

Proof. Let f ∈ L2 and take (fn) ⊂ L1 ∩L2 such that fn → f in L2. Let y be some point in Rn.
Note that

F(τyfn)(m) = e−2πim·yF(fn)(m)

by Theorem 8.22 (a). From this, we conclude that

F(τyfn)→ e−2πim·yF(f)

in L2. Furthermore, we note that

‖τy(fn)− τy(f)‖2 = ‖τy(fn − f)‖2 = ‖fn − f‖2 → 0.

So Plancherel tells us that
F(τy(fn))→ F(τy(f))

in L2 as well. Hence, as functions in L2, we have

F(τy(f)) = e−2πim·yF(f).

�

Using this claim, we get that

F(τk/2aG(χ[−a,a]))(x) = e−2πim·yχ[−a,a](x) as functions in L2.

So, we have that

F(2asinc(2ax− k)) = e−2πim·yχ[−a,a](x) as functions in L2.

Now, using that the Fourier transform is unitary, we have

〈Ek, Ek′〉 = 〈Êk, Êk′〉.
Writing out the right hand side and using the result from the claim (which is valid, since we
only need up to L2 equivalence here), we have

1

2a

∫
R
χ[−a,a](x)e−2πix(k−k′)/2adx =

1

2a

∫ a

−a
e−2πix(k−k′)/2adx.

If k = k′, we get 1 since
1

2a

∫ a

−a
dx =

2a

2a
= 1.

Assume then that k 6= k′. Letting u = −2πix(k − k′)/2a, we get du = −dx2πi(k − k′)/2a, so
we have

1

2πi(k′ − k)

∫ −πi(k−k′)
πi(k−k′)

eudu =
e−πi(k−k

′) − eπi(k−k′)

2πi(k − k′)
= − sin(π(k − k′)) = 0.

So the set is orthogonal, as desired.
We now need to show completeness of the span of this set. That is, we wish to show that if

〈g,Ek〉 = 0 for all k, then g = 0 almost everywhere. Notice that

0 = 〈g,Ek〉 = 〈ĝ, Êk〉 =

∫
ĝ(x)Êk(x)dx

=

∫
ĝ(x)
√

2a · F(sinc(2ax− k))dx =
1√
2a

∫
ĝ(x)2aF(sinc(2ax− k))dx

=
1√
2a
〈ĝ, e2πixk/2aχ[−a,a]〉.
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Since this holds for all k ∈ Z, we claim that this shows that ĝ = 0 on [−a, a]. To show this,
we follow the guideline outlined in recitation. On L2([−1/2, 1/2]) = L2(T1), Theorem 8.20
tells us that {e2πikx} is an orthonormal basis. To adjust this for L2([−a, a]) = {f ∈ L2 : f =
fχ[−a,a]a.e.} = H ′a = F(Ha), we simply scale. Consider the map T : L2([−a, a]) → L2(T1) via

Tf = f(x/2a). This is bijective, with inverse T−1 : L2(T1) → L2([−a, a]) given by T−1f 7→
f(2ax), and furthermore we see that

〈Tf, Tg〉 =

∫ 1/2

−1/2
f(x/2a)g(x/2a)dx =

∫ a

−a
f(x)g(x)dx = 〈f, g〉

by a simple change of variables. So it is a unitary map. Now, if g is such that 〈g,Ek〉 = 0

for all Ek, we get that it is such that 〈g,Ek〉 = 〈ĝ, Êk〉 = 〈T ĝ, T Êk〉 = 0 for all TÊk. Since
this is an orthonormal basis of L2(T1), we get that this forces T ĝ = 0. Using that T and ·̂ are
unitary, this then implies that g = 0 on L2([−a, a]), or g = 0 almost everywhere on [−a, a], and
by virtue of g being in Ha, we get that g = 0 almost everywhere as desired. So it is indeed an
orthonormal basis.

(c) Let f ∈ Ha. We wish to show that f ∈ C0 (after modifying on a null set), so it suffices to show
there is a h ∈ C0 such that f = h almost everywhere. Since f ∈ Ha, we get that f∧ is such that
it is supported in [−a, a] and is in L2 using Plancherel. Now, since it is supported in [−a, a], we
get that f∧ ∈ L1∩L2 (Proposition 6.12). Taking the inverse Fourier transform and invoking
Plancherel (that is, interpreting this in terms of the L2 Fourier transform rather than using
Fourier inversion), we get that (f∧)∨ = f in L2 (i.e. almost everywhere), and Riemann-Lebesgue
says that (f∧)∨ = h ∈ C0 (by Plancherel, the L2 Fourier transform agrees with the usual Fourier
transform on L1 ∩ L2). To see this more explicitly, notice that (f∧)∨(x) = (f∧)∧(−x), since
f∧ ∈ L1∩L2. Now, C0 = C0(R) is the space of functions where f(x)→ 0 as |x| → 0. Riemann-
Lebesgue says that (f∧)∧ ∈ C0(R), so using this we have that (f∧)∧(−x) → 0 as |x| → ∞ as
well; in other words, (f∧)∨ ∈ C0(R). So f = h = (f∧)∨ almost everywhere, where h ∈ C0.

Now, we get from the orthonormal basis that

f(x) =
∑
k∈Z
〈f,Ek〉Ek(x).

Let ck = 〈f,Ek〉. We then get that

f(x) =
∑
k∈Z

ckEk(x).

We wish to determine what the value for ck is. Plugging in r/2a, we have

f(r/2a) =
∑
k∈Z

ckEk(r/2a)

=
∑
k∈Z

ck
√

2asinc(r − k).

Recall that for r 6= k, sinc(r−k) = 0, since for κ ∈ Z−{0} we have sinc(κ) = sin(πκ)/(πκ) = 0,
while for r − k = 0 we have sinc(r − k) = 1. So we see that

f(r/2a) =
√

2acr,

so that

cr =
f(r/2a)√

2a
.
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Thus, we have

f(x) =
∑
k∈Z

f(k/2a)sinc(2ax− k)

where the sum converges in L2.
We wish to finally show that the series converges uniformly as well. Letting

gN =
N∑

k=−N
f(k/2a)sinc(2ax− k),

we wish to show that
‖f − gN‖u → 0.

Since we have an isometry, we get that

‖f − gN‖2 → 0 =⇒ ‖f̂ − ĝN‖2 → 0.

Furthermore, since the Fourier transform of f is in

F(Ha) = H ′a = {f ∈ L2 : f = fχ[−a,a] a.e.} = L2([−a, a]),

we get that this is converging in L2 on a space of finite measure [−a, a], and so using Propo-
sition 6.12 we get that

1√
2a
‖f̂ − ĝN‖1 ≤ ‖f̂ − ĝN‖2 → 0,

so that
‖f̂ − ĝN‖1 → 0

as well. That is, these converge in the L1 norm as well. Now, using that ‖f̂‖u ≤ ‖f‖1, we take
the inverse Fourier transform2 to get that

‖(f∧)∨ − (gN
∧)∨‖u ≤ ‖f̂ − ĝN‖1 → 0,

and so Plancherel gives us that

‖f − gN‖u ≤ ‖f̂ − ĝN‖1 → 0.

Hence, this sum converges uniformly as well.
�

Problem 31 (Folland Lemma 8.34). If f, g ∈ L2(Rn), then (f̂ ĝ)∨ = f ∗ g.

Proof. We first must show that f̂ ĝ ∈ L1. First, by Plancherel we see that f, g ∈ L2 implies that

f̂ , ĝ ∈ L2. Now, Hölder tells us that

‖f̂ ĝ‖1 ≤ ‖f̂‖2‖ĝ‖2 <∞,

so we see that f̂ ĝ ∈ L1. Thus, we have that (f̂ ĝ)∨ makes sense in terms of using the formula.

Now, fix x ∈ Rn and let h(y) = g(x− y). Consider gn → g in L1 ∩ L2. Defining correspondingly

hn = gn(x− y), and note that hn → h in L2. We see that for all n, we have

ĥn(m) =

∫
hn(y)e−2πim·ydy =

∫
gn(x− y)e−2πim·ydy

= e−2πim·x
∫
gn(x− y)e−2πm·(x−y)dy

= e−2πim·xĝn(m).

2Again, in terms of L2/Plancherel so that we do not need to worry about conditions for L1 Fourier inversion.
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So using Plancherel, we see that ĥn → ĥ in L2, e−2πim·xĝn → e2πim·xĝ in L2, and thus we have

ĥ = ĝe−2πim·x almost everywhere.3

Putting things together, we see that for this fixed x, we have

f ∗ g(x) =

∫
f(y)g(x− y)dy =

∫
f(y)h(y)

= 〈f, h〉,
so since the Fourier transform is unitary we get

f ∗ g(x) = 〈f, h〉 = 〈f̂ , ĥ〉

=

∫
f̂(y)ĥ(y)dy =

∫
f̂(y)e−2πiy·xĝ(y)dy

=

∫
f̂(y)ĝ(y)e2πiy·xdy =

∫
f̂(y)ĝ(y)e−2πy·(−x)dy

= (f̂ ĝ)∧(−x) = (f̂ ĝ)∨(x).

Thus we have equality. �

Problem 32 (Grafakos Example 3.1.5). Let

P (x) =
∑
m∈Zn

ame
2πim·x

be a trigonometric polynomial on Tn, where (am)m∈Zn is a finitely supported sequence in Zn. Then:

(a) We have

P (x) =
∑

P̂ (m)e2πim·x.

(b) If f ∈ L1(Tn), then

(f ∗ P )(x) =
∑

P̂ (m)f̂(m)e2πim·x.

Proof. (a) Since the sequence (am) is finitely supported, we note that the series is going to be a
finite linear combination of L1 ∩ L2 functions, and so it will be L1 ∩ L2 as well. Hence, the
Fourier transform of the polynomial will be

P̂ (k) =

∫
Tn
P (x)e−2πik·xdx

=

∫
Tn

[ ∑
m∈Zn

ame
2πim·x

]
e−2πik·xdx

=
∑
m∈Zn

am

∫
Tn
e2πi(m−k)·x,

where the last equality follows since the sum is finite. Recall that (eπiκ·x)κ∈Zn is an orthonormal
basis for L2(Tn), so for k 6= m we have that the integral is zero, and otherwise the integral will
be 1. This then gives us

P̂ (k) = ak.

By direct substitution, then, we see that

P (x) =
∑
m∈Zn

P̂ (m)e2πim·x.

3What Folland has is technically incorrect; we cannot get equality without the functions being in L1, since we
don’t have a formula which applies for all of L2.
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(b) If f ∈ L1(Tn), we see that

(f ∗ P )(x) =

∫
Tn
f(x− y)P (y)dy =

∫
Tn
f(x− y)

[ ∑
m∈Zn

P̂ (m)e2πim·y

]
dy

=
∑
m∈Zn

P̂ (m)

∫
Tn
f(x− y)e2πim·ydy

=
∑
m∈Zn

P̂ (m)

∫
Tn
f(x− y)e−2πim·(x−y)e2πim·xdy

= P̂ (m)f̂(m)e2πim·x.

�

Problem 33 (Grafakos Exercise 3.1.4). On T define the de la Vallée Poussin kernel :

VN (x) = 2F2N+1(x)− FN (x)

where FN denotes the Fejér kernel.

(a) Show that the sequence (VN ) is an approximate identity.

(b) Prove that V̂N (m) = 1 when |m| ≤ N + 1, and V̂N (m) = 0 when |m| ≥ 2N + 2.

Proof. (a) Recall that a sequence is an approximate identity if it satisfies three properties:
(1) We first want to show that supN ‖VN‖1 <∞. We see that, for all N , we have

‖VN‖1 = ‖2F2N+1 − FN‖1 ≤ 2‖F2N+1‖1 + ‖FN‖1,
and since the Fejér kernel is an approximate identity (by the lecture notes or Proposition
3.1.10 in Grafakos), we see that

sup
N
‖VN‖1 ≤ 2 sup

N
‖F2N+1‖1 + sup

N
‖FN‖1 <∞.

(2) We now want to show that ∫
VN (x)dx = 1

for all N . Fixing an N and using that the Fejér kernel is an approximate identity, we see
that∫
VN (x)dx =

∫
(2F2N+1(x)− FN (x))dx = 2

∫
F2N+1(x)dx−

∫
FN (x)dx = 2− 1 = 1.

Hence, we have the desired result.
(3) Finally, we wish to show that for any neighborhood V c of 0, we have that∫

V
|VN |dx→ 0.

Since we’re on the torus, it suffices to show that for all δ > 0,∫
δ≤|x|≤1/2

|VN |dx→ 0.

Again, we use that |VN (x)| ≤ 2|F2N+1(x)|+ |FN (x)|, so that if V = {x : δ ≤ |x| ≤ 1/2},

0 ≤
∫
V
|VN |dx ≤ 2

∫
V
|F2N+1(x)|dx+

∫
V
|FN (x)|dx.

Taking the limit as N →∞ of both sides gives us

0 ≤ lim
N→∞

∫
V
|VN |dx ≤ 2

[
lim
N→∞

∫
V
|F2N+1(x)|dx

]
+ lim
N→∞

∫
V
|FN (x)|dx,
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and since (FN ) is an approximate identity, we have that

lim
N→∞

∫
V
|VN |dx = 0.

So this holds for any neighborhood of 0.
Hence, (VN ) is an approximate identity.

(b) We have that

V̂N (m) = 2F̂2N+1(m)− F̂N (m)

by linearity of the Fourier transform. Utilizing Proposition 3.1.7 in Grafakos, we see that

̂F2N+1(m) = 1− |m|
2N + 2

if |m| ≤ 2N + 1 and 0 otherwise, and likewise

F̂N (m) = 1− |m|
N + 1

if |m| ≤ N and 0 otherwise. Clearly, then, for |m| ≥ 2N + 2, we get that V̂N (m) = 0, since
both components will be 0 in this range. Now, for |m| ≤ N , we see that

V̂N (m) = 2

(
1− |m|

2N + 2

)
−
(

1− |m|
N + 1

)
=

(
4N + 4− 2|m|

2N + 2

)
−
(
N + 1− |m|

N + 1

)
=

4N + 4− 2|m| − 2N − 2 + 2|m|
2N + 2

=
2N + 2

2N + 2
= 1.

For |m| = N + 1, we see that we have

V̂N (m) = 2

(
1− |m|

2N + 2

)
= 2

(
2N + 2− |m|

2N + 2

)
=

4N + 4− 2|m|
2N + 2

=
4N + 4− 2N + 2

2N + 2
=

2N + 2

2N + 2
= 1.

So if |m| ≤ N + 1, we have V̂N (m) = 1, as desired.
�

Remark. Proposition 3.1.7 of Grafakos claims that

FN (x) =

N∑
j=−N

(
1− |j|

N + 1

)
e2πijx,

which we derived in our class notes. Furthermore, he uses this to note that F̂N (m) = 1 − |m|
N+1

if |m| ≤ N and zero otherwise, which is the property used in this problem. To see this, we use
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linearity of the Fourier transform to note that

F̂N (m) =

N∑
j=−N

(
1− |j|

N + 1

)
ê2πijx(m)

=
N∑

j=−N

(
1− |j|

N + 1

)∫
T
e2πijxe−2πixmdx

=
N∑

j=−N

(
1− |j|

N + 1

)
sinc(j −m)

=

{
1− |m|

N+1 if |m| ≤ N
0 otherwise.
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James Marshall Reber, ID: 500409166 Math 6212, Homework 7

Remark. Thomas O’Hare was a collaborator.

Remark. I guess there is a discrepancy between Grafakos’ second and third edition, I am using
the third edition (which can be found easily through a google search).

Problem 34 (Grafakos Theorem 3.3.4). Let (dm)m∈Zn be a sequence of positive real numbers with
dm → 0 as |m| → ∞. Then there exists g ∈ L1(Tn) such that |ĝ(m)| ≥ dm for all m ∈ Zn. In
other words, given any rate of decay there exists an integrable function on the torus whose Fourier
coefficients have slower rate of decay.

Proof. To build this, we will use Lemma 3.3.2 and Lemma 3.3.3. Recall these lemmas.

Lemma (Grafakos Lemma 3.3.2). Given a sequence of positive real numbers (am)∞m=0 that tends
to zero as m→∞, there exists a sequence (cm)∞m=0 that satisfies the following three conditions:

(1) am ≤ cm,
(2) cm ↘ 0,
(3) cm+2 + cm ≥ 2cm+1

for all m ∈ Z≥0. A sequence (cm) satisfiying these conditions is called convex.

Lemma (Grafakos Lemma 3.3.3). Given a convex decreasing sequence (cm)∞m=0 of positive real
numbers satisfying limm→∞ cm = 0 and a fixed integer s ≥ 0, we have that

∞∑
r=0

(r + 1)(cr+s + cr+s+2 − 2cr+s+1) = cs.

We omit the proofs of these, since they are in Grafakos. Consider first the case n = 1. We have a
sequence of positive numbers (dm)m∈Z such that dm → 0 as |m| → ∞. We can consider the sequence
(dm+d−m)∞m=0, which is still a sequence of positive real numbers such that dm+d−m → 0 asm→∞.
Thus, we can apply Lemma 3.3.2 to extract a convex sequence (cm) so that cm ≥ dm + d−m,
cm ↘ 0, and cm+2 + cm ≥ 2cm+1. We extend this to all integers by setting c−m := cm for m > 0.

Our goal, then, is to create a function f ∈ L1(T1) with this sequence (cm)m∈Z so that the
|f(m)| ≥ dm for all m. Lemma 3.3.3 suggest that we choose

f(x) =

∞∑
r=0

(r + 1)(cr + cr+2 − 2cr+1)Fr(x),

where Fr(x) is the one-dimensional Féjer kernel – that is,

Fr(x) =
r∑

j=−r

(
1− |j|

r + 1

)
e2πijx.

Since Fr is periodic, we get that f is periodic. We then want to see whether it has finite L1 norm
on the torus. Checking this, we get

‖f‖1 =

∫ ∣∣∣∣∣
∞∑
r=0

(r + 1)(cr + cr+2 − 2cr+1)Fr(x)

∣∣∣∣∣
≤
∫ ∞∑

r=0

(r + 1)(cr + cr+2 − 2cr+1)|Fr(x)|

=

∫ ∞∑
r=0

(r + 1)(cr + cr+2 − 2cr+1)Fr(x),
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since Fr(x) is positive. To see this, we have the equivalent definition of the Fejer kernel given by

Fr(x) =
1

N + 1

(
sin(π(N + 1)x)

sin(πx)

)2

.

Now we use Tonelli, noting that everything is positive and interpreting the sum as an integral
with respect to counting measure, in order to switch the integral and sum (alternatively, one could
invoke Theorem 2.25 using the following facts). This gives us

‖f‖1 ≤
∞∑
r=0

(r + 1)(cr + cr+2 − 2cr+1)‖Fr‖1 = c0 <∞

by Lemma 3.3.3, noting that ‖Fr‖1 = 1 by the proof of Proposition 3.1.10. Thus, f ∈ L1(T1).

Now, we wish to show that f̂(m) ≥ dm for all m ∈ Z. Note that the series converges to f in L1;
using techniques above, we have∥∥∥∥∥f(x)−

N∑
r=0

(r + 1)(cr + cr+2 − 2cr+1)Fr(x)

∥∥∥∥∥
1

=

∥∥∥∥∥
∞∑

r=N+1

(r + 1)(cr + cr+2 − 2cr+1)Fr(x)

∥∥∥∥∥
1

≤
∞∑

r=N+1

(r + 1)(cr + cr+2 − 2cr+1)→ 0 as N →∞,

since convergence of the series implies the tail goes to 0. Denote the partial sums as

fN (x) =
N∑
r=0

(r + 1)(cr + cr+2 − 2cr+1)Fr(x).

Since these functions are in L1, we have that the Fourier transforms will be

f̂(m) =

∫
T
f(x)e−2πimxdx,

f̂N (m) =

∫
T
fN (x)e−2πimxdx.

Since the series converges in L1, we see that

lim
N→∞

|f̂(m)− f̂N (m)| = lim
N→∞

∣∣∣∣∫
T
(f(x)− fN (x))e−2πimxdx

∣∣∣∣
≤ lim

N→∞

∫
T
|f(x)− fN (x)|dx = lim

N→∞
‖f − fN‖1 = 0.

So

f̂(m) = lim
N→∞

f̂N (m) =

∞∑
r=0

(r + 1)(cr + cr+2 − 2cr+1)F̂r(m),

using the linearity of the Fourier transform on finite sums. Now, recall that

F̂r(m) =

{
1− |m|

r+1 if |m| ≤ r
0 otherwise,
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either from the last homework or from Proposition 3.1.7. Hence, we get that

f̂(m) =
∞∑
r=0

(r + 1)(cr + cr+2 − 2cr+1)F̂r(m)

=

∞∑
r=|m|

(r + 1)(cr + cr+2 − 2cr+1)

(
1− |m|

r + 1

)

=
∞∑
r=0

(r + |m|+ 1)(cr+|m| + cr+|m|+2 − 2cr+|m|+1)

(
1− |m|

r + |m|+ 1

)

=

∞∑
r=0

(r + |m|+ 1)(cr+|m| + cr+|m|+2 − 2cr+|m|+1)

(
r + 1

r + |m|+ 1

)

=
∞∑
r=0

(cr+|m| + cr+|m|+2 − 2cr+|m|+1)(r + 1).

Now, we can hit it with Lemma 3.3.3 with s = |m| to get

f̂(m) = c|m| = cm.

Since the coefficients are positive, we see that

f̂(m) = cm ≥ dm,

as desired.
Now, we wish to show this for general n > 1. We first need the following claim.

Claim (Grafakos Exercise 3.3.2). Given a positive sequence (dm)m∈Zn with dm → 0 as |m| → ∞,
there exists a positive sequence (aj)j∈Z with am1 · · · amn ≥ d(m1,...,mn) and aj → 0 as |j| → ∞.

Remark. Note that in Grafakos, for m = (m1, . . . ,mn) ∈ Zn, we have |m| =
√
m2

1 + · · ·+m2
n.

Proof. The case n = 1 is clear; just take dm = am for all m.
Now consider the general case of n > 1. Let

A(1)
r = max

m∈Zn−1

n

√
d(r,m),

A(2)
r = max

k∈Z,m∈Zn−2

n

√
d(k,r,m),

...

A(n)
r = max

k∈Zn−1

n

√
d(k,r).

Note that these maximums are finite by the decay of the coefficients. Let ar = maxi=1,...,n{A(i)
r }.

Then we see that

am1 · · · amn ≥ A(1)
m1
· · ·A(n)

mn ≥ n

√
d(m1,...,mn) · · · n

√
d(m1,...,mn) = d(m1,...,mn).

Fixing ε > 0, we choose R sufficiently large so that for |(m1, . . . ,mn)| ≥ R, we have that
d(m1,...,mn) < εn. Hence, we have that for |n| ≥ R, |m| ≥ R for m = (m1, . . . ,mn) ∈ Zn, r = mj for
some j, mk ∈ Z for all k 6= j. Notice that for all i = 1, . . . , n, we have

A(i)
r = max

k∈Zi−1,m∈Zn−i
n

√
d(k,r,m) <

n
√
εn = ε,
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so we get that

ar = max
i=1,...,n

{A(i)
r } <

n
√
εn = ε.

Thus, ar → 0 as |r| → ∞, as desired.
�

Using this claim, we can construct a desired sequence (am)m∈Z for the (dm)m∈Zn . Let

g(x1, . . . , xn) = f(x1) · · · f(xn),

where f is the function previously constructed when n = 1 so that f̂(m) ≥ am. Then we see that

ĝ(m1, . . . ,mn) =

∫
Tn
g(x)e−2πim·xdx

=

∫
T1

· · ·
∫
T1

f(x1) · · · f(xn)e−2πim1x1 · · · e−2πimnxndx1 · · · dxn

=
n∏
j=1

∫
T1

f(xj)e
−2πimjxjdxj

= f̂(m1) · · · f̂(mn) ≥ am1 · · · amn ≥ d(m1,...,mn),

as desired. Note that the justification of iterating the integral comes from the fact that the inside
of the integral is L1, since∫
Tn
|g(x)||e−2πim·x|dx =

∫
Tn
|g(x)|dx =

∫
T1

· · ·
∫
T1

f(x1) · · · f(xn)dx1 · · · dxn =
n∏
j=1

∫
T1

f(xj)dxj <∞,

where we note that the f are all positive and we use Tonelli to iterate this integral. So Fubini
applies, and we can iterate the above integral to get the desired result. �

Recall that we say F ∈ BV (F is a function of bounded variation) if TF (∞) = limx→∞ TF (x) is
finite, where

TF (x) = sup

{
n∑
1

|F (xj)− F (xj−1)| : n ∈ N,−∞ < x0 < · · · < xn = x

}
Problem 35 (Folland Lemma 3.26). If F ∈ BV real valued, then TF +F and TF−F are increasing.

Proof. Fix ε > 0, x < y. Choose x0 < · · · < xn = x so that

n∑
1

|F (xj)− F (xj−1)| ≥ TF (x)− ε.

Notice that we can do this since TF is defined via a supremum; that is, we have

TF (x) = sup

{
n∑
1

|F (xj)− F (xj−1)| : n ∈ N,−∞ < x0 < · · · < xn = x

}
.

Now, we have that

x0 < · · · < xn = x < y,

so we get that
n∑
1

|F (xj) + F (xj−1)|+ |F (y)− F (x)|
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is in the collection

TF (y) = sup

{
n∑
1

|F (xj)− F (xj−1)| : n ∈ N,−∞ < x0 < · · · < xn = y

}
.

Notice as well that we can write

F (y) = [F (y)− F (x)] + F (x).

Hence, we have that

TF (y)± F (y) ≥
n∑
1

|F (xj)− F (xj−1)|+ |F (y)− F (x)| ± [F (y)− F (x)]± F (x).

If x ∈ R, we have that

|x|+ x =

{
2x if x ≥ 0

0 if x < 0
,

so that |x|+ x ≥ 0. Hence, we have that

TF (y)± F (y) ≥
n∑
1

|F (xj)− F (xj−1)| ± F (x) ≥ TF (x)− ε± F (x).

This holds for all ε > 0, so letting it go to 0 gives

TF (y)± F (y) ≥ TF (x)± F (x).

The choice of x < y was arbitrary, so we get that TF ± F is an increasing function. �

Problem 36 (Folland Theorem 3.27). (a) F ∈ BV iff Re(F ) and Im(F ) ∈ BV.
(b) If F : R→ R, then F ∈ BV iff F is the difference of two bounded increasing functions.
(c) If F ∈ BV, the set of points at which F is discontinuous is countable.
(d) If F ∈ BV and G(x) = F (x+), then F ′ and G′ exist and are equal a.e.

Proof. (a) ( =⇒ ): Assume F ∈ BV. Then we have

TF (∞) = lim
x→∞

sup

{
n∑
1

|F (xj)− F (xj−1)| : n ∈ N,−∞ < x0 < · · · < xn = x

}
<∞.

Notice we may write F = Re(F ) + iIm(F ). Substituting this in, then, we have
(3)

lim
x→∞

sup

{
n∑
1

|[Re(F )(xj)− Re(F )(xj−1)] + i[Im(F )(xj)− Im(F )(xj−1)]| : −∞ < x0 < · · · < xn = x

}
.

Notice that for all x, this bounds above

sup

{
n∑
1

|Re(F )(xj)− Re(F )(xj−1)| : n ∈ N,−∞ < x0 < · · · < xn = x

}
and

sup

{
n∑
1

|Im(F )(xj)− Im(F )(xj−1)| : n ∈ N,−∞ < x0 < · · · < xn = x

}
,
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since we have
N∑
1

|[Re(F )(xj)− Re(F )(xj−1)] + i[Im(F )(xj)− Im(F )(xj−1)]|

=

N∑
1

√
[Re(F )(xj)− Re(F )(xj−1)]2 + [Im(F )(xj)− Im(F )(xj−1)]2

≥ max

{
N∑
1

|Re(F )(xj)− Re(F )(xj−1)|,
N∑
1

|Im(F )(xj)− Im(F )(xj−1)|

}
for any partition. Taking the limit, then, we get that each of these are finite, and so Re(F ) and
Im(F ) ∈ BV.
(⇐= ) : Assume Re(F ) and Im(F ) ∈ BV. Applying a triangle inequality in (1), we get

sup

{
n∑
1

|F (xj)− F (xj−1)| : n ∈ N,−∞ < x0 < · · · < xn = x

}

≤ sup

{
n∑
1

|Re(F )(xj)− Re(F )(xj−1)| : n ∈ N,−∞ < x0 < · · · < xn = x

}

+ sup

{
n∑
1

|Im(F )(xj)− Im(F )(xj−1)| : n ∈ N,−∞ < x0 < · · · < xn = x

}
,

and taking the limit as x→∞ implies TF (∞) is finite.
(b) For this, we need a few facts.

(1) Notice that if F : R→ R is bounded and increasing, then F ∈ BV. This is because, for all
x, we have

TF (x) = sup

{
n∑
1

|F (xj)− F (xj−1)| : n ∈ N,−∞ < x0 < · · · < xn = x

}

= sup

{
n∑
1

F (xj)− F (xj−1) : n ∈ N,−∞ < x0 < · · · < xn = x

}
= sup {F (x)− F (x0) : n ∈ N,−∞ < x0 < x} ≤ 2M,

where here we used the fact that F was increasing, so |F (xj)−F (xj−1)| = F (xj)−F (xj−1)
for xj−1 < xj , and we used that M bounded F . So TF (∞) ≤ 2M <∞.

(2) Notice that if F,G ∈ BV and a, b ∈ C, then aF + bG ∈ BV. This follows by the triangle
inequality, since

TaF+bG(x)

= sup

{
n∑
1

|aF (xj) + bG(xj)− aF (xj−1)− bG(xj−1)| : n ∈ N,−∞ < x0 < · · · < xn = x

}

≤ |a| sup

{
n∑
1

|F (xj)− F (xj−1)| : n ∈ N,−∞ < x0 < · · · < xn = x

}

+|b| sup

{
n∑
1

|G(xj)−G(xj−1)| : n ∈ N,−∞ < x0 < · · · < xn = x

}
= |a|TF (x) + |b|TG(x).
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Thus, taking the limit as x→∞, we have

TaF+bG(∞) ≤ |a|TF (∞) + |b|TG(∞) <∞.
( =⇒ ): Assume that F ∈ BV. The prior problem tells us that TF + F and TF − F are

increasing functions. Furthermore, we have that they are bounded; we see that (for y > x)

TF (y)± F (y) ≥ TF (x)± F (x)

implies that

|F (y)− F (x)| ≤ TF (y)− TF (x) ≤ TF (∞)− TF (−∞) <∞,
since

TF (y)− TF (x) ≥ ±F (x)∓ F (y)

=⇒ TF (y)− TF (x) ≥ max{F (y)− F (x), F (x)− F (y)}
=⇒ TF (y)− TF (x) ≥ |F (y)− F (x)|,

and we use the fact that TF is an increasing function (see Equation (3.24) and the remark
after). This implies that F is bounded, and so furthermore we have TF ±F is bounded. Thus,
we have that

F =
1

2
(TF + F )− 1

2
(TF − F )

is a difference of bounded increasing functions.
( ⇐= ): Assume that F is the difference of two bounded increasing functions. Since they are
bounded and increasing, we have that (1) tells us that they are in BV, and (2) tells us that
linear combinations of BV functions are in BV. So F is in BV.

(c) Let F ∈ BV. By Theorem 3.23, the set of discontinuities of an increasing function is count-
able. Write F = Re(F ) + iIm(F ). Since Re(F ), Im(F ) : R → R, we can use (b) to express
them as the difference of two increasing functions, that is, we have that Re(F ) = G1 − G2,
Im(F ) = H1 − H2. So F = (G1 − G2) + i(H1 − H2). Since these have a countable number
of discontinuities, this implies that F has a countable number of discontinuities (the set of
discontinuities for F is the union of the sets of discontinuities for each function, and a union of
a finite number of countable sets is countable), as desired.

(d) Assume F is real valued. By (b), we have that F ∈ BV implies that F is the difference of
two increasing functions, say H and K for notational simplicity. So F (x) = H(x) − K(x).
Let S(x) = H(x+), and T (x) = K(x+). By Theorem 3.23, we have that H and K are
differentiable almost everywhere (and hence, F is differentiable almost everywhere), and S′ =
H ′, T ′ = K ′ almost everywhere. Furthermore, if F (x) = H(x) − K(x), we have G(x) =
F (x+) = H(x+)−K(x+) = S(x)− T (x) is such that G′ = S′− T ′, and so G′ = H ′−K ′ = F ′

almost everywhere.
We have it holds for real valued functions, so consider now F ∈ BV such that it is complex

valued. Write F = Re(F ) + iIm(F ). Let G1(x) = Re(F )(x+), G2(x) = Im(F )(x+). Then
G(x) = F (x+) = G1(x)+iG2(x), so G1 = Re(G), G2 = Im(G). By prior, we have Re(F )′ = G′1
and Im(F )′ = G′2 exist and are equal a.e., so we get that F ′ = Re(F )′ + iIm(F )′ = G′1 + iG′2
exists and they are equal almost everywhere.

�
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James Marshall Reber, ID: 500409166 Math 6212, Homework 8

Remark. Thomas O’Hare was a collaborator.

