James Marshall Reber, ID: 500409166 Math 6212, Homework 1

Remark. Thomas O’Hare was a collaborator.

Problem 1. Let £'(X, ) (shortened to £1(X)) be the space of integrable functions on X w.r.t.
. Show that £1(X) is a vector space and that the integral defines a linear functional on it.

Proof. We note that £1(X) C Fun(X,C) and we have that Fun(X, C) is a vector space, so it suffices
to show that £1(X) is a vector subspace. To see that it is a vector subspace, we need to show that
it’s closed under scaling and under addition. Let f, g € £!(X), then we have by the linearity of the
integral and the triangle inequality that

/u+ms/wumnz/m+/M<m,

so f+g€ LYX). Next, if r € C, f € LY(X), we have again by the linearity of the integral that

JZE /Wﬂ il [ 111 < .

sorf € L1(X). Hence, this is a vector subspace, and so a vector space. The integral is linear (by
last semester/Chapter 2 material) and so we see that it is a linear functional on £!(X). O

Problem 2. If f € L, then [ f =0iff f =0 a..
Proof. (= ): Assume that [ f =0. Let

Y

M)y = {:p : flx

Notice that

so for every n we have that ;i(M>1/,) = 0. Now, notice that

w(M) = p (U MZl/n) < ZM(M21/n) =0,

neN neN

so that p(M) = 0. Hence, we have that f =0 a.e.
(<=) Assume f =0 a.e. Then we have that £ := {z : f(z) # 0} is such that p(E) = 0. Notice

that we can write
Ji=[s+ [ 1=]1

since f = 0 on E°. Since f € L™, we can construct a sequence of simple functions ¢, such that
wn /" f. Hence, by the monotone convergence theorem, we have

Jr=Jm [ e

Each simple function is bounded above by something, say M,,, and so we have that

/%s/m;mwm:o
F E
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for all n. Thus, we get

f=1lim [ on=0,
and hence [ f =0. O

Problem 3. Show that equality holds in Holder iff o f|P = 5|g|? a.e. for some «, 5 € C such that
(a, B) # (0,0).

Proof. Recall that Holder’s inequality states that if 1 < p < oo and 1/p+1/q =1, f, g measurable
functions on X, then
19l < 1fllpllgllq-

In the proof of Holder’s inequality, we used a lemma which states that if a > 0,56>0,0< A < 1,
then we have

a ™ < X+ (1= )b
We wish to show the conditions for equality here. In the case that b = 0, we see that we have
equality iff a = 0, so we assume that b # 0. Dividing both sides by b grants us

(a/b)* < Xa/b) + (1 = N).

Let ¢t = a/b. Then we may rewrite this as

< M4 (1= N).
Subtracting from both sides At, we get

=M <1
We wish to find the value of ¢ when the left hand side is maximized for 0 < ¢. We see that taking
the derivative and setting it to zero gives

A —1) =0,

and so we have a critical point at t = 1. Since 0 < A < 1, we get that for ¢ < 1 this is increasing
(the derivative will be positive), for ¢t > 1 this will be decreasing (the derivative will be negative),
so we have that ¢ = 1 is the maximum; i.e. for ¢ = 1 we have equality. Notice that t = 1 —
a/b=1 = a =b. So we have equality here iff a = b.

Going back to Holder, we see that equality is clear when | f|l, = 0, [lgllq = 0, ||f]l, = oo,
llgllq = o0, so it suffices to assume that this is not the case. Going through the proof of Holder, we
can scale f and g via o and 8 (non-zero by assumption) respectively so that f' = af, ¢’ = 8g is
such that ||f'||, = [|¢'|l =1 (i-e., we normalize these functions with regards to the p and ¢ norm).
Thus, we get Holder by using the Calculus lemma to get

(1) ' (2)g' (@) <p~ | F'(@)]P + ¢ g ()]
we integrate both sides to get

177l <p HIF B +a Mg 1E=p7 + a7 = 1= (1 lpllllo:
and rewriting this we have

Bl fglle < laBll[ flpllglle-

Since «, 8 non-zero, we can divide this out to get the desired inequality. Notice then that we have
equality in Equation (1) a.e. iff we have equality in Holder, and by the observation earlier we have
equality in Equation (1) a.e. iff [f/|P = |¢/|9. Writing out the definitions of f’, ¢/, we get that this
is true iff |afP|f|P = |8]?]g|?, and so redefining o and /3 accordingly gives us that we have equality
iff af f|P = Blg|?. O

In the following problems, we use Chebychev’s inequality, which we will prove here.
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Claim. For f a measurable function on X, 0 < p < oo and t > 0, we have
1 1
: > < — P —]fIIP.
Wo @Iz s [ 1< gl

Proof. Notice that

b2 P=p({z )| > 2
/Ithm —/|f2,f pl{z = |f(2)] > tht

so rewriting gives us the desired result. For the final inequality, we simply note that
1 1 1

— P« P | fIIP

1< 5 [ 1P = Sl

P p1>e
]

Problem 4 (Folland 6.3). If 1 < p < r < oo, L N L" is a Banach space with norm given by
£l = IIfllp + | fll», and the inclusion map L N L" — L9 is continuous for p < g < 7.

Proof. We check that we have closure under finite addition and closure under multiplication by
scalars. This gives us that it is a vector subspace of LP, and so it is a vector space. We first check
that it is closed under addition. Since || - ||p, || - ||» are norms, taking f,g € LP N L", we have that

1+ gl < 1£llp + llgllp < o0,

1f +gllr < [If1lr + llgll» < oo,
so f4+ g€ LPNL" as desired. For closure under scalars, let » € C, f € LP N L". We have that

7 fllp = [7[llfllp < o0,

since f € LP, and likewise with 7, so rf € LP N L". Hence, we have that LP N L" is a vector space.

Next, we wish to show that the function || - || defined above is a norm. We need to show that the
four axioms are satisfied:
(1) Notice that | - [l || - - = 0, s0 we have that ||+ || = | - l, + | }- > 0.

(2) We need to show that || f + g[| < |[f| + |lg]|. Writing this out, we have
If +gll = IIf +gllp + L + gll,

and using the fact that these are norms we get

L+ gl < I fllp + lgllp + 1 £1l- + llgll-

Regrouping gives

I1F+gll < (Lfllp + 171 + (gl + lgll-) = 1T+ llgll-

(3) For scalars r € C, we need to show that

[l £l = 1r A

Using again that || - ||p, || - ||» are norms, we get that

[ £l = 1l £llp + e flle = 1Ll + LA = L ALl + 1A = 1A

(4) We need to show that ||f|| = 0 if and only if f = 0 a.e. Notice that || f|| = 0 implies that
Il fll, = 0, | fll» = O (since these are non-negative), and so we have that f = 0 a.e. since
| - |lp and || - || are norms. The other direction is clear from this as well; if f = Oa.e., then

1fllp = [1fllr = 0, so [LF]l = [[fllp + Il f]lr = 0.
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Hence, we have that LP N L" is a vector space, and || - || is a norm. To show that this is a Banach
space, we need to show that the norm is complete. Let (f,,) C LPNL" be a Cauchy sequence. That
is to say, for all € > 0, there exists an N such that for all n,m > N, we have

an - me <€

Since || - ||p, || - |l are non-negative, we have that || f|| > || fllp, [ f| > || f]|». In other words, we have
that the sequence (f,) C LPNL" is Cauchy with respect to both the p and r norm. Since these are
Banach spaces (Theorem 6.6/Lecture notes), we have that there is a limit with respect to these
norms. Let g be such that f, — ¢ in LP, h be such that f,, — h in L". We now use Chebychev’s
inequality to see that

p({lfn =9l > }) < S — gl

Since fn, — ¢ in LP, we get that f,, — ¢ in measure by the above. Assuming r < oo, we get that

fn — h in measure as well. We have that we can construct a subsequence f,,, — g a.e., and we can

then refine this subsequence to get that f,,, — h a.e. as well. Hence, g = h a.e. Now assume that
J

r = oco. We get that f,, — h in L, which means that || f,, — h||cc — 0. Notice that
[fn = hlloo =nf{a>0 : p({z : [fu(z) - h(z)] > a}) =0} = 0.
Hence, for all € > 0, there exists an N such that for all n > N, ||f, — h|loc < €. Notice that this
means that |f, — h| < € a.e., so we have that
p{z | fu(z) = h(z)] = €}) = 0.
This applies for all € > 0, and so we have that f, — h in measure. Hence, we can construct a
subsequence which converges a.e. and the same argument before gives us that g = h a.e. In other
words, we get that g € LP N L". We now wish to show that f, — g with regards to the norm; that
is,
[fn —gll = 0.
But this follows, since
1o =gl = lfn = gllp + 1 fn = gll- = 0,

since f, — g in LP and in L". Hence, we get that the norm is complete.

Finally, we need to show that the inclusion map L? N L™ — L4 is continuous for p < g < r. Let
f € LP N L" be such that ||f|| = 1. We then wish to show that || f||; < |[f]| = 1, which gives us
that the inclusion is bounded, and so by Proposition 5.2 that it is continuous (if || f|| = 0, then
|| fllg = 0, and otherwise we can normalize for the case where || f|| # 1 to get the desired result).
Proposition 6.10 (or the following Remark/Claim) gives us that there is a A\ € (0,1) with

1Fllg < UL
Again, using the fact that || f||, < [|f|| =1, || fll» < ||f|| =1, we get that || f|l; < 1, as desired. [

Remark. Since Proposition 6.10 wasn’t proven in class, we show it here. That is, we prove the
following claim:

Claim. For 1 < p < ¢ <r < 00, we have

1Fllg < UFIGIFIL,
where A\ € (0,1) is defined by



Proof. For r = oo, we have
FIT=1fPIATP < | fPIAISP,

and we have

Integrating gives
LAIG < NAIBIANES™,
and taking gth roots gives

£ llg < IFIBANANEDe = A1 51167,

as desired. For r < 0o, we write

1= [1s10= [ 1gpargio-e

We can now apply Holder with conjugate pairs given by p/Aq, /(1 — X)q. This gives us
1A1S < F L pag - A9 -2

Aq/p (I=N)gq/r
- ( / \f\p) ( / w) = 71 e,

Now taking gth roots, we have

£ llg < IFINAIE
as desired.
O

Problem 5 (Folland 6.9). Suppose 1 <p < oo. If ||f,, — f|lp = 0, then f, — f in measure and a

subsequence converges to f a.e. On the other hand, if f,, — f in measure and |f,| < g € L for all
n, then [[f — fllp — 0.

Proof. We use Chebychev’s inequality here. We have that
1
p{z o fale) = f@)] > e}) < Slifa = flp = 0.

Hence, it converges in measure. For the remainder, we use Theorem 2.30 to deduce there is a
subsequence converging to f a.e.

On the other hand, assume that f,, — f in measure and that | f,| < g € LP for all n. Recall from
Folland Exercise 2.34 (a) that if |f,| < g € L' and f, — f in measure, then

/leim/fn.

Notice that |f,, — f|P < 2P(|fP + | falP) < 2PTL|g[P. Notice as well that f,, — f in measure implies
that |f, — f|? — 0 in measure as well. Since g € LP, we have that

1/p
(/|g|p> <o = [loP<oo = lrer

and moreover 2PT1|g[P € L. So |f, — f|P < 2P*!|g|P, and we apply Folland Exercise 2.34 (a) to
get

0=t [ 1, - 7P,

1/p
lim</]fn—f]p> =lim|/f, — fl[, =0
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O

Remark. The following is the exercise (and solution) which was used implicitly in the prior prob-
lem.

Claim. Suppose (X, M, u) is a measure space and f, — f in measure.

(1)
(2)

Show that if f,, > 0 everywhere, then [ f < liminf [ f,.
Suppose |f,| < g € L. Prove that [ f =lim [ f, and f, — f in £

Proof. (1) Fatou’s Lemma gives

/lim inf f,, <lim inf/fn,

since f,, > 0. Thus, we can construct a subsequence f,, — liminf f,, and so we get

/ lim fp, = / liminf f, <liminf / -
J

Now, since f, — f in measure, we have f,, — f in measure as well, so we can construct a
subsequence f,. — f almost everywhere. Hence, we have
Ik ’

/f: /li}gnfnjk = /njmfnj gliminf/fn.

It suffices to do this for real valued functions, since if f,, — f in measure, we have

[fn = fI < [Re(fn) = Re(f)] + [Tm(fn) — Im(f)| < 2|fn — [,

and so f, — f in measure if and only if Re(f,) — Re(f) and Im(f,,) — Im(f) converge in
measure, and so we can consider both separately.

If |fn| < g € L', we have f, < g and —f,, < g, or in other words, 0 < g — f, and 0 < g+ f,,.
Using (1), we get

Jo- [ 1= flan <t [ 5= [ 4=t [ 5.
/g—i—/f /g—i—f <hm1nf/g+fn /g—Himinf/fn.

Since g € L', we can subtract it from both sides and rearrange terms to get

limsup/fn < /f Sliminf/fm
lim/fn:/f.

To see that f, — f in £, we need to show that [|f, — f| — 0. Notice that f, — f in
measure implies |f, — f| — 0 in measure as well, and so we can use this and h = g + |f| >
|fnl +1f] = |fn — f| to get that, by what we’ve just shown,

lim/|fn—f|:/0:O.

and

or that

Hence, f, — f in L.
O

Problem 6 (Folland 6.10). Suppose 1 < p < oo. If f,,, f € LP and f,, = f a.e., then ||f, — f||, = 0
if {| fullp = [1f1lp-
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Proof. (= ): We use the reverse triangle inequality to get that

[ fally = £ llol < 1[f = fallp = 0,

and 50 || fullp = [ fllp-
( <=): We use the inequality (introduced on page 181 and in the lecture notes)

|f - fn|p § 2p(|f|p + |fn|p)

/\f—fn\p <o (/Ifn\er \f|p> .

Moving things around, we can rewrite this as

o< [Inp+2 [ir- [15- .

We apply Fatou’s Lemma to get
/1iminf2p(!fn|p+|f|p)— \f—fn”:/?pﬂlflp Sliminf/Qp(fnl’”rlf!p)— |f = fal?
n—00 n—oo
Distributing and using linearity gives us
2P| FIIP < 2P Timinf || f |5 + 27| f|[5 — limsup [ |f — fl”.
p n—00 p P s
Since || fullp = || flp, we get as well that || f,|[5 — || f]5, so that

2HWﬂ@g?“W%—nmwg/v—nw
n—oo

Integrating both sides gives

That is,
iimsup [ 17 £, <0,
n—oo
Since |f — fn|P > 0, this gives us that

n—oo

i [ 1f = 7 =0,

or in other words,
[fn=fllp =0 <= [lfa—Flp = 0.



James Marshall Reber, ID: 500409166 Math 6212, Homework 2

Remark. Thomas O’Hare was a collaborator.

Problem 7. Let 0 < aw < 1 and (X, 1) be a o-finite measure space. Set
LYX):={u:X — R : wuis measurable and |u|* € L'(X)}

o= ( [ \ura)l/a.