Problem 37. Suppose that f1, f2, . . . , and f are in L1
loc(U). The condition in (a) and (b) below

imply that fn → f in D′(U), but the condition in (c) does not.

(a) fn ∈ Lp(U) (1 ≤ p ≤ ∞) and fn → f in the Lp norm or weakly in Lp.
(b) For all n, |fn| ≤ g for some g ∈ L1

loc(U), and fn → f a.e.
(c) fn → f pointwise.

Proof. Recall throughout that a sequence (Fn) ⊂ D′(U) converges to F in D′(U) if, for all ϕ ∈
C∞c (U), we have 〈Fn, ϕ〉 → 〈F,ϕ〉 (i.e., pointwise convergence).

(a) First, assume that fn → f in the Lp norm. Let ϕ ∈ C∞c (U) arbitrary. Then we have that

〈fn, ϕ〉 =

∫
fnϕ.

So

|〈fn, ϕ〉 − 〈f, ϕ〉| =
∣∣∣∣∫ (fn − f)ϕ

∣∣∣∣ ≤ ∫ |fn − f ||ϕ|.
Since the ϕ are functions with compact support which are bounded, we see that they are in
Lq for q such that (p, q) = 1 with 1 ≤ p ≤ ∞ (this follows from Proposition 6.12). We can
apply Hölder to get that ∫

|fn − f ||ϕ| ≤ ‖fn − f‖p‖ϕ‖q

with ‖ϕ‖q <∞. Since fn → f in Lp, this implies that this goes to 0. Thus, we have

〈fn, ϕ〉 → 〈f, ϕ〉
for all ϕ, so we have that they converge in D′(U). If we assume that they converge weakly,
then this implies that

lim
n→∞

∫
fnϕ =

∫
fϕ

for all ϕ ∈ Lq(U), with (p, q) = 1. Notice that C∞c (U) ⊂ Lq(U), so we get that it holds for all
ϕ ∈ C∞c (U), and thus we have convergence in D′(U), as desired.

(b) Choose ϕ ∈ D(U) arbitrarily. Since g ∈ L1
loc(U), we get that for all ϕ ∈ D(U), gϕ ∈ L1

(utilizing the fact here that ϕ has compact support). Notice that

|fnϕ| ≤ g|ϕ| ∈ L1(U),

so we see that DCT applies here. In other words, we have that

lim
n→∞

〈fn, ϕ〉 = lim
n→∞

∫
fnϕ =

∫
lim
n→∞

fnϕ =

∫
fϕ = 〈f, ϕ〉.

The choice of ϕ was arbitrary, so we get that it converges weakly – i.e., as distributions, fn → f .
(c) We see that ft(x) = t−1χ(0,t)(x) ∈ L1

loc(U), ft → 0 pointwise as t → 0. Notice that we can

write ft(x) = t−1χ(0,1)(x/t), and so this is an approximate identity for f(x) = χ(0,1)(x). We

have
∫
f = 1, and applying Proposition 9.1, we see that ft → δ in D′ as t→ 0. Notice that

δ 6= 0 as distributions (take any function which is non-zero at the origin), and so we have the
desired result.

�
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Problem 38. The product rule for derivatives is valid for products of smooth functions and dis-
tributions.

Proof. The goal is to first show that

〈(ψF )′, ϕ〉 = 〈ψF ′, ϕ〉+ 〈ψ′F,ϕ〉,

for all ϕ ∈ D(U), F a distribution, ψ a smooth function. We will then use induction to show that
it holds for general products.

Fixing a ϕ, we see that the usual product rule gives us

〈ψF ′, ϕ〉 = 〈F ′, ϕψ〉 = −〈F, (ϕψ)′〉
= −〈F,ϕ′ψ + ϕψ′〉 = −〈F,ϕ′ψ〉 − 〈F,ϕψ′〉

= −〈ψF,ϕ′〉 − 〈ψ′F,ϕ〉.

We have as well that

〈(ψF )′, ϕ〉 = −〈ψF,ϕ′〉,
so substituting this in, we get

〈ψF ′, ϕ〉 = 〈(ψF )′, ϕ〉 − 〈ψ′F,ϕ〉.

Rearranging, we have

〈(ψF )′, ϕ〉 = 〈ψF ′, ϕ〉+ 〈ψ′F,ϕ〉,

as desired. The choices of F ∈ D′(U), ψ ∈ C∞(U), and ϕ ∈ D(U) were all arbitrary, and so we
have the product rule.

For the generalized product rule, we induct the usual product rule. Assume it holds for multi-
indices of magnitude up to k − 1. Let α be a multi-index such that |α| = k and write α =
(α1, . . . , αn). Without loss of generality, assume α1 ≥ 1 (Pigeonhole principle says that there must
be one coordinate greater than or equal to 1; if α1 is not, then apply the following argument to an
index that is). Let β = (α1 − 1, α2, . . . , αn), then |β| = k − 1, and furthermore we have

∂α(ψF ) =
d

dx1
∂β(ψF ).

By the induction hypothesis, we get

d

dx1

 ∑
γ+δ=β

β!

δ!γ!
(∂γψ)(∂δF )

 .

Notice that the derivative is linear with respect to distributions, since for f, g distributions, ϕ a
test function, we have

〈(f + g)′, ϕ〉 = −〈f + g, ϕ′〉 = −〈f, ϕ′〉 − 〈g, ϕ′〉 = 〈f ′, ϕ〉+ 〈g′, ϕ〉
= 〈f ′ + g′, ϕ〉,

and for a a constant, f a distribution, ϕ a test function, we have

〈(af)′, ϕ〉 = −〈af, ϕ′〉 = −a〈f, ϕ′〉 = a〈f ′, ϕ〉.

Thus, using the linearity, we get

d

dx1

 ∑
γ+δ=β

β!

δ!γ!
(∂γψ)(∂δF )

 =
∑

γ+δ=β

β!

δ!γ!

d

dx1

[
(∂γψ)(∂δF )

]
.
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Using the base case, this gives∑
γ+δ=β

β!

γ!δ!

[(
d

dx1
∂γψ

)
(∂δF ) + (∂γψ)

(
d

dx1
∂δF

)]
.

Simplifying this (akin to the usual product rule), we get∑
γ+δ=α

α!

γ!δ!
(∂γψ)(∂δF ).

So we see that the generalized product rule follows for products of distributions and smooth func-
tions. �

Problem 39. A distribution F on Rn is called homogeneous of degree λ if F ◦ Sr = rλF for all
r > 0, where Sr(x) = rx.

(a) Show that δ is homogeneous of degree −n.
(b) If F is homogeneous of degree λ, then ∂αF is homogeneous of degree λ− |α|.
(c) The distribution (d/dx)[χ(0,∞)(x) log(x)] discussed in recitation is not homogeneous, although

it agrees on R \ {0} with a “function” that is homogeneous of degree −1.

Proof. (a) Fixing ϕ ∈ D(U) arbitrary, we have that

〈δ ◦ Sr, ϕ〉 = r−n〈δ, ϕ ◦ S−1
r 〉 = r−nϕ(0/r) = r−nϕ(0) = 〈r−nδ, ϕ〉.

Hence, as distributions, δ ◦ Sr = r−nδ, and so δ is homogeneous of degree −n.
(b) Since F is homogenous of degree λ, we see that

〈F ◦ Sr, ϕ〉 = 〈rλF,ϕ〉
for all test functions ϕ. Applying things directly, we see that we have

〈∂αF ◦ Sr, ϕ〉 = r−n〈∂αF,ϕ ◦ S−1
r 〉

= (−1)|α|r−n〈F, ∂α(ϕ ◦ S−1
r )〉.

Now, we have that
∂αϕ(x/r) = r−|α|ϕ′(x/r),

where ϕ′ = ∂αϕ. To see this, we proceed by induction. For single derivatives, this is simply
the chain rule; we have

d

dxi
ϕ(x/r) = r−1 dϕ

dxi
(x/r).

Assuming it holds up for indices of magnitude up to n − 1. Let α be a multi-index such that
|α| = n. We have then that

∂αϕ(x/r) =
dα1

dxα1
1

· · · d
αn

dxαnn
ϕ(x/r).

If αn = n, we rewrite this as
dαn−1

dxαn−1
n

d

dxn
ϕ(x/r),

and we use the fact that it works for n = 1 to get that this is equal to

dαn−1

dxαn−1
n

r−1dϕ1

dxn
(x/r).

We then use the induction hypothesis along with linearity of the derivative to then get that
this is equal to

r−αn
dαnϕ

dxαnn
(x/r).
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If αn < n, we can simply invoke the induction hypothesis to get the same result (that is, let
β = (0, . . . , 0, αn), then since αn < n we have |β| < n, so we can apply the induction hypothesis
to ∂βϕ(x/r) and we get the result). We proceed in the same fashion for the other α1, . . . , αn−1

indices (if they are equal to n, do the argument above, otherwise invoke induction hypothesis).
This leaves us with

r−α1−α2−···−αnϕ′(x/r) = r−|α|ϕ′(x/r)

using the fact that
|α| = α1 + · · ·+ αn.

Thus, we have

〈∂αF ◦ Sr, ϕ〉 = −r−n−|α|〈F,ϕ′ ◦ S−1
r 〉

(Flipping the Sr back ) = (−1)|α|r−|α|〈F ◦ Sr, ϕ′〉

(Using the fact that F is homogeneous) = (−1)|α|r−|α|〈rλF,ϕ′〉

(Moving the derivative back over, using linearity) = 〈rλ−|α|∂αF,ϕ〉.

Hence, since the choice of test function was arbitrary, we have that ∂αF ◦ Sr = rλ−|α|∂αF , so
∂αF is homogeneous of degree λ− |α|.

(c) We follow an argument similar to the book. Consider F (x) = χ(0,∞)(x) log(x), Fε(x) =

χ(ε,∞)(x) log(x), where ε > 0. We remark that F (x) ∈ L1
loc(R). The only non-trivial part

for this is examining the integral over intervals [a, b] ⊂ R which contain the interval; if we show
that it’s integrable on these, we get that it is integrable on all compact sets K ⊂ R. Notice
that if [a, b] contains the interval, then a < 0, b > 0, so we have∫

[a,b]
F (x)dx =

∫ b

0
log(x)dx = lim

ε→0

(
x log(x)− x

∣∣∣∣b
x=ε

)
.

Notice that

lim
ε→0

ε log(ε) = lim
ε→0

log(ε)
1
ε

,

and applying L’Hospital we have this is equal to

lim
ε→0

1
ε

− 1
ε2

= lim
ε→0
−ε = 0.

Hence, the above integral is ∫
[a,b]

F (x)dx = b log(b)− b <∞.

We deduce then that F (x) ∈ L1
loc(R). A similar argument shows that Fε ∈ L1

loc(R).
The goal is to use DCT to deduce that Fε → F in D′(R). Fixing ϕ ∈ D(R) a test function,

we have that

lim
ε→0
〈Fε, ϕ〉 = lim

ε→0

∫
Fε(x)ϕ(x)dx = lim

ε→0

∫
χ(ε,∞)(x) log(x)ϕ(x)dx

Notice that
|χ(ε,∞)(x) log(x)ϕ(x)| ≤ | log(x)|χK∩(0,∞)(x)M,

where |ϕ(x)| ≤ M < ∞ (we know this exists since ϕ has compact support and is smooth). If
we show this is in L1, we can apply DCT to move the limit inside. Thus, we wish to show that

M

∫
(0,∞)∩K

| log(x)|dx <∞.
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Since K compact, it is closed and bounded; that is, there exist R sufficiently large so that
K ⊂ [−R,R]. We then can bound this integral by examining

M

∫
(0,∞)∩K

| log(x)|dx ≤M
∫ R

0
| log(x)|dx = −M

∫ 1

0
log(x)dx+M

∫ R

1
log(x)dx

= R log(R) +M(2−R) <∞.

Thus, this is in L1(R), so we can apply DCT to get

lim
ε→0
〈Fε, ϕ〉 = lim

ε→0

∫
χ(ε,∞)(x) log(x)ϕ(x)dx =

∫
χ(0,∞)(x) log(x)ϕ(x)dx = 〈F,ϕ〉.

Notice the choice of test function was arbitrary, so Fε → F in D′(R). Consequently, we have
that F ′ε → F ′ in D′(R). Fixing ϕ ∈ D(R), we have that

lim
ε→0
〈F ′ε, ϕ〉 = − lim

ε→0
〈Fε, ϕ′〉 = −〈F,ϕ′〉 = 〈F ′, ϕ〉

since Fε → F . The choice of test function was arbitrary, and so we have the desired convergence.
Now, fixing ε > 0 and ϕ ∈ D(R), we have

〈F ′ε ◦ Sr, ϕ〉 = −r−1〈Fε, (ϕ ◦ S−1
r )′〉 = −r−1

∫ ∞
ε

log(x)[ϕ(x/r)]′dx,

using the fact that Fε is locally integrable. Expanding the derivative on the inside using the
chain rule, we get that this is equal to

−r−2

∫ ∞
ε

log(x)ϕ′(x/r)dx.

Now we integrate by parts. Let dv = ϕ′(x/r)dx, v = rϕ(x/r), u = log(x), du = dx/x. Then we
have that the above is equal to

−r−2

[
r log(x)ϕ(x/r)

∣∣∣∣∞
x=ε

−
∫ ∞
ε

rϕ(x/r)

x
dx

]
.

Since ϕ has compact support, we can evaluate this; we get that this is equal to

r−2

[
r log(ε)ϕ(ε/r) +

∫ ∞
ε

rϕ(x/r)

x
dx

]
.

Thus, pulling out a constant r, we have that this is equal to

r−1

[
log(ε)ϕ(ε/r) +

∫ ∞
ε

ϕ(x/r)

x
dx

]
.

Letting ε′ = ε/r, u = x/r, du = dx/r, we can rewrite this as

r−1

[
log(rε′)ϕ(ε′) +

∫ ∞
ε′

ϕ(u)

u
du

]
= r−1

[
log(r)ϕ(ε′) + log(ε′)ϕ(ε′) +

∫ ∞
ε′

ϕ(u)

u
du

]
= r−1

[
log(r)ϕ(ε′) + 〈F ′ε′ , ϕ〉

]
.

Taking ε→ 0, we get ε′ → 0, and by what we’ve noted earlier we have this converges to

r−1〈F ′, ϕ〉+
log(r)

r
ϕ(0) = r−1〈F ′, ϕ〉+

log(r)

r
〈δ, ϕ〉 =

〈
r−1F ′ +

log(r)

r
δ, ϕ

〉
.

Thus, since the choice of test function was arbitrary, we have that as distributions

F ′ ◦ Sr = r−1F ′ +
log(r)

r
δ.

So F ′ is not homogeneous.
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Now, for ϕ ∈ D(R− {0}), we note that 〈ϕ, δ〉 = 0. So, for all r > 0, ϕ ∈ D(R− {0}), we see
that

F ′ ◦ Sr = r−1F ′.

Hence, away from the origin, we have that F is homogeneous of degree −1. The function
with which it agrees with is the one from recitation/page 288; that is, it agrees with f(x) =
x−1χ(0,∞)(x).

�

Problem 40. Define G on Rn × R by G(x, t) = (4πt)−n/2e−|x|
2/4tχ(0,∞)(t).

(a) (∂t −∆)G = δ, where ∆ is the Laplacian on Rn.
(b) If ϕ ∈ C∞c (Rn × R), the function f = G ∗ ϕ satisfies (∂t −∆)f = ϕ.

Proof. (a) We follow Folland’s hint. Fix ε > 0. Let Gε(x, t) = G(x, t)χ(ε,∞)(t). Notice that Gε → G
in D′; we show this via an application of the DCT. Fix a compact K ⊂ Rn×R. Since G(x, t) is
always positive, we can iterate the integral by Tonelli. Let K ′ denote the projection of K onto
the t-coordinate (the last/time coordinate). We integrate over K to get an upper bound of∫

K
G(x, t) ≤

∫
K′

∫
Rn
G(x, t)dxdt.

Writing things, we have that the right hand side is equal to∫
K′∩(0,∞)

(4πt)−n/2
∫
Rn
e−|x|

2/4tdxdt.

Using Proposition 2.53, since t here is positive, we get that∫
Rn
e−|x|

2/4tdx = (4πt)n/2,

so we have that the integral above evaluates to∫
K′∩(0,∞)

1dt.

This is finite since K ′ is bounded (if it was not, we would have that K is unbounded in the
last coordinate, contradicting the fact that K is compact). Hence, G(x, t) is in L1

loc(Rn × R).
Furthermore, the same argument gives that Gε(x, t) is locally integrable for all ε > 0. Now,
fixing ϕ ∈ D, we have that

〈Gε, ϕ〉 =

∫
Gε(x, t)ϕ(x, t).

Since ϕ ∈ D(Rn×R), it has compact support and is smooth. Thus, it is bounded. Furthermore,
letting K = supp(ϕ) and letting M be such that |ϕ(x, t)| ≤ M for all x, t, we have that
|Gε(x, t)ϕ(x, t)| ≤ MG(x, t)χK , and since MG(x, t)χK ∈ L1, we can invoke DCT to bring the
limit as ε→ 0 on the inside of the integral; in other words,

lim
ε→0

∫
Gε(x, t)ϕ(x, t) =

∫
G(x, t)ϕ(x, t).

This holds for all ϕ ∈ D(Rn × R), so we get that Gε → G as distributions as ε→ 0.
Recall from the lecture notes that we have

∂tG = ∆G,

where

∆ =
n∑
1

d2

dx2
j
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for (x, t) ∈ Rn× (0,∞) (that is, Green’s function satisfies the heat equation). We will deduce a
weaker result of a.e. convergence by using the Fourier transform (which is easier than actually
calculating it, and we only need it almost everywhere). Transforming with respect to the space
variable, we see that we have

[∂tG]∧(m, t) = ∂tĜ(m, t).

This is a consequence of Theorem 2.27 (b). Notice that, by Proposition 8.24, we get that
the Fourier transform of

G(x, t) =
1

(4πt)n/2
e−|x|

2/4t

maps to

Ĝ(m, t) = e−4π2|m|2t

after letting a = 1/(4πt). Hence,

∂tĜ(m, t) = −4π2|m|2e−4π2|m|2t = −4π2|m|2Ĝ(m, t).

Now, we note that

∆̂G(m, t) =

[
n∑
1

d2

dx2
j

G

]∧
(m, t)

=
n∑
1

[
d2

dx2
j

G

]∧
(m, t)

=

n∑
1

(−4π2)m2
j Ĝ(m, t)

= −4π2|m|2Ĝ(m, t).

Thus, see that

[∂tG]∧(m, t) = ∆̂G(m, t).

We have then that

[∂tG−∆G]∧ = 0,

so they are equal almost everywhere. Furthermore, Green’s function is continuous on Rn ×
(0,∞), so we have that they are honestly equal, although almost everywhere equality is sufficient
for what we’re doing.

Now, notice that

〈(∂t −∆)Gε, ϕ〉 = 〈∂tGε, ϕ〉 − 〈∆Gε, ϕ〉.
Notice as well that

〈∆Gε, ϕ〉 =

〈
n∑
1

d2

dx2
j

Gε, ϕ

〉

=

n∑
1

〈
d2

dx2
j

Gε, ϕ

〉

=

n∑
1

〈
Gε,

d2

dx2
j

ϕ

〉
= 〈Gε,∆ϕ〉,

,

〈∂tGε, ϕ〉 = −〈Gε, ∂tϕ〉,
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so we get

〈(∂t −∆)Gε, ϕ〉 = −〈Gε, (∂t + ∆)ϕ〉.4

Using the definition of Gε and the fact that this is locally integrable, this gives

〈(∂t −∆)Gε, ϕ〉 = −〈Gε, (∂t + ∆)ϕ〉 = −
∫
Rn×(ε,∞)

G(x, t)(∂t + ∆)ϕ(x, t).

Since this is integrable (using the fact that G is locally integrable and ϕ is bounded, smooth,
and has compact support, so all of its derivatives are also smooth, bounded, and have compact
support), we can change this to an iterated integral using Fubini; thus, we have

−
∫
Rn

∫ ∞
ε

G(x, t)(∂t + ∆)ϕ(x, t)dtdx.

Now, we expand the integral with linearity to get

−
∫
Rn

∫ ∞
ε

G(x, t)∂tϕ(x, t)dtdx−
∫
Rn

∫ ∞
ε

G(x, t)∆ϕ(x, t)dtdx.

Notice that the integral on the left can be integrated with respect to t via integration by parts.
Letting u = G(x, t), du = ∂tG(x, t)dt, dv = ∂tϕ(x, t)dt, v = ϕ(x, t), we get∫ ∞

ε
G(x, t)∂tϕ(x, t)dt = G(x, t)ϕ(x, t)

∣∣∣∣∞
t=ε

−
∫ ∞
ε

∂tG(x, t)ϕ(x, t)dt

= −G(x, ε)ϕ(x, ε)−
∫ ∞
ε

∂tG(x, t)ϕ(x, t)dt.

Substituting this back in, we have∫
Rn
G(x, ε)ϕ(x, ε)dx+

∫
Rn

∫ ∞
ε

∂tG(x, t)ϕ(x, t)dtdx−
∫
Rn

∫ ∞
ε

G(x, t)∆ϕ(x, t)dtdx.

Recalling that ∂tG = ∆G, we get∫
Rn

∫ ∞
ε

∂tG(x, t)ϕ(x, t)dtdx =

∫
Rn

∫ ∞
ε

∆G(x, t)ϕ(x, t)dtdx.

Recall as well

∆G(x, t) =

n∑
1

d

dx2
j

G(x, t).

Hence, we can rewrite this as
n∑
1

∫
Rn

∫ ∞
ε

d2

dx2
j

G(x, t)ϕ(x, t)dtdx.

Applying Fubini, this is the same as
n∑
1

∫ ∞
ε

∫
Rn

d2

dx2
j

G(x, t)ϕ(x, t)dxdt.

Without loss of generality, we examine j = 1; the argument will be the same for all other j.
Here, we iterate the integral again;∫ ∞

ε

∫
Rn−1

∫
R

d2

dx2
1

G(x1, y, t)ϕ(x1, y, t)dx1dydt.

4As an aside for my future notes, the reason this doesn’t end up being the 0 distribution is because of the issue at
the origin for Green’s function. Like Folland remarks, issues with continuity leads to δ functions.
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Let dv = d2

dx21
G(x1, y, t)dx1, v = d

dx1
G(x1, y, t), u = ϕ(x1, y, t), du = d

dx1
ϕ(x1, y, t)dx1. Then

integration by parts tells us that the integral is the same as∫ ∞
ε

∫
Rn−1

[
d

dx1
G(x1, y, t)ϕ(x1, y, t)

∣∣∣∣∞
x1=−∞

−
∫
R

d

dx1
G(x1, y, t)

d

dx1
ϕ(x1, y, t)dx1

]
dydt

= −
∫ ∞
ε

∫
Rn−1

∫
R

d

dx1
G(x1, y, t)

d

dx1
ϕ(x1, y, t)dx1dydt,

where we use the fact that ϕ has compact support. Integrating by parts again, letting dv =
d
dx1

G(x1, y, t)dx1, v = G(x1, y, t), u = d
dx1

ϕ(x1, y, t), du = d2

dx21
ϕ(x1, y, t)dx1, we get (after

simplifying like above)∫ ∞
ε

∫
Rn−1

∫
R
G(x1, y, t)

d2

dx2
1

ϕ(x1, y, t)dx1dydt.

Hence, we have that it comes out to∫ ∞
ε

∫
Rn
G(x, t)

d2

dx2
1

ϕ(x, t)dxdt.

Repeating this same argument for all of the other variables, we get that this comes out to
n∑
1

∫ ∞
ε

∫
Rn
G(x, t)

d2

dx2
j

ϕ(x, t)dxdt,

which is the same as∫ ∞
ε

∫
Rn
G(x, t)∆ϕ(x, t)dxdt =

∫
Rn

∫ ∞
ε

G(x, t)∆ϕ(x, t)dtdx.5

Substituting this into our original integral, we are left with

〈(∂t −∆)Gε, ϕ〉 =

∫
Rn
G(x, ε)ϕ(x, ε)dx.

That is, we have it is equal to

(4πε)−n/2
∫
Rn
e−|x|

2/4εϕ(x, ε)dx.

Letting x = 2t
√
ε, we have

π−n/2
∫
Rn
e−|t|

2
ϕ(2t
√
ε, ε)dt.

Now, we can apply dominated convergence theorem here, since ϕ(2t
√
ε, ε) has compact support

K and upper bound M , so

|e−|t|2ϕ(2t
√
ε, ε)| ≤Me−|t|

2
χK(t) ∈ L1(Rn).

Bringing the limit inside, we have

lim
ε→0
〈(∂t −∆)Gε, ϕ〉 = 〈(∂t −∆)G,ϕ〉 = lim

ε→0
π−n/2

∫
Rn
e−|t|

2
ϕ(2t
√
ε, ε)dt

= π−n/2ϕ(0, 0)

∫
Rn
e−|t|

2
dt

= ϕ(0, 0) = 〈δ, ϕ〉,

5This is a long detailed argument to conclude that 〈∆Gε, ϕ〉 = 〈Gε,∆ϕ〉, which we could’ve simplified greatly by
just noticing the above.

77



where here we again use Proposition 2.53. Since this applies for all ϕ ∈ D, we get that as
distributions (∂t −∆)G = δ.

(b) Here, we have

(∂t −∆)(G ∗ ϕ)(x) = ((∂t −∆)G) ∗ ϕ(x) = 〈(∂t −∆)G, τxϕ̃〉
= 〈δ, τxϕ̃〉 = τxϕ̃(0) = ϕ̃(−x) = ϕ(x),

where the first equality comes from Proposition 9.3. Hence, we have that as functions,

(∂t −∆)(G ∗ ϕ) = ϕ.

�
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James Marshall Reber, ID: 500409166 Math 6212, Homework 9

Remark. Thomas O’Hare was a collaborator.

Problem 41. Suppose that F ∈ S ′. Then

(a) (τyF )∧ = e−2πim·yF̂ .

τyF̂ = (e2πim·yF )∧.

(b) ∂αF̂ = [(−2πix)αF ]∧

∂̂αF = (2πim)αF̂ .

(c) For T ∈ GLn(R), (F ◦ T )∧ = |detT |−1F̂ ◦ (T ∗)−1.

(d) (F ∗ ψ)∧ = ψ̂F̂ for ψ ∈ S.

Recall the following first.

Proposition (Properties of Fourier Transform, Proposition 8.22). For f ∈ S, we have the
following:

(a) (τyf)∧(m) = e−2πim·yf̂(m).

(b) τy(f̂) = [hf ]∧, where h(x) = e2πim·x.

(c) If T ∈ GLn(R), then (f ◦ T )∧ = | detT |−1f̂ ◦ (T ∗)−1.

(d) (f ∗ g)∧ = f̂ ĝ.

(e) ∂αf̂ = [(−2πix)αf ]∧.

(f) (∂αf)∧ = (2πim)αf̂(m).

Let F ∈ S ′, ϕ ∈ S, then we have the following properties (as a modification of these properties
for distributions, see Folland page 284-285):

(i) 〈∂αF,ϕ〉 = (−1)|α|〈F, ∂αϕ〉.
(ii) For ψ ∈ S, we have 〈ψF,ϕ〉 = 〈F,ψϕ〉.

(iii) 〈τyF,ϕ〉 = 〈F, τ−yϕ〉.
(iv) For T ∈ GLn(R) we have 〈F ◦ T, ϕ〉 = | detT |−1〈F,ϕ ◦ T−1〉.
(v) If ψ ∈ S, then F ∗ ψ(x) = 〈F, τxψ̃〉, where ψ̃(x) = ψ(−x).

Recall as well we define the Fourier transform on distributions F ∈ S ′ via

〈F̂ , ϕ〉 = 〈F, ϕ̂〉,
where ϕ ∈ S.

Proof. (a) Let ϕ ∈ S. Letting h(y) = e−2πim·y, we have

〈(τyF )∧, ϕ〉 = 〈τyF, ϕ̂〉 = 〈F, τ−yϕ̂〉 = 〈F, [hϕ]∧〉 = 〈F̂ , hϕ〉 = 〈hF̂ , ϕ〉.

The first equality holds by definition of the Fourier transform on distributions. The second
equality follows from how translations act on distributions [property (iii) above]. The third
follows from properties of the Fourier transform on f ∈ S [property (b) above]. The fourth
follows from the definition of the Fourier transform on distributions. The final equality follows
from how Schwarz functions multiply with distributions [property (ii) above]. Since this holds
for all ϕ ∈ S, we have that

(τyF )∧ = hF̂ = e−2πim·yF̂

as distributions.
We now prove the second equality. Let ϕ ∈ S. Letting h(y) = e2πim·y, we have

〈τyF̂ , ϕ〉 = 〈F̂ , τ−yϕ〉 = 〈F, [τ−yϕ]∧〉 = 〈F, hϕ̂〉 = 〈hF, ϕ̂〉 = 〈ĥF , ϕ〉.
79



The first equality follows from how translations act on distributions [property (iii) above]. The
second follows from the definition of the Fourier transform on distributions. The third follows
from how translations relate with the Fourier transform [property (a) above]. The fourth follows
from how Schwarz functions multiply with distributions [property (ii) above]. The last follows
from the definition of Fourier transform on distributions. Thus, as distributions,

τyF̂ = (e2πim·yF )∧.

(b) Let ϕ ∈ S. Then we see that

〈∂αF̂ , ϕ〉 = (−1)|α|〈F̂ , ∂αϕ〉 = (−1)|α|〈F, ∂̂αϕ〉 = (−1)|α|〈F, (2πim)αϕ̂〉

= (−1)|α|〈(2πim)αF, ϕ̂〉 = 〈(−2πim)αF, ϕ̂〉 = 〈[(−2πim)αF ]∧, ϕ〉.

The first equality follows from how derivatives act on distributions [property (i) above]. The
second follows from the definition of the Fourier transform on distributions. The third follows
from how derivatives interact with the Fourier transform [property (f) above]. The fourth
follows from how Schwarz functions multiply with distributions [property (ii) above]. The fifth
follows from using linearity in the first coordinate. The final follows from the definition of
Fourier transform on distributions. Thus, as distributions, we have

∂αF̂ = [(−2πix)αF ]∧.

We now prove the second equality. Let ϕ ∈ S. Then we have

〈∂̂αF ,ϕ〉 = 〈∂αF, ϕ̂〉 = (−1)|α|〈F, ∂αϕ̂〉 = (−1)|α|〈F, [(−2πix)αϕ]∧〉

= (−1)|α|〈F̂ , (−2πix)αϕ〉 = 〈(2πix)αF̂ , ϕ〉
.

The first equality follows from the definition of Fourier transform on distributions. The second
follows from how the derivative interacts with distributions [property (i) above]. The third
follows from how derivatives interact with the Fourier transform [property (e) above]. The
fourth follows from the definition of the Fourier transform on distributions. The final follows
from using linearity and how Schwarz functions multiply with distributions [property (ii) above].
Thus, as distributions, we have

∂̂αF = (2πix)αF̂ .

(c) Let T ∈ GLn(R). Then we have

〈(F ◦ T )∧, ϕ〉 = 〈F ◦ T, ϕ̂〉 = |detT |−1〈F, ϕ̂ ◦ T−1〉 = | detT |−1〈F, |detT |(ϕ ◦ T ∗)∧〉

= 〈F, (ϕ ◦ T ∗)∧〉 = 〈F̂ , ϕ ◦ T ∗〉 = | detT |−1〈F̂ ◦ (T ∗)−1, ϕ〉.

The first equality follows from the definition of the Fourier transform on distributions. The
second follows from how invertible linear functions interact with distributions [property (iv)
above]. The third follows from how the Fourier transform interacts with composition of invert-
ible linear functions [property (c) above]. The fourth follows from linearity and how Schwarz
functions multiply with distributions (in order to move | detT | to the other side) [property
(ii) above]. The fifth follows from the definition of the Fourier transform on distributions.
The sixth follows from how distributions interact with invertible linear functions [property (iv)
above, with slight modification]. Thus, as distributions, we have

(F ◦ T )∧ = | detT |1F̂ ◦ (T ∗)−1.

(d) This is the more interesting property. Recall that for ψ ∈ S, we have

〈F ∗ ψ,ϕ〉 =

∫
(F ∗ ψ)ϕ = 〈F,ϕ ∗ ψ̃〉
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by Proposition 9.10. Taking the Fourier transform, we have

〈F̂ ∗ ψ,ϕ〉 = 〈F ∗ ψ, ϕ̂〉.
Next, we wish to show the following identity:

[ψ̂]∧ = ψ̃.

To see the identity, recall that for Schwarz functions we have

ψ∨(x) = ψ̂(−x) =
˜̂
ψ(x).

We remark that ˜̂
ψ(x) =

̂̃
ψ(x).

This follows by the fact that F is an isomorphism on S (Corollary 8.28), since if G denotes
the inverse Fourier transform, F the usual Fourier transform, P the reflection function (i.e.
P (ψ)(x) = ψ(−x)), we have

G ◦ F(ψ) = F ◦ G(ψ) = ψ,

G(ψ) = P ◦ F(ψ),

so
P ◦ F ◦ F(ψ) = F ◦ P ◦ F(ψ).

Since F is an isomorphism on S, we have that for all ψ ∈ S there exists a ϕ so that G(ϕ) = ψ.
The above holds for all ψ, so in particular we have

P ◦ F ◦ F ◦ G(ϕ) = P ◦ F(ϕ) = F ◦ P ◦ F ◦ G(ϕ) = F ◦ P (ϕ).

Hence, for all ψ ∈ S, we have
F ◦ P (ψ) = P ◦ F(ψ).

That is, we have that reflection commutes with the Fourier transform.
Now, notice that taking the Fourier transform of both sides of

G(ψ) = P ◦ F(ψ),

gives us
ψ = F ◦ P ◦ F(ψ),

so that, using the commutativity of P and F , we have

ψ = P ◦ F (2)(ψ).

Note that P ◦ P = Id, so taking P of both sides, we have

P (ψ) = F (2)(ψ);

that is, reverting to old notation, we have

[ψ̂]∧ = ψ̃.

This coupled with Proposition 9.10 gives us that

〈F ∗ ψ, ϕ̂〉 = 〈F, ϕ̂ ∗ [ψ̂]∧〉
Next, we note that

ϕ̂ ∗ [ψ̂]∧ = [ϕψ̂]∧.

To see this, note that property (d) above gives

F (2)(ϕ)F (3)(ψ) = F(F(ϕ) ∗ F (2)(ψ)).

Hence, we have

G(F (2)(ϕ)F (3)(ψ)) = F(ϕ) ∗ F (2)(ψ)
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Note that

P (ψϕ) = P (ψ)P (ϕ);

this is due to the fact that

P (ψϕ)(x) = (ψϕ)(−x) = ψ(−x)ϕ(−x) = (P (ψ)P (ϕ))(x).

Hence, we have

G(F (2)(ϕ)F (3)(ψ)) = (P ◦ F)(F (2)(ϕ)F (3)(ψ)) = (F ◦ P )(F (2)(ϕ)F (3)(ψ))

= (F ◦ P )(P (ϕ)(P ◦ F)(ψ)) = F(P (2)(ϕ)(P (2) ◦ F)(ψ))

= F(ϕF(ψ)).

The first equality here follows by expanding out the definition of G, the second follows from
using the fact that P and F commute, the third follows from using the identity F (2) = P and
writing F (3) = F (2) ◦F , the fourth follows from the fact that P distributes over multiplication,
and the last follows from the fact that P (2) = Id. In other words, reverting to old notation, we
have that

ϕ̂ ∗ [ψ̂]∧ = [ϕψ̂]∧.

This gives us

〈F, ϕ̂ ∗ [ψ̂]∧〉 = 〈F, [ϕψ̂]∧〉.
Using the definition of the Fourier transform for tempered distributions as well as how

Schwarz functions multiply with distributions [property (ii) above], we get

〈F, [ϕψ̂]∧〉 = 〈F̂ , ϕψ̂〉 = 〈ψ̂F̂ , ϕ〉
Thus, we have

〈F̂ ∗ ψ,ϕ〉 = 〈F̂ ψ̂, ϕ〉.
Since the choice of ϕ was arbitrary, we have that as distributions,

F̂ ∗ ψ = F̂ ψ̂.

�

Problem 42 (Folland Proposition 9.7). Let U ⊂ Rn be open. Let {Vn} be an increasing family of
precompact open sets whose union is U . We have that C∞c (U) is dense in C∞(U) with respect to
the topology generated by the family of seminorms ‖ · ‖[m,α], where for m ∈ N, α a multi-index, we
have

‖f‖[m,α] = sup
x∈Vm

|∂αf(x)|.

Proof. Recall Proposition 4.39, which says that if X is a σ-compact LCH space, then there is
an increasing sequence of precompact open sets such that V n ⊂ Vn+1 for all n and X =

⋃∞
1 Vn.

Let {Vn} be such a family for Rn which generates the family of seminorms. Notice that any other
choice for such a family will generate the same topology, since we have that ∂αfj → ∂αf uniformly
on compact sets for all α if and only if ‖fj − f‖[m,α] → 0 for all m,α (see the remark before
Proposition 9.7 in Folland page 291). The goal, then, is to show that for all ϕ ∈ C∞(U),
there exists a (κn) ⊂ C∞c (U) so that ‖κn − ϕ‖[m,α] → 0 for all m,α. Using C∞ Urysohn’s lemma

(Proposition 8.18) we can find ψn so that 0 ≤ ψn ≤ 1, ψn = 1 on Vn, and ψn = 0 outside of
Vn+1. Let κn = ϕψn. Then this is smooth, since a product of smooth functions is smooth, and it
has compact support due to ψn, so κn ∈ C∞c (U). Furthermore, we have that

‖κn − ϕ‖[m,α] = sup
x∈Vm

|∂α(κn − ϕ)(x)| = sup
x∈Vm

|∂α(ψnϕ)(x)− ∂αϕ(x)|.
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For m ≤ n, we see that κn = ϕ on Vm, since x ∈ Vm ⊂ Vn implies that κn(x) = ψn(x)ϕ(x) = ϕ(x).
Thus, for m ≤ n, we have that ‖κn−ϕ‖[m,α] = 0. So, for all m,α fixed, we can choose n sufficiently

large so that κn = ϕ on Vm, and hence ‖κn − ϕ‖[m,α] = 0. Thus, we get that κn → ϕ in C∞(U).
The choice of ϕ was arbitrary, so we get that C∞c (U) is dense in C∞(U). �

Problem 43 (Folland Theorem 9.8). Let U ⊂ Rn be open. We have that E ′(U) is the dual space
of C∞(U).

Proof. We prove what Folland states afterwards; that is, we prove

(1) If F ∈ E ′(U), then F extends uniquely to a continuous linear functional on C∞(U).
(2) If G is a continuous linear functional on C∞(U), then G|C∞c (U) ∈ E ′(U).

For (1), let F ∈ E ′(U). We need to show that we can extend this, and this extension is unique.
Recall that the support of F is defined to be the complement of the maximal open set where F
vanishes, and we have that F vanishes on an open set U if 〈F,ϕ〉 = 0 for all ϕ ∈ D(U). Recall as
well that E ′(U) is the space of distributions with compact support.

Since the support is compact, we can invoke C∞ Urysohn to find ψ so that ψ = 1 on supp(F ).
Define a linear functional G on C∞(U) where

〈G,ϕ〉 = 〈F,ϕψ〉.

First, note that G is a linear functional, since

|〈G,ϕ〉| ≤ C ′
∑
|α|≤N

‖∂γϕ‖u(supp(ψ)) ≤ C ′
∑
|α|≤N

‖ϕ‖[m,α].

where ϕ, κ are test functions, r some scalar constant, and we use the fact that F is a linear
functional. Next, notice that if ϕ ∈ C∞c (U), then we have

〈G,ϕ〉 = 〈F,ϕψ〉 = 〈F,ϕ〉,

so G indeed extends F . Next, we need to show that the extension is continuous. Since it is defined
on a dense subset (by the prior problem), the fact that it is continuous implies that it is a unique
extension of F , and so we’ll have our result.

To see continuity, we invoke Proposition 5.15. Note that F is continuous on C∞c (supp(ψ)).
The topology on C∞c (supp(ψ)) is defined by ‖∂αϕ‖u, so applying the proposition tells us that we
have

|〈G,ϕ〉| = |〈F,ψϕ〉| ≤ C
∑
|α|≤N

‖∂α(ψϕ)‖u

for some constant C, using the fact that F is continuous. Notice that the product rule tells us that

∂α(ψϕ) =
∑

β+γ=α

(∂βψ)(∂γϕ).

Hence, we have

|〈G,ϕ〉| ≤ C
∑
|α|≤N

∑
β+γ=α

‖∂βψ‖u‖∂γϕ‖u,

where the uniform norm is taken over the set supp(ψ). Choose m large enough so that supp(ψ) ⊂
Vm; we know such an m exists, since

⋃
Vk = Rn and the set is increasing. Doing so and letting C ′

absorb constants, we have that

|〈G,ϕ〉| ≤ C ′
∑
|α|≤N

‖∂αϕ‖u ≤ C ′
∑
|α|≤N

‖ϕ‖[m,α],
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where again the uniform norm in the second inequality is over supp(ψ). Hence, Proposition 5.15
tells us that this is continuous, and we see that from the remark earlier we get that this is the
unique extension of F .

Now we show (2). Let G be a continuous linear functional on C∞(U). Again, using Proposition
5.15, we get

|〈G,ϕ〉| ≤ C
∑
|α|≤N

‖ϕ‖[m,α]

for all ϕ ∈ C∞(U). Notice that we have ‖ϕ‖[m,α] ≤ ‖∂αϕ‖u, so restricting our view to C∞c (K) for
arbitrary compact K ⊂ U , we get that G is continuous on C∞c (K). Thus, G|C∞c (U) ∈ D′(U) by
Folland page 282 (ii). The goal from here is to show that G has compact support. Notice that
if supp(ϕ) ∩ Vm = ∅, then

|〈G,ϕ〉| ≤ C
∑
|α|≤N

‖ϕ‖[m,α] = 0,

so 〈G,ϕ〉 = 0. Thus, following the definition of support, we have that supp(G) ⊂ Vm; that is,
supp(G) is compact (its a closed set contained in a compact set). So G|C∞c (U) ⊂ E ′(U).

We now note that the above proves that E ′(U) is the dual space of C∞(U). Let G be in its dual
space. Then we see that using (2) and restricting it to the space of test functions it agrees with
some F ∈ E ′(U). Thus, for all ϕ ∈ C∞c (U), we have

〈F,ϕ〉 = 〈G,ϕ〉.
Since F extends uniquely to some continuous linear functional on C∞(U), we must have that this
linear functional is G by the density argument prior. Thus, we can define F on all ϕ ∈ C∞(U) by

〈F,ϕ〉 = 〈G,ϕ〉.
Since this extension is unique, we can without loss of generality label G as F . Going the other
direction, for F ∈ E ′(U), we can identify it uniquely with a continuous linear functional on C∞(U)
by (1). Hence, on all C∞(U), we have that F is a continuous linear functional, so we see that the
dual space can be identified as E ′(U). �
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James Marshall Reber, ID: 500409166 Math 6212, Homework 10

Remark. Thomas O’Hare was a collaborator.

We note the following lemma (left as an exercise in the class notes, also remarked by Folland on
Folland page 301).

Lemma. Let k ∈ N. The following are equivalent:

(a) f ∈ Hk(Rn),

(b) |mα|f̂(m) ∈ L2(Rn) for |α| ≤ k,

(c) (1 + |m|2)k/2f̂(m) ∈ L2(Rn).

Proof. We first show (a) ⇐⇒ (b). By Plancherel, we have that∑
|α|≤k

‖∂αf‖22 =
∑
|α|≤k

‖(∂αf)∧‖22 =
∑
|α|≤k

‖(2πim)αf̂‖22,

where we use the Fourier transform on distributions properties (see Homework 9, Exercise 1),
as well as the fact that the Fourier transform of a distribution defined by a function agrees with
the Fourier transform of the function (see Folland page 295). Thus, we see that

‖f‖(k) =

∑
|α|≤k

‖∂αf‖22

1/2

=

∑
|α|≤k

‖(2πim)αf̂‖22

1/2

.

For (b) ⇐⇒ (c), we need to first find constants C1 and C2 greater than 0 so that

C1(1 + |m|2)k/2 ≤
∑
|α|≤k

|mα| ≤ C2(1 + |m|2)k/2.

Recall from Folland Proposition 8.3 that we have

|mα| ≤ (1 + |m|)k

for |α| ≤ k, since

|mα| = |m1|α1 · · · |mn|αn ≤ (1 + |m|)α1 · · · (1 + |m|)αn = (1 + |m|)
∑
αi = (1 + |m|)|α| ≤ (1 + |m|)k.

Now, notice that

|mα|2 = |m1|2α1 · · · |mn|2αn ≤ (1 + |m|2)|α| ≤ (1 + |m|2)k.

Taking square roots of both sides leaves us with

|mα| ≤ (1 + |m|2)k/2.

Hence, we can choose C2 to be
∑
|α|≤k 1 and we get the desired upper bound.

For the lower bound, recall that we have
∑n

1 |mi|k is strictly positive on the unit sphere |m| = 1.
Since this is compact and the function continuous, it admits a minimum δ > 0. Thus, for all m,
we have

n∑
1

∣∣∣∣mi

|m|

∣∣∣∣k ≥ δ =⇒
n∑
1

|mi|k ≥ |m|kδ.

Now, we have

(1 + |m|2)k/2 ≤ 2k/2
(

1 + |m|k
)
≤ 2k/2

[
1 + δ−1

n∑
1

|mk
i |

]
≤ 2k/2δ−1

∑
|α|≤k

|mα|.
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Choosing C1 = 2−k/2δ, we get the desired lower bound. Since these are constants, |mα|f̂(m) ∈
L2(Rn) if and only if (1 + |m|2)k/2f̂(m) ∈ L2(Rn). �

Problem 44. For s ∈ R, ζ ∈ Rn, let

ωs(ζ) = (1 + |ζ|2)s/2.

Show that L2(Rn, ωs) equipped with the inner product

(f, g) = (f, g)L2(Rn,ωs) = 〈ωsf, ωsg〉L2(Rn) =

∫
(ωs(x)f(x))(ωs(x)g(x))dx

is a Hilbert space. Moreover, show that

S ⊂ L2(Rn, ωs) ⊂ S ′,

and show that C∞c (Rn) and S are dense in L2(Rn, ωs).

Proof. We remark that

L2(Rn, ωs) :=
{
f ∈ L1

loc(Rn) : ωsf ∈ L2(Rn)
}
.

First, we wish to show that the prescribed inner product is indeed an inner product. There are
three properties we must show.

(1) First, we see that it is linear in the first component. Let a, b ∈ C, f, g, h ∈ L2(Rn, ωs).
Then we need to show that

(af + bg, h) = a(f, h) + b(g, h).

Notice that

(af + bg, h) =

∫
(ωs(x) (af + bg) (x)) (ωs(x)h(x))dx

=

∫
[ωs(x)(af(x)) + ωs(x)(bg(x))] (ωs(x)h(x))dx

= a

∫
(ωs(x)f(x))(ωs(x)h(x))dx+ b

∫
(ωs(x)g(x))(ωs(x)h(x))dx

= a(f, h) + b(g, h).

(2) Let f, g ∈ L2(Rn, ωs). We wish to show that

(g, f) = (f, g).

This follows from noting that

(f, g) =

∫
(ωs(x)f(x))(ωs(x)g(x))dx =

∫
(ωs(x)f(x))(ωs(x)g(x))dx = (g, f).

(3) Finally, let f ∈ L2(Rn, ωs). We wish to show that (f, f) ≥ 0, with equality if and only if
f = 0 almost everywhere. Notice that we have

(f, f) =

∫
(ωs(x)f(x))(ωs(x)f(x))dx =

∫
|ωs(x)f(x)|2dx =

∫
(1 + |x|2)s|f(x)|2dx ≥ 0.

If the integral is equal to 0, we have that (1 + |x|2)s|f(x)|2 = 0 almost everywhere, which
implies that f(x) = 0 almost everywhere. If f = 0 almost everywhere, we see clearly that
the integral evaluates to 0. Hence, we have the desired result.
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We then get an associated norm

‖f‖2 = (f, f) =

∫
(1 + |x|2)s|f(x)|2dx.

We wish to show that L2(Rn, ωs) is complete with respect to this norm. For f ∈ L2(Rn, ωs), we
have that ‖f‖ < ∞ so that ωsf ∈ L2(Rn). Now, notice that (fn) ⊂ L2(Rn, ωs) Cauchy implies
(ωsfn) ⊂ L2(Rn) is Cauchy, since

‖fn − fm‖2 = (fn − fm, fn − fm) = 〈ωs(fn − fm), ωs(fn − fm)〉 = ‖ωs(fn − fm)‖22.

Since L2(Rn) is complete, we get that ωsfn → g in L2(R). Defining f = ω−1
s g, we see that

ωsfn → ωsf in L2(R), but this then means that

‖fn − f‖2 =

∫
ω2
s(x)|fn(x)− f(x)|2dx =

∫
|ωs(x)fn(x)− g(x)|2dx→ 0.

Hence, fn → f in L2(Rn, ωs), so the space is complete. Thus, L2(Rn, ωs) is a Hilbert space.
We need to show that if ϕ ∈ S, then ϕ ∈ L2(Rn, ωs). Notice that ϕ ∈ S ⊂ L1(Rn) ⊂ L1

loc(Rn)
(Folland Proposition 8.17). We then need to show that ωsϕ ∈ L2(Rn); by the remarks earlier,
this implies that ϕ ∈ L2(Rn, ωs). That is, the goal is to show that

‖ϕ‖ =

∫
(1 + |x|2)s|ϕ(x)|2dx <∞.

Note that for s ≥ 0, we have

(1 + |x|2)s ≤ (1 + |x|)2s,

since

(1 + |x|)2s = [(1 + |x|)2]s = (1 + 2|x|+ |x|2)s ≥ (1 + |x|2)s.

For s < 0, let k = −s so that k > 0. Then we have

(1 + |x|2)−k ≤ C(1 + |x|)−2k ↔ (1 + |x|)2k ≤ C(1 + |x|2)k,

and this follows from Folland page 181, where we see that we can set C = 4k. Combining these
facts, we have ∫

(1 + |x|2)s|ϕ(x)|2dx ≤ C
∫

(1 + |x|)2s|ϕ(x)|2dx

for some constant C which depends on s. Since ϕ ∈ S, we have that ‖ϕ‖(N,α) < ∞ for all (N,α).
Thus, there’s some constant CN so that

|ϕ(x)| ≤ CN (1 + |x|)−N

for all N natural numbers. Squaring, we have

|ϕ(x)|2 ≤ C2
N (1 + |x|)−2N .

Thus, for some constant C ′ which depends on N , we have∫
(1 + |x|2)s|ϕ(x)|2dx ≤ C ′

∫
(1 + |x|)2(s−N)dx

for all N . Choose N so that

N > n/2 + s,

then we get that this integral is finite (Folland Corollary 2.52), so that ωsϕ ∈ L2. Hence,
ϕ ∈ L2(Rn, ωs), and since the choice of ϕ ∈ S was arbitrary we have that S ⊂ L2(Rn, ωs).
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We now wish to show that f ∈ L2(Rn, ωs) ⊂ S ′. In other words, the goal is to show that if
f ∈ L2(Rn, ωs), then it defines a tempered distribution. Letting f ∈ L2(Rn, ωs), we wish to show
that for all ϕ ∈ S, we have

〈f, ϕ〉 =

∫
f(x)ϕ(x)dx <∞.

Notice that we have ∫
f(x)ϕ(x)dx ≤

∣∣∣∣∫ f(x)ϕ(x)dx

∣∣∣∣ ≤ ∫ |f(x)||ϕ(x)|dx

using the triangle inequality. Next, since ϕ is Schwarz, we get that

(1 + |x|)N |ϕ(x)| ≤ CN
for some constant CN and all natural numbers N . Thus,

|ϕ(x)| ≤ CN (1 + |x|)−N ,

so for all natural numbers N , we have∫
|f(x)||ϕ(x)|dx ≤ CN

∫
|f(x)|(1 + |x|)−Ndx = CN

∫
|f(x)|(1 + |x|)−N/2(1 + |x|)−N/2dx.

Using Hölder’s inequality, we have∫
|f(x)||ϕ(x)|dx ≤ CN

(∫
|f(x)|2(1 + |x|)−Ndx

)1/2(∫
(1 + |x|)−Ndx

)1/2

.

Now, we can choose N = max{R, 2|s|} so that −N ≤ 2s and N ≥ R, where R is chosen sufficiently
large so that N > n; that is, R is chosen so that Folland Corollary 2.52 applies, and hence the
integral on the right is finite. Since −N ≤ 2s, we get that (1 + |x|)−N ≤ (1 + |x|)2s. If s ≥ 0, then
note that

(1 + |x|)2s ≤ 22s(1 + |x|2)s,

since

(1 + |x|)2 ≤ 22(1 + |x|2).

If s < 0, then we note that

(1 + |x|)2s ≤ (1 + |x|2)s,

since if s = −k for some k > 0, we have

(1 + |x|)−2k ≤ (1 + |x|2)−k ↔ (1 + |x|2)k ≤ (1 + |x|)2k,

and the inequality on the right follows from our observation above; that is, it follows from

(1 + |x|)2k = [(1 + |x|)2]k = (1 + 2|x|+ |x|2)k ≥ (1 + |x|2)k.

The integral on the left is now bounded above by

C

(∫
|f(x)|2(1 + |x|2)sdx

)1/2

<∞

for some constant C depending on s. Since in either case it’s finite (since f ∈ L2(Rn, ωs)), we have
that ∫

f(x)ϕ(x)dx <∞,

so that f defines a tempered distribution. Thus, L2(Rn, ωs) ⊂ S ′.
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Finally, we need to show that C∞c (Rn) is dense in L2(Rn, ωs) (the fact that S will be dense follows
from this). This follows from the fact that C∞c (Rn) is dense in L2(Rn) (Folland Proposition
8.17). For ωsf ∈ L2 we can find ϕ ∈ C∞c (Rn) so that

‖ωsf − ϕ‖22 < ε.

Letting ψ = ϕω−1
s , we get that

‖ωsf − ωsψ‖22 < ε,

and we still have that ψ ∈ C∞c (Rn) (the product of smooth functions is smooth, and ϕ has compact
support, so the product will be a smooth function with compact support). By what we’ve observed
earlier, we see that

‖f − ψ‖2 = ‖ωsf − ωsψ‖22 < ε.

Hence, for all ε > 0, we can find ψ ∈ C∞c (Rn) so that

‖f − ψ‖ < ε,

and thus C∞c (Rn), and so S, is dense in L2(Rn, ωs). �

Problem 45. Show that the Fourier transform F and its inverse F−1 generate unitary maps of
Hk(Rn) onto L2(Rn, ωk):

FHk(Rn) = F−1Hk(Rn) = L2(Rn, ωk).

Proof. Recall that
Hk = {f ∈ S ′ : Λkf ∈ L2},

and
Λkf = [(1 + |m|2)k/2f̂ ]∨.

Recall that a map is unitary if it is surjective and preserves the inner product. Note that the inner
product on Hk is defined by

(f, g)(k) =

∫
(Λkf)(Λkg)dx =

∫
(1 + |m|2)kF(f)(m)F(g)(m)dm.

We’ll first show that Hk ⊂ F−1(L2(Rn, ωs)), and then show that L2(Rn, ωs) ⊂ F(Hk). Doing so,
we get that L2(Rn, ωs) = F(Hk) (i.e. the Fourier transform is surjective onto L2(Rn, ωs)). Let
g ∈ Hk, then g is a tempered distribution such that

Λkg =
[
(1 + |m|2)k/2ĝ

]∨
∈ L2.

Using Plancherel and applying the Fourier transform, we have that this implies that

(1 + |m|2)k/2ĝ = ωkĝ ∈ L2.

We have then that there is some h ∈ L2 so that

ωkĝ = h almost everywhere.

Thus, we have that, almost everywhere, ĝ = ω−1
k h. Note that ĝ is both a tempered distribution and

a function in L2 (i.e. an equivalence class of a function in L2), and as a function in L2 it agrees with
ω−1
k h.6 So we can define a distribution f = ĝ such that it is equal to ω−1

k h as a function (in L2).
Furthermore, we have that f∨ = g as distributions (since the Fourier transform is an isomorphism
on tempered distributions), and we have that ωkf ∈ L2.

If we have that f is locally integrable, then we win, since f ∈ L2(Rn, ωk) such that f∨ = g,
and since the choice of g was arbitrary we have Hk ⊂ F−1(L2(Rn, ωk)). To prove that it’s locally

6The remark here is just to be extra careful about our interpretation of what’s going on, since we’re juggling
distributions and functions.
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integrable, it suffices to prove that it’s integrable on sets of the form ER := {x : |x| < R}. Thus,
we wish to show that ∫

ER

|f(x)|dx <∞.

Using the fact that as functions we have that f = ω−1
k h, we can write this as∫

ER

(1 + |x|2)−k/2|h(x)|dx.

If k ≥ 0, we have (1 + |x|2)−k/2 ≤ 1, so we can bound this above by∫
ER

|h(x)|dx <∞,

since h ∈ L2 implies that h ∈ L1
loc(Rn) by Folland Proposition 6.12. If k < 0, we have that over

ER, (1 + |x|2)−k/2 ≤ (1 + R2)−k/2 = C a constant. Thus, we see that we can bound the integral
above by

C

∫
ER

|h| <∞.

Thus, for all k ∈ R, we get that as a function f is locally integrable, so f ∈ L2(Rn, ωk) and it is
such that f∨ = g. Hence, we have Hk ⊂ F−1(L2(Rn, ωk)), or F(Hk) ⊂ L2(Rn, ωk).

We now wish to show surjectivity. Let g ∈ L2(Rn, ωk). We wish to find f ∈ Hk(Rn) so that
F(f) = g. Notice that g ∈ L2(Rn, ωk) implies that

ωkg = (1 + |x|2)k/2g ∈ L2.

By Plancherel, we see that

[(1 + |x|2)k/2g]∨ ∈ L2.

By the first problem, we know that g ∈ L2(Rn, ωk) defines a tempered distribution, and hence we
can use the Fourier transform of distributions to define f = g∨. We see then that

Λkf = [(1 + |x|2)k/2f̂ ]∨ = [(1 + |x|2)k/2g]∨ ∈ L2,

and f is a tempered distribution, so f ∈ Hk. Furthermore, F(f) = g, so we get that the Fourier
transform is surjective and F(Hk) = L2(Rn, ωk).

We now need to show that it’s unitary; in other words, we wish to show that

(F(f),F(g)) = (f, g)(k).

Note that

(f, g)(k) =

∫
(1 + |m|2)kF(f)(m)F(g)(m)dm

=

∫
(ωk(x)F(f)(x))(ωk(x)F(g)(x))dx = (F(f),F(g)).

Thus, the Fourier transform is unitary. So F is a unitary isomorphism from Hk to L2(Rn, ωk).
Notice as well that the Fourier inverse is a unitary isomorphism. We have that

(f, g)(k) =

∫
(1 + |m|2)kF(f)(m)F(g)(m)dm

=

∫
(1 + |m|2)kF (2)(f)(m)F (2)(g)(m)dm =

∫
(1 + |m|2)kF (3)(f)(m)F (3)(g)(m)dm

=

∫
(1 + |m|2)kF−1(f)(m)F−1(g)(m)dm = (F−1(f),F−1(g))
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using Plancherel and the properties of the Fourier transform from the last homework. Hence, it
still preserves the inner product. The argument that F−1 is surjective follows from the same kind
of argument outlined in the last paragraph. Alternatively, we could use the fact that FHk =
L2(Rn, ωk) and use the periodicity of the Fourier transform (which follows from the periodicity

of the Fourier transform for functions, proven on the last homework) to get F (3)Hk = F−1Hk =

F (2)L2(Rn, ωk). Even though this is the Fourier transform as a distribution, we have that L2(Rn, ωk)
consists of locally integrable functions, so distributions defined by functions. Using the fact that
the Fourier transform as a distribution agrees with the Fourier transform as a function, we can
interpret F (2) to be reflection, which is a bijection of L2(Rn, ωk). Thus, F−1Hk = L2(Rn, ωk), and
the Fourier inverse is surjective. Thus, we also have that the inverse Fourier transform is a unitary
isomorphism. �

Remark. Note that this problem gives us that S ⊂ Hs is dense in the topology of Hs.

Problem 46. For t < s, show that Hs is a dense subspace of Ht (in the topology of Ht).

Proof. We first must show that Hs ⊂ Ht. Letting f ∈ Hs, we have that as a function it is such
that Λsf ∈ L2. Taking the Fourier transform, we have that

F(Λsf) = (1 + |m|2)s/2f̂ ∈ L2,

so ∫
(1 + |m|2)s|f̂(m)|2dm <∞.

Since t < s, we see that (1 + |m|2)t < (1 + |m|2)s, so∫
(1 + |m|2)t|f̂(m)|2dm <

∫
(1 + |m|2)s|f̂(m)|2dm <∞.

Thus, we have F(Λtf) ∈ L2, and by Plancherel this implies that Λtf ∈ L2. So f ∈ Ht. Thus,
Hs ⊂ Ht.

For density, we remark that F(Hs) = L2(Rn, ωs) ⊂ F(Ht) = L2(Rn, ωt) by the prior problem.
We showed that S ⊂ L2(Rn, ωs) in the first problem, so we have S ⊂ L2(Rn, ωs) ⊂ L2(Rn, ωt). Now,
the Fourier transform maps Schwarz functions to themselves, and so since the Fourier transform
is a unitary isomorphism we have that S ⊂ Hs ⊂ Ht, and we have that S is dense in Ht in the
topology of Ht. Thus, we get that Hs is dense in Ht in the topology of Ht, as desired. �

Problem 47. Prove the following:

(a) ∂α is a bounded linear map from Hs to Hs−|α| for s ∈ R, α a multi-index.
(b) Λt is a unitary isomorphism from Hs to Hs−t for s, t ∈ R.

Proof. (a) Note that we’re interpreting this as the distributional derivative as opposed to an honest
derivative. We have that ∂α is a linear map defined on S ′, so we restrict it to Hs to get a linear
map. Furthermore, we see that the image will be

∂α(Hs) = {∂αf : f ∈ S ′,Λsf ∈ L2}.

We wish to show that this is Hs−|α|. The derivative of a tempered distribution is still a tempered
distribution, so we just need to show that

Λs−|α|∂
αf ∈ L2.

Note that, expanding this out and taking the Fourier transform, we have that this is equivalent
to showing that

(1 + |m|2)(s−|α|)/2(∂αf)∧ ∈ L2.
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By the prior homework, we see that as distributions we have

(∂αf)∧ = (2πim)αf̂(m).

Hence, this reduces to showing that

(1 + |m|2)(s−|α|)/2(2πi)|α|mαf̂ ∈ L2.

Taking this integral, we have∫
(1 + |m|2)s−|α|(2πi)2|α||mα|2|f̂(m)|2dm.

In the inequality in the above Lemma, we have that there is some constant C so that

|mα| ≤ C(1 + |m|2)|α|/2.

Substituting this in, we have that the above integral is bounded above by

C ′
∫

(1 + |m|2)s−|α|(1 + |m|2)|α||f̂(m)|2dm = C ′
∫

(1 + |m|2)s|f̂(m)|2dm <∞

for some constant C ′, since Λsf ∈ L2. By Plancherel, then, we see that this forces

Λs−|α|∂
αf ∈ L2,

so the image of ∂α is Hs−|α|. Finally, we wish to show that this map is bounded; in other
words, for all f , we have that

‖∂αf‖(s−|α|) ≤ C‖f‖(s).
Notice that

‖∂αf‖(s−|α|) =

[∫
|∂̂αf(m)|2(1 + |m|2)s−|α|dm

]1/2

≤ (2π)|α|
[∫
|f̂(m)|2(1 + |m|2)sdm

]1/2

= (2π)|α|‖f‖(s)
by the arguments above (and implicitly using the properties of the Fourier transform on dis-
tributions, and then using that the Fourier transform of a distribution and a function which
defines the distribution agree). Hence, the mapping is bounded.

(b) We now claim that Λt is a unitary isomorphism from Hs to Hs−t. First, we show that Λt(H
s) ⊂

Hs−t. Let f ∈ Hs, then the goal is to show that Λt(f) is a tempered distribution such that
Λs−tΛtf ∈ L2. To see that Λtf is a tempered distribution, we need to show that for all ϕ ∈ S,∫

(Λtf)ϕdm <∞.

We have that for some ψ, κ ∈ S with κ = ϕ, κ̂ = ψ, this integral is equivalent to∫
[(1 + |m|2)t/2f̂(m)]∨ϕdm =

∫
[(1 + |m|2)t/2f̂(m)]∨κdm =

∫
(1 + |m|2)t/2f̂(m)ψ(m)dm

by Plancherel. Next, since we have (1 + |m|2) ≥ 1, we get that (1 + |m|2)t/2 < (1 + |m|2)s/2,
since t < s. So we can bound this above by∫

(1 + |m|2)s/2f̂(m)ψ(m)dm.

Finally, we remark that Λsf ∈ L2, so Plancherel says F(Λsf) ∈ L2, and

F(Λsf) = (1 + |m|2)s/2f̂ ∈ L2.
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Using Hölder and the triangle inequality, we have that∫
(1 + |m|2)s/2f̂(m)ψ(m)dm ≤

∫
(1 + |m|2)s/2|f̂(m)||ψ(m)|dm ≤ ‖Λsf‖2‖ψ‖2 <∞.

Thus, Λtf defines a tempered distribution.
Next, the goal is to show that Λs−tΛtf ∈ L2. We remark that ΛsΛt = Λs+t; to see this,

notice that for any f , we have

Λs(Λt(f)) = Λs

([
(1 + |m|2)t/2f̂

]∨)
=

[
(1 + |m|2)s/2

[(
(1 + |m|2)t/2f̂

)∨]∧]∨
=
[
(1 + |m|2)(s+t)/2f̂

]∨
= Λs+t(f).