(a) Show that L* is a vector space and if u,v € L%(X), u > Oa.e. and v > Oa.e., then
[u+v]a > [u]a + [V]a,

and

hence [], is not a norm.
(b) Prove that for all u,v € L*(X),
[u+ vy < [ulg + 5

Proof. (a) We first show that L* is a vector space. Notice that L* C Fun(X,R), which is a
vector space, so it suffices to show that it’s closed under scaling and addition. For addition, let
u,v € L% Then we have |u|, |v|* € L', and we notice that

u+]* < (Ju] 4 [v])®.
We then claim that, for a,b > 0, we have
(a+0)* <a”+b™.

If a = 0, we are done. Otherwise, we can divide by aP to get

(5) =1 ()

Let t = a/b, then we can write this as
(I+8)* <141t
with ¢t > 0. If t = 0, we have that both sides are equal, and taking the derivative we see that

d (6% N o— a—
%((14—75) —tM) =a(l+t)* =71,

which we see is less than 0 for ¢ > 0. In other words, we get that it decreases, so we have the
desired inequality. Hence, going back, we have

lu+0]* < (Ju] +[v))* < Jul® + 0],
and integrating it gives us that |u + v|* € L'; in other words, u 4+ v € L®. For scalars, we see
that for r € R, u € L%, we have
[rul® = [r]*[ul®
and integrating gives us that |ru|® € L!, as desired. Hence, ru € LY. So L% is a vector space.
We now show that this is not a normm Assume u > Oa.e., v > Oa.e. We have then that

[+ v]a = </|u+v|a>1/a.

IThe following argument was adapted from a related Stackexchange post (I don’t think it was proving this
inequality necessarily but something similar), but I now can’t find a link to said post. If you see the link somewhere,
please let me know.
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Since both functions are greater than or equal to 0 a.e., we have that this reduces to

[u—i—v]a:(/(u—f—v)a)l/a.

We first remark on two different cases. If [u], = 0, this implies that © = Oa.e., and so we
trivially get equality. It is the same with [v], = 0. Hence, assume both of these are non-zero.
Notice that we can write

(u+vW::G?+41—ﬂlit)a

where ¢t € (0,1). Since z® is a concave function, we get

(u+v)*> tlg +(1— t)(l_at)a
Choose [ ]
" Tt [l
then [ ]
Y T L+

Hence, after integrating this, we get
[u+v]g > t([v]a + [u]a)® + (1 = t)([V]a + [u]a)® = ([v]a + [u]a)™
Hence, taking ath roots on both sides, we get
[u+v]a > [v]a + [U]a,

contradicting the triangle inequality.
(b) By our observation prior, we have that

et ol = et < [+ oD < [ ul+ ol = [Jul+ [ 1ol = fwls + ol

Notice this holds for all u,v € L<.
O

Problem 8. If p # 2, the LP norm does not arise from an inner product on LP except in trivial
cases dim(LP) < 1.

Proof. We proceed as Folland suggests: we wish to show that the parallelogram law does not hold;
i.e.,

1F -+ glly + 1L = allz # 20715+ llgll3)-
To do so, we consider some cases. At first, let’s consider 1 < p < oo, p # 2. If we can find sets
A,B € M with AN B = @, 0 < u(A), u(B) < oo, then we have that by setting f = u(A)~YPy4,

g=u(B)Vryp,
2 2/p 2
1+ gl = </|f+glp> 2,

2/p
1f - gll2 = (/If—glp> 2,

If + gl + [1f — gl|2 = 22/P*1,
9
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while on the other hand, we have

2/p
T ( / |f\p) 1,
2/p
lgll2 = ( / |grp) 1,

2 2
2715 + llglly) =2(14+1) = 4.
Hence, we see we have equality iff p = 2. For the case p = oo, we simply take f = x4, g = xB, and
we note that

and so

If +9gll3 =1,
2
If=9ll% =1,
I£11% =1,
lgl3e =1,
so we have
1+1#2(1+1)
as desired.

Now, we must show that we can always find these two disjoint sets. Assume first that we only
have the case that, for all A € M, u(A) = 0 or u(A) = co. Then we note that the only simple
functions in LP are the trivial ones, and so we have that dim(L”) = 0. Assume now there exists
only one A such that 0 < u(A) < oo, and for all other B € M we have that u(B) = 0 or oc.
For there to be f € LP non-trivial, it must be non-trivial on this A. In other words, we have that
f =a-xaa.e., so that dim(LP) = 1 in this case. We remark here that if there are two disjoint sets
A and B, but either u(A) = 0 or u(B) = 0, then we are still in the case of dimension 1; this is
because LP is defined up to almost everywhere equivalence. Finally, we have the case where we do
have two disjoint sets A and B such that 0 < u(A), u(B) < oco. As shown above, this gives us that
the parallelogram law fails, and so it is not induced by an inner product. ]

Problem 9. Show that LP(R™) is separable for 1 < p < oo. Show that L (R™) is not separable.

Proof. Let D be the collection of simple functions with rational coefficients over intervals with
rational endpoints. This is clearly countable, so we check that this is dense. We have that simple
functions with compact support are dense, so it suffices to check that this is dense in this space.
Let f =3 7 a;xg, be a function in this space. We wish to show that, for all € > 0, there isa g € D
with
If —gllp <e
Notice that, for each E;, we can choose a G; which is a union of rectangles so that we have
ILL(EZAGz) < ¢
for any € > 0. Moreover, we can choose rational endpoints sufficiently close to the normal endpoints
(call this new set F;) so that, for each €” > 0.
,u(GzAF,) <€
Combining these two facts together, we get that for any v > 0, we can choose F; so that
/L(FZAEZ) <.

Thus, for each 1 <1 < n, choose
P

77 2n(max{ail}i<ica)?
10



Notice as well for each coefficient a;, we can choose a coefficient b; € Q(¢) such that |a; — b;| < 53,
for any 8 > 0. For each i, then, choose

8=

€
2n(max{p(F;) h<i<a) /P
Writing this out then, for g € D, we have

n n
1f = gllp = ZaiXEi _sz‘XFi
1 1 P
n n n n
=D aixm =Y aixr + > aixe — Y bixr,
1 1 1 1
n n g
<D ailxm, — xr)|| + (D _(ai = bi)xr,
! P 1 P

n n
< laalllxe: — xelly + Y lai = billxzlp-
1 1
We see that

1/p
€
b, =iy = lod ([ Ixs = xaP) = laluBAR) <

for each 1 <1 < n, and we have
€
lai = billlxrill, < 5

for each 1 < i < n. Hence, we get that

€ €
Hf—g\|p<§+§:€-

We can do this for all €, so we get that D is dense in the space of simple functions with compact
support, and so D is dense in all of LP(R™).

We now want to see that L is not separable. Consider the family of functions F = {x[ ¢}
We have

IX[0,67 = X[o,s)n loo = 1, T # 5.
If there were a countable dense subset, we could take a ball of radius 1/3 around the points in this
set (say D). The union of these balls would then be the whole space, and we have that each of

these balls can only contain 1 function from the family, due to the fact that the L° norm is 1.
Therefore, we must have that the set is uncountable, a contradiction. ]

Problem 10. Suppose sup,, || fnllp < 0o and f,, — fa.e..

(a) If 1 < p < o0, then f, — f weakly in LP.

(b) The result in (a) is false in general for p = 1. It is true for p = oo if p is o-finite and weak
convergence is replaced by weak™® convergence.

Proof. (a) We follow the hint in Folland. That is, we wish to show three facts: Given g € L? and
e > 0 we want to show
(1) There exists a § > 0 such that [, [g|? < € whenever u(E) < 0.
(2) There exists a A C X such that u(A) < oo and [y ,|g|? <e.
(3) For the A in (2), there exists a B C A such that u(A — B) < § and f,, — f uniformly on
B.
11



We wish to first show that there exists a 6 > 0 such that [, |g|? < e whenever u(E) < 4. To
do this, we apply absolute continuity (Corollary 3.6 in Folland). Next, we wish to show that
there exists a A C X such that p(A4) < oo and

| <
X—-A

Define B = {z : |g(z)| > 0}. We can write B,, = {z : |g(z)| > n~!}, and we have that
B,, " B. Notice that

lim gl = lim ( Jiatr- | rgrq)— [istr= [ e =0
n—o Jx_p. n—00 By, B

Hence, setting A = B,,, we must have that there is a B, so that

/ 917 < e.
X—-A
1 B
oo>/|g|qz/ |g|qz/ 1 _ wlBa)
Bn B, ™ nd

1(Bn) = u(A) < nf / 1917 < 0.

Finally, we need to show that there is a B C A such that u(A — B) < ¢ and f,, — f uniformly
on B. We have that f,, — fa.e. on A, so applying Egoroff we find that there is a measurable
subset C' C A such that u(C) < € and f,, — f uniformly on A — C; denote A — C as B.

We now combine all of the ingredients to show the result. We wish to show that, for all
€ > 0, we have that there is an N such that for all n > N,

/fng—/fg‘ <e.
Notice that we can write

/fng—/fg' - ‘/g(fn—f)' < [lollfa— 11

Choose the A in (2) such that

This is finite, since

so that

q
[lor< s
oA 2. 6404

Choose the B in (3) so that u(A — B) < §, which forces

q e
< .
/E 91" < 3 Ganre
We can now consider

Jialita=s1= [ lallsa =11+ [ tallta - 51
1/p
_ _ p
Lt == ([ 1= 1) ol

Since f,, — f uniformly on B, we can choose N sufficiently large so that this is as small as we
wish. That is, we can choose N so that for all n > N, we have

ul@) = 1@ < 5 o
12
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Notice that this gives us
€
[lolsa=s1<5.
B

On the other hand, examining the other integral, we get

1/q
[ talfa=si< ([ 1a7) s sl

Since B C A, we have X — A C X — B. Furthermore, we can write X — B=X — AU A — B.
So we write this as

1/q 1/q
(L) = so= ([l [ ) =

We notice that
[ fr = fllp < [ fallp + 1 £1lps

and since sup,, || fn|l, = M < oo, we have that (by Fatou)

J1sp <timint [ 15,0 <207 — |1 < 0.

So in particular,

1/q 1/q
([ ol [ wl) st ([ s [ iatr) Cenr

€l 1/q
2M = —.
< <6qu) 3

™M

Hence, for the choice of N, we have that for all n > N,

/g(fn—f)‘<236<e.

We wish to find a counterexample for L'. Consider f, =n - X[0,1/n]> f = 0 (See Folland 6.22
(b)). We have that f,, — f almost everywhere, and sup,, || fn||1 = 1. We wish to show now that
fn 7 f weakly. Consider g = 1. Then we have that

/fng = /nX[o,1/n] =1,

lim frng =1,
n—oo

[t9=[o=0

Now, assume sup,, || fnlloco = M < o0, fr, = f a.e., p is o-finite. Then we wish to show that
fn — f in the weak* sense. First, we remark that o-finite gives that (L')* = L®. Notice that

we have
'/fng—/fg‘ < [1glsu - 11

where g € L. Since || fu|lco < M for all n, we have that u({z : |f.(z)] > M}) = 0. Consider

now u({x : |f(x)| > M}). Since f,, — f almost everywhere, we get that this must also have

measure 0 (we could write the inside as a union of the set where f,, — f and where it doesn’t,
13

so that
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and where it does will have measure zero since it holds for all n, and where it doesn’t will have
measure zero since it converges a.e.), so that || f|cc < M. We use this now to note that

9l1fn = fI < glllfn = flloo < 2M|gla.e.,
and since g € L' we have that the dominated convergence theorem gives us that
i [ lgllfo — 11 =0
n—oo

In other words, we have weak* convergence.

Problem 11. Complete the proof of Theorem 6.18 for the cases p =1 and p = co.

Proof. We first do the case where p = 1. We wish to show that Tf € L'(u), | Tf]1 < C|/f]l1. To
see this, notice that

I7fl = [ 17 (@)lduta) /kay dwﬁw < [ [ 1K@l @ldv)duta).

Tonelli applies here to give us

[ [1xGamiamae = [ ([l ) sl < [ i

:c/u@mwwzcwm

Hence, we get that T'f € L' and satisfies the desired inequality. Fubini tells us that it converges
absolutely for almost every z € X, as desired.

We now do the case where p = co. We wish to show that T'f € L®(u), [|Tfllcc < C|lfllco-
However, this follows simply by noting that we have

IW’I—VKwy y)duly ‘l/mxywﬂwM)<ﬂmum,

so we must have that
1T flloo < Cl flloo-
We have that T'f converges absolutely for almost every x € X, as desired. O

14



James Marshall Reber, ID: 500409166 Math 6212, Homework 3

Remark. Thomas O’Hare was a collaborator.

Problem 12 (Folland 6.35). Let (X, M, 1) be a measure space and p € (0,00). Then weak LP is
a quasi-normed vector space with

1/p
[flp,oo = <51ip0 ap)\f(a)> .

Proof. Recall that a norm function is said to be a quasinorm if we replace the triangle inequality
with

1+ gll < KA1+ Nlgl)-

To check that weak LP is a vector space, we just check that it is a subspace of Fun(X,C). That
is, it’s closed under scalar multiplication and addition. In doing so, we will also prove two of the
required axioms for showing that the norm function given is a quasinorm. We first check closure
under scalars. Let k& € C. We have then that

kflpoo = (Sup ap)\kf(a)) v .

a>0
Recall that
Arp(e) == p({z : [kf(2)] > a})

s{fe s ) o)

Hence, rewriting the above, we have

1/p o 1/p
kflpoo = <sup ap)\kf(a)> = <sup aP Ay ()> .
a>0 a>0 |k|

Defining 8 = a/|k|, we get that o = |k|3, so we can rewrite this as

1/p 1/p
[k flpoo = ( sup (|k|B)"Af (5)) = [K] (ZUI(;BPM (5)) = |K[[f]p.co-
>

|k|8>0

So we have closure under scalar multiplication; if f in weak LP, then kf in weak L, since

[k flp.oo = [E|[f]p,00 < o0

Next, we show the triangle inequality. We write out
1/p
[f+ 9lpoo = <sup oep)\fﬂ](a)) .
a>0
Recall that

Afrg(@) < Ap(@/2) + Ag(a/2)
15



by Proposition 6.22 (d) from Folland. So we have that
1/p

1/p
If + 9lpoc = (Supap)\f+g(a)> < (Supap(Af(oz/Q )+ Ag(a/2)
a>0 a>0

)
< (Supap)\f(a/Q)—i-supap)\ (0/2) >1/p
)

a>0
1/p
= (supozp)\gf( ) + sup o Agg(a
a>0 a>0
= (12015 o + [201500) 7" = 2100 + 05007,

using the same tricks as above. Hence, we get that weak LP is a vector space, since this gives us
closure under addition.

Notice that it’s clear that this function is positive. If [f], = 0, we see that for all a > 0,
Af(a) = 0, which implies that f = 0 almost everywhere. Likewise, if f = 0 almost everywhere, we
get that [f]p o = 0. So it suffices to finish showing the quasi-triangle inequality. Notice that we
have

[f + glpoo < 2([f 100 + [915.00)"7 < 27 VP([flpoo + [9]p,o0)

via the usual inequality (see page 181 of Folland), and so setting K = 2141/P we get the desired
result. g

Problem 13 (Folland 6.36). If f in weak LP and p({z : f(z) # 0}) < oo, then f € L for all ¢ < p.
On the other hand, if f in weak L? and L°°, then f € L for all ¢ > p.

Proof. First assume that f in weak LP and A¢(0) < co. We wish to show that

/\flqdu < 0.

We have that f in weak LP implies that

[flpoo = (supa”)\f(a)>1/p < 0.

a>0
We have by Proposition 6.24 that

/If!qdu = Q/OOO a®!\¢(a)da.

al~l = aq—p—lap,

Since p > q, write

so that
[15tdn=a [ arrlarr(a)da.
0

We would like to use Hélder’s inequality and conclude, however there is an issue at 0 if we leave it
as is. We then break up the integral to get

/\f|qdu =q </01 a? I\ (a)da + /100 aqplap)\f(a)da> .

For the integral on the right, we use Holder to get

/1 a? PP (a)da < Hap)\f(a)Hoo/l P da < 0.
16



For the integral on the left, we have Af(a) is bounded on [0, 1], so we get that

1 1
/ a? '\ (a)da < ( sup /\f(a)> / ad lda < oo.
0 a€l0,1] 0

Taking gth roots gives us that f € L9.
Now, assume f in weak LP and L®. Then we have that ||f|cc = M < oo. We wish to show that
f € L1 for all ¢ > p. We again use the proposition which gives

/If!qdu = Q/OOO a®I\¢(a)da.

Breaking up the integral again, we now break it up at the point M; that is, we have

/ | f|%dp = q (/OM a® I\ p(a)da + /MOO aq—le(a)da> .

For a« > M, we have
Ar(a) =p{z : [f(2)] > a}) =0,

by definition of essential supremum. So we can rewrite the above integral as

M
[t =a [ o).

M M
q/ PP (a)da < q||ap)\f(a)||oo/ 9P da < oo,
0 0

since f in weak LP. O
Problem 14 (Folland 6.38). Let (X, M, 1) be a measure space and p € (0,00), f > 0 a measurable

function. Then f € LP iff
o
E Qkp)\f(Qk) < 00

k=—o00

Proof. Let Fy = {x : 2F < f(x) < 281}, Notice than that we can write Y = [0,00) = | [} F
So we have that

Again, hit it with Holder —

2k+1

/ P ¢ (a) Z/Ple da—Z/ P~ ¢(a)da.
0 Fy. — 2k

(=) : Assume f € LP. Then we get that

2k+1
Z/ oI\ (@) da > Z 2RIy (2FFLY Z 2R )\ (28T
k=—o00 k=—o00
0 ()
— 9P Z 2(k+1)p)\f(2k+1):27p Z 2kp)\f(2k)
k=—o00 k=—o0

Furthermore, we have

P/OOO P I\ (a)da = /fpdu

by Proposition 6.24, so using our observation above we have that

Z 2kp)\f(2k) < p/fpdu<oo.

k=—o00
17



( <= ): Assume that the sum is finite. Then we have that

1 o >
s [T ayda < 3 @ (22!

k=—o00
o0
= ) @l 2R)2f =207t YT 2RPap(28) < oo,
k=—0o0 k=—0o0

so that we have
/fpdu<oo = fell.
O

Problem 15 (Folland 6.40). If f is a measurable function on X, its decreasing rearrangement is
the function f*: (0,00) — [0, 00] defined by
[A(t) = inf{a : Ap(a) <t}

a) f* is nonincreasing. If f*(¢) < oo, then A¢(f*(¢)) <t and if A¢(a) < oo then f*(Af(a)) < a.
f f f
¢) If Ar(a) < oo for all @ > 0 and limg_00 Ar(a) = 0, and ¢ is a nonnegative measurable function
f f

on (0,00), then
/){sOO!f\du:/O po fr(t)dt.

In particular, [|f]l, = [|/*[|, for p € (0, 00).

(d) For p € (0,00), [flp.c0 = suppg t'/P f*(t).

(e) The name rearrangement for f* comes from the case where f is a nonnegative function on
(0,00). To see why it is appropriate, pick a step function on (0,00) assuming four or five
different values and draw the graphs of f and f*.

Proof. (a) We first wish to show that f* is nonincreasing; i.e., if « > 3, then f*(8) < f*(«). Notice
that if @ > (3, then we have that Af(a) < A¢(f), so if t is such that A\¢(f) < ¢, then we have
Af(a) < t. In other words, by the infimum property, we have f*(a) < f*(5).

Next, assume that f*(t) < co. Writing things out, we have

Ap(f*(#) = Ap(inf{a : Ap(@) < t}).
Since Ay is right continuous, letting M = inf{a : A¢(a) <t} = f*(t), we get that for all € > 0,
Ap(M +€) <,

and taking € — 0 gives

as desired.
Finally, assume that Ar(a) < co. We have

Fr (@) = inf{5: Ap(B) < Ap(a)}.

We have \s is nonincreasing as well, so this implies that A¢(3) < A¢(«) for all 8 > . Thus,
the infimum property dictates that

FrAp(@)) = nf{53: Ap(B) < Ap(@)} < .

18



(b) We have
Ar-(0) = ({5 £(z) > a}).

Notice that we have f*(x) > « implies inf{¢ : A¢(t) < 2} > «, and using the fact that Ay is non-
decreasing this tells us that A\¢(«) > x. Likewise, we have that A\¢(«) > x implies f*(z) > a.
So using this, we get

{z: f (x) > )} ={z: Ap(a) >z} = (0, Ar(@)),
and hence
Ap=(a) = p((0, Ap(@)) = Ap(a).
This holds for all «, so we win.

(c) Notice that the assumption that lim,—0Af(a) = 0 implies f*(t) < oo for all t > 0. From
Proposition 6.23 and (b), we get

[ eetin=- [~ s@irie) == [ s@irg@ = [T oo ra

Thus, taking ¢(a) = aoP, we have

12 = / Pdu = /0 (F @)t = |12,

and taking pth roots we win.
Remark. The following argument comes from Grafakos’ “Classical Fourier Analysis.”

(d) We first write out the definition:

1
[flp,oo = <sup ap)\f(a)> ’ =supa ()\f(a))l/p.
a>0 a>0

We first wish to establish that

sup t'/2 f*(t) < [flp,oo-
t>0

If f*(t) =0, we clearly have
() = 0 < [flpoo-
Now, assume that f*(¢) > 0, pick € > 0. By definition, this implies that
fr(t) —e < f5(1),
and as long as € < f*(t) we have that so we have that
Ar(f(t) —e) > t.
Taking everything to the 1/p power, we get
Ap(f5(t) — )P > /P,
Hence, we have
(F1(8) = N (F5 (1) = VP > 1P (f*(t) — ©)
Letting a = f*(t) — ¢, this gives

ars(@)"? < suparp(@)'? = [flpee.
a>0
Since it holds for all such €, we get that

P FH () < [flpoc:
19



Since it holds for arbitrary ¢ > 0 by the cases we considered, we have that

supt'/7 f*() < [f]p,ce.
>0

Now, we want to establish the other direction; that is,

sup tY/7 f*(£) > [flp.oo = sup ads(a)'/?.
t>0 a>0

In the case Af(a) = 0, we clearly have the correct inequality by the same as the above argument,
so assume Af(a) > 0. Pick 0 < € < A¢(a), then we have that

F (@) = ) = {8 : Ap(8) < Asla) — b
Notice that
frApla) —€) > o

this follows from the fact that if, it were less than or equal to «, we would have that « is in
the set, which is a contradiction. Hence, we have

F(@) -9 > a.
We use this to then get
ad(@) P < fr(Ap(@) = Ap(e)'7.
So in general, we have that
a(Ap(@) =P < f(Ap(a) = )(As(a) = 917,
and letting t = A¢(a) — € we have

FrOEP < sup f*(t)e'/?.
t>0

This holds for all € > 0, and so we have that

sup f*(£)1"/7 > [ flp,o0-
t>0

(e) Consider
f(x) = x(01)() + 2x2,3/ () + 0.5x (4,5 () + 6x(6,7(7)-

We have the following graph:
20



[
1

X

We now wish to calculate the distribution function, A¢(a). Recall that

Apla) = p({z : f(z) > a}),
where here p is Lebesgue measure. We get
(4if0<a < 0.5,

3if0.5<ax<x1
Af(a) =4q2if1<a<2
lif2<a<6
0 otherwise.

Plotting this, we have

21



We now wish to calculate

[(t) = inf{a: Ap(a) <t}
So calculating things, we have
6for0<t<1
2for 1 <t <2
ff)y=q1for2<t<3
05for3<t<4

0 otherwise.

Plotting this, we have

0 2 4 ] 8 10
.
So we see that this function rearranges the values to a decreasing order, hence the name. The
Maple code for the plots is given below:

f := x—> arrow; piecewise(0 < x and x <= 1,

1, 2 <=x and x < 3,

2, 4<=xand x < 5, .5, 6 <=x and x < 7, 6);
g := x—> piecewise (0 <= x and x < .5,

4, 5 <=x and x < 1, 3,

l<=xand x< 2, 2, 2<=x and x < 6, 1, 0);
h := x—>piecewise (0 <= x and x < 1,

6, 1 <= x and x < 2, 2,

2<=xand x < 3, 1, 3<=x and x < 4, .5, 0);
plot (f(x),x=0..10);
plot (g(x),x=0..10);
plot (h(x),x=0..10);

O

Problem 16. Let (X, M, ) be a measure space and p € (0,00) and ¢ € (0,00]. The Lorentz
space LP1(X) is defined (identifying functions that are a.e. equal) as the space of all measurable
22



functions f such that

[f]p,q = (/Ooo <t1/pf*(t)>q Cff) v < oo for q € (0, oo),

and
[f]p,oozsup{tl/pf*(t):t>0} < oo for ¢ = oo.

(a) LP9(X) is a quasi-normed vector space.
b) LPP = LP and LP* is weak LP.
(

Proof. (a) We proceed first for the case p € (0,00), ¢ € (0,00). We do the (now standard) trick of
viewing this as a subspace of Fun(X,C) and showing that it is a subspace. Let r € C — {0}.

Then we have y
o= ([ (00 0) F)

(rf)*(t) = inf{a: \pp(a) <t} =inf{a: Ap(a/|r|) < t},
and so letting = a/|r|, « = |r|B, we get that

(rf)"(t) = mf{[r[B = Ap(B) <t} = |r[inf{B : Ap(B) <t} = |r[f*(2),

so that we have y
0 d q
o= ([ (2017 ©)"F) " = Pl

So it is indeed closed under scalar multiplication for non-zero values. For r = 0, notice that

(rf)*(t) =0,

Notice that

so that
[Tf}p,q = 0.

Hence, it holds for all scalars. Now, we need to show that the triangle inequality is satisfied up
to a constant. Notice that we have

raa= ([ (v orw) %)

(f+9) () < [ (t/2) + g7 (t/2).
This follows by letting o = f*(¢/2), 8 = ¢*(t/2), assuming these values are finite (since
otherwise this is trivial), and noting that we have

Afrgla+ B) < Ap(a) + Ag(B) = Ap(f7(8/2)) + Ag(g7(¢/2)) < t/2+1/2 =1,
so that

(f+9) () =(f+9)7t/2+1/2) < (f + 9)" (Apsgla+B)) Sa+ = [f"(t/2) + g°(t/2),
here abusing property (a) from the last problem. Thus, we have that
o0 . . g dt\ '/
Fraas ([T (@@ r@m) F)
Letting s = t/2, we have that 2s = t, ds = dt/2, and so

([ (ramvaam) it)l/q ([ (- e) L)

23
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Now, use the fact that f*,¢* maps to [0,00) (noting the case that f* or ¢g* hits oo gives us
trivially the desired result), we have

(/ " (o +g*(s)))qdj>1/q < ( /0 s (57 4 4 (a)) d:>1/q

0
= 2UPH(f]0,, + [gl5 )T < 2PV (f] g + [glyq):

Now, to get that this is a quasinorm, we just need to show that [f],, = 0 implies f = 0 a.e.

)

(the other properties of a norm follow from the prior arguments). If [f],, = 0, then we get
that f*(¢) =0 a.e., and this in turn implies that

15l = [[fllp = 0,

so that f = 0 a.e. Hence, we get that it’s a quasinorm.
Now, let p € (0,00), ¢ = co. We wish to show that it’s a vector space (and in turn, show
that this is a norm). Let r € C, we have that

oo = sup {E7r|f5(0) ¢ > 0f = [rfsup {7 (1) ¢ > 0} = [][flpce.
so it’s closed under scalars. Notice as well we have
[ + glpoo = sup {t7(f + )" (1) : £ > 0} < sup {/P(£(t/2) + g"(t/2)) : £ > 0},

and letting s = t/2 gives
[ + glpoo < 5up {(2)/7(f*(5) + 97(5)) 1 5> 0} = 27([ 0 + [glp.00):

So it is closed under addition. Furthermore, noticing that
[flpoo =0 = f*(t) =0 = f =0ae,,

we have that [-]) is a quasinorm. That is, we have that LP9(X) is a quasi-normed vector
space for p € (0,00), g € (0, 00].
We now wish to show that LPP = LP, p € (0,00). It suffices to show that [f],, = || f|l,- Notice

that . U
o= ([~ 7 (0war) ™

and, using property (c) along with the same sort of argument as in Proposition 6.24, we have

= ([ 57(00a2) e (/ rfrp)l/p — 1/l

Thus, the spaces are equal, since f € LPP <= [f],, <00 < |f|p < o0 < f e LP. We
now want to show that LP**>° is weak LP. To differentiate the notation, let

[ £llp.c = sup ap(a)'/?
be for weak LP,
[flpoo == sup t'/2 f*(t)
t>0

be for the LP*° space. We wish to show again that these are equal. This simply follows
from part (d) from the last problem. So we get that these spaces are the same, since f €
weak LP <= ||fllpoc < 00 <= [flpoo < 00 <= f € LP>,

O
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James Marshall Reber, ID: 500409166 Math 6212, Homework 4

Remark. Thomas O’Hare was a collaborator.

The goal of the first four problems is to outline the proof of Theorem 1 below (the original
statement of this theorem is Marcinkiewicz’s interpolation theorem).

Theorem. Suppose that (X, u) and (Y, v) are measure spaces, with
1<py<qo<o0, 1<p1 <q <00, qo# qi, and

+ — and - = —
b Po b1 q q0 q1

If T is a sublinear map from LP(u) 4+ LP'(u) to the space of measurable functions on Y that is
weak types (po,qo) and (p1,¢1), then T is strong type (p, q).

11—t ¢ 11—t ¢
= +

We first prove the theorem in the case that pg = p;.
Claim (Folland 6.42). The Marcinkiewicz theorem holds in the case p = py = p;.

Remark. The proof comes out of discussions with Thomas and the REU paper “Interpolation
Theorems and Applications,” by Calista Bernard. The proof in the paper is similar, but doesn’t
quite finish the idea.