Thus, we see that Λs−tΛtf = Λsf ∈ L2 by assumption. Consequently, Λ−1
t = Λ−t, since

ΛtΛ−t = Λ0, and Λ0f = [f̂ ]∨ = f almost everywhere, so they are equal as distributions, and so
Λ0 is the identity. Likewise, Λ−tΛt = Λ0 which is the identity, so Λt is invertible with inverse
Λ−t. Thus, for f ∈ Hs, we have Λs−tΛtf = Λsf ∈ L2, as desired. So Λt(H

s) ⊂ Hs−t.
To see that Λt is surjective, then, we simply note that for g ∈ Hs−t, we have that Λ−tg ∈ Hs,

since ΛsΛ−tg = Λs−tg ∈ L2. Thus, Λt(H
s) = Hs−t.

Finally, we need to show that it preserves the inner product; that is,

(Λtf,Λtg)(s−t) = (f, g)(s).

Notice that

(Λtf,Λtg)(s−t) =

∫
(Λs−tΛtf)(Λs−tΛtg) =

∫
(Λsf)(Λsg) = (f, g)(s).

Thus, it is a unitary isomorphism.
�

Problem 48. If k ∈ N, then Hk is the space of all f ∈ L2 that posses strong L2 derivatives ∂αf , as
defined in Folland Exercise 8.8 for |α| ≤ k and these strong derivatives coincide with distribution
derivatives.

Proof. Recall that in Folland Exercise 8.8, we defined the strong partial derivative of f ∈ Lp as
a function h ∈ Lp such that

lim
y→0
‖y−1(τ−yejf − f)− h‖p = 0.

We generally denote h as ∂jf when it is unambiguous. For multi-indices, we have that ∂αf as a

strong Lp derivative corresponds to the iterative definition; i.e., if α = β+ ej , then ∂αf = ∂j∂
βf =

∂β∂jf as strong Lp derivatives. Since it’s defined iteratively, the approach is going to be induction.

The goal is to show Hk = Ĥk, where we define

Ĥk := {f ∈ L2 : f posses strong L2 derivatives for |α| ≤ k}.

The first step is to show that Hk ⊂ Ĥk, and that, when defined, the distributional derivative
coincides with the strong Lp derivative. The strategy is to do something like Folland Exercise
8.18 (a) (which we did in recitation).

We note that f ∈ Hk, k ≥ 0 implies that f ∈ L2 as a function by the Lemma above (by the

equivalence, we see that |mα|f̂(m) ∈ L2(Rn) for |α| ≤ k, which implies that f̂(m) ∈ L2(Rn), and
so Plancherel tells us that f(m) ∈ L2(Rn); see also Folland page 302, the remark right after
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property (vi)). We now take the distributional derivative, labeling it as ∂αf . Taking the Fourier
transform of this, we have that the last homework gives us

∂̂αf = (2πim)αf̂ .

The Fourier transform of f as a function and as a distribution agree, so it suffices to now view f
as a function. Notice that the Lemma above tells us that the quantity above is in L2 for |α| ≤ k.
We will first show that

lim
y→0
‖y−1(τ−yejf − f)∧ − (2πimj)f̂‖2 = 0,

where we view f ∈ Hk as a function (instead of as the distribution it defines). We now recall that

(τ−yejf)∧ = e2πim·(yej)f̂(m).

Thus, squaring this, we’re examining

lim
y→0

∫ (∣∣∣∣∣e2πim·(ejy) − 1

y
− 2πimj

∣∣∣∣∣ |f̂(m)|

)2

dm.

Notice that ∣∣∣∣∣e2πim·(ejy) − 1

y
− 2πimj

∣∣∣∣∣ ≤
∣∣∣∣∣e2πim·(yej) − 1

y

∣∣∣∣∣+ 2π|mj |.

Notice as well (from the recitation earlier or from a MVT application, see Rudin’s Principles of
Mathematical Analysis, Theorem 5.19 with a slight modification) we have∣∣∣∣∣e2πim·(yej) − 1

y

∣∣∣∣∣ ≤ 2π|mj |.

Note that we have |mα|f̂ ∈ L2 for all |α| ≤ k. Thus, for all |α| ≤ k, we see that we can apply the
DCT to bring the limit inside, giving us that this goes to 0 as y → 0. Hence, we have

lim
y→0
‖F(y−1(τ−yejf − f)− ∂jf)‖22 = lim

y→0
‖y−1(τ−yejf − f)− ∂jf‖22 = 0,

so

lim
y→0
‖y−1(τ−yejf − f)− ∂jf‖2 = 0.

Thus, the distributional derivative ∂jf is the strong Lp derivative.
For general multi-indices, we induct on |α|. Thus, we assume that we can show it for |α| < k,

and we wish to show it for |α|+ 1 ≤ k. Letting β = α+ ej , 1 ≤ j ≤ n, the goal is to show it holds
for β assuming that it holds for α. We have the same set up as above then, with the minor change
that we replace f with ∂αf ; thus, we have

lim
y→0

∫ (∣∣∣∣∣e2πim·(yej) − 1

y
− (2πi)mj

∣∣∣∣∣ |∂̂αf(m)|

)2

dm.

Again, we see that the inside will be bounded by∣∣∣∣∣e2πim·(yej) − 1

y
− 2πimj

∣∣∣∣∣ ≤
∣∣∣∣∣e2πim·(yej) − 1

y

∣∣∣∣∣+ 2π|mj |,

and we now have the bound given by∣∣∣∣∣e2πim·(ye)j) − 1

y

∣∣∣∣∣ ≤ 2π|mj |,
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so the same result applies as above to give us that the limit is 0. In other words, this establishes
that

lim
y→0
‖y−1(τ−yej∂

αf − ∂αf)− ∂βf‖2 = 0,

where β = α+ ej , so that the distributional derivative ∂βf is the same as the strong L2 derivative

∂βf .

The goal now is to show that Ĥk ⊂ Hk. Assume f ∈ Ĥk. Again, we try using the strategy
from Folland Exercise 8.18 (a). Assume that the partial L2 derivative of f , denoted ∂jf , exists.

Then the goal is to show that mj f̂ ∈ L2 for 1 ≤ j ≤ n. This will give us that f ∈ H1 by the

Lemma above. Proceeding iteratively, we get that ∂α implies that |mα|f̂(m) ∈ L2(Rn) for |α| ≤ k,
and so we apply the Lemma above to get that f ∈ Hk(Rn).

Denoting the partial L2 derivative as ∂jf , we have

lim
y→0

∥∥y−1(τ−yejf − f)− ∂jf
∥∥

2
= 0.

Applying Plancherel and taking the Fourier transform, we have that

lim
y→0
‖y−1(F(τ−yejf)−F(f))−F(∂jf)‖2 = 0.

By the results above, we see that this implies that

lim
y→0

∥∥∥∥∥F(f)

(
e2πim·(yej) − 1

y

)
−F(∂jf)

∥∥∥∥∥
2

= 0.

Using the reverse triangle inequality, we get that

lim
y→0

∥∥∥∥∥F(f)

(
e2πim·(yej) − 1

y

)∥∥∥∥∥
2

= ‖F(∂jf)‖2 = ‖∂jf‖2 <∞.

Squaring everything, we see that this is the same as

lim
y→0

∫
|f̂(m)|2

∣∣∣∣∣e2πim·(yej) − 1

y

∣∣∣∣∣
2

dm =

∫
|∂jf(x)|2dx <∞.

The goal now is to find a bound based on this.
Let y = 1/n,

fn(m) =
∣∣∣f̂(m)

(
n(e2πimj/n − 1))

)∣∣∣2 ,
we note that

lim inf
n→∞

fn = lim
n→∞

fn = 4π2|f̂(m)mj |2,
since this is a derivative. Recalling Fatou’s Lemma, we see that∫

|f̂(m)|24π2|mj |2dm ≤ lim inf
n→∞

∫
fn(m)dm = lim

n→∞

∫
fn(m)dm <∞,

so we have that f̂(m)mj ∈ L2 for 1 ≤ j ≤ n. Thus, f ∈ H1, and from prior we have that the
distributional derivative ∂jf coincides with the strong L2 derivative ∂jf .

Now, assume that we have shown that it holds for multi-indices |α| = r < k, we wish to show
it for multi-indices of the form |β| = r + 1 ≤ k; that is, multi-indices of the form β = α + ej ,

where 1 ≤ j ≤ n. In other words, we have that f̂(m)|mα| ∈ L2, and the goal is to show that

f̂(m)|mβ| ∈ L2. Notice that ∂βf as a strong L2 derivative exists, and since it is defined iteratively
we have that it is defined so that

lim
y→0
‖y−1(τ−yej∂

αf − ∂αf)− ∂βf‖2 = 0.
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We remark here that we have that it holds for multi-indices |α| ≤ r, so f̂(m)|mα| ∈ L2 for |α| ≤ r,
so f ∈ Hr. By the prior result, we have then that ∂αf as a distributional derivative agrees with
the strong L2 derivative ∂αf , so we can unambiguously refer to it as either. This is important,
since when we take the Fourier transform of ∂αf , it wouldn’t make sense as an L2 derivative (in
the sense that we wish to use Fourier properties to rewrite it), but as a distributional derivative we
can apply the problem from the last homework to get our desired result.

Applying Plancherel, we see that we have

lim
y→0
‖y−1(F(τ−yej∂

αf)−F(∂αf))−F(∂βf)‖2,

and applying the reverse triangle inequality we have that

lim
y→0

∥∥∥∥∥F(∂αf)

(
e2πim·(yej) − 1

y

)∥∥∥∥∥
2

=
∥∥∥F(∂βf)

∥∥∥
2

= ‖∂βf‖2 <∞.

Now, by the remark earlier, we can interpret ∂αf as the distributional derivative, so we are able to
rewrite it as

F(∂αf) = (2πim)αF(f),

and using the fact that the distributional Fourier transform agrees with the functional Fourier
transform, we have that

F(∂αf) = (2πim)αf̂(m).

Substituting this in, we get

(4π2)|α| lim
y→0

∫
|mα|2|f̂(m)|2

∣∣∣∣∣e2πim·(yej) − 1

y

∣∣∣∣∣
2

dm = ‖∂βf‖2 <∞.

Again, a Fatou argument applies, so letting y = 1/n and

fn(m) =
∣∣∣mαf̂(m)

(
n(e2πimj/n − 1))

)∣∣∣2 ,
we have

lim inf
n→∞

fn(m) = lim
n→∞

fn(m) = 4π2|f̂(m)mαmj |2,
and so

4π2

∫
|mα|2|f̂(m)|2|mj |2dm ≤ lim inf

n→∞

∫
fn(m)dm = lim

n→∞

∫
fn(m)dm <∞.

Thus, we have |mα||mj |f̂(m) ∈ L2, or in other words |mβ|f̂(m) ∈ L2. Thus, the inductive argu-

ment applies, giving us that |mα|f̂(m) ∈ L2 for |α| ≤ k, so f ∈ Hk. By prior, we see that the

distributional derivative coincides with the strong L2 derivative. Thus, we have that Ĥk = Hk and
the derivatives coincide, as desired. �
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James Marshall Reber, ID: 500409166 Math 6212, Homework 11

Remark. Thomas O’Hare was a collaborator.

Remark. A family member is going through health issues due to the pandemic, so I will not be
super focused on the next few homework assignments. I’m sorry for the quality.

Problem 49. Prove that if Hs ⊂ Ck0 , then s > k + n/2. (Note this is a converse to the Sobolev
embedding theorem.)

Proof. We follow Folland’s hint. Assume that Hs ⊂ Ck0 . First, remark that s is such that s ≥ 0,
since for s < 0 we have that elements in Hs may not be functions, so this inclusion doesn’t make
sense (by the remark in Folland page 302). Note that the identity function is a linear map,
clearly, and we have that Hs and Ck0 are Banach spaces with respect to their norms. Thus, we
are in an appropriate setting to apply the Closed Graph theorem (Folland Theorem 5.12). The
first step, then, is to show that the identity map is closed. Let (fn) ⊂ Hs be such that fn → f in
Hs, and let g be such that Id(fn) = fn → g in Ck0 . The goal is to show that Id(f) = f = g in Ck0 .
Notice fn → f in Hs if

‖fn − f‖2(s) =

∫
(1 + |m|2)s|f̂n(m)− f̂(m)|2dm→ 0.

fSince s ≥ 0 by assumption, we get that

‖fn − f‖22 = ‖f̂n − f̂‖22 =

∫
|f̂n(m)− f̂(m)|2dm ≤

∫
(1 + |m|2)s|f̂n(m)− f̂(m)|2dm,

so fn → f in the L2 norm, and hence almost everywhere. Since these are in Ck0 , we have that
fn → f pointwise. Notice that if fn → g in Ck0 , then we have that for all α such that |α| ≤ k,

‖∂αfn − ∂αg‖u → 0.

In particular, we get that fn → g pointwise, so we have that f = g pointwise. Since f = g as
functions, we have that Id(f) = f = g in Ck0 . So the identity mapping is closed, hence continuous.

The goal now is to show that ∂αδ ∈ (Hs)∗ for |α| ≤ k. From what we’ve shown above, this
equivalently follows from showing that ∂αδ ∈ (Ck0 )∗ for |α| ≤ k, and this follows since this is just
taking the derivative and evaluating at 0. Since Hs ⊂ Ck0 and it continuously embeds, we can
define a functional by f 7→ ∂αf(0) for |α| ≤ k; this is a continuous linear functional on Hs, since
we map f into its continuous function analogue using the identity function, and then we use the
fact that ∂αδ is a linear functional on Ck0 for |α| ≤ k. By Folland Proposition 9.16, we have
that (Hs)∗ ∼= H−s. So unambiguously referring to this new linear functional by the same name,
we have ∂αδ ∈ H−s for |α| ≤ k. Note that this means that∫

(1 + |m|2)−s|∂̂αδ(m)|2dm <∞.

Using properties of the Fourier transform, we recall that ∂̂αδ = (2πim)αδ̂ and δ̂ = 1. So we have
that

4π2

∫
(1 + |m|2)−s|mα|dm <∞.

Notice that we can use the lemma from the last homework to bound below by

C

∫
(1 + |m|2)−s+kdm ≤ 4π2

∫
(1 + |m|2)−s|mα|dm <∞
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for some constant C. Recall from Folland Corollary 2.52 that the integral on the left is finite
iff −s + k < −n/2, or in other words, s > k + n/2. Thus, if Hs ⊂ Ck0 , then we must have
s > k + n/2. �

Problem 50. Suppose s0 ≤ s1, t0 ≤ t1, and 0 ≤ λ ≤ 1. Let

sλ = (1− λ)s0 + λs1, tλ = (1− λ)t0 + λt1.

Show that if T is a bounded linear map from Hs0 to Ht0 whose restriction to Hs1 is bounded from
Hs1 to Ht1 , then the restriction of T to Hsλ is bounded from Hsλ to Htλ for 0 ≤ λ ≤ 1.

Remark. I’ve found that this is a proposition in one of Folland’s other books (Introduction to
Partial Differential Equations, Second Edition), and that the hint follows the proof of the
theorem pretty closely modulo actually showing that F (z) is holomorphic (what he says seems
kinda bogus and I don’t see how you can fix it). If you ignore wanting to establish an actual upper
bound based on λ, you can show that it’s bounded without invoking the Three-Lines Lemma, which
means avoiding the issue of holomorphicity and dealing with complex numbers. I already did a lot
of the work to apply the Three-Lines lemma, so there’s some unnecessary things here, but the end
result should still be correct.

Proof. We first claim that T is bounded from Hs to Ht iff ΛtTΛ−s is bounded on L2. This follows
from the fact that Λt, Λ−s are unitary isomorphisms (see the last homework), and Λ−s : H0 → Hs,
Λt : Ht → H0. Note that we can identify L2 with H0. To see this, by definition we have that

H0 = {f ∈ S ′ : Λ0f ∈ L2},

and so remarking that

Λ0f = [(1 + |m|2)0f̂ ]∨ = f,

we see

H0 = {f ∈ S ′ : f ∈ L2}.
We note that f ∈ L2 defines a tempered distribution by Hölder’s inequality, since for ϕ ∈ S we
have

|〈f, ϕ〉| ≤
∫
|f ||ϕ| ≤ ‖f‖2‖ϕ‖2 <∞,

so in fact we have L2 = H0. Hence, we really have Λ−s : L2 → Hs and Λt : Ht → L2, so
T : Hs → Ht is bounded iff ΛtTΛ−s : L2 → L2 is bounded.

Next, we observe that Λz is well-defined for all z ∈ C, where we note that we define it for complex
numbers in the analogous way;

Λz(f) =
[
(1 + |m|2)z/2f̂

]∨
.

If f = g, then

F(Λz(f)) = (1 + |m|2)z/2f̂ = (1 + |m|2)z/2ĝ = F(Λz(g)),

and so since the Fourier transform is an isometric isomorphism we have Λz(f) = Λz(g). Further-
more, assume that z = bi ∈ C, where b ∈ R (that is <(z) = 0). We wish to show that Λz : Hs → Hs

is unitary for all s ∈ R. Note that

Λz(H
s) =

{
Λzf : f ∈ S ′,Λsf ∈ L2

}
.

We first show that Λs(Λzf) ∈ L2, establishing that Λz(H
s) ⊂ Hs. Note that (1+ |m|2)bi/2 is slowly

increasing. We prove this by induction on |α|. For the case |α| = 0, we have

|(1 + |m|2)bi/2| = 1 ≤ (1 + |n|)0
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by the above result. Now, assume that it is slowly increasing for |α| = k − 1. To deduce the result
for |α| = k, we let β = α+ ej , 1 ≤ j ≤ n, and we note that

|∂β(1 + |m|2)bi/2| = |∂α∂j(1 + |m|2)bi/2|

=

∣∣∣∣(bi2
)
∂a(1 + |m|2)bi/2

(
2mj

1 + |m|2

)∣∣∣∣
=
b

2

∣∣∣∣∂a(1 + |m|2)bi/2
(

2mj

1 + |m|2

)∣∣∣∣ .
We now invoke the general product rule as well as the induction hypothesis (since |δ| ≤ |α| = k−1)
to get that this is equal to

b

2

∣∣∣∣∣∣
∑

δ+γ=α

α!

δ!γ!
∂δ
(

(1 + |m|2)bi/2
)
∂γ
(

2mj

1 + |m|2

)∣∣∣∣∣∣
≤ b

2

∑
δ+γ=α

α!

δ!γ!

∣∣∣∂δ ((1 + |m|2)bi/2
)∣∣∣ ∣∣∣∣∂γ ( 2mj

1 + |m|2

)∣∣∣∣
≤ b

2

∑
δ+γ=α

α!

δ!γ!
Cδ(1 + |m|)N(δ)

∣∣∣∣∂γ ( 2mj

1 + |m|2

)∣∣∣∣ .
Invoking product rule again for the derivative on the right, we have

2
∣∣∂γ(mj)(1 + |m|2)−1

∣∣ ≤ 2
∑
η+ζ=γ

γ!

η!ζ!
|∂ηmj ||∂ζ(1 + |m|2)−1|.

Notice that ∂γmj = 1 if γ = ej , mj if γ = 0, and 0 otherwise. So there is a constant C ′ so that we
can bound this above by

C ′
[
|mj ||∂γ(1 + |m|2)−1|+ |∂γ−ej (1 + |m|2)−1|

]
.

We now claim that (1 + |m|2)−1 is slowly increasing. If this is true, then noting that |mj | ≤
(1 + |mj |) ≤ (1 + |m|), we can find constants Cγ and N(γ) so that this is bounded above by

Cγ(1 + |m|)N(γ). Substituting this into the original sum, we have an upper bound of

|∂β(1 + |m|2)bi/2| ≤ b

2

∑
δ+γ=α

α!

γ!δ!
(Cδ(1 + |m|)N(δ))(Cγ(1 + |m|)N(γ)).

Taking maximums and absorbing constants, we see that there are constants Cβ and N(β) so that

|∂β(1 + |m|2)bi/2| ≤ Cβ(1 + |m|)N(β).

So, by induction, we get that this is slowly increasing.
In this, we assumed that (1 + |m|2)−1 is slowly increasing. We now prove this, using induction

again. Notice that

|(1 + |m|2)−1| ≤ 1 = (1 + |m|)0,

so we have it holds for the base case |α| = 0. Assume it holds for |α| = k− 1, then we wish to show
it holds for |β| = k, where β = α+ ej , 1 ≤ j ≤ n. Again, we have

|∂β(1 + |m|2)−1| = |∂α∂j(1 + |m|2)−1| = 2|∂α(1 + |m|2)−2mj | = 2|∂α(1 + |m|2)−1[(1 + |m|2)−1mj ].
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We now invoke product rule on this to get that it is equal to

2

∣∣∣∣∣∣
∑

γ+δ=α

α!

γ!δ!

[
∂γ(1 + |m|2)−1

] [
∂δ(1 + |m|2)−1mj

]∣∣∣∣∣∣
≤ 2

∑
γ+δ=α

α!

γ!δ!

∣∣∂γ(1 + |m|2)−1
∣∣ ∣∣∣∂δ(1 + |m|2)−1mj

∣∣∣ .
Note that |γ| ≤ |α| = k − 1 and |δ| ≤ |a| = k − 1 by assumption. Thus, we can use the induction
hypothesis to find constants Cγ , N(γ) so that∣∣∂γ(1 + |m|2)−1

∣∣ ≤ Cγ(1 + |m|)N(γ).

Next, we expand ∂δ(1 + |m|2)−1mj with the product rule to get∣∣∣∂δ(1 + |m|2)−1mj

∣∣∣ =

∣∣∣∣∣∣
∑
η+ζ=δ

δ!

η!ζ!
(∂η(1 + |m|2)−1)(∂ζmj)

∣∣∣∣∣∣ .
Recall that ∂ζmj = 1 if ζ = ej , mj if ζ = 0, and 0 otherwise, so there is a constant C ′ so that this
is bounded above by

C ′
[
|∂δ−ej (1 + |m|2)−1||mj |+ |∂δ(1 + |m|2)−1|

∣∣∣ .
Since |δ| ≤ |α| = k − 1, and we have the observation that |mj | ≤ (1 + |mj |) ≤ (1 + |m|), we can
use the induction hypothesis plus the observation to get that there are constants Cδ, N(δ) so that

this is bounded above by Cδ(1 + |m|)N(δ). Hence, absorbing constants and maximizing again, we
get that there are constants Cβ, N(β) so that

|∂β(1 + |m|2)−1| ≤ Cβ(1 + |m|)N(β).

Thus, by induction we have (1 + |m|2)−1 is slowly increasing. Consequently, we have (1 + |m|2)bi/2

is slowly increasing as well.
Since this is slowly increasing, we note that Λz applied to a distribution is still a tempered

distribution, and so applying Λs to this makes sense. Now, notice that

Λs(Λzf) = Λs

[
(1 + |m|2)bi/2f̂

]∨
=
[
(1 + |m|2)(s+bi)/2f̂

]∨
.

We remark here that this sort of trick also establishes that

ΛsΛz = Λs+z.

By Plancherel, it suffices to show that∫
|(1 + |m|2)(s+bi)/2|2|f̂(m)|2dm <∞.

Notice that this is equal to ∫
(1 + |m|2)s|f̂(m)|2dm <∞

since the modulus of a positive real number to a complex power is the positive real number to the
power of the real part. We know that the latter integral is finite, since f ∈ Hs, so we have that
Λz(H

s) ⊂ Hs.
Next, for surjectivity, let g ∈ Hs. We wish to find f ∈ Hs such that Λzf = g. Utilizing the

fact that the Fourier transform is an isomorphism on tempered distributions, we get that there is

a distribution f so that f̂ = (1 + |m|2)−bi/2ĝ. Thus, we have

Λzf =
[
(1 + |m|2)bi/2f̂

]∨
=
[
(1 + |m|2)bi/2

[
(1 + |m|2)−bi/2ĝ

]]∨
= g.

100

https://proofwiki.org/wiki/Modulus_of_Positive_Real_Number_to_Complex_Power_is_Positive_Real_Number_to_Power_of_Real_Part
https://proofwiki.org/wiki/Modulus_of_Positive_Real_Number_to_Complex_Power_is_Positive_Real_Number_to_Power_of_Real_Part


Since the choice of g was arbitrary, we have that Λz is surjective.
Next, we wish to show that Λz preserves the inner product on Hs. To see this, note that by

definition and the observation we made earlier on complex powers and the modulus, we have

(Λzf,Λzg)(s) =

∫
(ΛsΛzf)(ΛsΛzg)dm

=

∫ ∣∣∣(1 + |m|2)(s+bi)/2
∣∣∣2 f̂(m)ĝ(m)dm

=

∫
(1 + |m|2)sf̂(m)ĝ(m)dm = (f, g)(s).

Thus, if <(z) = 0, then Λz is a unitary map on Hs, as desired.
Define s(z) = (1− z)s0 + zs1, t(z) = (1− z)t0 + zt1. For z ∈ C with 0 ≤ <(z) ≤ 1 and ϕ,ψ ∈ S,

we define

F (z) :=

∫ [
Λt(z)TΛ−s(z)ϕ

]
ψ.

We now diverge from the hint, with the goal only being to show that the function is bounded. Note
apriori we have

‖Tf‖(t0) ≤ C0‖f‖(s0), ‖Tf‖(t1) ≤ C1‖f‖(s1).

Notice that for <(z) = 0, we get (using Plancherel, Hölder, and definitions/observations)

|F (z)| ≤
∫
|Λ−t(z)TΛ−s(z)ϕ||ψ| ≤

(∫
|Λ−t(z)TΛ−s(z)ϕ|2

)1/2(∫
|ψ|2

)1/2

=

(∫ ∣∣∣∣[(1 + |m|2)t(z)/2F(TΛ−s(z)ϕ)
]∨∣∣∣∣2

)1/2

‖ψ‖2

=

(∫ ∣∣∣(1 + |m|2)t(z)/2F(TΛ−s(z)ϕ)
∣∣∣2)1/2

‖ψ‖2

=

(∫
(1 + |m|2)t0

∣∣F(TΛ−s(z)ϕ)
∣∣2)1/2

‖ψ‖2

= ‖TΛ−s(z)ϕ‖(t0)‖ψ‖2 ≤ C0‖Λ−s(z)ϕ‖(s0)‖ψ‖2

= C0

(∫
(1 + |m|2)s0 |F(Λ−s(z)ϕ)|2

)1/2

‖ψ‖2

= C0

(∫
(1 + |m|2)s0

∣∣∣(1 + |m|2)−s(z)/2ϕ̂
∣∣∣2)1/2

‖ψ‖2

= C0

(∫
|ϕ̂|2

)1/2

‖ψ‖2 = C0‖ϕ‖2‖ψ‖2.
101



Similarly, for <(z) = 1, we get that (using Plancherel, Hölder, and definitions/observations)

|F (z)| ≤
∫
|Λ−t(z)TΛ−s(z)ϕ||ψ| ≤

(∫
|Λ−t(z)TΛ−s(z)ϕ|2

)1/2(∫
|ψ|2

)1/2

=

(∫ ∣∣∣∣[(1 + |m|2)t(z)/2F(TΛ−s(z)ϕ)
]∨∣∣∣∣2

)1/2

‖ψ‖2

=

(∫ ∣∣∣(1 + |m|2)t(z)/2F(TΛ−s(z)ϕ)
∣∣∣2)1/2

‖ψ‖2

=

(∫
(1 + |m|2)t1

∣∣F(TΛ−s(z)ϕ)
∣∣2)1/2

‖ψ‖2

= ‖TΛ−s(z)ϕ‖(t1)‖ψ‖2 ≤ C1‖Λ−s(z)ϕ‖(s1)‖ψ‖2

= C1

(∫
(1 + |m|2)s1 |F(Λ−s(z)ϕ)|2

)1/2

‖ψ‖2

= C1

(∫
(1 + |m|2)s1

∣∣∣(1 + |m|2)−s(z)/2ϕ̂
∣∣∣2)1/2

‖ψ‖2

= C1

(∫
|ϕ̂|2

)1/2

‖ψ‖2 = C1‖ϕ‖2‖ψ‖2.

For 0 < <(z) < 1, we get that

|F (z)| ≤
∫
|Λ−t(z)TΛ−s(z)ϕ||ψ| ≤

(∫
|Λ−t(z)TΛ−s(z)ϕ|2

)1/2(∫
|ψ|2

)1/2

=

(∫ ∣∣∣∣[(1 + |m|2)t(z)/2F(TΛ−s(z)ϕ)
]∨∣∣∣∣2

)1/2

‖ψ‖2

=

(∫ ∣∣∣(1 + |m|2)t(z)/2F(TΛ−s(z)ϕ)
∣∣∣2)1/2

‖ψ‖2

=

(∫
(1 + |m|2)<(t(z))

∣∣F(TΛ−s(z)ϕ)
∣∣2)1/2

‖ψ‖2

≤ ‖TΛ−s(z)ϕ‖(t1)‖ψ‖2 ≤ C1‖Λ−s(z)ϕ‖(s1)‖ψ‖2

= C1

(∫
(1 + |m|2)s1 |F(Λ−s(z)ϕ)|2

)1/2

‖ψ‖2

= C1

(∫
(1 + |m|2)s1

∣∣∣(1 + |m|2)−s(z)/2ϕ̂
∣∣∣2)1/2

‖ψ‖2

≤ C1

(∫
(1 + |m|2)s1−s0 |ϕ̂|2

)1/2

‖ψ‖2 = C1‖ϕ‖(s1−s0)‖ψ‖2 <∞.

Remark. If you can show that F (z) is holomorphic, we have at this point the Three-Lines lemma
would apply and you could actually get an upper bound based on λ for 0 ≤ λ ≤ 1. Thomas
suggested something like Morea’s theorem but I don’t see how to apply that here.

Thus, the function is bounded for 0 ≤ <(z) ≤ 1 by taking the maximum between these three
constants. Using duality (Folland Theorem 6.14), Λt(z)TΛ−s(z)ϕ is a bounded map on L2. By

the remark earlier, we have that T is a bounded map from Hsλ to Htλ for 0 ≤ λ ≤ 1. �
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For s ∈ R, the periodic Sobolev spaces are defined as

Hs(Tn) :=
{
f ∈ D′(Tn) :

∑
(1 + |m|2)s|f̂(m)|2 <∞

}
.

We define the periodic Sobolev norm as

‖f‖Ht(Tn) :=
(∑

(1 + |m|2)s|f̂(m)|2
)1/2

.

Problem 51. For s, t ∈ R and s ≥ t, show that the space Hs(Tn) is continuously and densely
embedded in Ht(Tn), and

‖f‖Ht(Tn) ≤ ‖f‖Hs(Tn) for all f ∈ Hs(Tn).

Proof. Notice that

‖f‖2Ht(Tn) =
∑

(1 + |m|2)t|f̂(m)|2,

and since t ≤ s, we get that (1 + |m|2)t ≤ (1 + |m|2)s, hence

‖f‖2Ht(Tn) =
∑

(1 + |m|2)t|f̂(m)|2 ≤
∑

(1 + |m|2)s|f̂(m)|2 = ‖f‖2Hs(Tn).

In other words,

‖f‖Ht(Tn) ≤ ‖f‖Hs(Tn).

Next, we wish to show that the embedding Id : Hs(Tn) ↪→ Ht(Tn) has dense image. Let f ∈ Ht(Tn)
be fixed. Define fM a distribution so that

f̂M (m) =

{
f̂(m) if |m| < |M |
0 if |m| ≥M.

We first remark that this indeed defines a distribution. Let

F (x) :=
∑
m∈Zn

f̂M (m)Em(x),

where Em(x) = e2πim·x. Since f ∈ Ht(Tn), we note that∑
(1 + |m|2)tf̂(m) <∞,

which forces f̂(m) <∞ for all m ∈ Zn. Since F is a finite sum of things, we have that it defines a

function in L2(Tn), so a distribution. Furthermore, this distribution is such that F̂ (m) = f̂M (m).
We label the distribution fM to be the L2(Tn) function F , so without ambiguity we can just refer
to it as fM . Notice that fM ∈ Hs(Tn), since

‖fM‖Hs(Tn) =
∑
m∈Zn

(1 + |m|2)s|f̂(m)|2 =
∑
m∈Zn
|m|<M

(1 + |m|2)s|f̂(m)|2 <∞,

which we note is finite. Notice that fM → f in Ht(Tn), since

‖fM − f‖Ht(Tn) =
∑
m∈Zn

(1 + |m|2)t|f̂M (m)− f̂(m)|2 =
∑
m∈Zn
|m|≥M

(1 + |m|2)t|f̂(m)|2 → 0,

since the series is convergent. Thus, Hs(Tn) ⊂ Ht(Tn) is dense. �

Problem 52. Show that the dual (Hs(Tn))∗ of Hs(Tn) is isometrically isomorphic to H−s(Tn).
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Proof. We proceed in two steps. First, let f ∈ H−s(Tn). We wish to show that ϕ 7→ 〈f, ϕ〉 is a
continuous linear functional on Hs(Tn), where ϕ ∈ Hs(Tn). Notice that we have

〈f, ϕ〉 = 〈f∨, ϕ̂〉 =
∑
m∈Zn

f∨(m)ϕ̂(m).

Hence,

|〈f, ϕ〉| ≤
∑
m∈Zn

(1 + |m|2)−s/2|f∨(m)|(1 + |m|2)s/2|ϕ̂(m)|,

and applying the Schwarz inequality we have

|〈f, ϕ〉| ≤ ‖f‖H−s(Tn)‖ϕ‖Hs(Tn).

So the linear functional is bounded, with norm at most ‖f‖(−s) < ∞. We note that the lin-
ear functional has norm equal to ‖f‖(−s), since choosing g to be a distribution so that ĝ(m) =

‖f‖−1
(−s)(1 + |m|2)−sf̂(m) (the case where ‖f‖(−s) = 0 follow trivially since the norm of the linear

map needs to be greater than or equal to 0, so we can assume ‖f‖(−s) 6= 0), we have

〈f, g〉 =
1

‖f‖(−s)

∑
m∈Zn

|f̂(m)|2(1 + |m|2)s = ‖f‖(−s).

Hence, it is continuous, and so it is in the dual of Hs(Tn), with norm equal to its H−s norm.
Next, let G ∈ (Hs(Tn))∗. The goal is to show that it agrees with some f ∈ H−s. Notice that,

via Fourier series, we can identify Hs(Tn) with

l2s = {(am)m∈Zn : am ∈ C for all m ∈ Zn,
∑

(1 + |m|2)s|am|2 <∞},

where s ∈ R. In other words, l2s is the equivalent of L2(Rn, ωs) for little l2. As a result, we equip
it with the inner product

((am), (bm))(2,s) =
∑

(1 + |m|2)sambm,

and hence it has associated norm

‖(am)‖(2,s) = ‖am‖(2,s) =
(∑

(1 + |m|2)s|am|2
)1/2

.

We note that l2s is a Banach space (and hence a Hilbert space) with respect to this norm. To see
that it is a vector space, notice that (ai), (bi) ∈ l2s tells us that

‖(am + bm)‖2(2,s) =
∑

(1 + |m|2)s|am + bm|2 ≤
∑

(1 + |m|2)s(|am|+ |bm|)2

=
∑

(1 + |m|2)s(|am|2 + 2|am||bm|+ |bm|2)

= ‖am‖2(2,s) + 2
∑

[(1 + |m|2)s/2|am|][(1 + |m|2)s/2|bm|] + ‖bm‖2(2,s).

We now recall Cauchy’s inequality for general l2, giving us that this is bounded above by

‖am‖2(2,s) + 2
(∑

(1 + |m|2)s|am|2
)1/2 (∑

(1 + |m|2)s|bm|2
)1/2

] + ‖bm‖2(2,s)
= ‖am‖2(2,s) + 2‖am‖(2,s)‖bm‖(2,s) + ‖bm‖2(2,s)

= (‖am‖(2,s) + ‖bm‖(2,s))2,

so

‖am + bm‖(2,s) ≤ ‖am‖(2,s) + ‖bm‖(2,s) <∞,
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hence (am + bm) ⊂ l2s . For scalars c, we have

‖cam‖(2,s) =
(∑

(1 + |m|2)s|cam|2
)1/2

= |c|‖am‖(2,s) <∞.

Thus, (cam) ⊂ l2s as well. Therefore l2s a vector space.
We’ve shown the triangle inequality and the scalar property for norms, so all that remains is

‖am‖(2,s) = 0 iff am = 0 for all m ∈ Zn. The converse is clear, so we show the implication. If
‖am‖(2,s) = 0, then

0 ≤ (1 + |m|2)s|am|2 ≤
∑

(1 + |m|2)s|am|2 = 0,

and hence, we have (1 + |m|2)s|am|2 = 0 for all m ∈ Zn, which is only possible if am = 0 for all
m ∈ Zn.

The last thing to check is that it is complete with respect to its norm. Let (anm) ⊂ l2s be a Cauchy
sequence; in other words, for all ε > 0, there exists an N so that for n, r ≥ N , we have

‖anm − arm‖(2,s) < ε.

Fixing m, we have that anm is therefore a Cauchy sequence in the underlying field (say C), since

(1 + |m|2)s|anm − arm|2 ≤ ‖anm − arm‖(2,s).

Thus, anm → am for fixed m. The goal is to show that anm → am in the l2s norm. Notice first that
(am) ⊂ l2s , since

sup
n∈N
‖anm‖(2,s) ≤ C,

and hence for all n we have ∑
|m|≤M

(1 + |m|2)s|anm|2 ≤ C.

Let M,n→∞ to get
‖am‖(2,s) ≤ C.

Now, we show that ‖anm − am‖(2,s) → 0. We do the same trick, namely we have that for all ε > 0,
we can find N so that for n, r ≥ N ,∑

|m|≤M

(1 + |m|2)s|anm − arm|2 ≤ ‖anm − arm‖(2,s) < ε.

Letting M, r →∞, this tells us that for all ε > 0, we can find an N so that for n ≥ N ,

‖anm − am‖(2,s) < ε.

Thus, anm → am in l2s , and so l2s is a Banach space with respect to the norm.
We now show that it is a Hilbert space with respect to the prescribed inner product. Notice that

(cam + kbm, dm)(2,s) =
∑

(1 + |m|2)s(cam + kbm)dm = c(am, dm)(2,s) + k(bm, dm)(2,s),

(am, bm)(2,s) =
∑

(1 + |m|2)sambm = (bm, am)(2,s),

(am, am) =
∑

(1 + |m|2)s|am|2 ≥ 0.

Hence, we have that it is an inner product, so l2s is a Hilbert space. Since it is a Hilbert space, we
have that it is self dual (Folland Theorem 5.25), so (l2s)

∗ = l2s .

Consider G : Hs(Tn)→ l2s defined by G(f) = (f̂(m))m∈Zn ; in other words, the Fourier transform
as distributions. We’ve already seen that the Fourier transform is defined on D′(Tn), since this is the
space of distributions with compact support. It suffices to show that this is a unitary isomorphism
of spaces, then. Notice that, by construction, G(Hs(Tn)) ⊂ l2s . We then need to prove surjectivity.
By the discussion on Folland page 297-298 (for details, check Folland’s Fourier Analysis and
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its Applications, specifically Theorem 9.6 and the discussion before), we have that the Fourier
transform on periodic distributions is an isomorphism. Take a sequence (am)m∈Zn ⊂ l2s . Define

a distribution F ∈ D′(Tn) to be such that F̂ (m) = am; by the discussion in Folland, we know
such a distribution exists. We then check that this distribution is in Hs(Tn). If it is, we have
that G(F ) = (am)m∈Zn , proving surjectivity. The fact that it is in Hs(Tn) follows by construction,
though, since ∑

(1 + |m|2)s|F̂ (m)|2 =
∑

(1 + |m|2)s|am|2 <∞

since (am) ⊂ l2s . Thus, the mapping is surjective.
To see that it preserves the inner product, notice that

(G(F ),G(G))(2,s) =
∑

(1 + |m|2)sF̂ (m)Ĝ(m) = (F,G)(s).

Thus, G is a unitary isomorphism between Hilbert spaces.
Since G ◦ G−1 : l2s → C is a bounded operator on l2s , using the fact that G is bounded and G is a

unitary isomorphism, we get that duality tells us there is a sequence (bm)m∈Zn ∈ l2s so that

G ◦ G−1(am) =
∑
m∈Zn

(1 + |m|2)sambm.

Define g to be the distribution in D′(Tn) so that g∨(m) = (1 + |m|2)sbm. In other words, g is
the distribution defined by

〈g, ϕ〉 = 〈g∨, ϕ̂〉 =
∑

(1 + |m|2)sϕ̂(m)bm.

Notice that

G(ϕ) = G ◦ G−1 ◦ G(ϕ) = G ◦ G−1((ϕ̂(m))) =
∑

(1 + |m|2)sϕ̂(m)bm

=
∑
m∈Zn

g∨(m)ϕ̂(m) = 〈g∨, ϕ∧〉 = 〈g, ϕ〉.

Thus, these define the same distribution. Furthermore, g ∈ H−s(Tn), since

‖g‖2(−s) =
∑
m∈Zn

|ĝ(m)|2(1+|m|2)−s =
∑
m∈Zn

|(1+|m|2)sbm|2(1+|m|2)−s =
∑
m∈Zn

(1+|m|2)s|bm|2 <∞.

So we have that every element in (H(s))∗ can be identified (uniquely) with a distribution in H(−s).

So the map from H(−s) to (H(s))∗ given by f 7→ 〈f, ·〉 is bijective, isometric, and linear (since the
inverse Fourier transform is linear and integration is linear), so its an isometric isomorphism. �

Problem 53. Suppose s > k + n/2. Show that Id : Hs(Tn) ↪→ Ck(Tn).

Proof. Let f ∈ Hs. Then we have that∑
m∈Zn

(1 + |m|2)s|f̂(m)|2 <∞.

From prior discussions, we have that

F =
∑
m∈Zn

f̂(m)e2πim·x

defines a distribution. We note that, as distributions, f = F . This follows, since

〈F,ϕ〉 = 〈F̂ , ϕ∨〉 =

∫
F̂ (m)ϕ∨(m)dm =

∫
f̂(m)ϕ∨(m)dm = 〈f̂ , ϕ∨〉 = 〈f, ϕ〉.
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We see that

|∂αf(x)| = (2π)|α|

∣∣∣∣∣mα
∑
m∈Zn

f̂(m)e2πim·x

∣∣∣∣∣ ≤ (2π)|α||mα|
∑
m∈Zn

|f̂(m)|

≤ C
∑
m∈Zn

(1 + |m|2)k/2|f̂(m)|,

where C is some constant (which we found from the Lemma from the prior homework). Using the
Schwarz inequality, we have that this is bounded above by

C

( ∑
m∈Zn

(1 + |m|2)s|f̂(m)|2
)1/2( ∑

m∈Zn
(1 + |m|2)k−s

)1/2

= C‖f‖(s)

( ∑
m∈Zn

(1 + |m|2)k−s

)1/2

.

Now, since s > k + n/2, we have that 2(k − s) < −n; in other words, we have that the series on
the right converges (by a generalized integral test, see this for an example). Thus, the Sobolev
embedding theorem holds. �
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James Marshall Reber, ID: 500409166 Math 6212, Midterm

Problem 54. Let 1 ≤ p < q <∞ and (X,µ) be a finite measure space.

(a) What is the domain of the identity map from Lp(µ) to Lq(µ)?
(b) Is the identity map from part (a) continuous on its domain? Prove or disprove.

Remark. I’m going off of the definition that the domain of a map is the space of elements where
the function can be uniquely defined. That is, if T : X → Y is a map, we define the domain of T to
be the maximal subset D ⊂ X so that, for all x ∈ D, T (x) ∈ Y is defined uniquely. I tried looking
in Folland for a definition of domain but the one there doesn’t line up with what the problem is
asking for (Grafakos seemed to implicitly be using this one, but never formally stated what he
meant by domain).

Proof. (a) Let T : Lp(µ) → Lq(µ) be the map such that T (f) = f (i.e. the identity map). The
domain, then, is the collection of maps f ∈ Lp(µ) such that T (f) = f ∈ Lq(µ); that is, the
collection of maps which are in Lp(µ) and which are in Lq(µ). Thus, the domain of the map
is Lp(µ) ∩ Lq(µ). Recall from Folland Proposition 6.12 that, on finite measure spaces, we
have that Lq(µ) ⊂ Lp(µ); hence, the domain will be Lp(µ)∩Lq(µ) = Lq(µ), equipped with the
p norm. To prevent confusion, let’s denote the domain with

D = {f ∈ Lp(µ) : f ∈ Lq(µ)};

then D = Lq(µ) as sets and we have that D is equipped with the p norm.
(b) The question is whether T : D → Lq(µ) is continuous on its domain D. Inspired by Homework

1, Problem 4, we first show that T is a closed map. Assume that T (fn) = fn → g in Lq(µ),
fn → f in D. The goal, then, is to show that f = g as functions in Lq(µ). Since fn → f in D,
which is equipped with the p norm, we have that

µ({x : |fn(x)− f(x)| > ε}) ≤ 1

εp
‖fn − f‖qp → 0

by Chebychev’s inequality (Folland Theorem 6.17); thus, fn → f in measure. Likewise,
T (fn) = fn → g in Lq(µ) equipped with the q norm, so we have that another application of
Chebychev gives us

µ({x : |fn(x)− g(x)| > ε}) ≤ 1

εq
‖fn − g‖qq → 0.

Hence fn → g in measure. Invoking Folland Theorem 2.30, we see that f = g almost
everywhere, and since we are viewing these are functions in Lq(µ), we have that T (f) = f = g
as functions in Lq(µ). Thus, T (fn)→ T (f) in Lq(µ), so that T is a closed map.

Next, we note that the domain D is a dense subset. Using Folland Proposition 6.7, we
have that the simple functions are in D (since they are in Lq(µ)), the simple functions are in
Lp(µ), and they are dense in Lp(µ). Thus, letting Σ denote the set of simple functions, we have
Σ ⊂ D ⊂ Lp(µ) so that D is a dense subset of Lp.

If T were continuous on its domain D, then we claim that its domain would be all of Lp(µ).
Since T is a closed map and D is dense, taking arbitrary f ∈ Lp(µ), we can find a sequence
(fn) ⊂ Lp(µ) such that fn → f , so

T (f) = f = lim
n→∞

fn = lim
n→∞

T (fn)

is uniquely defined, so f ∈ D. If the domain is equal to Lp(µ), we have that Lp(µ) = Lq(µ).
This, however, is not always true; following Folland page 185 and taking, for example, p = 1
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and q = 2, we have ((0, 1), λ) (λ the Lebesgue measure) is a finite measure space. Notice that

f(x) = x−1/2 is in L1 since

‖f‖1 =

∫ 1

0
x−1/2dλ(x) = 2x1/2

∣∣∣∣1
x=0

= 2,

but

‖f‖22 =

∫ 1

0
x−1dλ(x) = ln(x)

∣∣∣∣1
x=0

=∞.

So f /∈ D, since T (f) = f /∈ L2(λ), and hence the containment L2(λ) ( L1(λ) is strict. Thus,
the identity function T : Lp(µ)→ Lq(µ) need not be continuous.

�
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Problem 55. For 0 < p < 1, let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces and f a
measurable function on the product space X ⊗ Y . Then∫

X

[∫
Y
|f(x, y)|pdν(y)

]1/p

dµ(x) ≤
[∫

Y

(∫
X
|f(x, y)|dµ(x)

)p
dν(y)

]1/p

.

Proof. We remark that this is the “flipped” version of Minkowski’s inequality for integrals. We
somewhat expect this to hold, since in general these kinds inequalities flip for 0 < p < 1 (see
Homework 2 Problem 1 (a), for example). To prove this, we will follow Grafakos’ hint for
proving the usual Minkowski’s integral inequality (Grafakos Exercise 1.1.6 (a), the same hint
is also in Measure and Integral: An Introduction to Real Analysis by Wheeden and
Zygmund, Exercise 8.8) and use a sort of “flipped” Hölder in place for Hölder (Grafakos
Exercise 1.1.2 (c)). We first prove the desired lemma.

Lemma (“Flipped” Hölder, Grafakos Exercise 1.1.2 (c)). For r < 0 and g > 0 almost every-
where, define

‖g‖r = ‖g−1‖−1
|r| .

In other words, we define it as we have for the positive numbers:

‖g‖r =

[(∫
(g−1)|r|

)1/|r|
]−1

=

(∫
g−|r|

)−1/|r|
=

(∫
gr
)1/r

.

We define Lr for r < 0 in the usual way, which is that Lr is the space of functions where the ‖ · ‖r
norm is finite.

Let 0 < p < 1, q = p/(p− 1). If g is strictly positive almost everywhere and lies in Lq and f is
measurable such that fg is in L1, then

‖fg‖1 ≥ ‖f‖p‖g‖q.

The goal is to prove this by applying the usual Hölder (Grafakos Exercise 1.1.2 (a) with
k = 2, Folland Theorem 6.2). That is, the goal is to use the following.

Theorem (Hölder’s Inequality). Suppose 1 < p <∞ and 1/p+1/q = 1. If f and g are measurable
functions on X, then

‖fg‖1 ≤ ‖f‖p‖g‖q.

Proof of Lemma. Let r = 1/p so that 1 < r <∞. We examine

‖f‖pp =

∫
|f |p =

∫
|f |1/r.

Multiplying and dividing by |g|1/r (and thus using the fact that g is positive), we get∫
|fg|1/r|g|−1/r.

We now can apply Hölder using r and q′, where q′ is chosen so that 1/r + 1/q′ = 1. This gives us∫
|fg|1/r|g|−1/r ≤

(∫
|fg|

)1/r (∫
|g|−q′/r

)1/q′

.

Notice that q′ = r/(r − 1), and substituting in 1/p = r, we have

q′ =
1/p

(1/p− 1)
=

1

p((1− p)/p)
=

1

1− p
.
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Hence, we have
−q′

r
=

1/(p− 1)

1/p
=

p

p− 1
= q,

and so

‖f‖pp ≤
(∫
|fg|

)p(∫
|g|q
)−(p−1)

.

Multiplying both sides by
(∫
|g|q
)(p−1)

, we have(∫
|g|q
)p−1

‖f‖pp ≤
(∫
|fg|

)p
= ‖fg‖p1,

where we note it’s valid to do since g ∈ Lq. Taking pth roots of both sides, we get(∫
|g|q
)(p−1)/p

‖f‖p =

(∫
|g|q
)1/q

‖f‖p = ‖g‖q‖f‖p ≤ ‖fg‖1,

as desired. �

Assume without loss of generality that f(x, y) ≥ 0 (to simplify notation). We rule out some
extraneous cases first in the hopes of getting the appropriate assumptions for the above lemma.
First, if there is some positive measurable set E ⊂ Y so that for all y ∈ E, we have∫

X
f(x, y)dµ(x) =∞,

then we see that the inequality clearly holds; taking the pth power of the right hand side, we have

∞ =

∫
E

(∫
X
f(x, y)dµ(x)

)p
dν(y) ≤

∫
Y

(∫
X
f(x, y)dµ(x)

)p
dν(y).

So we assume that for almost every y ∈ Y ,∫
X
f(x, y)dµ(x) <∞.

Similarly, if we have [∫
Y

(∫
X
f(x, y)dµ(x)

)p
dν(y)

]1/p

=∞,

then the inequality trivially holds again, so assume that[∫
Y

(∫
X
f(x, y)dµ(x)

)p
dν(y)

]1/p

<∞.

Using the fact that f(x, y) ≥ 0, we have that for almost every y ∈ Y ,

0 ≤
∫
X
f(x, y)dµ(x) <∞.

The goal now is to show that we can reduce to the case where for almost every y ∈ Y we have

0 <

∫
X
f(x, y)dµ(x) <∞.

Let E ⊂ Y be the collection

E :=

{
y ∈ Y :

∫
X
f(x, y)dµ(x) = 0

}
= {y ∈ Y : f(x, y) = 0 for almost every x} ,
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where the second equality comes from Folland Proposition 2.16; that is, for fixed y ∈ Y ,∫
X
f(x, y)dµ(x) = 0 ⇐⇒ f(x, y) = 0 for almost every x

Observe that we can write the left hand side as∫
X

[∫
Y
f(x, y)pdν(y)

]1/p

dµ(x) =

∫
X

[∫
E
f(x, y)pdν(y) +

∫
Ec
f(x, y)pdν(y)

]1/p

dµ(x).

Since for y ∈ E, f(x, y) = 0 for almost every x ∈ X, we have that∫
X

[∫
Y
f(x, y)pdν(y)

]1/p

dµ(x) =

∫
X

[∫
Ec
f(x, y)pdν(y)

]1/p

dµ(x).

Finally, observe that the right hand side of the inequality is equal to∫
Y

(∫
X
f(x, y)dµ(x)

)p
dν(y) =

∫
E

(∫
X
f(x, y)dµ(x)

)p
dν(y) +

∫
Ec

(∫
X
f(x, y)dµ(x)

)p
dν(y)

=

∫
Ec

(∫
X
f(x, y)dµ(x)

)p
dν(y).

So proving the inequality reduces to proving it in the case where∫
X
f(x, y)dµ(x) > 0

for all y ∈ Y (for the case where this does not hold for all of Y , this holds on Ec, and by what we’ve
shown above showing it for Ec is sufficient). Thus, we may assume that for almost every y ∈ Y ,
we have

0 <

∫
X
f(x, y)dµ(x) <∞,

with [∫
Y

(∫
X
f(x, y)dµ(x)

)p
dν(y)

]1/p

<∞.

For notational simplicity, let

h(y) :=

∫
X
f(x, y)dµ(x) <∞.

Translating, the assumptions then state that 0 < h(y) for all y ∈ Y , h(y) <∞ for almost every y,
and ‖h‖p <∞.

Going back to the inequality, notice that the pth power of the right hand side can be written as∫
Y

(∫
X
f(x, y)dµ(x)

)p
dν(y).

By the assumptions we made earlier (that is, 0 < h(y) <∞), we see that we can write this as∫
Y

(∫
X
f(x, y)dµ(x)

)p
dν(y) =

∫
Y

(∫
X
f(z, y)dµ(z)

)p−1(∫
X
f(x, y)dµ(x)

)
dν(y)

=

∫
Y

∫
X

(∫
X
f(z, y)dµ(z)

)p−1

f(x, y)dµ(x)dν(y) =

∫
Y

∫
X
h(y)p−1f(x, y)dµ(x)dν(y).

We see that Tonelli applies, since h(y)p−1f(x, y) ≥ 0, hence we can rewrite this as∫
Y

∫
X
h(y)p−1f(x, y)dµ(x)dν(y) =

∫
X

∫
Y
h(y)p−1f(x, y)dν(y)dµ(x).

112



Now, the goal is to use the flipped Hölder lemma above. By our notes earlier, we note that
g(y) := h(y)p−1 is such that g > 0 almost everywhere (the notation is changed in order match the
lemma). Notice as well that we assumed that ‖h‖p <∞ which tells us that g(y)f(x, y) ∈ L1(ν(y))
for almost every x; to see this, fix x ∈ X and note that we have∫

Y
g(y)f(x, y)dν(y) =

∫
Y

(∫
X
f(z, y)dµ(z)

)p−1

f(x, y)dν(y).

Integrating this with respect to x, we have∫
X

[∫
Y

(∫
X
f(z, y)dµ(z)

)p−1

f(x, y)dν(y)

]
dµ(x)

=

∫
X

∫
Y

(∫
X
f(z, y)dµ(z)

)p−1

f(x, y)dν(y)dµ(x)

=

∫
Y

∫
X

(∫
X
f(z, y)dµ(z)

)p−1

f(x, y)dµ(x)dν(y)

=

∫
Y

(∫
X
f(x, y)dµ(x)

)p
dν(y) = ‖h‖pp <∞,

so Folland Proposition 2.20 tells us that, for almost every x, we must have∫
Y
g(y)f(x, y)dν(y) <∞.

Since we will be integrating this with respect to X after applying the inequality, we remark that
gf ∈ L1(ν) for almost every x is sufficient.

Finally, we need to check that g ∈ Lq(ν), recalling q = p/(p− 1). Notice that

‖g‖qq =

∫
Y
g(y)qdν(y) =

∫ (
h(y)p−1

)q
dν(y) =

∫
h(y)pdν(y) <∞.

Hence, ‖g‖q < ∞, so g ∈ Lq(ν). The conditions are then met to apply the lemma. Fixing x ∈ X
where gf ∈ L1(ν), we see that∫

Y
g(y)f(x, y)dν(y) ≥

(∫
Y
f(x, y)pdν(y)

)1/p(∫
Y
g(y)qdν(y)

)1/q

for almost every x. Using the fact that q = p/(p− 1), we see that the right most value will be(∫
Y
g(y)qdν(y)

)1/q

=

(∫
Y
g(y)p/(p−1)dν(y)

)(p−1)/p

=

(∫
Y

(∫
X
f(z, y)dµ(z)

)p
dν(y)

)(p−1)/p

,

so after integrating both sides with respect to X, we have∫
X

∫
Y
g(y)f(x, y)dν(y)dµ(x) =

∫
Y

(∫
X
f(x, y)dµ(x)

)p
dν(y)

≥
∫
X

[(∫
Y

(∫
X
f(z, y)dµ(z)

)p
dν(y)

)(p−1)/p(∫
Y
f(x, y)pdν(y)

)1/p
]
dµ(x)

=

(∫
Y

(∫
X
f(z, y)dµ(z)

)p
dν(y)

)(p−1)/p ∫
X

(∫
Y
f(x, y)pdν(y)

)1/p

dµ(x).
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Dividing both sides by (∫
Y

(∫
X
f(z, y)dµ(z)

)p
dν(y)

)(p−1)/p

,

which we remark is valid to do by our assumptions prior, we get(∫
Y

(∫
X
f(x, y)dµ(x)

)p
dν(y)

)1/p

≥
∫
X

(∫
Y
f(x, y)pdν(y)

)1/p

dµ(x),

as desired. �
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Problem 56. For 1 < p0 < p < p1 <∞, let Lp,∞ denote weak Lp. Then

Lp,∞ ⊂ Lp0 + Lp1 .

Proof. Recall that

Lp,∞ = {f ∈ Fun(X,C) : [f ]p <∞},

where

[f ]p = sup
α>0

αλf (α)1/p.

The goal is to write f = g + h, where g ∈ Lp0 and h ∈ Lp1 . Fix some constant A > 0 (say A = 1 if
you like). Let E = {x : |f(x)| > A}. Recall the functions

hA = fχEc +A(sgnf)χE , gA = f − hA.

Notice these functions are such that f = gA + hA. If we show that gA ∈ Lp0 and hA ∈ Lp1 , then
we win.

The idea comes from the proof of the Marcinkiewicz Interpolation theorem (Folland Theorem
6.28). Recall Folland Proposition 6.24, which says that if 0 < p <∞, then∫

|f |pdµ = p

∫ ∞
0

αp−1λf (α)dα.

Recall as well Folland Proposition 6.25, in which we have that

λgA(α) = λf (α+A), λhA(α) =

{
λf (α) if α < A,

0 if α ≥ A.

The proof of the prior proposition was Quiz 2. Combining these two results, we have that∫
|gA|p0dµ = p0

∫ ∞
0

αp0−1λgA(α)dα

= p0

∫ ∞
0

αp0−1λf (α+A)dα ≤ p0

∫ ∞
A

αp0−1λf (α), dα

where to get the inequality, we use a change of variables β = α+A and note that (β−A)p0−1 ≤ βp0−1,
and then relabel the βs as αs. We also have that∫

|hA|p1dµ = p1

∫ ∞
0

αp1−1λhA(α)dα = p1

∫ A

0
αp1−1λf (α)dα.

These match the results on Folland page 204.
Let k be such that

[f ]p = sup
α>0

αλf (α)1/p = k <∞.

Then for any α, we have

αλf (α)1/p ≤ sup
α>0

αλf (α)1/p = k =⇒ λf (α) ≤ kp

αp
.
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Thus, substituting this into the first equation, we have∫
|gA|p0dµ ≤ p0

∫ ∞
A

αp0−1λf (α)dα

≤ kpp0

∫ ∞
A

αp0−p−1dα

= kpp0

∫ ∞
A

αp0−p−1dα

= kpp0

[
αp0−p

p0 − p

∣∣∣∣∞
α=A

]
= kpp0

Ap0−p

p− p0
<∞,

where here we use the fact that p0 < p, so limα→∞ α
p0−p = 0. Thus, taking p0th roots, we have

that ‖gA‖p0 <∞, giving us that gA ∈ Lp0 .
Similarly, substituting the above in the second equation, we see that this gives∫

|hA|p1dµ = p1

∫ A

0
αp1−1λf (α)dα

≤ kpp1

∫ A

0
αp1−p−1dα

= kpp1

[
αp1−p

p1 − p

∣∣∣∣A
α=0

]

= kpp1
Ap1−p

p1 − p
<∞,

where here we use the fact that p < p1, so there are no issues for αp1−p at 0. Thus, taking p1th
roots, we have that ‖hA‖p1 < ∞, giving us that hA ∈ Lp1 . Hence, f ∈ Lp0 + Lp1 . The choice of
f ∈ Lp,∞ was arbitrary, so we get that Lp,∞ ⊂ Lp0 + Lp1 . �
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Problem 57. For x ∈ T, let

PN (x) = 2F2N+1(x)− FN (x),

where FN denotes the Féjer kernel.7

(a) Prove that the sequence PN is an approximate identity.

(b) Prove that P̂N (m) = 1 when |m| ≤ N + 1 and P̂N (m) = 0 when |m| ≥ 2N + 2.

Proof. (a) Recall that a sequence is an approximate identity if it satisfies three properties:
(1) We first want to show that supN ‖PN‖1 <∞. We see that, for all N , we have

‖PN‖1 = ‖2F2N+1 − FN‖1 ≤ 2‖F2N+1‖1 + ‖FN‖1
using Minkowski’s inequality (Folland Proposition 6.5) and the linearity of the integral
(to pull out the 2). Since the Fejér kernel is an approximate identity (by the lecture notes
from 2/10 or Grafakos Proposition 3.1.10), we see that

sup
N
‖PN‖1 ≤ 2 sup

N
‖P2N+1‖1 + sup

N
‖PN‖1 <∞.

(2) We now want to show that ∫
PN (x)dx = 1

for all N . Fixing an N and using that the Fejér kernel is an approximate identity, we see
that∫
PN (x)dx =

∫
(2F2N+1(x)− FN (x))dx = 2

∫
F2N+1(x)dx−

∫
FN (x)dx = 2− 1 = 1.

Hence, we have the desired result.
(3) Finally, we wish to show that for any neighborhood V c of 0, we have that∫

V
|PN |dx→ 0.

Since we’re on the torus, it suffices to show that for all δ > 0,∫
δ≤|x|≤1/2

|PN |dx→ 0.

Again, we use that |PN (x)| ≤ 2|F2N+1(x)|+ |FN (x)|, so that if V = {x : δ ≤ |x| ≤ 1/2},

0 ≤
∫
V
|PN |dx ≤ 2

∫
V
|F2N+1(x)|dx+

∫
V
|FN (x)|dx.

Taking the limit as N →∞ of both sides gives us

0 ≤ lim
N→∞

∫
V
|PN |dx ≤ 2

[
lim
N→∞

∫
V
|F2N+1(x)|dx

]
+ lim
N→∞

∫
V
|FN (x)|dx = 0

since (FN ) is an approximate identity. Thus, we have that

lim
N→∞

∫
V
|PN |dx = 0,

as desired.
Hence, (PN ) is an approximate identity.

7This is called the de la Vallée Poussin Kernel – see Grafakos Exercise 3.1.4.
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(b) We have that

P̂N (m) = 2F̂2N+1(m)− F̂N (m)

by linearity of the Fourier transform. Utilizing Grafakos Proposition 3.1.7 (the details from
which will be shown after the problem), we see that

̂F2N+1(m) =

{
1− |m|

2N+2 if |m| ≤ 2N + 1

0 otherwise.

Likewise,

F̂N (m) =

{
1− |m|

N+1 if |m| ≤ N
0 otherwise.

Thus, for |m| ≥ 2N + 2, we get that P̂N (m) = 0, since both components will be 0 in this range.
Now, for |m| ≤ N , we see that

P̂N (m) = 2

(
1− |m|

2N + 2

)
−
(

1− |m|
N + 1

)
=

(
4N + 4− 2|m|

2N + 2

)
−
(
N + 1− |m|

N + 1

)
=

4N + 4− 2|m| − 2N − 2 + 2|m|
2N + 2

=
2N + 2

2N + 2
= 1.

For |m| = N + 1, we see that we have

P̂N (m) = 2

(
1− |m|

2N + 2

)
= 2

(
2N + 2− |m|

2N + 2

)
=

4N + 4− 2|m|
2N + 2

=
4N + 4− 2N + 2

2N + 2
=

2N + 2

2N + 2
= 1.

So if |m| ≤ N + 1, we have P̂N (m) = 1, as desired.
�

Remark. Grafakos Proposition 3.1.7 claims that

FN (x) =
N∑

j=−N

(
1− |j|

N + 1

)
e2πijx.

To see this, recall that we define the Féjer kernel by

FN (x) =
1

N + 1
[D0(x) + · · ·+DN (x)],

where
Dj(x) =

∑
|m|≤j

e2πim·x

denotes the Dirichlet kernel. Notice that we have

FN (x) =
1

N + 1

N∑
j=0

Dj(x) =
1

N + 1

N∑
k=0

∑
|j|≤k

e2πijx =
1

N + 1

∞∑
k=−∞

∞∑
j=−∞

e2πijxχE(k, j),

where
E = {(k, j) ∈ Z2 : |j| ≤ k ≤ N}.
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We apply Tonelli (with respect to counting measures) to get

1

N + 1

∞∑
k=−∞

∞∑
j=−∞

e2πijxχE(k, j) =
1

N + 1

∞∑
j=−∞

e2πijx
∞∑

k=−∞
χE(k, j)

=
1

N + 1

∞∑
j=−∞

e2πijx|Ek(j)|,

where Ek(j) = {k ∈ Z : |j| ≤ k ≤ N}. Notice that for fixed j we have

|Ek(j)| =

{
N + 1− |j| for |j| ≤ N
0 otherwise,

since this is just counting the number of integers between |j| and N . Substituting this in, we have

FN (x) =
∑
|j|≤N

N + 1− |j|
N + 1

e2πijx =
∑
|j|≤N

(
1− |j|

N + 1

)
e2πijx,

as desired.
Grafakos then uses this to note that

F̂N (m) =

{
1− |m|

N+1 if |m| ≤ N
0 otherwise.