Proof. As remarked by Folland, we show that

Ary(a) < (CijHp>qj |

«
Notice that we have

a/\Tf(a)l/qj <I[Tfly = Sipoa)\Tf@)l/qj < Cill fllp

for all «, so rearranging variables gives us the desired result.
First assume that ¢p < ¢1 < oo (the argument also applies for q; < gp < o0). Notice that we
have (by Proposition 6.24)

ITf)2 = g /0 a® g p(@)da

71 )
= q/ aqil)\Tf(Ot)dOé + Q/ aqil/\Tf(Oé)dOz
0 I1£1l»

I1f1lp q0 o] q1
< q/ od-1 (C’0|’f|p> da+q/ i1 (Cl”pr) do
0 a £l a

o0

I1£llp
=qC§°HfH%°/ ozqqolda+q0fl\|f||gl/ Qd—a1-1gq
0

1£1lp
ad—% 71l ad—a |*°

= qC A1 +aCP A | —— :
4= 0 la=0 4= D la=| £l
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Here, we note that ¢ — qo > 0, ¢ — ¢1 < 0, so that the evaluation of these integrals makes sense.
Hence, we have

ad—49 I £1lp ad—a |%°
aC I FIF +qC I £1IF!
4= 0 la=0 4= dla=|Ifll,
q—q q—q
_4om quOIIfII * 4 qon o S
q—4q0 1—4q

CQO CQl
~ sl (2 + ).
— 4o q1—¢q

Letting B, be this constant, we have the desired result.
Now, we examine the case where ¢; = 00, gy < 00 (the case gy = 00, 1 < oo is the same). Notice
now that we have

[T floo = 1T flloo < C1llfllp
q0
Arp(a) < <CO|(|1f”p>

17613 =q [~ " Ars(@)da
0
1T fl oo 00
= q/ aqfl/\Tf(Oé)dOé + q/ Oéqil)\Tf(a)da
0 I

Tflloo

17 fllo
= q/ quil)\Tf(Ck)dCM,
0

since Ap¢(a) = p({x : |Tf(x)] > a}) =0 for a > ||T f||oo. Continuing on, we have

1T flloo 1T flloo q0
Q/ a® Ay (@)da < q/ ad™! <CO||f”p> da
0 0 @

17 flloo . qd—a0 |ITflle
= qC{° / Q™0 da = qC{°
0 a=0

Thus, we see that

q—qo
(Callf[lp)T— %
q—qo
chocq—% B
==l
q—qo

_ 1/q
qCP I -
1T fllq < (;_;0 (RIS

|q_QO

— cho HTf‘ o0 S quO
q—4qo

Taking qth roots gives

Now, we take

- 1/q
quOCq q0
sup(ITflly 171, =1} < (0_1 5,
qd—4q0
I ”pr = 0, we have trivially that HTqu < Bp”f”p- Assume ”f”p # 0, then we can take
= f/IIfllp- Then || f|l, =1, so
2 _ TSl
1T fllq =
TNl

< By, = Tfllg < Byl fllp,
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as desired. O
Remark. With this, we are now able to assume that py # p; throughout.
Problem 17. Let A > 0 and f € LP. Define
ha = fXEgea) + A sgn(f)xe),
ga=f—ha.

For py < p1, show that .

Jloatmau<m [~ goa (o8
and M

[ hapdn=p [ 5 rs3)a5.
Proof. Recall we have the following:
Claim. If g4, ha are defined as above, then we have for E(A) = {z : |f(z)| > A},

Agala) = Ap(a+ A),

Ap(a) if a < A,
Aa (@) = {Ofif a>A

Proof. Recall that

Agala) = p({z : ga(z)] > a}).
We check this statement then on sets. If z € E(A), then we have that hy = A-sgn(f), |f(x)] > A,
and f(z) —ha(z) = f(z) — A-sgn(f), so that |ga(z)| = f(z) — Aif f(x) > Aor |ga(z)| = f(z)+ A

if f(x) < —A. Hence, we can write this as
{z:|ga(@)|>a}t={z: f(z)> A f(x) —A>a}U{z: f(z) < —A, f(x) + A< a}
={z:f(z)>A f(x)>a+ A} U{z: f(z) < —A, f(z) < a— A}
={z:[f(x)] > A+a},
so that
Aga(@) = A(a+ A).
For the other hand, notice that
Ana(@) = p({z - [f(2)] < A, f(z) > a}) + p({z: |f(z)] > A, A>a}).
For oo < A, we have that this is equal to
Anala) = p({z o <[f(z)] < A}) + p({z - [f(2)] > A}) = p({z 2 a <[f(@)]}) = Af(@).
For a > A, we have that
Anala) = p({z - [f(z)| < A, f(z) > a}) + p({z: |f(z)] > A,A> a}) =04+ 0=0.

/ lgalPodp.

We can use Proposition 6.24 to write this as

/\gA|p°du:pg/0 aP 1), (a)da.
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We now use the claim to get that

/\gA|p°du:po/ oI\ (o + A)da.
0

Let u=a+ A, u — A = «a, du = da, we have that this translates to

/IgAlpodu = po/A (u— AP~ N (u)du < po/A uPo M\ p (u)du.

Changing variables gives the desired result.
Now, on the other hand, we have (by Proposition 6.24)
o0
/\hA]pld,u :pl/ a7, L (@) da.
0

Using the claim again, we get
A
/‘hA’pld,u, = pl/ apl’l)\f(a)da,
0

as desired. (]
Problem 18. Let

_ po(g0—q)
q0(po —p)’
and xo, x1 characteristic functions of {(c,8) : 8 > a”} and {(a, ) : B < a”} respectively. Show
that
1 0 0 P/ 9/Pi
) iy < S| [T [T et siaa " as|
where

il B) = xj (e, B)alT= =V 0 5P\ ().
Note that this reduces the problem of estimating |7 f||; to estimating the expression on the right
hand side of (1) for ¢;.

Proof. We have
7fl3 = [ 17190
We use Proposition 6.24 again to get
/ |Tf|%dp = q/oo a? Arp(a)da.
Now, we remark that by construction we have gi = f — hy so that g4 + h4 = f. Hence, we get

TN < 1T (ha)l + T (ga)]
by sublinearity. Using Proposition 6.22(d), Proposition 6.22(b), and this fact, we have

Ar£(@) < Arn s (0/2) + Ay, (@/2).

Now we use this to write
J1Tsan < [ art Oy (a/2) + Arg, (a/2) da
0
Let 8 = «/2, then 23 = «, 2df = da, so we have

1T < g /O T (28)7 gy () + A (8))28 = 2%g /0 " B s (8) + Ariga (8))d.
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Now, from the assumptions in the theorem, we have that

[Tgale = %u%ﬁATgA(B)l/qo < Collgallpo
>

[Thalg, = sup BAzn, (8)/4 < Cillhallp,,
£>0
so taking everything to the appropriate power, we get

CO A qo0
sup Arg, (8) < sup <”g”p°) ,
B>0 B>0 B

sup Arp , (8) < sup (

Cil|hallp, )“
B8>0 B>0

B

Hence, we have that

Since everything so far is true independent of a > 0 and A > 0, it is fine to take A to depend on «a.
Choosing A = a?, where o defined above, we have that this in conjunction with Problem 1 gives

o0 [e.o]
= 20gCp [ g galigas + a0t [ gt nalgas
0 0

00 q0/po 00 a/p1
—qc [Tt ([laam) " dsacy [Tt (finae) s
0 0

00 00 q0/P0 00 A q/p1
<ogcp [ gt (po / ap“Afm)da) a3+ [ gt (m / apll)‘f(a)da> as
0 0 0

A
[e’e) o) qo/po
e [ grent ([Tam i) as

0
q1/p1

00 A
+29gC P pI /P /0 pI—a—t < /O ozpl_l)\f(a)doz> dp

00 00 QO/PO [e'e) [e'e) q1/p1
= 2qu§°p§°/”°/ </ wo(ﬁaa)da> d5+2qq0f1p‘fl/p1/ (/ cm(ﬁ,a)da> ds
0 0 0 0

1P0/q0 0/po

[e'e) [e's) qo/po
— 2400/ / ( / @0(5,04)6506) a8
0 0

1p1/@1 @/p1

/ o0 o0 q1/p1
e / ( / <p1<6,a>da) a8
0 0
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Now hit it with Minkowski’s inequality for integrals (and rearrange the variables so that they’re in
the right order) to get

fe'e) fe'e) pO/QO
IT 117 < 29gCEpE/™ l/ (/ %(a,mw/mda) dﬂ]
0 0

o0 o0 Pl/‘ll Q1/p1
st | [ ([T asmimaa)” as
0 0

In other words, we have

q0/po

1 oo [ oo i /4 aj/pj
ITFIE <> G / [ / soj(a,m%/pfda] dﬁ]
=0 0 0
as desired. O
Problem 19. Show that
00 o e P;/;
/0 [ /0 w(a,ﬁ)%/pﬂda} a8 = k|1,
where
R
T plg— gyl

and prove Theorem for gy, ¢ < oc.

Proof. We first show it for j = 0. Assuming ¢q; > qo, o > 0, we have that 5 > o is equivalent to

BY7 > o, and so we can leverage this to get
o] 00 1P0/90
L[ eotapmimaal " as
0 0

a(q—qo—l)po/%ﬁpo—lkf (B)

a/po  Po/d0
) da dj

Z/OOO [/OOO (XO(a,B
L

1po/q0

da dg

)

oo gl/o Po/qo
= / B8P ~12(8) [ / oﬂ—‘m—lda] dp.
0 0

Integrating the inside, we get

ﬁl/o 1
/ a?l 01 gn = ad—a0
0 q—qo

pl/e gla—aw)/o

a=0  q—qo
Hence, we have the above is equal to

(q — qo) P/ /00O Bpo—1+((q—qo)po)/(ffqo))\f(ﬂ)dﬁ_

Recall that
po(q0 — q)

0‘ fry
qo(po — p)’

SO
po(q —qo)  po(q — qo)qo(po — p)
- =P — Do,
aqo Po(q0 — 4)q0
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and hence the above is now equal to

g — gol o/ /0 BP0 (8)d.

We have Proposition 6.24 gives us

Jir=n] " A (8)dB,

so that
Ifllp — [
— = BPAp(B)dB.
p 0
Substituting this in then gives
[ wiogy|” " 171 ,
0/ PO — =
/0 Uo Fole: ) da} B = D= qopporm ~ Pl

Next, assuming ¢y > q1, 0 < 0, we have that the inequality goes the other direction, i.e., 8 > a¢
is equivalent to Y/ < a. Using this, we then get

o0 (9] 'PU/QO
/ [ / pola, BYo/Mda|  dp
0 0

1P0/90

= /000 [/OOO (Xo(a,B)a(q*QOfl)pO/QOﬁpofl)\f(ﬁ))QD/po o 5

P0/q0

= /Ooo [/;O <a(q—qo—1)po/q06po—1Aﬂﬁ))qo/po da- dg

1/c

[e¢) [e%} pO/lIO
= / BRI (8) [/ aq_q‘)_lda] dp.
0 B

1/c
Integrating the inside, we get
o0
/ a?" 0 do = ! =] .
81/o q—qo a=p1/7 qo —4q

Hence, we have the above is equal to

g0 _q‘po/qo/o ﬁpfl)\f(ﬂ)dﬂ‘

From the reductions before, we have that

o] o] P0/q0 p
qo/pOd dB = Hf”p =k p
/0 [/0 vo(a, B) Of] B Pl — qolPT® ol £115

— q0|170/q0

5((1*(10)/0

again.
Following the same path with the other integral, we have

[e'e) o0 pO/QO 1
/0 [/0 ma,ﬁ)%/mda] 48 = lg — au| P/ £ = kA1

Thus, combining everything, we have
1/q

1
sup{|[Tfllq = I1fllp = 1} < B, =24"% | Y _ CF (p;/p) /P ]q — ;] ™"
j=0
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Hence, if || f||, = 0, we get the desired inequality, and in the case where || f||, # 0 we can normalize
it to via
f

1f1lp’

f=
so that ||ﬂ|p =1 and

171 1lq

75 =27,

< B, = [Tfllq < Bpllfllp-

Problem 20. Prove Theorem 1 in the three exceptional cases:

(i) p1=q1 = o0,
(H) D1 < 0, q1 = 00,
(iii) p1 < o0, go = 0.

Proof. (i) Assume p; = q; = oo. Instead of taking A = a7, take A = a/C;. Then we have (by
the assumptions of the theorem) that

[Thalleo < Chl[hallee < a,

so that
Arny (@) = p({z : [Tha(z)| > a}) = 0.

We then apply the same argument as in Problem 2 to get

/ T f19dps < g /0 T a0 Oy (@/2) + Arg, (0/2)) dov = g /0 " 61y, (0/2)da

Again, letting 5 = «/2, we have 28 = a, 2df = da, so

/ T |9y < 2 /O B9 Az, (B)dB.

Using the assumptions in the theorem, we get

[e’e} C q1
HTfHZ < 2qq/0 6(1—1 ( 0"%14‘171) g

o0 q0/po
—21gCf [ gt < / gA|po) a5
0

> ee q0/Po
S 2qq0g/ pat-t <po/A oepo_lkf(oz)da) ap
0
_ oa. a0, a0/p0 [ pa—do—q % el Pw/po
0

_ oq,,490,.90/P0 > o a0/Po
= 299C{" py ; ; wo(B, a)da g

- - w0/p0 Po/do q0/po
= 210 [ / ( / saow,a)da) dﬁ]
0 0

where we now redefine

900(047 6) = X(](Oé, ﬁ)a(q_qo_l)pO/qo/Bpo_l)‘f(/8)7
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where xo(«, ) is the characteristic function of {(a, ) : f > a/C1}. Moving things around
(including changing the order of o and /5 for notational simplicity), we then have

P0/q0 40/Po

oo 0o qo/Po
1772 < 25900 pio/ro /0 ( /0 soow,a)da) dﬁ]

Going through the motions, we get again from Minkowski that

00 00 Po/qo
ITf]12 < 29gCEpl ™ / </ oo, B)2/ Poda> d/J’]
0 0

q0/po

We now examine the inner integral, noticing that we have

00 00 0/q0
/ ( / ma,ﬂ)%/mda)p " a3
0 0

= /OOO (/Ooo <X0(Oé,ﬁ)a(q—QO—l)Po/%ﬁpo—l)\f(ﬁ))ro/po da)pO/qO y

00 C18 Po/qo
= / BRI (B) </ a(q‘%‘l)da) dp.
0 0

Evaluating the inner integral, we get

C18 1
/ ad~ -1 qn = o0
0 q—4qo

so going back we have

C1B (C18)1 0

0 lg — qo 7

00 C18 Po/qo
/ BPO*l)\f(IB) </ a(qqol)da> dj
0 0

_ 00 o1 (Clﬁ)q—q())m/%
[ (R2r)

=|q— qO’—po/qoch—qO)PO/qO /0 Bpo—lJr(q—qo)po/qo/\f(ﬂ)dﬁ

= |q _ q0|—po/qochQ/qo—P0 /0 5poq/qo—1)\f(3)dﬁ'

Now, since we have that (for 0 <t < 1),

1t
¢ q
we get that
Dy,
q
Furthermore, we have that
_t
P Dpo
so that
po_ poq
p=—="—
t 9



(i

Substituting this in, then, gives

g — q0|—p0/qocf0‘1/40*1°0 /0 BpoQ/Qo—l)\f(ﬁ)dﬁ

= q—q0’p0/q0C’f—p0/ ﬁpilAf(ﬁ)d/B
0
=l = qo| 7/ CYPp~ | £
Going back, we have

_ o q0/po
17118 < 2%CEpE"™ (Ia = qol /0 Cyop" | £117)