To see this, we use linearity of the Fourier transform to note that

F̂N (m) =
N∑

j=−N

(
1− |j|

N + 1

)
ê2πijx(m)

=
N∑

j=−N

(
1− |j|

N + 1

)∫
T
e2πijxe−2πixmdx

=

N∑
j=−N

(
1− |j|

N + 1

)∫
T
e2πix(j−m)dx =

{
1− |m|

N+1 if |m| ≤ N
0 otherwise,

since ∫
T
e2πix(j−m)dx =

{
1 if j = m

0 otherwise.

To see the last identity, note that if j 6= m,∫
T
e2πix(j−m)dx =

1

2πix(j −m)
e2πix(j−m)

∣∣∣∣1/2
x=−1/2

=
1

π(j −m)

eπi(j−m) − e−πi(j−m)

2i

=
sin(π(j −m))

π(j −m)

using DeMoivre. Since j −m ∈ Z− {0}, we have that this evaluates to 0, as desired. Note that if
j = m, we get that the integral is ∫

T
dx = 1,

as desired.
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Problem 58. Prove the Fourier inversion theorem: If f, f̂ ∈ L1, then f agrees almost everywhere

with a continuous function f0, and (f̂)∨ = (f∨)∧ = f0.

Proof. We follow Folland’s proof (see Folland Theorem 8.26). Fix t > 0 and x ∈ Rn. Set

ϕ(m) = e2πim·x−πt2|m|2 .

Using Folland Theorem 8.22 (a) and Folland Proposition 8.24, we see that

ϕ̂(z) = F
(
e2πim·xe−πt

2|m|2
)

(z) = τxF(e−πt
2|m|2))(z)

= τx

((
t2
)−n/2

e−π|z|
2/t2
)

= t−ne−π|x−z|
2/t2 .

Let g(x) = e−π|x|
2
. Then recall that for t > 0, we defined the approximate identity gt(x) =

t−ng(x/t) = t−ne−π|x|
2/t2 . Hence, we see that

ϕ̂(z) = gt(x− z).

By Folland Lemma 8.25, we see that∫
ϕ(m)f̂(m)dm =

∫
ϕ̂(z)f(z)dz =

∫
gt(x− z)f(z)dz = gt ∗ f(x) = f ∗ gt(x).

Note that ∫
g(x)dx =

∫
e−π|x|

2
dx =

(π
π

)n/2
= 1

by Folland Proposition 2.53. Hence, invoking Folland Theorem 8.14 (a)/Quiz 4, we see

that f ∗ gt → f in the L1 norm as t tends to 0. We now utilize the fact that f̂ ∈ L1 to apply
the dominated convergence theorem (Folland Theorem 2.24, abbreviated as DCT). That is,
examining the integral

lim
t→0

∫
e−πt

2|m|2e2πm·xf̂(m)dm,

we see that the absolute value of the inside of the integral comes out to |e−πt2|m|2 f̂(m)| ≤ |f̂(m)| ∈
L1, so we can apply DCT to move the limit inside. Thus, we have

lim
t→0

∫
e−πt

2|m|2e2πm·xf̂(m)dm =

∫
lim
t→0

e−πt
2|m|2e2πm·xf̂(m)dm =

∫
e2πm·xf̂(m)dm

= [f̂ ]∨(x).

Since these converge to the same thing, we see that [f̂ ]∨ = f almost everywhere. Using Riemann-
Lebesgue lemma (Folland Theorem 8.22 (f)), we recall that the Fourier transform will be a
continuous function which vanishes at zero, and so there is some (unique) f0 ∈ C0(Rn) so that

[f̂ ]∨ = f0. Thus, f = f0 almost everywhere (which also gives uniqueness; if g0 were another
function, we would have f0 = g0 almost everywhere, but since these are continuous this implies
g0 = f0)8.

Finally, we need to show that [f∨]∧ = [f∧]∨. The idea is to replace f in the equation with f̃

(as mentioned in Grafakos Theorem 2.2.14). Doing so grants us [(f̃)∧]∨(x) = f̃0(x) = f0(−x),

8Briefly, two continuous functions which are equal almost everywhere are equal in fact everywhere by a contradic-
tion argument; if they weren’t equal everywhere, there would be some point at which they differ, and we can find a
very small open ball around that point which would have positive measure in Lebesgue measure, and so we have a
contradiction to the fact that they are equal almost everywhere. Grafakos uses this fact a few times without proof,
and I don’t see a proof in Folland anywhere.
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so applying a change of variables we see that [(f̃)∧]∨(−x) = f0(x). Notice that [(f̃)∧]∨(−x) =

[(f̃)∧]∧(x) by definition. Finally, we claim that
̂̃
f =

˜̂
f = f∨. To see this, notice that̂̃

f(m) =

∫
f̃(x)e−2πim·xdx =

∫
f(−x)e−2πim·xdx.

We now preform a change of variables using Folland Theorem 2.44. Let T (x) = −x (this
is in GLn(R) since det(T ) = (−1)n 6= 0) and let q(x) = f(x)e2πim·x (this is integrable, since∫
|f(x)e2πim·x|dx ≤

∫
|f(x)|dx <∞). The theorem gives us∫

f(−x)e−2πim·xdx =

∫
q(−x)dx =

∫
q ◦ T (x)dx = | det(T )|−1

∫
q(x)dx

= |(−1)n|−1

∫
f(x)e2πim·xdx =

∫
f(x)e2πim·xdx.

Hence, we have

f∨(m) =
˜̂
f(m) = f̂(−m) =

∫
f(x)e2πim·xdx =

∫
f(−x)e−2πim·xdx =

̂̃
f(m).

Using this claim, we see that

[(f̃)∧]∧(x) = [(̃f∧)]∧(x) = [f∨]∧(x).

Thus,
[f∨]∧ = f0

and we deduce that
[f∨]∧ = [f∧]∨ = f0.

�
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Problem 59. Suppose that F ∈ S ′, G ∈ E ′. Prove the following.

(a) F̂ Ĝ is in S ′.
(b) If ψ ∈ S, then G ∗ ψ ∈ S.

Proof. Recall the notation: F ∈ S ′ means F is a tempered distribution (that is, a continuous linear
functional on S) and G ∈ E ′ is a distribution with compact support.

(a) By Folland Proposition 9.11, we see that Ĝ is a slowly increasing C∞ function (defined by

Ĝ(m) = 〈G, e2πim·x〉). Based on how we defined the Fourier transform of tempered distribu-

tions, we have that F̂ is still a tempered distribution defined by

〈F̂ , ϕ〉 = 〈F, ϕ̂〉

for all ϕ ∈ S (by the discussion on Folland page 295 and the lecture notes from 3/2). It
suffices, then, to show that if F is a tempered distribution, ψ is a slowly increasing function,
then Fψ is a well-defined element of S ′, where we will define Fψ via

〈Fψ,ϕ〉 = 〈F,ψϕ〉;

in other words, where we define it the usual way (see the discussion on Folland page 294).
The result is then proven by showing that the product of a Schwarz function and a slowly
increasing function is a Schwarz function (matching the discussion in Grafakos Definition
2.3.15). To see that ψϕ is a Schwarz function, we merely need to check that for all N,α,

‖ψϕ‖(N,α) <∞.

Fixing N and α, we have

‖ψϕ‖(N,α) = sup
x∈Rn

(1 + |x|)N |∂α(ψϕ)(x)|

= sup
x∈Rn

(1 + |x|)N
∣∣∣∣∣∣
∑

β+γ=α

α!

β!γ!
(∂βψ(x))(∂γϕ(x))

∣∣∣∣∣∣
≤ sup

x∈Rn
(1 + |x|)N

∑
β+γ=α

α!

β!γ!
|∂βψ(x)||∂γϕ(x)|.

Since ψ is slowly increasing, we have that

|∂βψ(x)| ≤ Cβ(1 + |x|)N(β),

where N(β) is some positive integer depending on β, Cβ is some constant. Substituting this
into the above, we have

‖ψϕ‖(N,α) ≤ sup
x∈Rn

(1 + |x|)N
∑

β+γ=α

α!

β!γ!

(
Cβ(1 + |x|)N(β)

)
|∂γϕ(x)|

≤
∑

β+γ=α

α!

β!γ!
Cβ

[
sup
x∈Rn

(1 + |x|)N(β)|∂γϕ(x)|
]

=
∑

β+γ=α

α!

β!γ!
Cβ‖ϕ‖(N(β),γ) <∞

since ϕ ∈ S. The choice of N and α was arbitrary, so we get that ψϕ is a Schwarz function.
Hence, 〈ψF,ϕ〉 = 〈F,ϕψ〉 is well-defined for all ϕ, so ψF is a tempered distribution. Translating

this back, we have that F̂ Ĝ is a tempered distribution, defined by 〈F̂ Ĝ, ϕ〉 = 〈F̂ , Ĝϕ〉 for all
ϕ ∈ S.
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(b) The goal now is to show that G ∗ ψ is a Schwarz function, where ψ ∈ S. Note apriori we know
that G∗ψ is a slowly increasing function by Folland Proposition 9.10, using the fact E ′ ⊂ S ′
(lecture notes 3/2, Grafakos page 120). Notice that we have a Fourier transform defined on
E ′, simply by defining it to be the usual Fourier transform on S ′. Using the properties of the
Fourier transform on S ′ and S, the goal is to show that F(G ∗ ψ) ∈ S, and hence use Folland
Corollary 8.28 to get that G ∗ ψ ∈ S.

Using properties of the Fourier transform on tempered distributions (which is Homework
9, Problem 1; see the remark afterwards for a proof), we recall that for ψ ∈ S, we have as
distributions,

F(G ∗ ψ) = F(G)F(ψ).

By Folland Proposition 9.11, F(G) is a slowly increasing function, and we note that F(ψ)
is a Schwartz function (using Folland Corollary 8.28). In (a), we showed that the product
of a Schwarz function and a slowly increasing function is a Schwarz function, so we see that
F(G)F(ψ) as a function is a Schwarz function. Applying the inverse Fourier transform (denoted
by G) to both sides, we have that

G ∗ ψ = G(F(G)F(ψ))

as distributions in S ′. Since the Fourier transform on S is an isomorphism (Folland Corollary
8.28), we have that as a function, the right hand side is a Schwarz function (see the third claim
following this proof). Note that two functions define the same distribution iff they are equal
almost everywhere (see the second claim following this proof). Thus, G ∗ ψ = G(F(G)F(ψ))
almost everywhere (with respect to the Lebesgue measure). But as noted earlier, these are
both continuous, so in fact they are equal everywhere. Thus, G ∗ ψ is a Schwarz function.

Alternatively, we can prove it directly in the following way (Grafakos Theorem 2.3.20).

Notice that G ∗ ψ(x) = 〈G, τxψ̃〉. Since G is a continuous linear functional, we have that

|〈G, τxψ̃〉| ≤ C
∑
|α|≤k

sup
y∈VN

|∂αϕ(x− y)|,

by the proof of Folland Theorem 9.8, where we have that the (Vn) are an increasing sequence
of precompact open subset of Rn whose union is Rn. Choosing an M large enough, we have
VN ⊂ {y ∈ Rn : |y| ≤M}. Thus, we can rewrite this as

|〈G, τxψ̃〉| ≤ C
∑
|α|≤k

sup
|y|≤M

|∂αϕ(x− y)|.

Since ϕ ∈ S, we have that for any integer J ,

sup
(x−y)∈Rn

(1 + |x− y|)J |∂αϕ(x− y)| = Cα,J <∞.

For |x| ≥ 2M , we observe that

sup
|y|≤M

|∂αϕ(x− y)| ≤ sup
|y|≤M

Cα,J(1 + |x− y|)−J ≤ C ′(1 + |x|)−J

for some constant C ′. Substituting this in, we see that

|G ∗ ψ(x)| = |〈G, τxψ̃〉| ≤ C ′′
∑
|α|≤k

(1 + |x|)−J = C ′′′(1 + |x|)−J

for constants C ′′, C ′′′. Notice this holds for all J , and so we see that ‖G ∗ ψ(x)‖(N,0) < ∞
for all N . To get it for all multi-indices α, simply notice that ∂α(G ∗ ϕ) = G ∗ (∂αϕ), and so
applying the same argument to this gives us that ‖G ∗ψ(x)‖(N,α) <∞ for all (N,α). Hence, it
is Schwarz.
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Remark. In the last problem, we used the properties of the Fourier transform on tempered dis-
tributions (Homework 9, Problem 1, see also Folland page 295, Folland Exercise 9.17).
Since we technically haven’t proven this yet, we submit a proof here.

Claim. For F ∈ S ′, ψ ∈ S, we have

F̂ ∗ ψ = ψ̂F̂ .

Proof. Recall that for ψ ∈ S, we have

〈F ∗ ψ,ϕ〉 =

∫
(F ∗ ψ)ϕ = 〈F,ϕ ∗ ψ̃〉

by Folland Proposition 9.10. Taking the Fourier transform of F ∗ψ and taking arbitrary ϕ ∈ S,
we have

〈F̂ ∗ ψ,ϕ〉 = 〈F ∗ ψ, ϕ̂〉.
Now, we want to use the following identity:

[ψ̂]∧ = ψ̃,

To see this identity, recall that for Schwarz functions we have

ψ∨(x) = ψ̂(−x) =
˜̂
ψ(x).

We recall that in the proof of Problem 5 we showed that˜̂
ψ(x) =

̂̃
ψ(x).

For notational simplicity, let the reflection function be denoted by P (f) = f̃ , let the Fourier

transform be denoted by F(f) = f̂ , and let its inverse be denoted by G(f) = f∨. Notice that
taking the Fourier transform of both sides of

G(ψ) = P ◦ F(ψ)

gives us
ψ = F ◦ P ◦ F(ψ),

so that, using the commutativity of P and F , we have

ψ = P ◦ F (2)(ψ).

Note that P ◦ P = Id, so taking P of both sides, we have

P (ψ) = F (2)(ψ);

that is, reverting to old notation, we have

[ψ̂]∧ = ψ̃.

Using this and Folland Proposition 9.10, we get that

〈F ∗ ψ, ϕ̂〉 = 〈F, ϕ̂ ∗ ψ̃〉 = 〈F, ϕ̂ ∗ [ψ̂]∧〉
Next, we’d like to use the identity

ϕ̂ ∗ [ψ̂]∧ = [ϕψ̂]∧.

To see this, note that Folland 8.22 (d) gives us

F (2)(ϕ)F (3)(ψ) = F(F(ϕ) ∗ F (2)(ψ)).

Hence, we have

G(F (2)(ϕ)F (3)(ψ)) = F(ϕ) ∗ F (2)(ψ)
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Note that
P (ψϕ) = P (ψ)P (ϕ);

this is due to the fact that

P (ψϕ)(x) = (ψϕ)(−x) = ψ(−x)ϕ(−x) = (P (ψ)P (ϕ))(x).

Hence, we have

G(F (2)(ϕ)F (3)(ψ)) = (P ◦ F)(F (2)(ϕ)F (3)(ψ)) = (F ◦ P )(F (2)(ϕ)F (3)(ψ))

= (F ◦ P )(P (ϕ)(P ◦ F)(ψ)) = F(P (2)(ϕ)(P (2) ◦ F)(ψ))

= F(ϕF(ψ)).

The first equality here follows by expanding out the definition of G, the second follows from using
the fact that P and F commute, the third follows from using the identity F (2) = P and writing
F (3) = F (2) ◦ F , the fourth follows from the fact that P distributes over multiplication, and the
last follows from the fact that P (2) = Id. In other words, reverting to old notation, we have that

ϕ̂ ∗ [ψ̂]∧ = [ϕψ̂]∧.

Thus, we have that

〈F, ϕ̂ ∗ [ψ̂]∧〉 = 〈F, [ϕψ̂]∧〉
Now, by how Fourier transforms work for tempered distributions, we have

〈F, [ϕψ̂]∧〉 = 〈F̂ , ϕψ̂〉.
Finally, by how Schwarz functions multiply with tempered distributions, we have that

〈F̂ , ϕψ̂〉 = 〈ψ̂F̂ , ϕ〉.
Putting this all together, we get that

〈F̂ ∗ ψ,ϕ〉 = 〈F̂ ψ̂, ϕ〉.
Since the choice of ϕ ∈ S was arbitrary, we have that as tempered distributions,

F̂ ∗ ψ = F̂ ψ̂.

�

Remark. Recall that f ∈ L1
loc(Rn) defines a distribution, via

〈f, ϕ〉 =

∫
fϕ.

In this case, we say that the function f defines the distribution. In the prior problem, we used the
following claim.

Claim. Two functions define the same distribution if and only if they are equal almost everywhere
(note that we are working over Rn with the Lebesgue measure).

Proof. (⇐= ): This direction is clear; if f = g almost everywhere, then for all ϕ ∈ D(Rn), we have∫
fϕ =

∫
gϕ,

so they define the same distribution.
( =⇒ ): This is the less trivial direction, which we took advantage of in the problem. Suppose that
f and g define the same distribution, so that for all test functions ϕ ∈ D(Rn), we have

〈f, ϕ〉 =

∫
fϕ =

∫
gϕ = 〈g, ϕ〉.
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In other words, we have that ∫
(f − g)ϕ = 0

for all ϕ ∈ D(Rn), so it suffices to show that if h is such that it defines the 0 distribution, then h is
0 almost everywhere. We first want to show that, for all rectangles E = [a1, b1]× · · · × [an, bn] ∈ Π,∫

E
h = 0.

Using the C∞ Urysohn (Folland Proposition 8.18), we can construct a sequence (ϕn) ⊂ C∞c (Rn)
so that ϕn → χE pointwise, 0 ≤ ϕn ≤ 1 for all n (take a sequence of open intervals Un which decrease
to E, have ϕn be 1 on E and 0 outside of Un). Notice that we have

|hϕn| ≤ |hχU | ≤ |hχU |,
and since h ∈ L1

loc(Rn), we have that this is in L1(Rn). Thus, we can use DCT to get

0 = lim
n→∞

∫
hϕn =

∫
hχE =

∫
E
h.

Thus,
∫
E h = 0 on rectangles. We can then take a family of cubes (rectangles where the side lengths

are the same) such that x ∈ Qr for all r, l(Qr) → 0 (l here is the length function, which returns
the length of one of the sides), and we see that

lim
r→0

1

λ(Qr)

∫
Qr

f(y)dy = f(x) = 0

for almost every x ∈ Rn by Folland Theorem 3.21 (Lebesgue Differentiation Theorem), so h = 0
almost everywhere, as desired.9 �

Note as well that we implicitly used the fact that the Fourier transform of a distribution defined
by a function agrees with the Fourier transform of the function (so that the Fourier transform is
what you want it to be). We prove this as follows.

Claim. Let F be a distribution defined by f ∈ S, then F̂ agrees with the distribution defined by

f̂ ∈ S. In other words, we have that F̂ is defined by f̂ ∈ S.

Proof. Let ϕ ∈ S, then we wish to show that for all such ϕ,

〈F̂ , ϕ〉 = 〈f̂ , ϕ〉.
Note that

〈F̂ , ϕ〉 = 〈F, ϕ̂〉 =

∫
fϕ̂ =

∫
f̂ϕ = 〈f̂ , ϕ〉

using Folland Lemma 8.25. Thus, as distributions they agree, so F̂ is defined by f̂ ∈ S. �

So taking the Fourier transform of a distribution defined as a function, we can take the Fourier
transform as a function or as a distribution and get the same result. Since the Fourier transform
is an isomorphism on both S and S ′, taking the inverse Fourier transform yields the same result.

9This was how we learned Lebesgue differentiation in 6211 last semester; the claim in Folland seems to differ
slightly in the sense that it’s any sequence of sets which are shrinking “nicely” to a point x.
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Problem 60 (Quiz 1). Suppose that p, q ∈ (0,∞) and 1/p + 1/q = 1. Prove that if fn → f in
Lp(R) and gn → g in Lq(R), then fngn → fg in L1(R).

Proof. First, we remark that since 1/p + 1/q = 1, we cannot have 0 < p, q < 1. Assume that
0 < p < 1. Then this implies that 1/p > 1, and so there is no 0 < q < ∞ so that 1/p + 1/q = 1.
An analogous argument applies for 0 < q < 1.

The goal, then, is to show

‖fngn − fg‖1 → 0.

Notice that we can add and subtract by fgn to get

‖fngn − fg‖1 = ‖fngn − fgn + fgn − fg‖1 ≤ ‖(fn − f)gn‖1 + ‖f(gn − g)‖1.
Apply Hölders to this to get

‖(fn − f)gn‖1 ≤ ‖fn − f‖p‖gn‖q,

‖f(gn − g)‖1 ≤ ‖f‖p‖gn − g‖q.
Now, if gn → g in Lq, we have

‖gn − g‖q → 0.

We can use the reverse triangle inequality here to get

|‖gn‖q − ‖g‖q| ≤ ‖gn − g‖q → 0,

so we have that ‖gn‖q → ‖g‖q <∞. Hence, taking the limit, we have

‖fn − f‖p‖gn‖q → 0,

‖f‖p‖gn − g‖q → 0,

so we get that

‖fngn − fg‖1 → 0,

as desired. �

Problem 61 (Quiz 2). Suppose that f a measurable function and A > 0. Let

E(A) := {x : |f(x)| > A}
and let

hA := fχEc(A) +Asgn(f)χE(A),

gA := f − hA.
Show that

λgA(α) = λf (α+A),

and

λhA(α) =

{
λf (α) if α < A

0 if α ≥ A.

Proof. Recall that

λf (α) = µ({x : |f(x)| > α}) = µ(E(α)).

Hence,

λgA(α) = µ({x : |f(x)− hA(x)| > α}).
Examining the set, notice that we can write

{x : |f(x)− hA(x)| > α} = {x : f(x)− hA(x) > α} t {x : f(x)− hA(x) < −α}
= {x : f(x)− hA(x) > α} t {x : f(x) < −α+ hA(x)}.
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Since E(A), Ec(A) are disjoint, we can write this as

{x : |f(x)− hA(x)| > α} = {x : x ∈ E(A), f(x) > α+ hA(x)} t {x : x ∈ Ec(A), f(x) > α+ hA(x)}
t{x : x ∈ E(A), f(x) < −α+ hA(x)} t {x : x ∈ Ec(A), f(x) < −α+ hA(x)}

.

If x ∈ E(A), we get that hA(x) = Asgn(f), and if x ∈ Ec(A), we get that hA(x) = f . Hence, we
can rewrite the above as

{x : |f(x)− hA(x)| > α} = {x : f(x) > A+ α} t {x : f(x) < −A− α}
= {x : |f(x)| > A+ α}

.

Thus, we get that

λgA(α) = λf (α+A).

Similarly, examine

{x : |hA(x)| > α} = {x : hA(x) > α} t {x : hA(x) < −α}
= {x : x ∈ E(A), hA(x) > α} t {x : x ∈ Ec(A), hA(x) > α}

t{x : x ∈ E(A), hA(x) < −α} t {x : x ∈ Ec(A), hA(x) < −α}.

If x ∈ E(A), we see that hA(x) = Asgn(f). If x ∈ Ec(A), we get that hA(x) = f(x). Thus, we
rewrite the above as

{x : |hA(x)| > α} = {x : A > f(x) > α, f(x) ≥ A} t {x : −A < f(x) < −α, f(x) ≤ −A}

If α ≥ A, we see that this will be 0. If α < A, we see that this will be the same as {x : |f(x)| > α}.
Hence, we have

λhA(α) =

{
λf (α) if α < A

0 if α ≥ A.
�

Problem 62 (Quiz 3). Let f, g ∈ L1(R). Prove the following:

(a) f ∗ (g ∗ h)(x) = (f ∗ g) ∗ h(x) almost everywhere.
(b) f ∗ (g + h)(x) = f ∗ g(x) + f ∗ h(x).

Proof. (a) This one is trickier than it seems. Recall that f ∗ g(x) =
∫
f(x− y)g(y)dy. Using this,

we write out

f ∗ (g ∗ h)(x) =

∫
f(x− y)(g ∗ h)(y)dy

=

∫
f(x− y)

[∫
g(y − z)h(z)dz

]
dy

=

∫∫
f(x− y)g(y − z)h(z)dzdy.

We now wish to iterate the integral. To do so, we need to check that Fubini applies. Write

k(x) =

∫∫
f(x− y)g(y − z)h(z)dzdy.

Then we wish to check that k(x) ∈ L1(R). We have∫
|k(x)|dx =

∫ ∣∣∣∣∫ ∫ f(x− y)g(y − z)h(z)dzdy

∣∣∣∣ dx ≤ ∫∫∫ |f(x− y)||g(y − z)||h(z)|dzdydx

≤ ‖f‖1‖g‖1‖h‖1 <∞
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iterating Young’s inequality. Hence, k ∈ L1(R), so for almost every x, we have that∫∫
f(x− y)g(y − z)h(z)dzdy <∞;

Hence, taking absolute values, we get for almost every x,∫∫
|f(x− y)||g(y − z)||h(z)|dzdy ≤ ‖f‖1‖g‖1‖h‖1,

so Fubini applies. Thus, switching the order, we get∫∫
f(x− y)g(y − z)h(z)dydz =

∫ (∫
f(x− y)g(y − z)dy

)
h(z)dz.

Doing a change of variables (u = y − z, y = u+ z, du = dy), we get∫ (∫
f(x− u− z)g(u)du

)
h(z)dz =

∫
(f ∗ g)(x− z)h(z)dz = (f ∗ g) ∗ h(x).

(b) This is just an application of linearity of the integral.
�

Problem 63 (Quiz 4). Suppose ϕ ∈ L1(R) is such that
∫
ϕ(x)dx = a, and define ϕt(x) =

t−1ϕ(x/t). If f ∈ Lp(R), p ∈ [1,∞), then f ∗ ϕt → af in the Lp norm as t→ 0.

Proof. Note that ∫
ϕt(x)dx =

∫
t−1ϕ(x/t)dx =

∫
ϕ(u)du = a for all t > 0,

preforming the change of variable u = x/t, du = dx/t. The same change of variables gives us
‖ϕt‖1 <∞. Thus, we see that

f ∗ ϕt(x)− af(x) =

∫
f(x− y)ϕt(y)dy −

∫
f(x)ϕt(y)dy =

∫
[τyf(x)− f(x)]ϕt(y)dy.

We take the p norm to get

‖f ∗ ϕt(x)− af(x)‖p =

(∫ ∣∣∣∣∫ [τyf(x)− f(x)]ϕt(y)dy

∣∣∣∣p dx)1/p

≤
(∫ (∫

|τyf(x)− f(x)||ϕt(y)|dy
)p

dx

)1/p

≤
∫ (∫

|τyf(x)− f(x)|p|ϕt(y)|pdx
)1/p

dy

=

∫
|ϕt(y)|‖τyf − f‖pdy,

where the first inequality comes from the triangle inequality and the second from Minkowski for
integrals. Notice that the inside is bounded by |ϕt(y)|2‖f‖p ∈ L1(R), so DCT applies to bring the
limit inside. In other words, we have

lim sup
t→0

‖f ∗ ϕt(x)− af(x)‖p ≤ lim
t→0

∫
|ϕt(y)|‖τyf − f‖pdy =

∫
lim
t→0
|ϕt(y)|‖τyf − f‖pdy.

Now, writing out the inside, we have∫
lim
t→0
|ϕt(y)|‖τyf − f‖pdy =

∫
lim
t→0

t−1|ϕ(y/t)|‖τyf − f‖pdy.
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Let z = y/t, dz = dy/t, so we get that this is equal to∫
lim
t→0
|ϕ(z)|‖τztf − f‖pdz.

Note the Lp norm is continuous with respect to translation, so we get that the inside will be 0. In
other words, we have that the integral comes out to zero, so

lim inf
t→0

‖ϕt ∗ f − af‖p = lim sup
t→0

‖ϕt ∗ f − af‖p = 0.

Thus, we have that it converse in the p norm. �

Problem 64 (Quiz 5). Suppose f, g ∈ L1(Rn) ∩ L2(Rn) are complex valued functions and f̂ , ĝ ∈
L1(Rn) ∩ L2(Rn). Then

(a)
∫
f̂g =

∫
fĝ,

(b) 〈f, g〉2 = 〈f̂ , ĝ〉2.

Proof. Note that Plancherel says the Fourier transform on L2 agrees with the usual Fourier trans-
form on L1 on the set L1 ∩ L2.

(a) Using the above remark, we can use the usual Fourier transform definition for L1. Thus, we
have ∫

f̂(y)g(y)dy =

∫ (∫
f(z)e−2πiy·zdz

)
g(y)dy

=

∫∫
f(z)g(y)e−2πiy·zdzdy.

Using Tonelli and taking absolute values, we note this is integrable, so we see that we can use
Fubini to iterate the integral. We have that the above is equal to∫∫

f(z)g(y)e−2πiy·zdydz =

∫
f(z)ĝ(z)dz.

(b) One could just say this follows by Plancherel. If you want to see the calculation, we set h = ĝ,
and we note that

ĥ(y) =

∫
h(z)e−2πiz·ydz =

∫
ĝ(z)e−2πiz·ydz

=

∫
ĝ(z)e2πiz·ydz

= ĝ∨(y) = g(y)

where the last equality is interpreted as almost everywhere equivalence, and the second to last
equality is a result of Fourier inversion. So using (a) and this, we see that

〈f, g〉2 =

∫
fg =

∫
fĥ =

∫
f̂h =

∫
f̂ ĝ = 〈f̂ , ĝ〉2.

�

Problem 65 (Quiz 6). Suppose f ∈ L1(T). Then |f̂(m)| → 0 as |m| → ∞.

Proof. By a consequence of Fejérs theorem, we have that trigonometric polynomials are dense in
L1(T) (alternatively, invoke Stone-Weierstrass). Fix ε > 0. By the prior remark, there exists a
trigonometric polynomial P such that ‖f−P‖1 < ε. Let M denote the degree of P . By hypothesis,
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M <∞. Notice now that for |m| > M , we have that P̂ (m) = 0 (this is a consequence of problems
from prior homeworks). Hence, we see that

|f̂(m)| = |f̂(m)− P̂ (m)| ≤ ‖f − P‖1 < ε,

using the fact that ‖f̂‖u < ‖f‖1. We can do this for all ε > 0, so we see that |f̂(m)| → 0 as
|m| → ∞. �

Remark. Note that this just says it goes to 0, not how fast it tends to 0. We can make this go to
0 arbitrarily slow by future homeworks.
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Problem 66 (Young’s Inequality). Prove the following:
For a, b ≥ 0, p, q ∈ R>0 such that 1/p+ 1/q = 1, we have that

ab ≤ ap

p
+
bq

q
.

Furthermore, show we have equality iff ap = bq.

Proof. If a, b = 0, then the result is clear. Assume a and b > 0. The log function is concave, so we
have that for t = 1/p,

ln(ab) = ln(a) + ln(b) =
1

p
ln(ap) +

1

q
ln(bq) = t ln(ap) + (1− t) ln(bq) ≤ ln(tap + (1− t)bq).

Exponentiating both sides gives

ab ≤ tap + (1− t)bq =
ap

p
+
bq

q
.

If b = 0, it’s clear we only have equality if a = 0, i.e. ap = bq. Assume b > 0. Let β = bq, α = ap.
We can rewrite this as

α1/pβ1/q ≤ α

p
+
β

q
.

Since b > 0, β > 0. Divide through by β to get

α1/pβ1/q−1 ≤ α

βp
+

1

q
.

Since 1/p+ 1/q = 1, we get 1/q − 1 = −1/p. Let t = α/β. Then we have

t1/p ≤ t

p
+

1

q
,

and moving things around we get

t1/p − t

p
≤ 1

q
.

We wish to then maximize this function. Taking the derivative, we get

1

p

(
t1/p−1 − 1

)
= 0,

and solving gives us that t = 1 is a critical value. To see that this is a maximum, notice that for
t < 1, we have that the function is (strictly) increasing, and for t > 1 we have that the function is
(strictly) decreasing, so the maximum is achieved at t = 1. Hence, we have that the maximum is
achieved when α = β, or in other words when ap = bq. �

Problem 67 (Folland Lemma 6.1). If a ≥ 0, b ≥ 0, and 0 < λ < 1, then

aλb1−λ ≤ λa+ (1− λ)b,

with equality iff a = b.

Proof. Young’s inequality gives

αβ ≤ αp

p
+
βq

q
.
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Let λ = 1/p, 1− λ = 1/q, then we have that 1/p+ 1/q = 1. Let α = a1/p, β = b1/q. Then Young’s
inequality gives

a1/pb1/q ≤ a

p
+
b

q
.

Replacing variables, we get

aλb1−λ ≤ λa+ (1− λ)b

as desired. The equality condition comes from Young’s inequality. �

Problem 68 (Folland Theorem 6.2). Suppose 1 < p <∞, 1/p+1/q = 1. If f and g are measurable
functions on X, then

‖fg‖1 ≤ ‖f‖p‖g‖q.
In particular, if f ∈ Lp, g ∈ Lq, then fg ∈ L1, and in this case equality holds iff α|f |p = β|g|q a.e.
for some constants α, β with (α, β) 6= (0, 0).

Proof. The result is clear when ‖f‖p = 0,∞ or ‖g‖q = 0,∞, so we rule these out. Notice that it
suffices to assume that ‖f‖p = ‖g‖q = 1. If not, since these are not 0 or ∞, we have that there
exists constants a, b such that ‖af‖p = 1, ‖bg‖q = 1. Showing it for these, we see that

‖abfg‖1 = |ab|‖fg‖1 ≤ ‖af‖p‖bg‖q = |ab|‖f‖p‖g‖q,

so that we have

‖fg‖1 ≤ ‖f‖p‖g‖q
as desired. Thus, it suffices to show that

‖fg‖1 ≤ 1.

Now, notice that by Young’s Inequality we have

|f(x)g(x)| ≤ |f(x)|p

p
+
|g(x)|q

q
.

Integrating both sides gives

‖fg‖1 ≤
1

p
‖f‖pp +

1

q
‖g‖qq.

Since ‖f‖p = ‖g‖q = 1, we have that

‖fg‖1 ≤
1

p
+

1

q
= 1,

as desired. Finally, to get the equality case, we simply note that in Young’s inequality we have
equality iff ap = bq, and since these functions are the scaled functions we substitute this in for the
desired result. �

Problem 69 (Folland Theorem 6.3). If 1 ≤ p <∞ and f, g ∈ Lp, then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. The case of p = 1 is clear; we have

‖f + g‖1 =

∫
|f + g| ≤

∫
|f |+

∫
|g| = ‖f‖1 + ‖g‖1.

If f + g = 0 a.e., the result also follows, since these are positive functions. Now, assume f + g 6= 0
a.e. and 1 < p <∞. Notice that we can write

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1.
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Apply Hölder here. We get∫
|f ||f + g|p−1 = ‖|f ||f + g|p−1‖1 ≤ ‖f‖p‖|f + g|p−1‖q,∫
|g||f + g|p−1 = ‖|g||f + g|p−1‖1 ≤ ‖g‖p‖|f + g|p−1‖q,

so that ∫
|f + g|p ≤

(∫
|f + g|q(p−1)

)1/q

(‖f‖p + ‖g‖p) .

We chose q to be the Hölder conjugate of p, that is, the number so that 1/p+ 1/q = 1. Solving for
q, we get q = p/(p− 1). Rewriting this, we then have

‖f + g‖pp =

∫
|f + g|p ≤

(∫
|f + g|p

)(p−1)/p

(‖f‖p + ‖g‖p) = ‖f + g‖p−1
p (‖f‖p + ‖g‖p).

Dividing ‖f + g‖p−1
p from both sides gives

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

�

Problem 70 (Folland Theorem 6.6). For 1 ≤ p <∞, Lp is a Banach space.

Proof. First, we need to show that Lp is a vector space. Notice that Lp ⊂ Fun(X,C), which is a
vector space, so it suffices to show that it is a vector subspace. That is, it’s closed under addition
and scalar multiplication. Let f, g ∈ Lp, then we need to show that f + g ∈ Lp. By Minkowski, we
have

‖f + g‖p ≤ ‖f‖p + ‖g‖p <∞.
Next, if r ∈ C, f ∈ Lp, we need to show that rf ∈ Lp. Notice that

‖rf‖p =

(∫
|rf |p

)1/p

=

(
|r|p

∫
|f |p

)1/p

= |r|‖f‖p <∞,

so rf ∈ Lp. Hence, it is a vector space.
Next, we need to show that ‖ · ‖p is a norm. Clearly, we have that ‖ · ‖p ≥ 0. In our proof of

it being a vector subspace, we also established that ‖rf‖p = |r|‖f‖p. The Minkowski inequality
gives us the triangle inequality. We finally must establish positive definiteness; that is, ‖f‖p = 0 iff
f = 0 a.e. For the forward direction, assume ‖f‖p = 0. Then this implies that(∫

|f |p
)1/p

= 0↔
∫
|f |p = 0.

We earlier showed that this can happen if and only if |f |p = 0 a.e., but this can happen if and only
if f = 0 a.e. The other direction is clear as well. So, ‖ · ‖p is a norm.

Finally, we need to show that it is complete. We utilize Theorem 5.1. Let (fn) ⊂ Lp be such
that ∑

‖fn‖p = M <∞.

Let Gn =
∑k

1 |fn|, G =
∑
|fn|. We have that

‖Gn‖p =

∥∥∥∥∥
k∑
1

|fn|

∥∥∥∥∥
p

≤
k∑
1

‖fn‖p ≤
∑
‖fn‖ = M
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for all k. Hence, Gpn ∈ L1, so montone convergence theorem applies to give us that

lim

∫
Gpn =

∫
Gp ≤Mp,

and hence G ∈ Lp. Moreover, G < ∞ a.e., so
∑
fn converges a.e. Denote F =

∑
fn. Then we

have |F | ≤ G, so F ∈ Lp as well. Moreover,

|F −
k∑
1

fn|p ≤ (2G)p ∈ L1,

so the dominated convergence theorem applies to give

lim

∥∥∥∥∥F −
k∑
1

fn

∥∥∥∥∥
p

p

= lim

∫ ∣∣∣∣∣F −
k∑
1

fn

∣∣∣∣∣
p

= 0,

and hence we have that every absolutely convergent series converges, so the space is complete. �

Problem 71 (Folland 6.1). When do we have equality in the Minkowski inequality?

Proof. For the case p = 1, we notice that Minkowski says∫
|f + g| ≤

∫
|f |+

∫
|g|.

That is, we have equality here iff we have equality

|f + g| = |f |+ |g| a.e.

To get this, it’s sufficient to note that we have equality here iff fg ≥ 0 a.e. For the case 1 < p <∞,
we recall that the proof involves using Hölder’s inequality. That is, we have constants α, β such
that

α|f | = |f + g|p,
β|g| = |f + g|p.

In other words, we have equality iff there exists constants such that αf = βg a.e. �

Problem 72. Prove the following claim: if |f | ≤ ga.e., then ‖f‖∞ ≤ g.

Proof. If |f | ≤ g, we have that E = {x : |f(x)| ≥ g(x)} is such that µ(E) = 0. Since ‖f‖∞ is an
infimum, we get that g(x) ≥ ‖f‖∞ a.e. �

Problem 73 (Folland 6.2). Prove Theorem 6.8. That is, prove the following:

(a) If f and g are measurable functions on X, then ‖fg‖1 ≤ ‖f‖1‖g‖∞. If f ∈ L1 and g ∈ L∞,
‖fg‖1 = ‖f‖1‖g‖∞ iff |g(x)| = ‖g‖∞ a.e. on the set where f(x) 6= 0.

(b) ‖ · ‖∞ is a norm on L∞.
(c) ‖fn − f‖∞ → 0 iff there exists E ∈M such that µ(Ec) = 0 and fn → f uniformly on E.
(d) L∞ is a Banach space.
(e) The simple functions are dense in L∞.

Proof. (a) We have

‖fg‖1 =

∫
|fg| =

∫
|f ||g|.

Write E = {x : |g(x)| > ‖g‖∞}. Then we have that∫
|f ||g| =

∫
E
|f ||g|+

∫
Ec
|f ||g|.
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Since the infimum is actually attained, we have that µ(E) = 0. Hence, we have

(4)

∫
|f ||g| =

∫
Ec
|f ||g| =

∫
{x :||g(x)|≤‖g‖∞}

|f ||g| ≤
∫
|f |‖g‖∞ = ‖g‖∞

∫
|f | = ‖g‖∞‖f‖1.

We now proceed to the case of equality. Notice that we have ‖g‖∞ ≥ |g| a.e. (by an argument
similar to above), so we get that

(5) |f |‖g‖∞ ≥ |f ||g| =⇒ |f |‖g‖∞ − |f ||g| ≥ 0.

Recall that ‖f‖1 = 0 if and only if f = 0 a.e., so we have∫
|f |(‖g‖∞ − |g|) = 0

if and only if f = 0 a.e. or |g| = ‖g‖∞.
(b) We wish to show that ‖ · ‖∞ is a norm. First, notice that by construction ‖ · ‖∞ ≥ 0. We then

have three axioms to establish:
(a) (Scalars) Let r ∈ C, then we want to show ‖rf‖∞ = |r|‖f‖∞. For r = 0, we clearly have

the desired result, so assume r 6= 0. Now, notice that we have

|rf | = |r||f | ≤ |r|‖f‖∞a.e.,

so

‖rf‖∞ ≤ |r|‖f‖∞.
Now, consider r−1rf . We have that

‖r−1rf‖∞ = ‖f‖∞ ≤ |r−1|‖rf‖∞,
so that

|r|‖f‖∞ ≤ ‖rf‖∞.
(b) (Non-Degeneracy) We wish to show that ‖f‖∞ = 0 iff f = 0a.e.

( =⇒ ) : If ‖f‖∞ = 0, since the infimum is achieved, we have that

µ({|f | > 0}) = 0 =⇒ f = 0a.e.

( ⇐= ) : If f = 0 a.e., then we have that µ({x : f 6= 0}) = 0 = µ({x : |f | > 0}), so
‖f‖∞ ≤ 0, which implies ‖f‖∞ = 0.

(c) (Triangle inequality) We need to show that, for f, g ∈ L∞,

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.
Notice that

|f + g| ≤ |f |+ |g| ≤ ‖f‖∞ + ‖g‖∞a.e.,

so

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.
(c) ( =⇒ ) : Assume ‖fn − f‖∞ → 0. We wish to find an E ∈ M with µ(Ec) =) and fn → f

uniformly on E. We have |fn−f | ≤ ‖fn−f‖∞a.e.. Let Fn = {x : |fn(x)−f(x)| > ‖fn−f‖∞}.
Let F =

⋃
Fn. Let E = F c. We notice that µ(F ) = 0, since

µ(F ) = µ
(⋃

Fn

)
≤
∑

µ(Fn) = 0.

We now wish to show that fn → f uniformly on E. For all x ∈ E, we have that |fn(x)−f(x)| ≤
‖fn − f‖∞, and since ‖fn − f‖∞ → 0 we get uniform convergence.
(⇐= ) : Assume that there exists an E ∈M with µ(Ec) = 0 and fn → f uniformly on E. Let
‖ · ‖u denote the uniform norm on E; that is, ‖f‖u = sup{x ∈ E : |fn(x) − f(x)|}. Then we
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have that |fn(x) − f(x)| ≤ ‖fn − f‖u for all x ∈ E, so that |fn − f | ≤ ‖fn − f‖ua.e., so that
‖fn − f‖∞ ≤ ‖fn − f‖u. Since the uniform norm goes to 0, we win.

(d) L∞ ⊂ Fun(X,C), so it suffices to show it’s closed under finite addition and scalar multiplication.
Let f, g ∈ L∞. We have that

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞ <∞,

and if r ∈ C, we have

‖rf‖∞ = |r|‖f‖∞ <∞.

So it’s a vector space. It suffices to then show that it’s complete. Let (fn) ⊂ L∞ be a Cauchy
sequence. Notice that |fn − fm| ≤ ‖fn − fm‖∞a.e. Let En,m = {x : |fn(x) − fm(x)| >
‖fn−fm‖∞}, E =

⋃
n,mEn,m. We note that µ(E) = 0. Let F = Ec. We see that ‖fn−fm‖u ≤

‖fn − fm‖∞, which goes to 0. So this has a uniform limit defined on F , denoted f . Since f is
such that fn → f uniformly on F and F c = 0, we get that ‖fn − f‖∞ → 0; that is, fn → f in
L∞. So it is complete.

(e) We need to show that the simple functions are dense in L∞. It suffices to show it for f ≥ 0 (the
standard argument). Let ϕn be a sequence of simple measurable functions such that ϕn ↗ f .
Notice that ϕn ≤ f ≤ ‖f‖∞a.e. Since f ∈ L∞, we have that this is finite, and since this is a.e.,
we have that the set Ec where this doesn’t hold has measure 0. So on E, f is bounded, and
ϕn → f uniformly, hence ‖f − ϕn‖∞ → 0.

�

Problem 74 (Folland 6.6). Suppose 0 < p0 < p1 ≤ ∞. Find examples of functions f on (0,∞)
(with Lebesgue measures) such that f ∈ Lp iff:

(a) p0 < p < p1,
(b) p0 ≤ p ≤ p1,
(c) p = p0.

Proof. TODO �

Problem 75. Let f be a non-negative function on [0,∞) and let Lf be a function on R defined by

Lf (t) =

∫ ∞
0

etxf(x)dx.

Let t0 = sup{t : Lf (t) <∞} so that Lf (t) is finite on (−∞, t0).

(1) Prove that

Lf (xt1 + (1− x)t2) ≤ Lf (t1)xLf (t2)1−x,

for any t1, t2 < t0, x ∈ [0, 1].
(2) Use part (1) to conclude it’s convex.

Proof. (1) We have

Lf (xt1 + (1− x)t2) =

∫ ∞
0

e(xt1+(1−x)t2)yf(y)dy

=

∫ ∞
0

ext1ye(1−x)t2yf(y)dy

=

∫ ∞
0

(
et1yf(y)

)x (
et2yf(y)

)(1−x)
dy.
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We now apply Hölder with 1/p = x, 1/q = 1− x to get∫ ∞
0

(
et1yf(y)

)x (
et2yf(y)

)(1−x)
dy

≤
(∫ ∞

0
et1yf(y)dy

)x(∫ ∞
0

et2yf(y)dy

)1−x

= Lf (t1)xLf (t2)1−x.

(2) It’s log convex, which means it’s convex.
�

Problem 76.

Problem 77 (Folland 6.14). If g ∈ L∞, the operator T defined by Tf = fg is bounded on Lp for
1 ≤ p ≤ ∞. Its operator norm is at most ‖g‖∞, with equality if µ is semifinite.

Proof. Let 1 ≤ p ≤ ∞. We wish to show that Tf is bounded on Lp; i.e.,

‖Tf‖p ≤ C‖f‖p
for some constant C. Notice that for 1 ≤ p <∞ we have

‖Tf‖p = ‖fg‖p =

(∫
|fg|p

)1/p

=

(∫
|f |p|g|p

)1/p

.

Since ‖g‖∞ <∞, we have that g ≤ ‖g‖∞a.e. Hence, we have

‖Tf‖p ≤
(∫
|f |p‖g‖p∞

)1/p

= ‖g‖∞‖f‖p.

So the operator is bounded. Furthermore, we see that for 1 ≤ p < ∞, we get ‖T‖p ≤ ‖g‖∞. For
the case where p =∞, we see that

‖Tf‖∞ = inf{c ≥ 0 : µ({x : |f(x)| · |g(x)| > c}) = 0}.
Since |g(x)| ≤ ‖g‖∞a.e., we have

‖Tf‖∞ ≤ inf{c ≥ 0 : µ({x : |f(x)| · ‖g‖∞ > c}) = 0} = ‖f‖∞‖g‖∞,
so again we have

‖T‖∞ ≤ ‖g‖∞.
We now wish to show that there is equality in the case where µ is semifinite. Fix ε > 0 and define
Aε = {x : |g(x)| > ‖g‖∞ − ε}. By semifiniteness, there exists a B ⊂ Aε with 0 < µ(B) < ∞.
Notice then that we have

‖T‖‖χB‖p ≥ ‖TχB‖p = ‖gχB‖p > ‖(‖g‖∞ − ε)χB‖p = (‖g‖∞ − ε)‖χB‖p,
so we have that

‖T‖ > ‖g‖∞ − ε.
The choice of ε was arbitrary, so we get that

‖T‖ ≥ ‖g‖∞,
and so coupling this with before we have equality. �

Problem 78. In the space Lp(Rd) with Lebesgue measure, examine the function

f0(x) =

{
|x|−α |x| < 1

0 otherwise.

Show that f0 ∈ Lp if and only if pα < d.
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Proof. We use Corollary 2.52 from Folland, with the modification that we are now looking at
f(x) = |x|−αp. With this, we see that f is integrable (i.e. f0 ∈ Lp) if and only if αp < d. �

Problem 79. Let (X,M, µ) be a finite measure space. Let f ∈ L∞. Prove the following:

(1) For all 0 < p <∞, f ∈ Lp.
(2) We have that limp→∞ ‖f‖p = ‖f‖∞.

Proof. (1) To show that f ∈ Lp, we wish to show that ‖f‖p <∞ for all 0 < p <∞. It suffices
to then show

‖f‖pp =

∫
|f |p <∞.

We first must establish the following claim.

Claim. We have that |f | ≤ ‖f‖∞ a.e.

Proof. Pick any a such that a > ‖f‖∞. By infimum properties, we have that µ({x :
|f(x)| > a}) = 0, so that |f | ≤ a a.e. for every such a. Hence, we have that |f | ≤ ‖f‖∞. �

Since |f | ≤ ‖f‖∞, we get that

‖f‖pp =

∫
|f |p ≤

∫
‖f‖p∞ = ‖f‖p∞µ(X) <∞.

Taking pth roots on both sides, we get

‖f‖p ≤ ‖f‖∞µ(X)1/p <∞.
So f ∈ Lp.

(2) By the inequality above, we have

lim sup
p→∞

‖f‖p ≤ lim sup
p→∞

‖f‖∞µ(X)1/p = ‖f‖∞.

It suffices to then show that ‖f‖∞ ≤ lim infp→∞ ‖f‖p. If ‖f‖∞ = 0, we are done. Fix
a < ‖f‖∞, consider Ea := {x : |f(x)| > a} = {x : |f(x)|p > ap}. We Chebychev this to
get

µ(Ea) ≤
1

ap

∫
|f |p ↔ apµ(Ea) ≤

∫
|f |p.

Taking pth roots gives
aµ(Ea)

1/p ≤ ‖f‖p,
and taking the liminf as p→∞ gives

a ≤ lim inf
p→∞

‖f‖p.

Since this applies for all a < ‖f‖∞, we get that ‖f‖∞ ≤ lim infp→∞ ‖f‖p.
�

Problem 80 (Folland 6.7). If f ∈ Lp ∩ L∞ for some p <∞, then show the following:

(1) f ∈ Lp for all q > p,
(2) ‖f‖∞ = limq→∞ ‖f‖q.

Proof. (1) We wish to show that ‖f‖q <∞ for all q > p. This is equivalent to showing that

‖f‖qq =

∫
|f |q <∞.

We can rewrite |f |q = |f |p|f |q−p. Notice that |f | ≤ ‖f‖∞, so∫
|f |q =

∫
|f |p|f |q−p ≤ ‖f‖pp‖f‖q−p∞ <∞.

140



Taking qth roots gives us the desired result.
(2) Taking qth roots in the above inequality gives

‖f‖q ≤ ‖f‖p/qp ‖f‖(q−p)/q∞ ,

so taking lim sup as q tends to infinity gives

lim sup
q→∞

‖f‖q ≤ ‖f‖∞.

Let a < ‖f‖∞, set Ea = {x : |f(x)| > a}. Then we have that µ(Ea) > 0, and furthermore
µ(Ea) <∞, since f ∈ Lq and Chebychev applies to give

µ(Ea) ≤
1

aq

∫
|f |q <∞.

Using this, we have

aqµ(Ea) ≤
∫
|f |q ↔ aµ(Ea)

1/q ≤ ‖f‖q,

and taking lim inf as q tends to infinity on both sides gives

a ≤ lim inf
q→∞

‖f‖q.

This applies for all a, so we have that ‖f‖∞ ≤ lim infq→∞ ‖f‖q.
�

Problem 81. Show that the two definitions of L∞ are equivalent:

(1) inf{c ≥ 0 : |f(x)| ≤ c a.e.},
(2) inf{c ≥ 0 : µ({x : |f(x)| > c}) = 0}.

Proof. Let c ≥ 0 be such that |f(x)| ≤ c a.e. Then we have that E = {x : |f(x)| ≤ c} is such that
µ(Ec) = 0. Notice that Ec = {x : |f(x)| > c}, and so we have that c is such that

inf{c ≥ 0 : µ({x : |f(x)| > c}) = 0} ≤ c.

Since this applies for all c, infimum properties tell us that

inf{c ≥ 0 : µ({x : |f(x)| > c}) = 0} ≤ inf{c ≥ 0 : |f(x)| ≤ c a.e.}.

Next, let c ≥ 0 be such that µ({x : |f(x)| > c}) = 0. Examining E = {x : |f(x)| ≤ c}, we notice
that this implies that µ(Ec) = 0, so that |f(x)| ≤ c a.e. Hence, we have that

inf{c ≥ 0 : |f(x)| ≤ ca.e.} ≤ c,

and since this applies for all such c infimum properties tell us that

inf{c ≥ 0 : |f(x)| ≤ ca.e.} ≤ inf{c ≥ 0 : µ({x : |f(x)| > c}) = 0}.

In other words, these values are in fact equal. �

Problem 82. Fix a g ∈ L1. We can define a linear operator on L∞ such that T (f) =
∫
fg. We

define

‖T‖ := sup

{∣∣∣∣∫ fg

∣∣∣∣ : ‖f‖∞ = 1

}
.

Show that ‖g‖1 = ‖T‖.
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Proof. One direction is clear. Notice that for ‖f‖∞ = 1, we have∣∣∣∣∫ fg

∣∣∣∣ ≤ ∫ |f ||g| ≤ ∫ ‖f‖∞|g| = ∫ |g| = ‖g‖1.
Since this applies for all such f , we get that

‖T‖ ≤ ‖g‖1.

We now wish to show that ‖g‖1 ≤ ‖T‖. Let f = sgn(g). Then we have that∣∣∣∣∫ fg

∣∣∣∣ =

∫
|g| = ‖g‖1,

and since ‖f‖∞ = 1, we get
‖g‖1 ≤ ‖T‖

�

Problem 83. Show that for 1 ≤ p ≤ ∞ a real-valued measurable f belongs to Lp if fg ∈ L1 for
every g ∈ Lq, where p and q are conjugates.

Proof. We want to show that there exists a constant M so that ‖fg‖1 ≤ M for all g ∈ Lq with
‖g‖q ≤ 1. Assume that there is not. Then we can construct a sequence (gn) ⊂ Lq with ‖gn‖q ≤ 1
such that

∫
|f ||gn| > 3n. Now, we have that

g :=
∑

2−n|gn| ∈ Lq,

since

‖g‖q =
∥∥∥∑ 2−n|gn|

∥∥∥
q
≤
∑

2−n = 1.

So we have∫
|fg| =

∫
|f |
(∑

2−n|gn|
)

=

∫ ∑
2−n|f ||gn| =

∑∫
2−n|f ||gn| >

∑ 3n

2n
=∞,

so we have a contradiction. Hence, ‖fg‖1 ≤M for all g ∈ Lq, and so we get

‖f‖p = sup
‖g‖q≤1

∫
fg ≤ sup

‖g‖q≤1
‖fg‖1 ≤M <∞.

�

Problem 84. Prove that if fn → f in Lp, 1 ≤ p < ∞, gk → g pointwise, and ‖gk‖∞ ≤ M for all
k, then fngn → fg in Lp.

Proof. We want to show that
‖fngn − fg‖p → 0.

Rewrite this as

fngn − fg = fngn + fgn − fgn − fg = f(gn − g) + gn(fn − f).

Hence,
‖fngn − fg‖p ≤ ‖f(gn − g)‖p + ‖gn(fn − f)‖p.

Now, taking pth powers, we have

‖gn(fn − f)‖pp =

∫
|gn|p|fn − f |p ≤Mp

∫
|fn − f |p → 0,

so we have that this goes to 0. Taking pth powers again, we have

‖f(gn − g)‖pp =

∫
|f |p|gn − g|p.
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We now have

|gn − g|p ≤ 2p(|gn|p + |g|p) ≤ 2p+1Mp,

since ‖gn‖∞ ≤M . Hence,

|f |p|gn − g|p ≤ 2p+1Mp|f |p.
This is in L1, and we have that |f |p|gn − g|p → 0, so dominated convergence theorem applies to
give us

‖f(gn − g)‖pp → 0.

In other words, we get the desired result. �

Problem 85. Let 1 ≤ p < q < ∞. Prove that Lp ∩ L∞ ⊂ Lq. That is, any bounded function in
Lp is also in Lq for all q > p.

Proof. Let f ∈ Lp ∩ L∞. We wish to show that f ∈ Lq. That is, we wish to show that∫
|f |q <∞.

Notice that, since p < q, we can write∫
|f |q =

∫
|f |p|f |q−p.

We then apply Hölder to get ∫
|f |q ≤ ‖f‖pp‖|f |q−p‖∞.

Since f ∈ L∞, we get that ‖f‖∞ ≤M , so in particular f ≤M a.e. Hence, we have that∫
|f |q ≤ ‖f‖pp‖|f |q−p‖∞ ≤ ‖f‖ppM q−p <∞.

�

Problem 86 (Folland 6.5). Suppose 0 < p < q < ∞. Then Lp 6⊂ Lq iff X contains sets of
arbitrarily small positive measure. We also have Lq 6⊂ Lp iff X contains sets of arbitrarily large
measure.

Proof. We show the first.
( =⇒ ) : Proceed by contrapositive; that is, assume that X does not contain sets of arbitrarily small
positive measure. Then we have that there is a c > 0 so that there is no E ∈ M with µ(E) < c.
We wish to then show that if f ∈ Lp, then f ∈ Lq. Let An = {x : n ≤ |f(x)| < n + 1}. Then
either µ(An) ≥ c or µ(An) = 0. Since X =

⋃
nAn, we must have that there are only finitely many

An with µ(An) ≥ c in order for f ∈ Lp. But this then implies that f ∈ Lq.
( ⇐= ): We assume that the space contains sets of arbitrarily small measure. We can then
construct a sequence of sets (En) so that they are disjoint, and so that 0 < µ(En) < 2−n. Consider

f =
∑
anχEn , where an = µ(En)−1/q. We have that∫

|f |p =

∫ ∣∣∣∑ anχEn

∣∣∣p =

∫ (∑
anχEn

)p
=

∫ ∑
µ(En)−p/qχEn =

∑
µ(En)1−p/q <

∑
2n(1−p/q) <∞,

while the same is not true for the q norm. �

Problem 87 (Folland 6.14). If g ∈ L∞, the operator T defined by Tf = fg is bounded on Lp for
1 ≤ p ≤ ∞. Its operator norm is at most ‖g‖∞, with equality if µ is semifinite.
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Proof. Notice that, for all f ∈ Lp, we have

‖fg‖p =

(∫
|fg|p

)1/p

≤
(∫
|f |p‖g‖p∞

)1/p

= ‖g‖∞‖f‖p.

Hence, ‖Tf‖p ≤ ‖g‖∞ when ‖f‖p = 1. We then wish to show that ‖g‖∞ ≤ ‖Tf‖p when µ is
semifinite.

Examine E = {x : g(x) > ‖g‖∞ − ε} for ε > 0 fixed. If µ(E) < ∞, then we have that χE ∈ Lp,
hence defining f = χE/µ(E), we have ‖f‖p = 1 and

‖T‖ ≥ ‖Tf‖p > ‖g‖∞ − ε.
If µ(E) = ∞, we can find F ⊂ E so that µ(F ) < ∞. Let f = χF /µ(F ) in this case, and we have
the same result. We can do this for all ε > 0, so letting ε→ 0, we have

‖T‖ ≥ ‖g‖∞.
�

Problem 88 (Folland 6.17). With the notation as in Theorem 6.14, if µ is semifinite, q <∞, and
Mq(g) <∞, then {x : |g(x)| > ε} has finite measure for all ε > 0 and hence Sg is σ-finite.

Proof. We first wish to establish that Mq(|g|) ≤ Mq(g). Let f ∈ Σ arbitrary with ‖f‖p = 1. We
can write

f =
n∑
1

akχEk ,

where ak ∈ C. Notice that∣∣∣∣∫ f |g|
∣∣∣∣ =

∣∣∣∣∣
∫ n∑

1

akχEk |g|

∣∣∣∣∣ =

∣∣∣∣∣
n∑
1

∫
akχEk |g|

∣∣∣∣∣ .
Divide Ek = E1

k ∪ E2
k , where g ≥ 0 on E1

k and g < 0 on E2
k . Then we have (letting bk = −ak)∣∣∣∣∣

n∑
1

∫
akχEk |g|

∣∣∣∣∣ =

∣∣∣∣∣
n∑
1

∫
ak(χE1

k
+ χE2

k
)|g|

∣∣∣∣∣ =

∣∣∣∣∣
n∑
1

∫
akχE1

k
g − akχE2

k
g

∣∣∣∣∣
=

∣∣∣∣∣
n∑
1

∫
akχE1

k
g + bkχE2

k
g

∣∣∣∣∣ =

∣∣∣∣∣
∫ n∑

1

(akχE1
k

+ bkχE2
k
)g

∣∣∣∣∣ ≤Mq(g).

Write Sg := {x : g(x) 6= 0}. We wish to show that µ({x : |g(x)| > ε}) <∞; denote this set as
E. Assume otherwise; that is, µ(E) = ∞. Then we have that, since µ is semifinite, there exists a
B ⊂ E such that 0 < µ(B) <∞. In particular, we have that for all n, there exists a Bn ⊂ E with
n < µ(Bn) <∞. Now, we note that

εµ(Bn) =

∫
Bn

ε <

∫
Bn

|g| =
∫
|g|χBn = µ(Bn)1/p

∫
|g|χBnµ(Bn)−1/p ≤ µ(Bn)1/pMq(|g|).

So rewriting this, we have

µ(Bn)1−1/p ≤ Mq(g)

ε
.

Taking 1− 1/p roots, we get

µ(Bn) ≤
(
Mq(g)

ε

)1/(1−1/p)

.

That is, µ(Bn) is bounded. This contradicts our observation, and so we have that µ(E) = 0. This
applies for all ε, so we get that Sg is σ-finite. �
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Alternate proof. Consider Gε = {x : |g(x)| > ε} where µ(Gε) =∞. Let m = Mq(g). By semifinite-
ness, there exists an F ⊂ Gε with (m

ε

)q
< µ(F ) <∞.

Let

f =
sgn(g)χF
µ(F )1/p

.

Note that ‖f‖p = 1. Then we have that

m ≥
∣∣∣∣∫ fg

∣∣∣∣ =

∫
|g|

µ(F )1/p
> µ(F )1−1/pε = µ(F )1/qε = m,

which is a contradiction (since m < m). Thus, we must have had Gε was finite. �

Problem 89 (Folland 6.27). The operator

Tf(x) =

∫ ∞
0

(x+ y)−1f(y)dy

satisfies ‖Tf‖p ≤ Cp‖f‖p for 1 < p <∞, where

Cp :=

∫ ∞
0

x−1/p(x+ 1)−1dx.

Proof. �

Problem 90 (Folland 6.41). Suppose 1 < p < ∞ and 1/p + 1/q = 1. If T is a bounded linear
operator on Lp such that

∫
(Tf)g =

∫
f(Tg) for all f, g ∈ Lp ∩ Lq, then T extends uniquely to a

bounded operator on Lr for all r in [p, q] (assuming p ≤ q).

Proof. The goal is to first extend it to Lq, and then use Riesz-Thorin to extend it to all p ≤ r ≤ q.
Note that we will (ambiguously) label the extended operator and the original operator by T ; this
will be fine, since we extend the operator via density of Lp ∩ Lq and there is uniquely one such
operator. First, notice that we have ‖Tf‖p ≤ M‖f‖p, since T is a bounded linear operator on
Lp. Next, for g ∈ Lq we wish to determine ‖Tg‖q. Notice that, by the density of Lp ∩ Lq in Lq,
we can take a sequence gn → g in Lq and a sequence fn → f in Lp where (fn), (gn) ⊂ Lp ∩ Lq.
Furthermore, by Hölder we see that∣∣∣∣∫ (Tf)g

∣∣∣∣ ≤ ‖Tf‖p‖g‖q ≤M‖f‖p‖g‖q
for f ∈ Lp, g ∈ Lq. Since gn → g in Lq, fn → f in Lp, we extract subsequences which con-
verges almost everywhere simultaneously, label them (gnk), (fnk). Notice that Fatou’s Lemma and
adjointness gives us∣∣∣∣∫ f(Tg)

∣∣∣∣ ≤ lim inf
k→∞

∣∣∣∣∫ fnk(Tgnk)

∣∣∣∣ = lim inf
k→∞

∣∣∣∣∫ (Tfnk)gnk

∣∣∣∣ ≤M‖f‖p‖g‖q.
Notice this holds for all f ∈ Lp, so fixing g ∈ Lq we invoke duality to get

‖Tg‖q = sup

{∣∣∣∣∫ f(Tg)

∣∣∣∣ : f ∈ Σp, ‖f‖p = 1

}
≤M‖g‖q.

Hence, T is a bounded operator on Lq. �

Problem 91 (Folland 8.1). Prove the product rule for partial derivatives; that is, prove that

∂α(fg) =
∑

β+γ=α

α!

β!γ!
(∂βf)(∂γg).