= 29¢C0 (pg/p)qo/pocfp*po)tm/po‘q _ qorlnfngqo/po
= 299C3 (po/p)*/7°CT ™™ lg — qo| M| £ 113
Taking qth roots gives then
o q0/po MI—40 _1] Ve
IT£lly <2 [CE o/p)™ P CF g = a0l '] 11y,

as desired. Using the same argument as the last problem, we then have

_ _11Ve
sup{IITflq s 1Fllp = 1} < 2 [ (po/p) ™ CF g — ol | = By,
and so if || f||, # 0 we normalize to get f= /I fllp, and we have
T
1T fllq = 1< By, = |ITfllq < Byl fllp-
£l
Hence, it holds for all f.
Now choose A = (a/d)?, where
d = Cipi|fII5/p)"/7",
and
pP1
o= .
p1—p
Since p; > p by assumption, we have
A A
IThalE: < P hally = P [ 07U s(a)da < O puan = [ i (a)da = o7,
We get again that
)\ThA (Oz) = 0,

so we have that 1 = 0, and hence going through the the exact same argument as before, we

get
00 0 p0/q0 q0/Po
ITf]1g < 29qCEpl™ </ [/ wo(a,ﬁ>q°/p°da] dﬁ) ,
0 0

noting again that

900(047 6) = X(](Oé, ﬁ)a(q_qo_l)pO/qo/Bpo_l)‘f(/8)7
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where now the characteristic function is over the set {(c, 8) : 8 > a“}. Examining the inner

integral, we have that
S 00 Po/4q0
L[ entammimaal " as
0 0

P0/q0

— /OOO [/OOO <X0<Oé,ﬂ)a(q—QO—l)PD/%ﬁpQ—l)\f(ﬂ)>QO/po da} i

Po/q0

) /81/0‘
:/ Bpofl)\f(ﬂ) [/ O[(qqol)aga] dg.
0 0

IBI/O'

Solving, we get

5((1-(10)/0’

Bl/a 1
/ a?l 1 gn = o490 ,
0 a=0 l7 — qo

q—qo

so substituting this in we have

7 Po/9

) /31/0'
/ AP~ () [/ @21 4, dj
0 0

1Po/q0
/ gro- 1)\ 5!1 q)/0 a3
g —aqol ql |

=|q— q0|—po/qo/0 5po—1+(q—qo)po/(0qo)/\f(ﬁ)dﬁ.

Now, we have that
1 1—t¢
- — 0y
q q0 q
_ Pop1
pot — pit+p1’
pot(p1 — po)

pot — p1t +p1

b—Pbo=
so that
(¢ —q0)po _ (¢ —qo0)po(pr —p) _ tpo(p —p1)
aqo D140 (t—1);m

_ tpo(p1 — po)
pot — p1t +p1

=P — Po-
Substituting this in, we get

g — qo| P/ /OOO /Bpo—l-i-(q—QO)Po/(UQO)/\f(I@>dB

=lqg - qOI_”O/‘”/O BN (B)dB = |g — qol P/ p || 115,

Now bounding the original equation, we have

_ B q0/P0
17718 < 2%aC8p"™ (1a = aol /20~ 1)

= 214CH (o /)™ g — | S
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Taking qth roots gives

1/q
IT1llg <2 [C3 o /)™ g — g0 2] " [ £15/ ),
and hence
: = Po q0/po _1) Ve
sup{ITflly : 1£llp = 1} < 2 [ (po/p)™lg — a0l '] " = B,

Normalizing f when || f||, # 0, we set f= f/lfllp and get

11 lq
£l

1Tfllq = <By = |Tfllq < Bpllfllps

as desired.
(iii) We now have ¢; < qo = 00, pp < p1 < co. We want to do the same thing we did in part (ii),
except we now want to choose our d so that Apy, () = 0. Setting

d = Colpollf I5/p]"/7°,

DPo
Po—DPp

we have

ITgall?s < CElgall?e < CPop / BP0 (8)dB
o0
— CPpy / PP P, (8)dB
A
< PO py APOP / B\ () dp
A

_ po@ g pO p P
=B (5 Il

Do [\ Po
=cp B (5) 1l = am

Hence, we get that Ary, () = 0. This time, we get that ¢y = 0, and so going back through
the same argument we have that

q1/p1

o0 [e'e) Pl/QI
1T < 29gC pin/ (/0 [/0 901(04,/8)‘“/”16104] dﬁ) |

here ¢; is defined to be

01 (a, B) — X1(Oé,,B)Oé(q_ql_l)pl/qlﬁpl_l)\f(,@),
with x1(a, 8) the characteristic function of the set {(a, 8) : f < a”}. Examining the integral

on the right, we have
[e'e} [e’e] Pl/‘]l
LT[ ertammraal " as
0 0

p1/q1

_ /ooo Uooo (><1<a,ma@*m*”p“qlﬁp““ﬂﬁ))W do‘} dﬁ

[e'e) o0 p1/q1
— / BRI (B) [/ aq_ql_lda] dp.
0 B

1/c
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Evaluating the integral on the inside, we have

& 1
/ =0 1gy = — ad— N
Bl/e 9—q

Substituting this in, we have

p1/q
/ /P 1)\f / ol =1 q dp
Bl/a‘

p1/q1
/ goi- 1)\ ﬁ(q q)/o a3
\q—th\

o0 /B(q—!h)/ff

azpi/e =@l

= |q — ql|—m/ql/0 5p1—1+p1(q—q1)/(0q1)Af(ﬁ)dﬁ.

Again, we note that

Lt
g q q
Dy = (t = Dpi(p1 — po)
pot — p1t +p1
so that
pila—aq) _ (a—gpi(p—po) _ (t=Dpi(p—po)
qo Poq1 tpo

_ (= Dpi(p1 — po) —

pot — p1t +p1

Substituting this in, we have

lg — qu| 7P/ /OOO gri—ttpila—a)/lea) y . (8)dp

=g — q| P/ /0 BN (B)B = |g — qa| P/ p~ | fIIE.

Hence, going back, we have

_ _ q1/p1
17712 < 2% 5™ (la = a7/~ £1)

= 29gCY (py /p) /P g — qu| M| IR0 /P1,

so taking qth roots we get

1/q
I7£llg < 2 [aCF (pr/p)" 7 g = a7 11 /09,
Again, we have
P1 q1/p1 _1| Ve
sup{I[7 7l : 1l = 1} < 2 |aC (01/0)" g — || " = By,

so again, as long as || f||, # 0, we can normalize to get f= /I flp, and we have

75l _
770 = Ty, <

Thus, we have the desired result.

< B, = |Tfllqg < IfllpByp

0

Problem 21. If f € S (the Schwartz space), then 0% f € LP for all & multi-index and all p € [1, c0].
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Proof. Let p € [1,00]. We wish to show that

o sl = [ 107117 < oc
for all a. Recall that f € S implies that || f||(y,.) < oo for all N, a; that is,
1fll(v,e) = ;:15(1 + [a])¥]0° f ()| < oo
Let Cn = ||fll(n,a)- We have then that
0%f ()] < Cn (L +Jal)

for all x, using the fact that the supremum of the product is the product of the supremum and

(14 |z))Y < sup (1 + [z)V for all x € R,
rcR?
SO
sup,en (1 + 2™
- (fapN

and hence

o sup,epn (1 + |z)V o _
o (o)) < P2 C VS s 192 )] = o1 -+ o).

Hence, we have
o7l = [ 1o s@ypas < €& [(1+1al) Vs

By Corollary 2.52 (b) (i.e. polar coordinates), we have that the integral on the right is in L' if
pN > n; in other words, if N > n/p (n here the dimension of R"™). Since the above holds true for
all N > 0 and « multi-indices, we can choose N sufficiently large so that this holds. ]

Problem 22. If 1 < p < oo, then translation is continuous in the LP norm, i.e., if f € LP and
z € R", then

lim — = 0.

y_>0‘|7'y+zf T fllp
Proof. We use Proposition 7.9, which says that continuous functions with compact support are

dense in LP. First, let’s show the result for continuous functions with compact support. We have
that

HTy-i-zf - Tszg = / |Ty+zf<x) - Tzf(‘r)’pdx = / ‘f(.’L' +y+ Z) - f(l' + z)‘pdx

Let u =z + 2, then du = dx, and so we have that the transformation gives

| 7ys=f — T fII = / |f(u+y) — f(uw)|Pdu.

Since we’re assuming that f is a continuous function with compact support, we have that there is
a compact set K which contains the support of f(u + y) for all |y| < 1. We want to let y — 0, so
it suffices to consider such y. Thus, we can write

J == [ (s =pePacs | )= = ] )= f
By uniform continuity of continuous functions with compact support (see Lemma 8.4), we get
that this goes to 0 as y — 0. That is, we have that

| Tyszf — T2 fIh — 0 asy — 0,

SO
I Ty+2f — T2 fllp = 0 as y — 0.
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Now the result holds for continuous functions with compact support. We use the density in LP
to get the result for general functions. Let f € LP and fix € > 0. There is a g which is continuous
and has compact support so that ||g — f||, < €/3 by density, so we have

2
17ys2f = T2 fllp < I7y2(f = 9llp + I7y429 = 729llp + 17209 = Fllp < 3€ + I7y429 = 7=9llp-

Using the result prior, we get that we can take y sufficiently small so that

ITy+29 — T=9llp < €/3,
and we get that

HTy—f—zf - Tzf”p <e¢,
as desired. OJ

Problem 23 (Folland 8.4). If f € L*> and
I7yf = flloo =0

as y — 0, then f agree a.e. with a uniformly continuous function.

Proof. Since f € L™, we have f € Ll  since for any K bounded we have that

loc»

/ £@) < 1flloo / — W) | 1o < o0
K K
We then follow the hint. Let

1
Arf(x) = m(B(r2) /B(m) f(y)dy.

We wish to first establish that A, f is uniformly continuous for » > 0. Notice that we have
i [ e s [ fe

_— 2)dz — ————— z)dz

’I?’L(B(’I", ZL‘)) B(r,xz) m(B(Ta y)) B(r,y)

1 / 1
=|l—s f(2+m—y)dz—/ f(z)dz
’I?’L(B(T‘, y)) B(ry) m(B(Ta y)) B(r,y)
where we shift things around so both are at y. Now, we have

1 1
BT ey P B ey

1
|m B(T" y)) /B(T,y)[f(z +z— y) - f(Z)]dz
f

|Arf($) - Arf(y)| =

)

1
< - -

(
N m(B(r, y)) B(ry)
1

- BT /B e ()= 1)
1

(z+z—y) - f(2)ldz

S m(B(r,y)) /B(ny) HTx—yf _fHOOdz

N HTﬂc—yf_f”oo — - .
- m(B(T‘, y)) /;(r,y) dz ” x—yf fHOO

So since |A, f(x) — Ar f(y)| < |Ta—yf — flloo, We can find § sufficiently small so that for |z —y| <6,
|A, f(z) — Ar f(y)| < ||Tw—yf — flloo < €. Hence, it’s uniformly continuous.
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Next, we need to show that A, f is uniformly Cauchy as » — 0. Let » = 1/n, then we wish to
show that as n — oo, Ay, f is uniformly Cauchy. That is, for every € > 0, there exists an N > 0
so that for all z, n,m > N, we have that

‘Al/nf(x) - Al/m(‘r)’ <€
Plugging in things directly, letting » = 1/n and s = 1/m, we have

[Arf(x) = Asf(2)] = [Arf(2) = fz) + f(2) — Asf(2)] < [Arf(2) = f(2)] +[f(2) — Asf(2)].

We now examine the first inequality; we have

[Arf(2) = f(@)] = | —Zr—

)
Now we notice that
To—zf(2) = f(z+ 2 — 2) = f(x),
so that we have
1 1

B0 Dy 7 = ) 0y V) e

Notice here that z € B(r,x) U B(s,z). Choosing r and s sufficiently small (i.e., n, m sufficiently
large), we have from above that ||f — 7u—. f]lcc < €/2 for all such z. Hence, we get that we can
bound the above by €/2. The second inequality is analogous, so we have that
€ €
|A, f(x) — Asf(z)] < B + 5 =€ Vo € R™.

Hence, we have that it’s uniformly Cauchy.

Since (A;,f) is uniformly Cauchy, it converges uniformly to some function g, and this function
is uniformly continuous since the A/, f are all uniformly continuous. Hence, applying Theorem
3.18, we get that g = f almost everywhere, with ¢ uniformly continuous. O
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James Marshall Reber, ID: 500409166 Math 6212, Homework 5

Remark. Thomas O’Hare was a collaborator.

Problem 24. If K C R" is compact and U is an open set containing K, there exists f € C2° such
that 0 < f <1, f=1on K, supp(f) C U.

Proof. We first must establish the existence of smooth bump functions (Equation 8.1 in Folland

and the remarks before (pg. 236), Exercise 8.3 in Folland). Let n(t) := e_l/tx(ojoo) (t). We wish
to show that this is a smooth function. First, we claim that for & € N, we have that n*)(t) =

P.(1/t)e= "t when t > 0, where P, is a polynomial of degree 2k. To see this, we simply induct.
The case k = 0 is clear, and so assume it holds for £ — 1. Then we have
() = Py (1/t)e Y,
and so taking derivatives on each side we have
() = Py (1/1)(=1/82)e™ ! + Py (1/t)e” V1 (1/1)?
= e V(1) [P (1/1) = Pioy(1/1)] -
Letting z = 1/t, we can rewrite this as
e g [Pr-1(z) — P_i ()] .
Now, notice that the degree of the polynomial P,_i(xz) — P,_,(x) is going to be 2k — 2, since

derivatives drop a degree, and hence multiplying it by 2> we have that the polynomial has degree
2k. In other words, after rewriting terms, we get that

n®(t) = e ' PL(1/1).
Notice that, for all £ € N, we have that

lim nfe ™ = 0;
n—oo

to see this, we rewrite this as

and use L’Hospitals. We proceed by induction on k. For £ = 0, we get this clearly is 0, so assume
it holds for £ — 1. Applying L’Hospital here, we have
nk k‘nk_l

lim — = lim
n—oo el n—oo el

=0

by the induction hypothesis. Thus, we have the desired result.

Going back, we now wish to show that n*) (0) = 0 for all k. Again, going by induction on k, we
have that the case k = 0 is by definition, and so we assume it holds for £ — 1. For the derivative
on the left, it’s clear that we will have 0 (since this is the constant 0 function), so it suffices to
consider the derivative on the right; i.e., consider the limit as h — 0%. Thus, we have

IOl N Ll ()

®)(0) = 1 = i
n(0) = lim, N m =y

Using what we derived prior, we have that writing h = 1/n and taking n — oo, this can be written
as
n(’“) (0) = lim nn(k_l)(l/n) = lim nPy_1(n)e ™" =0,
n—o00 n—r00

using the fact that n*e™ — 0 as n — co. Hence, the derivative on the right is also 0, and so we
have the desired result; that is, n(t) € C°.
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From here on, we follow Folland. To make a smooth bump function, we define

(@) = (1 = faf?) = /0T Dx0 1 ().
We have then that 0 < ¢(z) < 1, and furthermore ¢ € CZ°(R"), since the composition of smooth
functions is smooth. We let 6 = d(K,U¢) > 0 (note this is positive since K compact). Let
V ={z : d(z,K) < §/3}. We then wish to construct a nonnegative ¢ € C° with [¢ =1
and @(z) = 0 for |#| > 6/3. Noting that ¢» € L' (clearly, since it has compact support and is
continuous) we have that a good candidate is

ooy — SB/)

o (fv)

/ / 3" (3z/ 5) M _1

o (fv) [
after a change of variables (u = 3z/d, du = (3/0)"dx)), and notice that, since 1) is non-zero for
|x| < 1, we have ¢ is non-zero for |z| < §/3. That is, ¢ is 0 for |x| > §/3. This then fits the criteria
of What we want.

Now, we can set f = xy * ¢. Notice that f € C, since p € C®° and xy € L', so we can
apply Proposition 8.10 to get the desired result. Notice as well that f has compact support by
Proposition 8.6 (d). Hence, f € C2°. We then check that all the properties for Urysohn are
satisfied:

(1) We see that 0 < f <1, since (letting V) be V shifted by x) we have

fz) = /XV(SU —y)e(y)dy = / w(y)dy,
and by what we’ve done earlier we have that

0< / Py < / y)dy =1,

Notice that

so that
0< f(z) <1
for all z.
(2) Taking z € K now, we have

f(Z)Z/Vw(z—y)dyZ/V3n¢((5n((f¢))/6) y

Let u=3(z —y)/0, then du = (—3/9)"dy, so we have

Y OO R BRI P IO
fer=- fwd Rnfwd Rnfwd 8
So f(z)zlforalleK.

(3) Finally, we note that Proposition 8.6 (d) gives

supp(f) C {z +y:a € supp(xv),y € supp(p)} C U.
To see this, simply note that
supp(xv) + supp(p) =V +{z : 2| < §/3} C{z: d(z,K) < 26/3} C U,

since V.=K+{z:|z] <d§/3},soV+{z:|z| <3} C K+ {z:|z| <2)/3} = {x:
d(z, K) < 20/3}, and taking the closure of everything preserves containment.

Hence, we have that f satisfies all of the criteria. O
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Problem 25. Suppose that p € (1,00) and f € LP(R). If there exists h € LP(R) such that

Tfyf - f
Y

—h

lim

=0,
y—0

p

we call h the strong LP derivative of f. Suppose that p and ¢ are conjugate exponents, f € LP(R),
g € LY(R), and the LP derivative Df exists. Then D(f % g) exists (in the ordinary sense) and is
equal to (Df) x g.

Proof. We wish to show that D(f * g) = (Df) % g. To see this, we pick a point x and examine
[D(f * g)(x) = (Df) * g(x)].

We write out the function to get

lim Ty ([ * g)(wg)/— (f*g)(@) (Df) % g)(x)
i | OO =90 (5,
| (CD=0206) 5y,
~ | (=20 ) - () )
(8220 )
—tiy| [ g6 -2 (LD ) g
g%/g ‘( T*yf =) Df)(z) dz
< tim g, ((fy)f) -7 =0
Hence, we have D(f x g)(z) = (Df) * g(x) for all z, and so we have the desired result. L]

Problem 26. For p € (1,00) if f € LP(R) then the LP derivative h of f exists iff f is absolutely
continuous on every bounded interval up to a modification on a null set and its pointwise derivative
f'isin LP, in which case h = f’ a.e.

Proof. (= ): Assume f has LP derivative h. We follow the hint in Folland. Choose g € C.(R) with
[ g =1. Define g(z) in the usual way. By the prior problem, we have D(f*g;) = D(f)* g = h*gy,
so this is differentiable with derivative h* g;. Notice now that for every pair z < y € R, we get that

Y
(f * () — (f *g0) (&) = /(h*ga( ).

Now, by Theorem 8.14 (a), we note that h * g — h as t — 0 in the LP norm, and f *x g; — f in
the LP? norm as t — 0. We note that we also have

v y
lim [ h*xg(z) = / h(z)dz.

t—0 /.

To see this, use the LP convergence and Holder to get that

(P 96)X(zy) = X[yl = (R * gt) = RIXeyll < 12 gt — BllpliX@ylle — O
13



Writing things out, we have

— 0,

/ "[(hx a0)(2) — h(2))dz

giving us the desired result.

From prior homework (Homework 1, Problem 5 or Folland 6.9), we have that f*g;, — f in
the LP norm implies there is a subsequence (t;) so that f x g;; — f almost everywhere. Fix some
x so that f* g;j(z) — f(x). For all y, then, we have

Yy
(F +0)00) = (F )@+ [ (e g1) ()

Define a function

Yy y
p) = i | oo )+ [ ea)z] = 1@+ [ e
J]—00 T x

Noting that h € L!([a,b]) for any bounded interval [a,b] (since things are finite), we get that p
is absolutely continuous on any bounded interval by the Fundamental Theorem of Lebesgue
Integrals (Theorem 3.35). Furthermore, p = f almost everywhere, and so p’ = h = f’ pointwise
almost everywhere (Corollary 3.31). So redefining f to be p on some null set, we get that f is
absolutely continuous, pointwise differentiable, and the derivative will be h.

( < ): We again follow Follands hint. Assume that f is absolutely continuous on every bounded
interval and its pointwise derivative is f’, which is in LP. We wish to show that the LP derivative
of f exists. Note that

f(fc+y) —fy)

/lfx+tdﬁ—f()
- [ +tdt—/ fla /[f(x+t)—f’(x)]dt-

Taking the p norms of both sides gives
’ flz+y) = f(x)

1 [V
= — [ =) = flllpdt,
YJo
where the first inequality follows from the triangle inequality and the second from Minkowski’s
inequality for integrals. Fix ¢ > 0. By Proposition 8.5, since f € LP, we can find § > 0 so that
for |t| < d, we have ||[7—(f") — f'||, < e. Choosing |y| < §, we have

_ 1 [v
Y » YJo
Letting € — 0 gives us the desired result. O

Problem 27. Show that {e*™**}, 7. is an orthonormal basis in L?(T™).
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Proof. We first show that this is an orthonormal set. Let k,v € Z". We have that
<627ri/-c-33, 627ri'y~$> _ / 627rm~ze—27riw-asd$ _ / 627ri(n_7)'$dl'.

If Kk ==, then Kk — v = 0, and so we are left with

/ dr = 1.

That is, ||e*™*2|| = 1. Now, if k # v, we have that Kk — v = (a1,...,a,), o; € Z", and the
non-equality forces a; # 0 for some i. Since ]62”"(”*7)“] < 1, we have that the function is in L',
and so Fubini applies to give us

1 1
/ 627rz(/1—’y)~zdl, _ / 627rza1:s1 d:ﬂl L / 62ma”znd$n.
n 0 0

Assume without loss of generality that a; # 0. Letting v = 2miaix1, du = 2wiaydx, gives us

1 ) 1 2mion 627ri041 -1
/ e2rianTy gy — / edu = ———,
0 0

2mio 2mio

and we note that for any integer k € Z, we have
627rik -1

)

which we can deduce easily from DeMoivre:
™ = cos(2mik) + isin(2mik) = 1.

Hence, we have that
1
/ 627rza1561d$1 _ 0’
0

and so our entire integral is 0. That is, we have that this is indeed an orthonormal set.

Next, we wish to apply Stone-Weierstrass to get that this is a dense set in L?(T"). To do so,
we need to verify that the span of these forms an algebra. First, notice that we have it’s a vector
subspace; multiplying still gives us a linear combination, and adding linear combinations still gives
us finite linear combinations. Next, we need to show that the product of finite linear combinations
is still in the space. Notice that for x,vy € Z™ we have

e2minT | 2miyw e27rz(/€+7)-:v,

and k 4+ v € Z" still. Expanding over products of linear combinations, then, still gives us a linear
combination. So it’s an algebra.

We then need that it separates points. Let z # y € T™. Notice that this implies that there
is a dimension where these two points disagree; i.e., this reduces down to just considering x # y
on S'. Using DeMoivre’s again, we see this boils down to using the fact that sine and cosine are
projections onto the x and y axis (viewing S! in R?), and so if x # y on the circle, we have that at
least one of sin(x) # sin(y) or cos(z) # cos(y). Hence, there is a trigonometric polynomial f where
f(@) # ().

Now, €*™0% — 1 is in in this algebra, so all constant functions are in the algebra, and we have
that the complex conjugation of 27k = ¢=2™%T which is still in this algebra, since —& is an
integer still. Hence, it’s closed under complex conjugation, and so if we have that the algbera is A,

we have that A = ¢ (T™); i.e. they are dense in the space of continuous functions in the uniform

norm. Using Proposition 7.9, we have C.(T") C C(T") is dense in L?(T"). By last semesters

notes (https://people.math.osu.edu/penneys.2/6211/Functional Analysis.pdf, pg. 20, last theorem)

we have the being dense is equivalent to being an orthonormal basis, and so this set is indeed an

orthonormal basis. O
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Problem 28. The Fourier transform maps the Schwarts class S continuously into itself.

Remark. I tried following Folland but have only a slight idea on how he got what he did. The first
proof is based on https://math.stackexchange.com/questions/ 78441 /fourier-transform-of-schwartz-
space’noredirect=1&lq=1. The second proof is based on a long discussion with Thomas, and
hopefully mimics whatever Folland was trying to say (the solution on Stackexchange that follows
this is mine).

Proof. We first wish to show that ~: S — S is linear. It’s clear that it is finitely additive, since
From) = [ (F+a@e o= [ faye et [ gla)emda = flom) + giom)
and so we just need to check that if r € C is a scalar, then ﬁ = rf. Notice that

ifm) = [ ep@e s v [ fape s = flm).

So the operator is linear.
Now, we have a family of (semi)norms on S given by || - ||(v,a)- We wish to show that for each
(N, ), there is some constant C' so that

n

k
1l vay < C D IF o)
1

This will give us continuity by Proposition 5.15. Writing out thedefinition, we have
1Fll(v,a) = sup (L + |z ¥[8 |-
r€R™

We now follow the proof of Proposition 8.3 to get a bound. Notice that Y7 |z;|"V is strictly
positive on |z| = 1, so admits a positive minimum § > 0 (since this is compact and the function
continuous), and so since |z/|z|| = 1, we get

N n
>0 = )
1

n

2.

1

T
]

B
2|V

n

>0 = Y |z|V > 6|V,
1

Hence, we have

(1+ ]V <2V + [2|Y) <2V

N
1+5—1Z|:pij] <2V5 1 )l

1 IBI<N

Substituting this in, we get

1A llvay < sup |28670 > (2P0 f] | <2867 > [1270% fu
eeR BI<N 1BI<N

We now turn to inspecting xﬁaaf. Fixing x and using Proposition 8.22 (d) we have

2207 f ()| = |2°[(~2nit)o f ()]

2 / (—2mit)® f(t)e_%”'tdt‘

/ xﬁ(th)af(t)e_%mtdt‘

— (2m)°

/ Pt f(t)e2’f””'tdt' .
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Now examine the inner integral. We have

/ 2Pt f(t)e 2Tt

Let’s first normalize; letting u = —27x, we may rewrite the integral as
B
u
—— ) tf(t)e"tdt
[ (55) s
1 .
_ Bia qu-t
= u”tY f(t)e™ " dt.

Now notice that
aﬁeiu-t _ Z-\B|u66iu~t;

to prove this, we go by induction. For one variable, we have

d ut iei(u1t1+'“+untn)

dty dty
_ dtl ity | eiunt7L — iuleiwt_
Inducting for n is clear based off of this. We have
g;eiu-t _ Cﬂlitj’;_llemt jt n—1 n— Leiut — jnyneivt,

Inducting on the length of 8 follows as well. Assuming we have it for length n — 1, write 8 =

(Bry- o Ba) = (Biy s Bu1,0) + (0, Bu), letting ¥ = (B, ., Bu_1,0). Applying the induction
hypothesis then gives

B B,
9B civt — d@ Veiut — d iy et — VB v+ (0,.8n) giut 181, B giuct

dtnn n

So we have 5 it

u-

0 "em — ufent
i
and so substituting this in gives us
1 .
B _iu-t 1o
7(_27”,)'5‘ A (07e"™*) f(t)tdt.

Examine this in just one variable. We have then

/ <j;e"“t> f(t)todt.
R

We then do integration by parts here, letting dv = (d"/dt")e™dt, v = (d"~!/dt"~1)e™ u = f()t%,
du = ((d/dt)f ()t + at® L f(t))dt. We can then rewrite the above as

n—1 0 n—1
et = [ e s + o oy

din—1 = oo

_ / { j; 1 wt] ((d/dt) F(£) + o™ f(1))dt

since f is a Schwarz function and [(d"~!/dt""1)e™t| < C' < oco. Iterating and using the product

rule then gives us
n—k
Z n! f(k d(n—Fk) o
k!(n FTC=ok
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Now, since [0%™t| < C < oo, f(t)t* € LY(R") since f is Schwarz (use the fact that |f(t)| <
Cn(14|t])~" for all N and pick N sufficiently large), and 9°f € S for all a, we get that Tonelli
tells us Fubini applies, and so we can use this to iterate the integral above. Moreover, we get that
we can iterate integration by parts. Using what we proved for one variable above, then, we get that
the integral is equal to

1 et 6'
- U P an 67 a d
@ Jon © n;ﬁ (@)@t
! o ’8' - a—
~ (2ri)Bl (o = B)! 2 W[/Re ‘")t vdt].

n+y=8

Substituting back in u = —27x, multiplying in the (27)l%l, and taking the absolute value, we get
that this is

jof 18| ! f”[ ~amiat (g a—vd]
S ey foeennea
jod—181__ @' 5![ an a—vd]

N e [ el

Divide and multiply by (1 + [¢t])"*! on the inside of the integral. This give

o181t Al [ (LA™ o a—m}
e G 2 o T e

<ene Bt Y ] s+ e,

(@=p) = ! 1+ J¢]
jal-1al__ @ B { 1d] " n+1+la—|
<0t Y | | sl + I
_ jaf-1g]__ ! B! 1
= X o e g L ] e

Letting

_ o lal-1g__ ! 5’[ 1 ]
G = ) By L. (e G

we can more concisely write this as
Z Cﬂv’YHf||n+1+|af’y|,n’
n+y=p
Notice as well this does not depend on x, so we get that
1270 lu < Y~ ConllFllnt1tiaims
n+y=p
and so substituting this in to the above, we have

HJ/C\”(N,a) < 2Ns! Z Z Cm"/”f”nJrlJr\af'y\,n'

|BI<N n+~=4
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These are all finite sums, so choosing C’ to be the maximum of C, , over all 7,7, and letting
C =2N§~1C’, we have

HfH(Nvo‘) S C Z Hf‘|n+1+|o¢—'y|7777

IBISN
n+y=08

which satisfies the criteria for Proposition 5.15. Thus, the Fourier transform is continuous on
S. O

Proof following Folland. Recall from Folland Exercise 8.1 that we have
%2 f) =20 f + 3 2’07,

where the c,s vanish for |y| > |af, |6] > |B|. To prove this, we use the product rule (which we
discussed in recitation). We induct on the length of 5. First, assume that  has length 1. Using
general Leibniz rule (without loss of generality assuming that § is non-zero in the first coordinate),
we have

ratn =Y @)@l

Nl ~10!