145



Use this to prove that

∂α(xβf) = xβ∂αf +
∑

cγδx
δ∂γf,

xβ∂α(f) = ∂α(xβf) +
∑

c′γδ∂
γ(xδf),

Proof. Let α = (α1, . . . , αn). We induct on n. First, notice that for the case n = 1, we have the
generalized Leibniz rule;

∂k(fg) =
∑
i+j=k

k!

i!j!
f (i)g(j).

To see this, let’s first write it in terms of factorials (noting that k − i = j);

∂k(fg) =
k∑
i=0

(
k

i

)
f (i)g(k−i).

Now, the case k = 1 is clear; this is just the normal product rule. That is,

(fg)(1) = f ′g + g′f.

Assume it holds for k = m− 1. We wish to show it holds for m. We have then

(fg)(m) =
[
(fg)′

](m−1)

=
[
f ′g + g′f

](m−1)
= (f ′g)(m−1) + (g′f)(m−1)

=

m−1∑
i=0

(
m− 1

i

)
f (i+1)g(m−1−i) +

m−1∑
i=0

(
m− 1

i

)
f (i)g(m−i)

=
m∑
i=1

(
m− 1

i− 1

)
f (i)g(m−i) +

m−1∑
i=0

(
m− 1

i

)
f (i)g(m−i)

= f (m)g +
m−1∑
i=1

(
m− 1

i− 1

)
f (i)g(m−i) +

m−1∑
i=1

(
m− 1

i

)
f (i)g(m−i) + fg(m)

= f (m)g +
m−1∑
i=1

[(
m− 1

i− 1

)
+

(
m− 1

i

)]
f (i)g(m−i) + fg(m).

Recall that (
m− 1

i− 1

)
+

(
m− 1

i

)
=

(
m

i

)
,

which we can deduce by writing things out:(
m− 1

i− 1

)
+

(
m− 1

i

)
=

(m− 1)!

(m− i)!(i− 1)!
+

(m− 1)!

(m− i− 1)!i!

=
(m− 1)!

(m− i)(m− i− 1)!(i− 1)!
+

(m− 1)!

(m− i− 1)!(i)(i− 1)!

=
(m− 1)!(i) + (m− 1)!(m− i)

(m− i)!(i)!

=
(m− 1)!(i+m− i)

(m− i)!(i)!
=

(m)(m− 1)!

(m− i)!(i)!
=

(
m

i

)
.
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Hence, we have

(fg)(m) = f (m)g +
m−1∑

1

(
m

i

)
f (i)g(m−i) + fg(m) =

m∑
0

(
m

i

)
f (i)g(m−i),

as desired.
Now, with the general Leibniz rule, we can induct on the size n. It holds for n = 1, so assume

it holds for n − 1. Let α = (α1, . . . , αn−1, αn). We can write it then as β = (α1, . . . , αn−1, 0),
γ = (0, . . . , 0, αn), and we have β + γ = α. Furthermore,

∂α(fg) = ∂β+γ(fg) = ∂β(∂γ(fg)).

Apply the general Leibniz rule to get

∂γ(fg) =
∑

in+jn=αn

αn!

in!jn!
f (in)g(jn).

Hence, we have

∂α(fg) = ∂β

 ∑
in+jn=αn

αn!

in!jn!
f (in)g(jn)


=

∑
in+jn=αn

αn!

in!jn!
∂β(f (in)g(jn))

=
∑

in+jn=αn

αn!

in!jn!

∑
ζ+η=β

β!

ζ!η!
(∂ζf (in))(∂ηg(jn)).

Now adding in to the end of ζ and jn to the end of η, we get that ζ + η = α, and so we can rewrite
this as ∑

η+ζ=α

α!

ζ!η!
(∂ζf)(∂ηg),

as desired.
We now deduce the facts; we have

∂α(xβf) =
∑

η+ζ=α

α!

η!ζ!
(∂ηf)(∂ζxβ),

and we see that we can pull things out to get

∂α(xβf) = xβ∂αf +
∑

η+ζ=α,|ζ|≥1

α!

ζ!η!
(∂ηf)(∂ζxβ).

We see that differentiating ∂ζxβ gives us Cxβ−ζ if βi ≥ ζi for all i or 0 otherwise, where C is some
constant. Absorbing all the constants into the cγδ, this gives us

∂α(xβf) = xβ∂αf +
∑

cγδx
δ∂γf,

as desired.
The argument is analogous for the other fact. Choose the constants c′γδ so that they cancel out

with everything appropriately. �

Problem 92 (Folland 8.2). Observe that the binomial theorem can be written as follows:

(x1 + x2)k =
∑
|α|=k

k!

α!
xα, x = (x1, x2), α = (α1, α2).
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Prove the following generalizations:

(a) The multinomial theorem: If x ∈ Rn,

(x1 + · · ·+ xn)k =
∑
|α|=k

k!

α!
xα.

(b) The n-dimensinal binomial theorem: If x, y ∈ Rn,

(x+ y)α =
∑

β+γ=α

α!

β!γ!
xβyγ .

Proof. (a) We induct on n. We have it holds for n = 2, so assume it holds for n− 1. Then we wish
to show it holds for n. We have that

(x1 + · · ·+ xn)k = (x1 + · · ·+ (xn−1 + xn))k =
∑
|α|=k

k!

α!
xα1

1 · · · (xn−1 + xn)αn−1 .

Now, apply the normal binomial theorem on the inside to get

(xn−1 + xn)αn−1 =
∑

β1+β2=αn−1

αn−1!

β1!β2!
xβ1n−1x

β2
n .

Notice then that α1 + · · ·+ αn−2 + β1 + β2 = k, and furthermore that

k!

α!

αn−1!

β1!β2!
=

k!

α1! · · ·αn−1!

αn−1!

β1β2
=

k!

α1! · · ·αn−2!β1β2.

Rewriting α = (α1, . . . , αn, where αn−1 = β1, αn = β2, we get

(x1 + · · ·+ xn)k =
∑
|α|=k

k!

α!
xα,

as desired.
(b) Notice this says

(x+ y)α = (x1 + y1)α1 · · · (xn + yn)αn .

We induct again on the size n. We have it holds for n = 1 by the binomial theorem, so now
assume it holds for n− 1. Then we have

(x+ y)α = (x1 + y1)α1 · · · (xn−1 + yn−1)αn−1(xn + yn)αn ,

and by the binomial theorem and the induction hypothesis we get (letting α′ = (α1, . . . , an−1))

(x+ y)α =

 ∑
β+γ=α′

α′!

β!γ!
xβyγ

 ∑
in+jn=αn

αn!

in!jn!
xinn y

jn
n

 .

Distributing and rewriting β as β = (β1, . . . , βn−1, in) and likewise for γ gives

(x+ y)α =
∑

β+γ=α

α!

β!γ!
xβyγ ,

as desired.
�

Problem 93. If (p, q) = 1, f ∈ Lp, g ∈ Lq, then we have

(1) f ∗ g exists for all x.
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(2) f ∗ g is bounded, uniformly continuous with

‖f ∗ g‖u ≤ ‖f‖p‖g‖q
for p > 1.

Proof. Hölder’s gives

|(f ∗ g)(x)| =
∣∣∣∣∫ f(x− y)g(y)dy

∣∣∣∣ ≤ ∫ |f(x− y)||g(y)|dy ≤ ‖f‖p‖g‖q.

This holds for all x, so in particular we have

‖f ∗ g‖u ≤ ‖f‖p‖g‖q.
This gives that it exists and is bounded. For uniform continuity, notice that

‖τy(f ∗ g)− (f ∗ g)‖u = ‖(τy(f) ∗ g)− (f ∗ g)‖u = ‖(τy(f)− f) ∗ g‖u
≤ ‖τy(f)− f‖p‖g‖q → 0

as y → 0 by the homework. �

Problem 94. Prove the general form of Young’s inequality directly; that is, if f ∈ Lp and g ∈ Lq,
then f ∗ g ∈ Lr, and ‖f ∗ g‖r ≤ ‖f‖p‖g‖q (here, 1/p+ 1/q = 1 + 1/r).
Hint: (Both Folland and Wheeden + Zygmund’s hints) Show that

|f ∗ g(x)|r ≤ ‖f‖r−pp ‖g‖r−qq

∫
|f(y)|p|g(x− y)|qdy,

using the fact that

|f ∗ g(x)| ≤
∫
|f(y)|p/r|g(x− y)|q/r · |f(y)|p(1/p−1/r) · |g(x− y)|q(1/q−1/r)dy,

and applying general Hölder to the three functions with exponent r, p1, p2, where 1/p1 = 1/p−1/r,
1/q1 = 1/q − 1/r.

Proof. We have that

|f ∗ g(x)| =
∣∣∣∣∫ f(y)g(x− y)dy

∣∣∣∣ =

∣∣∣∣∫ f(y)p/rg(x− y)q/r · f(y)p(1/p−1/r) · g(x− y)q(1/q−1/r)dy

∣∣∣∣
≤
∫
|f(y)|p/r|g(x− y)|q/r · |f(y)|p(1/p−1/r) · |g(x− y)|q(1/q−1/r)dy.

Now, recall that generalized Hölder (Exercise 6.31 in Folland) gives us∥∥∥∥∥
n∏
1

fj

∥∥∥∥∥
r

≤
n∏
1

‖fj‖pj ,

where 1 ≤ pj ≤ ∞ such that
∑n

1 p
−1
j = r−1 ≤ 1. Notice that

1

p1
+

1

q1
+

1

r
=

1

p
+

1

q
− 1

r
= 1

by construction, so we get that generalized Hölder applies to give

‖|f |p/r|g(x− ·)|q/r · |f |p(1/p−1/r) · |g(x− ·)|q(1/q−1/r)‖1
≤ ‖|f |p/r|g(x− ·)|q/r‖r · ‖|f |p(1/p−1/r)‖p1 · ‖|g(x− ·)|q(1/q−1/r)‖q1 .

Writing things out, we see that

‖|f |p/r|g(x− ·)|q/r‖r =

(∫
|f(y)|p|g(x− y)|qdy

)1/r

,
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‖|f |p(1/p−1/r)‖p1 =

(∫
|f(y)|pdy

)1/p1

=

(∫
|f(y)|pdy

)1/p−1/r

=

(∫
|f(y)|pdy

)(r−p)/rp

= (‖f‖r−pp )1/r,

and similarly

‖|g(x− ·)|q(1/q−1/r)‖q1 = (‖g‖r−qq )1/r.

Taking everything to the rth power gives us

|f ∗ g(x)|r ≤ ‖f‖r−pp ‖g‖r−qq

∫
|f(y)|p|g(x− y)|qdy.

Integrating both sides with respect to x gives∫
|f ∗ g(x)|rdx = ‖f ∗ g‖rr ≤ ‖f‖r−pp ‖g‖r−qq

∫∫
|f(y)|p|g(x− y)|qdydx.

Tonelli applies to then give us

‖f ∗ g‖rr ≤ ‖f‖r−pp ‖g‖r−qq ‖g‖qq‖f‖pp = ‖f‖rp‖g‖rq,
and so taking the rth root of both sides gives

‖f ∗ g‖r ≤ ‖f‖p‖g‖q,
as desired. �

Problem 95. Prove that there is no δ ∈ L1(R) so that f ∗ δ = f for all f ∈ L1(R).

Proof. Assume there were. Then we have f ∗ δ = f for all f ∈ L1(R), so f̂ ∗ δ(m) = f̂(m)δ̂(m) =

f̂(m), and so choosing f so that f̂(m) 6= 0 we have that δ̂(m) = 1 for all m. But this then
contradicts the Riemann-Lebesgue lemma, since we must have δ ∈ C0(Rn). �

Problem 96. Let f, g ∈ L1(Rn). Prove the following:

(1) If xαf ∈ L1 for |α| ≤ k, then f̂ ∈ Ck and ∂αf̂ = [(−2πix)αf ]∧.

(2) If f ∈ Ck, ∂αf ∈ L1 for |α| ≤ k, and ∂αf ∈ C0 for |α| ≤ k−1, then (∂αf)∧(ξ) = (2πξ)αf̂(ξ).

Proof. (1) We induct on the magnitude of α. Assume |α| = 1; WLOG assume α = (1, 0, . . . , 0)
(i.e. taking the derivative with regards to the first component). Then notice that

d

dx1
f̂ =

d

dx1

∫
Rn
f(y)e−2πix·ydy.

The assumptions are such that Theorem 2.27 applies, so we have that

d

dx1

∫
Rn
f(y)e−2πix·ydy =

∫
Rn
f(y)(−2πix1)e−2πix·ydy = [(−2πix)αf ]∧.

The induction step is the same as this, so the result follows.
(2) Writing things out here, we have

(∂αf)∧(ξ) =

∫
Rn

(∂αf)(y)e−2πiξ·ydy.

Assume |α| = 1, and without loss of generality assume that α = (1, . . . 0). Things here are
appropriately nice so that we can integrate by parts, and doing so gives us∫

Rn
(∂αf)(y)e−2πiξ·ydy = −

∫
Rn
f(y)(−2πiξ)e−2πiξ·ydy = (2πiξ)f̂(ξ).
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Induction is clear.
�

Problem 97. Assume we are over R. If f(x) = e−πax
2

where a > 0, then show that f̂(ξ) =

a−n/2e−πξ
2/a.

Proof. The goal is to switch this to an ODE. First, we notice that

f ′(x) = (−2xπa)e−πax
2
.

Now, we use the two properties from the last problem to get that

(f̂)′(ξ) = [(−2πix)f ]∧(ξ) =
i

a
[(−2πxa)f ]∧(ξ) =

i

a
[f ′]∧(ξ) = −2πξ

a
f̂(ξ).

Now, use an ODE trick here. We have that

d

dξ

(
eπξ

2/af̂(ξ)
)

=
2πξ

a
eπξ

2/af̂(ξ)− 2πξ

a
eπξ

2/af̂(ξ) = 0.

So eπξ
2/af̂(ξ) = C, a constant. Plugging in ξ = 0, we get

f̂(0) = C =

∫
R
e−πax

2
dx.

We have the following claim.

Claim. If a > 0, ∫
R
e−ax

2
dx =

√
π

a
.

Proof. We first consider the case over R2. This gives us∫
R2

e−a|x|
2
dx.

We use Corollary 2.51. This gives us that the above integral is equal to

2π

∫ ∞
0

e−ar
2
rdr.

We can integrate this by parts to get ∫
R2

e−a|X|
2
dx =

π

a
.

Since everything is positive, Tonelli tells us that(∫
R
e−ax

2
dx

)2

=
π

a
,

or in other words, ∫
R
e−ax

2
dx =

√
π

a
.

�

Now, using the claim, we have

C =

∫
R
e−(πa)x2dx =

√
π

πa
= a−1/2.

So we have
eπξ

2/af̂(ξ) = a−1/2,
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which gives

f̂(ξ) = a−1/2e−πξ
2/a,

as desired. �

Problem 98. Prove the following:

(1) If f, g ∈ L1, then
∫
f̂g =

∫
fĝ.

(2) If f, g ∈ L2, then
∫
f̂g =

∫
fĝ.

Proof. (1) Since we are on L1, we have a nice formula to use:∫
f̂(x)g(x)dx =

∫ (∫
f(y)e−2πix·ydy

)
g(x)dx

=

∫∫
f(y)g(x)e−2πix·ydydx.

Now, we check that it’s fair to use Fubini here. Taking the absolute value of the inside, we
have ∫∫

|f(y)||g(x)|dydx = ‖f‖1‖g‖1 <∞

using Tonelli, so we can use Fubini to get∫∫
f(y)g(x)e−2πix·ydydx =

∫∫
f(y)g(x)e−2πix·ydxdy =

∫
f(y)

(∫
g(x)e−2πix·ydx

)
dy

=

∫
f(y)ĝ(y)dy.

Relabeling variables then gives us that these are equal.
(2) Here, we must use the density of L1 ∩ L2 ⊂ L2 (which can be deduced by the density of

Schwartz functions). Let fn → f in L2, gn → g in L2. Notice that for each n, (1) gives us∫
f̂ngn =

∫
fnĝn.

Plancherel says that ĝn → ĝ in L2 (same for fn). We then wish to show that f̂ngn → f̂g in
L2. Notice that we have

‖f̂ngn − f̂g‖2 ≤ ‖f̂n − f‖2‖gn‖2 + ‖ĝn − g‖2‖f‖2 → 0.

Finally, we see that ∫
f̂ngn →

∫
f̂g;

to see this, notice that we have∣∣∣∣∫ f̂ngn −
∫
f̂g

∣∣∣∣ ≤ ∫ |f̂ngn − f̂g| = ‖f̂ngn − f̂g‖1.
Notice that we get

‖f̂ngn − f̂ng + f̂ng − f̂g‖1 ≤ ‖f̂n(gn − g)‖1 + ‖g(f̂n − f̂‖1,
and using Hölder we get

‖f̂n − f̂‖2‖g‖2 + ‖gn − g‖2‖f̂n‖2 → 0.

So we have that these converge, as desired. The same argument applies in the other direc-
tion, and so we must have that these are equal.

�
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Problem 99. Show that

f̂χ|x|<k(y)→ f̂(y)

in L2.

Proof. Simple DCT argument. �

Problem 100. If f ∈ L1 and f̂ = 0, then f = 0 almost everywhere.

Proof. If f̂ = 0 almost everywhere, then f̂ ∈ L1. Apply Fourier Inversion to get that

[f∧]∨ = f = 0 almost everywhere.

�

Problem 101. Show that F is an isomorphism of S onto itself.

Proof. For all f ∈ S, we have f̂ ∈ S by Corollary 8.23. Furthermore, we can define a map

F−1 : S → S via F−1(f) = f̂(−x) = f∨(x), which is a composition of continuous maps. We see

that F ◦ F−1(f) = F(f∨) = (f∨)∧ = f, F−1 ◦ F(f) = F−1(f̂) = (f̂)∨ = f , so these functions
are indeed inverses of each other, and it follows that it is an isomorphism since F and F−1 are
linear. �

Recall Riesz-Thorin’s Interpolation Theorem.

Theorem. Suppose (X,M, µ) and (Y,N , ν) are measure spaces and p0, p1, q0, q1 ∈ [1,∞]. If
q0 = q1 =∞, suppose also that ν is semifinite. For 0 < t < 1, define pt and qt by

1

pt
=
t− 1

p0
+

t

p1
,

1

qt
=

1− t
q0

+
t

q1
.

If T is a linear map from Lp0 + Lp1 into Lq0 + Lq1 such that ‖Tf‖q0 ≤ M0‖f‖p0 for f ∈ Lp0 and

‖Tf‖q1 ≤M1‖f‖p1 for f ∈ Lp1 , then ‖Tf‖qt ≤M1−t
0 M t

1‖f‖pt for f ∈ Lpt , 0 < t < 1.

Problem 102. Suppose that 1 ≤ p ≤ 2 and q is the conjugate exponent to p (i.e. (p, q) = 1). If

f ∈ Lp, then f̂ ∈ Lq, and ‖f̂‖q ≤ ‖f‖p.

Proof. From prior remarks and Plancherel, we have

‖f̂‖∞ ≤ ‖f‖1,

‖f̂‖2 = ‖f‖2,
so by Riesz-Thorin we get

‖f̂‖q ≤ ‖f‖p,
where 1 ≤ p ≤ 2. �

Problem 103. Prove the Fourier Inversion theorem: that is, if f ∈ L1, f̂ ∈ L1, then f agrees

almost everywhere with a continuous function f0 and (f̂)∨ = (f∨)∧ = f0.

Proof. Fix t > 0, x ∈ Rn. Let

ϕ(y) = e2πix·ye−πt
2|y|2 .

Notice that

ϕ̂(z) =

∫
e2πix·ye−πt

2|y|2e−2πiz·ydy.

Combining factors gives

ϕ̂(z) =

∫
e−πt

2|y|2e−2πiy·(z−x)dy.
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So this is actually the Fourier transform of e−πt
2|y|2 at z − x. Using the prior problems, then, we

know that this will be

e−π|z−x|
2/t2t−n = gt(z − x).

Using this, we see that∫
ϕ(y)f̂(y)dy =

∫
ϕ̂(y)f(y)dy =

∫
gt(y − x)f(y)dy = f ∗ gt(x).

Furthermore, DCT gives us that ∫
ϕ(y)f̂(y)dy → (f̂)∨(x),

and Proposition 8.14 gives us that

f ∗ gt(x)→ f,

in the L1 norm, so f = (f̂)∨ almost everywhere. Riemann-Lebesgue tells us that this will be
continuous. �

Problem 104. Prove Plancherel’s theorem: that is, if f ∈ L1 ∩ L2, then f̂ ∈ L2, and F|(L1 ∩ L2)
extends uniquely to a unitary isomorphism on L2.

Proof. Let X = {f ∈ L1 : f̂ ∈ L1}. We first note that X ⊂ L2, since f̂ ∈ L1 =⇒ f ∈ L∞ by
Fourier inversion, and f ∈ L∞ ∩ L1 =⇒ f ∈ Lp for 1 ≤ p ≤ ∞, so that f ∈ L2. It is dense since
S ⊂ X by the fact that the Fourier transform on S maps S to itself. So X is dense in L2.

Now, given f, g ∈ X, let h = ĝ. Then the Fourier inversion theorem tells us that ĥ = g, so that
we have

〈f, g〉 =

∫
fg =

∫
fĥ =

∫
f̂h =

∫
f̂ ĝ = 〈f̂ , ĝ〉.

Since this holds for all f, g ∈ X, we see that the Fourier transform preserves the inner product on
X. Since X is dense, we see that it extends by continuity to a unitary isomorphism on L2.

Now, we check that this agrees with our usual notion of Fourier transform on L1. We do the
same trick as in Fourier inversion. �

Problem 105 (Folland 8.18). Suppose f ∈ L2(R).

(1) The L2 derivative f ′ exists iff ξf̂ ∈ L2, in which case f̂ ′(ξ) = 2πiξf̂(ξ).
(2) If the L2 derivative f ′ exists, then[∫

|f(x)2dx

]2

≤ 4

∫
|xf(x)|2dx

∫
|f ′(x)|2dx.

(3) For any b, β ∈ R, ∫
(x− b)2|f(x)|2dx

∫
(ξ − β)2|f̂(ξ)|2dξ ≥ ‖f‖

4
2

16π2

Proof. TODO �

Problem 106. (1) Show that for all |t| ≤ π
2 , we have∣∣∣∣ 1

sin(t)
− 1

t

∣∣∣∣ ≤ 1− 2

π
.

(2) Let DN be the Dirichlet kernel on T1. Prove that for N ∈ Z≥0, we have

4

π2

N∑
k=1

1

k
≤ ‖DN‖1 ≤ 3− 2

π
+

4

π2

N∑
k=1

1

k
.
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Proof. (1) These functions are symmetric, so it suffices to consider t ∈ (0, π2 ] (note that at
t = 0 we will take the value to be 0). Let f(t) = t − sin(t), and notice that f(0) = 0,
f(π/2) = π/2, and f ′(t) = 1− cos(t), which on (0, π/2] is going to be bigger than or equal
to 0. Hence, we have that f(t) ≥ 0, so that t ≥ sin(t) on this domain, which gives us that∣∣∣∣ 1

sin(t)
− 1

t

∣∣∣∣ =
1

sin(t)
− 1

t
.

Now, let f(t) = 1
sin(t) −

1
t . Notice that as t → 0+, this goes to 0, so f(0+) = 0, and

f(π/2) = 1− 2
π > 0. Notice that f ′(t) = − cos(t)

sin2(t)
+ 1

t2
. We wish to show that this is greater

than or equal to 0 on the domain; notice that this is equivalent to

cos(t)

sin2(t)
≤ 1

t2
⇐⇒ t2 ≤ tan(t) sin(t).

Recall that we showed that t ≤ sin(t) on the domain, so it suffices to show that t ≤ tan(t)
on the domain as well. That is, letting g(t) = tan(t)− t, noting that g(0) = 0, g(π/2)→∞,
and we have g′(t) = sec2(t) − 1, and we have that this is greater than or equal to 0 (i.e.
sec2(t) ≥ 1) on (0, π/2]. Hence, we have the desired inequality.

(2) TODO
�

Problem 107. Prove Fejér’s theorem. That is, if f ∈ C(T), then the sequence {σN} of Cesaro
means of the partial sums of the sequence {SN}, where

SN =

N∑
−N

f̂(k)e2πikx

converges uniformly to f on T.

Proof. Recall that the Cesaro means here are

σM (x) =
1

M + 1

M∑
0

SN (x) =
1

M + 1

M∑
j=0

j∑
k=−j

f̂(k)e2πikx.

Writing out the definition of f̂(k) on the torus, we see that we have

f̂(k) =

∫
T
f(y)e−2πiy·kdy.

So substituting this in, we get

σM (x) =
1

M + 1

M∑
j=0

j∑
k=−j

(∫
T
f(y)e−2πiy·kdy

)
e2πikx

=
1

M + 1

M∑
j=0

j∑
k=−j

∫
T
f(y)e−2πi(y−x)kdy

=

∫
T
f(y)

1

M + 1

M∑
j=0

j∑
k=−j

e−2πi(y−x)kdy

=

∫
T
f(y)FM (y − x) = f ∗ FM (x).
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Hence, using Proposition 8.14 (b) (noting that f continuous on T implies it’s uniformly contin-
uous and the Fejér kernel gives us an approximate identity), we get that

‖f ∗ FM − f‖u → 0 =⇒ σM → f uniformly.

�

Remark. Notice that this gives us the Weierstrass approximation theorem, since f ∗ FN is a
trigonometric polynomial for every N .

Problem 108. Show that the trigonometric polynomials are dense in Lp(T1) using Fejér’s theorem.

Proof. Let f ∈ Lp(Tn). By Proposition 8.14 (a), we see that f ∗ FN → f in Lp, and by
construction f ∗ FN is a trigonometric polynomial. Hence, the trigonometric polynomials are
dense. �

Problem 109. Use Fejérs theorem to establish that if f, g ∈ L1(T1) satisfy f̂(m) = ĝ(m) for all
m, then f = g almost everywhere.

Proof. Let h = f − g ∈ L1(T). Then f̂(m) = 0. The goal is to show h = 0 almost everywhere.
We have that FN ∗ h(x) = 0 for all n ∈ Z>0. The sequence is an approximate identity, so we

have ‖FN ∗ h− h‖1 → 0 as N →∞. This implies that ‖h‖1 = 0, which tells us that h = 0 almost
everywhere. �

Problem 110 (Wheeden Theorem 12.48). (1) Let f be periodic and integrable (i.e. f ∈
L1(T1)). If f(x) ≤ B for all x, then also σn(x) ≤ B. If f(x) ≥ A, then σn(x) ≥ A.
If |f(x)| ≤M , then |σn(x)| ≤M .

(2) If f(x)→ ±∞ as x→ x0, then σn(x0)→ ±∞ as n→∞.

Proof. (1) If f(x) ≤ B for all x, then we see that

σn(x) = f ∗ FN (x) =

∫
f(y)FN (x− y)dy ≤ B

∫
FN (x− y)dy = B.

Likewise, if f(x) ≥ A for all x, then

σn(x) = f ∗ FN (x) =

∫
f(y)FN (x− y)dy ≥ A

∫
FN (x− y)dy = A.

Finally, if |f(x)| ≤M , we have

|σn(x)| = |f ∗ FN (x)| =
∣∣∣∣∫ f(y)FN (x− y)dy

∣∣∣∣ ≤ ∫ |f(y)||FN (x− y)|dy ≤M
∫
FN (x− y)dy = M.

(2) Follows by Fejérs theorem.
�

Problem 111 (Grafakos Proposition 3.3.1). Prove the Riemann-Lebesgue lemma on the torus.

That is, if f ∈ L1(T), then |f̂(m)| → 0 as m→∞. This establishes that there is decay.

Proof. Fix ε > 0. Since f ∈ L1(T), we have that there is a P which is a trigonometric polynomial

so that ‖f − P‖1 < ε. Let M be the degree of the polynomial. If |m| > M , then P̂ (m) = 0. Thus,
we have

|f̂(m)| = |f̂(m)− P̂ (m)| ≤ ‖f − P‖1 < ε.

Thus, we have that f̂(m)→ 0 as |m| → ∞. �
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Definition. For 0 ≤ γ < 1, let

‖f‖Λ̇γ = sup
x,h∈T

f(x+ h)− f(x)

|h|γ
.

This is the homogenous Lipschitz seminorm. Let Λ̇γ(T) = {f : T→ C : ‖f‖Λ̇γ <∞}. This is

called the homogenous Lipschitz space.

Problem 112. Let s ∈ Z≥0 (we will stay on T1)

(1) Suppose ∂αf exists and are integrable for all α ≤ s. Then

|f̂(m)| ≤
(

1

2π

)s |∂̂sf(m)|
|m|s

, m 6= 0,

and thus

|f̂(m)|(1 + |m|s)→ 0

as |m| → ∞.
(2) Suppose that

(a) ∂αf exists for all α ≤ s,
(b) ∂sf ∈ Λ̇γ(T) for some γ ∈ (0, 1).
Then

|f̂(m)| ≤ 1

(2π)s2γ+1

‖∂sf‖Λ̇γ
|m|s+γ

Proof. (1) We have

f̂(m) =

∫
T1

f(x)e−2πixmdx.

Let u = f(x), du = f ′(x)dx, dv = e−2πixmdx, v = i
2πme

−2πixm. Then we have

f̂(m) =
i

2πm
f(x)e−2πixm

∣∣∣∣1/2
x=−1/2

−
∫
T1

∂1f(x)
i

2πm
e−2πixmdx.

Notice that we have

i

2πm
f(x)e−2πixm

∣∣∣∣1/2
x=−1/2

=
i

2πm
f(1/2)e−πim − i

2m
f(−1/2)eπim

= 0.

Hence,

f̂(m) = − i

2πm

∫
T1

∂1f(x)e−2πixmdx.

We can keep iterating this process to get

f̂(m) =

(
i

2πm

)s ∫
T1

∂sf(x)e−2πixmdx.

Now note that ∫
T1

∂sf(x)e−2πixmdx = ̂∂sf(m).

Taking absolute values gives us the desired bound;

|f̂(m)| ≤ |∂̂
sf(m)|

(2π|m|)s
.

157



(2) We again use that

f̂(m) =

∫
T1

∂sf(x)(−1)2 e
−2πimx

(2πim)s
dx.

Notice that doing a change of variables of u = x+ 1/2m and noting eπi = −1 gives us

f̂(m) =
(−1)s+1

(2πim)s

∫
T
∂sf(u− 1/2m)e−2πimudu.

Hence, we have that

−
∫
T1

∂sf(x− 1/2m)e−2πimxdx =

∫
T1

∂sf(x)e−2πimxdx,

or ∫
T1

∂sf(x)e−2πimxdx =
1

2

∫
T1

[∂sf(x)− ∂sf(x− 1/2m)]e−2πimxdx.

Substituting this in gives us

f̂(m) =
(−1)s

2(2πim)s

∫
T1

[∂sf(x)− ∂sf(x− 1/2m)]e−2πimxdx.

Now, note that

sup
x,h∈T1

|∂sf(x)− ∂sf(x− h)|
|h|γ

= ‖∂sf‖Λ̇γ .

Hence,

|∂sf(x)− ∂sf(x− 1/2m)| ≤
‖∂sf‖Λ̇γ
(2|m|)γ

.

So

|f̂(m)| ≤ 1

(2π)s2γ+1

‖∂sf‖Λ̇γ
(2|m|)γ

,

as desired.
�

Recall that a function is of bounded variation if limx→∞ TF (x) = TF (∞) <∞, where

TF (x) = sup

{
n∑
1

|F (xj)− F (xj−1)| : n ∈ N,−∞ < x0 < · · · < xn = x

}
.

Remark. For simplicity, we denote

TF (1/2) = Var(f).

Problem 113. If f is in BV(T1), then

|f̂(m)| ≤ Var(f)

2π|m|
.

Proof. Note that

f̂(m) =

∫
f(y)e−2πimydy.

Integration by parts yields that

f̂(m) = f(y)e−2πimy
∣∣∣1/2
y=−1/2

+

∫
T1

e−2πimy

2πim
df,
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and since f and e are periodic, we get that

f̂(m) =

∫
T1

e−2πimy

2πim
df.

Taking the absolute value, we get

|f̂(m)| ≤
∫
T1

1

2π|m|
df =

Var(f)

2π|m|
.

�

Problem 114 (Folland 9.3). On R, if ψ ∈ C∞, then

ψδ(k) =
k∑
0

(−1)j
(
k

j

)
ψ(j)(0)δ(k−j),

where the superscript denote derivatives.

Proof. We’ll do the case of k = 1, and hopefully the rest should be clear. Notice that, for ϕ ∈ D,
we have

〈ψδ′, ϕ〉 = 〈δ′, ψϕ〉 = −〈δ, (ψϕ)′〉
= −〈δ, ψ′ϕ+ ψϕ′〉

= −ψ′(0)ϕ(0)− ψ(0)ϕ′(0)

= −〈ψ′δ, ϕ〉 − 〈ψ(0)δ, ϕ′〉
= −〈ψ′(0)δ, ϕ〉 − 〈ψ(0)δ, ϕ′〉

= −〈ψ′(0)δ, ϕ〉+ 〈ψ(0)δ′, ϕ〉,
as desired. Doing an induction argument leads us to the general result. �
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