This will evaluate to 0 for all 4 which are non-zero outside of the first coordinate, and so we get
that this amounts to

ot =arorr+ Y ol g (dja:k>

! k! .
= 2ho"f + E i(87]") < xkj)
171 — )l
G0, 0)=a | (k=3)
J#0
= 2P0 f + E cys(O7 f)al.

Assuming it holds for length of 8 being n — 1, we have that getting it for n is a matter of writing
B=B1,.-.,0n-1,0)+(0,...,0,8,) and letting v = (51, ..., Bn-1,0). This then gives us

02 f) = 0% a? ) = a0 (27 ) + Y esy(0°f)a".
Using the induction hypothesis now, we get
0°(a”f) = apra (0°f) + ) cog(0° )a" = 2P (9°F) + Y coy (07 o,

as desired. Note that the properties on the constants vanishing are clear by the derivation.
By definition, we have that

1wy = sup (1+ 20 f]
z€eR™
and using what we’ve derived earlier we have
Ifllvey < sup |2%070 3 faPof] |,
T€R"”

IBI<N
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where we now write 7 instead of ¢ for the minimum for notational convenience. Notice now that

1l vy < sup 2Vt N a0
IBI<N

(Use Folland 8.22 (d) on 8°f) = sup |2Vn~! Z 2% ( 27rzzr fl
veRe |BI<N

(Use linearity and the absolute value to pull out constants) = sup |2V7™! E (2m)lell) P g f]
TER™
|BI<N

(Use Folland 8.22 (e) on 2Pz f, pull constants out with linearity) = sup [2Vn~1 E (2m)lel= ‘5||8595af|
z€R”
IBI<N

A
(Use the product rule to rewrite %z f) = sup [2Vn~! Z (27) |18 [:L‘O‘O’Bf + chx‘s('ﬁf} ‘

veR? BI<N

(Use linearity of Fourier transform) = sup |2V7™! Z (2)lel =18l
TER™

T+ Y s ]

IBI<N i
(T1) <2V 37 @m) P 2207 fllu + Y eysll290 ]
IBI<N
(Inequality from Folland) < 2Vp~! Z (2rr)lel=16] {C’H(l + |z))" a0l £, + Zc,ngH(l + ]m\)"“m‘sa'nyu}

|BI<N

(Use the fact that |z|® < (14 |z])l*l) < 2Ny~ Z 2 )lel =18l [CH(l + ||y 198 £l +
IBI<N

S s+ fal) 47 g

(By definition) = 2%y~ " (2m)ll -1l [CHfH(nHaHl,ﬁ) + chéc\\f“(nﬂawm)} ,
IBI<N

where the constants in the last sum are such that c,s = 0 unless |y| < || and [d| < |a|. Now,
absorbing constants and maybe letting some constants be zero, we can write this as

IFlvey < D Cosalfllgarintin:

V<IBI<N
6]<|ct|

This is a finite sum, so we can find some constant denoted by C'y , which bounds above all constants
and gets rid of multiplicity, and this gives us

1l vy < Crva Y I llatnsrs

[v|<N

which is now what Folland has. To see where the inequality comes from, notice that we have

12208 f||u = (205 flloo < 207 f]|1,
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and furthermore calculating the last part, we have

agB | — (1+’x‘)n+1 anf < / dx 1 n+1l,.aqf
fteron= [ it < ([ g ) 10+ 00 1.

Setting

dx
c= | ——_
e (L 2t

we have the desired inequality. O
Problem 29. Let f,g € L'(T"), m € Z", and y € T". Then we have

(1) (f +g)(m) = f(m) +g(m),
() 7y F(m) = Flm)e=2mim,
(3) Fxg(m) = f(m)g(m).
Proof. We first check that if f,g € L'(T"), then f * g is periodic with period 1. Writing things out,

we have
(f * o)z /f:v—

Now, we check that this has period 1. We see that

(frg)x+1)= [ flz+1-y)gy)dy = . flx—y)g(y)dy = (f * g)(=),

"H‘n
since f is a function with period 1. So the convolution is still in the space of functions on T*.
(1) We have

Fram) = [ 1+ 9@e s
= /n [f(x)e_%im'x + g(x)e_zmm’x] dz
= /n [f(a:)e_gmm':‘dx + /n g(;r:)e_%im'x} dx

= [(m) +g(m).
(2) Notice that

Tyf(m) = /T (Tyf)(x)e*QMm'xdx = i f(.%’ _ y)e*2m'm“dq;7
where here we use the alternate definition of translation given in the chapter so that the

equation makes sense (i.e. we now have 7, f(z) = f(z — y) rather than 7, f(z) = f(z +v)).
Let u =2 — y, du = dx, then we can rewrite the above as

F(w)e 2T m ) oy = =27 ),
(3) We have
Frg(m) = / n(f*g)(x)e‘%im'wdx— / ( flo—y)gly )dy) e~ 2mimeT g
/ ) Tnf x—y)g(y)e ™" dyda.



Taking the absolute value, we see that by Tonelli we have

J[ 1= llattaty <o) = [ ( [ 16~ ide) lawlas = 1711 Igks < .

so the functions are in L' (y x x). Hence we can use Fubini to change the order of integration.
Thus, we have

/ ; f(-f _ y)g(y)e—Qmm-(m—y)e—27rim-yd$dy _ / < : f(-f o y)e—27rim~(x—y)dw> e—27rim~yg(y)dy

n

~ ~

= [ Fmem*mmg(y)dy = Fm)gm).

O
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James Marshall Reber, ID: 500409166 Math 6212, Homework 6

Remark. Thomas O’Hare was a collaborator.

Remark. I guess there is a discrepancy between Grafakos’ second and third edition, I am using
the third edition (which can be found easily through a google search).

Problem 30 (Folland 9.16). Let
sin(mz) .
sinc(z) = T ifz 70,
lifz=0.

(a) If a >0, then (X[_q,0))" (%) = (X[-a,q) "’ (z) = 2asinc(2az).
(b) Let
H,={feL?: f(¢) =0 a.c. for |¢| > a}.
Then H, is a Hilbert space and

{V2asinc(2ax — k) : k € Z}

is an orthonormal basis for H,.
(c) If f € Hy, then f € Cj after a modification on a null set, and

flx) = Zf(k:/2a)sinc(2am — k),

where the series converge both uniformly and in LZ.

Proof. (a) Assume z # 0. We have

mﬂmww—émﬂm@fmmw

a .
— / e—2ma:~zdz‘
—a

Letting u = —2mizz, du = —27wixdz, we have that the above integral is equal to
6—27riacz a _6—27riaca +62Wiwa
—2mizr |,__, 2miz

By DeMoivre, '
e' = cos(x) + isin(z),
e = cos(x) — isin(x),
and subtracting the second from the first and dividing by 2¢ gives

1T —iT

e —e€

2i
Using this, we can rewrite the above as

= sin(z).

—e2miza ‘—i- e2miza _ 2sin(27za) _ 2a sin(2rza) _ 2a sin(m[2azx]) _ 9asine(2az),
2mix 2 2nza m[2az]

as desired. Similarly,

() (@) = (eaa) (=0) = [ XaaG)e¥ s

a .
—_ / eszxzdz‘
—a
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Letting u = 2mixz, du = 2wixdz, we have that the integral evaluates to
627ria:z a 627ri:ca _ e—27ria:a

2mix |,__, 2mix

and the same argument as above gives that this comes out to 2asinc(2az). For z = 0, we have
that

a
. v
(X[—a,a])/\ (0) = / dx = 2a = 2asinc(0) = (X[—a,a]) (0).
—a
Hence, we have (X[—q,q])" (%) = (X[-a,q) " (z) = 2asinc(2az) for all .

We recall that L? is a Hilbert space from prior homework, and so it suffices to show that this
is a closed subspace. First, if f,g € H,, then we have that

F+9(0) = F(O) +5(¢) =0 ae. for (| > a,
so f+g € H,. If r is a scalar, we see that

;}(C) — r]?(C) =0 a.e. for || > a,

S0 it is a subspace.
Next, we wish to show that it is closed. Let (f,) C H, be a sequence such that f, — f in L%

The goal is to show that f € H,; that is, f(C) = 0 a.e. for all |(| > a. Notice that Plancherel’s
theorem says that ~extends uniquely to a unitary isomorphism on L?, so we have that f,, — f
in L?; furthermore, we can extract some subsequence Jn; — [ almost everywhere. Hence, we

-~

have f(¢) =0 a.e. for [{| > a.
Now, we need to show that
{V2asinc(2ax — k) : k € Z}

is an orthonormal basis for H,. First, we show that the set is actually orthonormal. Letting
Ei(x) = v/2asinc(2ax — k), we note that this is the same as showing that

if k # K
(Er(z), By (x)) = {g if k i Z’.

Since the Fourier transform is a unitary isomorphism, we get
(Ek, Epr) = (B, Eyr).
Recall that part (a) tells us that
(X[_a,a])v(a:) = 2asinc(2ax),

where here we interpret the Fourier inverse in terms of the L? Fourier transform as well as in
terms of the L! Fourier transform (so that we may ignore issues of the transform being L' for
Fourier inversion). We note such an interpretation is valid by Plancherel.

Taking the Fourier transform (to help with notation, we will denote the Fourier transform
with F instead of = and the inverse Fourier transform with G instead of -¥) we have that

F(2asinc(2ax — k)) = 2aF (sinc(2a(z — k/2a))).
Writing this in terms of the translation function gives
(Tk/Qa}"(g(X[,a’a]))) = 2a]-"(7'k/2asinc(2ax)) = 2aF (sinc(2az — k)).

We must be careful here. We'd like to just use Theorem 8.22 (a) and conclude the desired
result, however this only works for L' functions and, as we’ve noted in recitation, sinc is not an
L' function. We can salvage this by extending the result to a.e. equivalence (or L? equivalence)
in the following way.
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Claim. If f € L*(R"), we have that
F(ryf)(m) = e 2™mY F(£)(m) as functions in L.

Proof. Let f € L? and take (f,,) C L' N L? such that f, — f in L?. Let y be some point in R™.
Note that

F(ryfa)(m) = e 2T VE(fr)(m)
by Theorem 8.22 (a). From this, we conclude that
F(ryfa) = e TMVF(f)

in L2. Furthermore, we note that

7y (fn) = Ty(D)ll2 = 7y (f — Pll2 = I fn = fll2 = 0.
So Plancherel tells us that
]:(Ty(fn)) — F(Ty(f))

in L? as well. Hence, as functions in L?, we have

Flry(f)) = e 2 MVF(f).

Using this claim, we get that
F(Ti/2a9 (X|=a,a)) (T) = 672”””’3’)([_&’@] (z) as functions in L.
So, we have that
F(2asinc(2ax — k)) = eiQﬂim'yX[,aya] (z) as functions in L.
Now, using that the Fourier transform is unitary, we have
(Er, Ex) = (Eg, By).
Writing out the right hand side and using the result from the claim (which is valid, since we
only need up to L? equivalence here), we have

1

) / 1 a . /
—2miz(k—k")/2a _ —2miz(k—k')/2a
5 Js X[=a,a (7)€ dz 5 /_a e dx.

If k =K', we get 1 since
1 [ 2a
— dr = — =
2a J_, 2a
Assume then that k # k'. Letting u = —2mix(k — k') /2a, we get du = —dx2mi(k — k') /2a, so
we have

1.

1 —mi(k—k') y o milk—k') _ omi(k—K') . o
i — ) /m.(m du=—— Ty k= k) =0.
So the set is orthogonal, as desired.
We now need to show completeness of the span of this set. That is, we wish to show that if
(g9, Ex) = 0 for all k, then g = 0 almost everywhere. Notice that

0= (9.B) = @B} = [ g0) Bule)d

~ - 1 Iy -
= /g(x)\/ﬁ - F(sinc(2ax — k))dz = Wer 9(x)2aF (sinc(2azx — k))dz
— \/127G<§? eQﬂ'ixk/an[ia’a]).
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Since this holds for all k£ € Z, we claim that this shows that g = 0 on [—a,a]. To show this,
we follow the guideline outlined in recitation. On L?([-1/2,1/2]) = L?(T'), Theorem 8.20
tells us that {e?™**} is an orthonormal basis. To adjust this for L?([~a,a]) = {f € L?: f =
fX[—aqa-e} = H, = F(H,), we simply scale. Consider the map T : L*([—a,a]) — L*(T") via
Tf = f(z/2a). This is bijective, with inverse T~ : L*(T') — L?([~a,a]) given by T71f
f(2ax), and furthermore we see that
1/2 a
(Tf,Tg) = P f(x/20)g(x/2a)dz = [ f(z)g(z)dz = (f,g)
— —a
by a simple change of variables. So it is a unitary map. Now, if g is such that (g, Fx) = 0
for all Ej, we get that it is such that (g, Ex) = <’g\,E’;) = (17, TE’;) = 0 for all TEj. Since
this is an orthonormal basis of L?(T!), we get that this forces 7g = 0. Using that 7" and - are
unitary, this then implies that g = 0 on L?([—a, a]), or g = 0 almost everywhere on [—a, a], and
by virtue of g being in H,, we get that g = 0 almost everywhere as desired. So it is indeed an
orthonormal basis.
Let f € H,. We wish to show that f € Cj (after modifying on a null set), so it suffices to show
there is a h € Cp such that f = h almost everywhere. Since f € H,, we get that f” is such that
it is supported in [—a, a] and is in L? using Plancherel. Now, since it is supported in [—a, a], we
get that f € L' N L? (Proposition 6.12). Taking the inverse Fourier transform and invoking
Plancherel (that is, interpreting this in terms of the L? Fourier transform rather than using
Fourier inversion), we get that (f")Y = fin L? (i.e. almost everywhere), and Riemann-Lebesgue
says that ()Y = h € Cy (by Plancherel, the L? Fourier transform agrees with the usual Fourier
transform on L' N L?). To see this more explicitly, notice that (f")V(x) = (f")"(—=z), since
N e L'NL2. Now, Cy = Cp(R) is the space of functions where f(z) — 0 as |#| — 0. Riemann-
Lebesgue says that (f*)" € Cy(R), so using this we have that (f*)"(—z) — 0 as |z| — oo as
well; in other words, (f)Y € Co(R). So f =h = (f")Y almost everywhere, where h € Cy.
Now, we get from the orthonormal basis that

Fa) = ST Uf, Bi) Ex(a).

kEZ
Let ¢ = (f, Ex). We then get that

@) =3 ek Bi(@).

keZ

We wish to determine what the value for ¢ is. Plugging in r/2a, we have

f(r/2a) =" cxEp(r/2a)

keZ

= Z ckV2asine(r — k).
k€EZ
Recall that for r # k, sinc(r — k) = 0, since for k € Z—{0} we have sinc(k) = sin(7k)/(7k) = 0,
while for » — k = 0 we have sinc(r — k) = 1. So we see that

f(r/2a) = V2ac,,
so that

_J6/2)
T \/% .
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Thus, we have

flz) = Z f(k/2a)sinc(2ax — k)
kEZ
where the sum converges in L2
We wish to finally show that the series converges uniformly as well. Letting

N
gN = Z f(k/2a)sinc(2ax — k),

k=—N

we wish to show that
If = gnlla — 0.
Since we have an isometry, we get that
If =gnllz2 =0 = [If —gnll2 = 0.
Furthermore, since the Fourier transform of f is in
FH)=H,={fecLl?: f= fX[—aq €} = L*([~a,d)),

we get that this is converging in L? on a space of finite measure [—a, a], and so using Propo-

sition 6.12 we get that

1~ ~
E”f—gNHl <|f—=gnl2 =0,
so that R
If—gnl1—0

as well. That is, these converge in the L' norm as well. Now, using that || f|l. < ||f|1, we take
the inverse Fourier transforrrﬂ to get that

I = (8™ Il < 1 = g8l = 0,

and so Plancherel gives us that

If = gnllu < IIf = gnlL — 0.

Hence, this sum converges uniformly as well.

Problem 31 (Folland Lemma 8.34). If f,g € L?(R"), then (fﬁ)v =fxg.

Proof. We first must show that fﬁ € L'. First, by Plancherel we see that f,g € L? implies that
f,g € L?. Now, Holder tells us that

191l < [[fll2llgll2 < oo,

so we see that fﬁ € L'. Thus, we have that (fﬁ)v makes sense in terms of using the formula.
Now, fix € R and let h(y) = g(z — y). Consider g, — g in L' N L%, Defining correspondingly
hn = gn(x — y), and note that h,, — h in L?. We see that for all n, we have

hn(m) = /hn(y)e%-im-ydy — /Weznim.ydy

_ e—27rim-a:/gn(l, _ y)6727rm-(acfy)dy

— e—QWim-xm'

2Again7 in terms of L?/Plancherel so that we do not need to worry about conditions for L' Fourier inversion.
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So using Plancherel, we see that h — hin L2, e~ 2mmag s e2mmag in [2 and thus we have
h= ge ™M glmost everywhere
Putting things together, we see that for this fixed x, we have

gz /f w—y)dyz/f(y)h(y)
= (f,h),

so since the Fourier transform is unitary we get

Thus we have equality. O
Problem 32 (Grafakos Example 3.1.5). Let

_ § : am62mm~z

mez"

be a trigonometric polynomial on T", where (a,,)mez» is a finitely supported sequence in Z". Then:

(a) We have
_ Z ﬁ(m)e%ﬁmm‘

= 3" Plm) f(m)em.

Proof. (a) Since the sequence (a,,) is finitely supported, we note that the series is going to be a
finite linear combination of L' N L? functions, and so it will be L' N L? as well. Hence, the
Fourier transform of the polynomial will be

P(k) = / ) P(z)e 2"k qy

:/ [Z am627rim-a:] 6_2mk'$dl’

mezm

Z am/ 2m(m k)-

mezZm"

(b) If f € LY(T"), then

where the last equality follows since the sum is finite. Recall that (™), czn is an orthonormal
basis for L?(T™), so for k # m we have that the integral is zero, and otherwise the integral will
be 1. This then gives us

~

P(k) = ag.
By direct substitution, then, we see that
P(z) = Z P(m)e*mime.
meZ"

3What Folland has is technically incorrect; we cannot get equality without the functions being in L', since we
don’t have a formula which applies for all of L?.
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(b) If f € L}(T"), we see that

(F+P)a)= [ flz— )Py = / fz—y)
T T

Z ﬁ(m)e%im'y] dy

mezZn

= X Pm) | o= y)em vy

mezZ"

= Z ﬁ(m) f(fE _ y)e*27ﬂ'm-($*y)627rim-xdy
mez™ g

~

= P(m) f(m)e*im=.

Problem 33 (Grafakos Exercise 3.1.4). On T define the de la Vallée Poussin kernel:
Vn(z) = 2Fny1(x) — Fy(x)
where Fy denotes the Fejér kernel.

(a) Show that the sequence (Vi) is an approximate identity.
(b) Prove that Viy(m) =1 when |m| < N + 1, and Vx(m) = 0 when |m| > 2N + 2.

Proof. (a) Recall that a sequence is an approximate identity if it satisfies three properties:
(1) We first want to show that supy ||V |1 < co. We see that, for all N, we have

VNIl = 2Fans1 — Fnlln < 2| Fangalls + |1EN L,

and since the Fejér kernel is an approximate identity (by the lecture notes or Proposition
3.1.10 in Grafakos), we see that

sup ||Vl < 2sup || Fan+1]|1 + sup [|[Fall1 < 0.
N N N

(2) We now want to show that

/VN(a:)dx _1

for all N. Fixing an N and using that the Fejér kernel is an approximate identity, we see
that

/VN(.Z‘)d.T = /(2F2N+1(CII) - FN(a:))da: = 2/F2N+1(:U)dx - /FN(.T)d.T =2-1=1.

Hence, we have the desired result.
(3) Finally, we wish to show that for any neighborhood V¢ of 0, we have that

/ Vy|dz — 0.
1%

Since we’re on the torus, it suffices to show that for all § > 0,
/ Viyldz — 0.
5<|e|<1/2
Again, we use that |Vx(z)| < 2|Fant1(x)| + |Fn ()], so that if V ={z:J < |z| < 1/2},

Og/ |VNyda:gz/ |F2N+1(x)]da:+/ P ()] da.
1% 1% 1%

Taking the limit as N — oo of both sides gives us

0< lim / |VN|d:r§2[lim / |F2N+1(m)\dx]+ lim / |Fv(z)|dz,
N—o00 Vv N—o00 \% N—oo 1%
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and since (Fy) is an approximate identity, we have that
lim [ |Vy|dz = 0.
N—o0 1%

So this holds for any neighborhood of 0.
Hence, (Vi) is an approximate identity.
(b) We have that

Vn(m) = 2Fn1(m) — Fyy(m)

by linearity of the Fourier transform. Utilizing Proposition 3.1.7 in Grafakos, we see that

F —1-
2n-+1(m) 2N +2
if [m| < 2N + 1 and 0 otherwise, and likewise
F -1
w(m) N+1

if /m| < N and 0 otherwise. Clearly, then, for |m| > 2N + 2, we get that ﬁv(m) = 0, since
both components will be 0 in this range. Now, for |m| < N, we see that

= m| m|
VN(m):2<1_2N+2 S
(4N +4—2|m| N +1—|m|

B 2N +2 N+1
4N +4—2/m| - 2N — 2+ 2|m)|

2N +2
2N +2

TON 12

=1

For |m| = N + 1, we see that we have

—~ |m| 2N +2—|m|
Vn(m)=2(1- —2
n(m) ( N +2 2N +2

_4AN4+4-2/m| _4N+4-2N+2 2N 42

=1.
2N +2 2N +2 2N +2
So if |m| < N + 1, we have VJ\V(m) =1, as desired.
([l
Remark. Proposition 3.1.7 of Grafakos claims that
- i
F _ 1— 2mijx
v = 30 (1- 5 ) e
j=—N
which we derived in our class notes. Furthermore, he uses this to note that E\V(m) =1- A',LJl

if [m| < N and zero otherwise, which is the property used in this problem. To see this, we use
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linearity of the Fourier transform to note that

Falm) = 3 (1= 527 ) m)

j=—N

ZN 5]
B L
_4 (1_N+1)/Teﬂ'ljibe ﬂlxmdx

j=N
_ i (1 _ NU+|1) sinc(j — m)

_ -t im < N
0 otherwise.
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James Marshall Reber, ID: 500409166 Math 6212, Homework 7

Remark. Thomas O’Hare was a collaborator.

Remark. I guess there is a discrepancy between Grafakos’ second and third edition, I am using
the third edition (which can be found easily through a google search).

Problem 34 (Grafakos Theorem 3.3.4). Let (dy,)mezn be a sequence of positive real numbers with
dm — 0 as |m| — oco. Then there exists g € L!(T") such that [g(m)| > d,, for all m € Z". In
other words, given any rate of decay there exists an integrable function on the torus whose Fourier
coefficients have slower rate of decay.

Proof. To build this, we will use Lemma 3.3.2 and Lemma 3.3.3. Recall these lemmas.

Lemma (Grafakos Lemma 3.3.2). Given a sequence of positive real numbers (a,,)oc_, that tends
to zero as m — oo, there exists a sequence (c¢p,)oc_, that satisfies the following three conditions:

(1) am < Cm,

(2) em (0,

(3) cmg2 + m > 2¢m41

for all m € Z>g. A sequence (c,,) satisfiying these conditions is called convex.

Lemma (Grafakos Lemma 3.3.3). Given a convex decreasing sequence (c¢p,)0_ of positive real
numbers satisfying lim,, o ¢, = 0 and a fixed integer s > 0, we have that
oo
Z(T + 1)(Cr+s + Cryst2 — 2cr+s+1) = Cs-
r=0
We omit the proofs of these, since they are in Grafakos. Consider first the case n = 1. We have a
sequence of positive numbers (dy,)mez such that dy, — 0 as [m| — co. We can consider the sequence
(dm+d—m)50_, which is still a sequence of positive real numbers such that d,,+d_,, — 0asm — oco.
Thus, we can apply Lemma 3.3.2 to extract a convex sequence (¢,,) so that ¢, > dp, + d_p,
cm \( 0, and ¢mi2 + ¢m > 2¢m41. We extend this to all integers by setting ¢, := ¢, for m > 0.
Our goal, then, is to create a function f € L'(T!) with this sequence (c;)mez so that the
|f(m)| > d,, for all m. Lemma 3.3.3 suggest that we choose
oo
flx) = Z(T + 1)(er + crg2 — 26r41) Fr (@),
r=0
where F,.(x) is the one-dimensional Fejer kernel — that is,
T .
1\ o
Fo(x) = 1— mijz,
@)= (1o )

j=—r

Since F) is periodic, we get that f is periodic. We then want to see whether it has finite L' norm

on the torus. Checking this, we get
o0
Z (r+1)(cr + cry2 — 2¢r41) Fr(2)

11 = | >

< /Z(T + 1)(CT + Cry2 — 2CT+1)’FT($)’
r=0

- /Z(r + 1) (er + erg2 — 2¢p41) Fro(2),
r=0
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since Fy(x) is positive. To see this, we have the equivalent definition of the Fejer kernel given by

Fr(z) = Ni 1 <Sin(:i(nl\<fﬂz)1)w)>2'

Now we use Tonelli, noting that everything is positive and interpreting the sum as an integral
with respect to counting measure, in order to switch the integral and sum (alternatively, one could
invoke Theorem 2.25 using the following facts). This gives us

0o
£l <+ D(er + erra — 2,41 [|Fpfls = co < 00
r=0

by Lemma 3.3.3, noting that ||F}||; = 1 by the proof of Proposition 3.1.10. Thus, f € L'(T!).

Now, we wish to show that f(m) > d,, for all m € Z. Note that the series converges to f in L';
using techniques above, we have

N oo
'f(a:) - Z(T +1)(er + erp2 — 26041) () || = Z (r+1)(cr + ¢rq2 — 2¢41) ()
r=0 1 r=N+1 1
oo
< Z (r+1)(¢p + ¢r42 —2¢p41) = 0 as N — o0,
r=N-+1

since convergence of the series implies the tail goes to 0. Denote the partial sums as

N

In(z) = Z(T +1)(er + cri2 — 2¢r41) Fro(2).
r=0

Since these functions are in L', we have that the Fourier transforms will be

Fm) = /T f(x)e2mmady,

]/C;(m) :AfN(x)e_zmm‘”d:c.

Since the series converges in L', we see that
lim \J?(m) - J?]\V(MH = lim ‘/(f(a:) — fN(x))e*QWimxdx
N—ro00 N—oo | JT

< Jim /T F@) ~ f(@)ldz = Jim |1 = ] =0.

So

o0

flm) = lim fy(m) =Y (r +1)(cr + crez — 2601 Fy (m),
r=0

using the linearity of the Fourier transform on finite sums. Now, recall that

- _ Iml <
Fr<m>:{ et fm| < v

0 otherwise,
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either from the last homework or from Proposition 3.1.7. Hence, we get that

o0

~ —

f(m) = Z(r + 1) (¢ + ¢ry2 — 2¢41) Fr(m)
r=0
S m|
= Z (T+ 1)(67« —|—Cr+2 — QCTJrl < r+1 >
r=|m)|
- m|
= 1 -2 1-—
;(T + |m| + )(Cr+\m| + Cr4|m|+2 Cr-HmH—l) ( r+ |m| + 1>
00
r+1
= 1)( -2
ZZ:O r+ ’m| + r+|m| + Cr4|m|+2 Cr+|m|+1) <T‘ T+ |m’ + 1>
00
= Z(CT+|m| t Cripfml+2 — 26r+|m|+l)(r + 1)'
r=0

Now, we can hit it with Lemma 3.3.3 with s = |m| to get
f(m) = ¢ = cm.
Since the coeflicients are positive, we see that
f(m) = Cm = dp,

as desired.
Now, we wish to show this for general n > 1. We first need the following claim.

Claim (Grafakos Exercise 3.3.2). Given a positive sequence (d,)mezn with d,, — 0 as |m| — oo,
there exists a positive sequence (a;)jez With am, - am, > dim,,...m,) and a; — 0 as |j| — oo.

Remark. Note that in Grafakos, for m = (my,...,m,) € Z", we have |m| = \/m3 + --- + m2.

Proof. The case n =1 is clear; just take d,, = a,, for all m.
Now consider the general case of n > 1. Let

Aﬁl) = max {/dqm),

meanl

T kEZ,r:lng)én—Q \/ Y(k,rm)s
AW = v/d
wegno1 V-

Note that these maximums are finite by the decay of the coefficients. Let a, = maXi:L,,,m{Ag)}.
Then we see that

Fixing ¢ > 0, we choose R sufficiently large so that for ](ml,...,mn)] > R, we have that
dimy,....mn) < €. Hence, we have that for |n| > R, |m| > R for m = (m1,...,m,) € Z", r = m; for
some j, my € Z for all k # j. Notice that for all i = 1,...,n, we have

Agf) = max W drmy < Ve =g,

keZi—1 mezn—i
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so we get that
ar = max {ADY < er = .
i=1,...,n

Thus, a, — 0 as |r| — oo, as desired.

Using this claim, we can construct a desired sequence (a,)mez for the (dy)mezn. Let

g(xl,...,mn) = f(xl) f(xn)7

where f is the function previously constructed when n = 1 so that f(m) > a,,. Then we see that
mssecom) = [ glo)e s

e / . e f(xl) e f(xn)e_27rim1x1 e 6_27r7:mnl'nd‘,r1 e dxn
T T

n
oMM
=11 . fag)e” =™ du
j=1

~ ~

= f(m1) - f(mn) > am, -~ am, > d(m1,....;mn)>

as desired. Note that the justification of iterating the integral comes from the fact that the inside
of the integral is L', since

n
[ lst@iemeian = [ gtaiido = [ o [ ) flandedo = [T [ fade; <o,
n n T1 T1 ]:1 T1
where we note that the f are all positive and we use Tonelli to iterate this integral. So Fubini

applies, and we can iterate the above integral to get the desired result. ]

Recall that we say F' € BV (F is a function of bounded variation) if Tr(c0) = limy_0o Tr(x) is
finite, where

TF(ZL‘):SUP{Z|F(1‘j)—F($J’1)| :nEN,—oo<x0<---<xn:x}
1

Problem 35 (Folland Lemma 3.26). If F' € BV real valued, then Tr+ F and T — F' are increasing.

Proof. Fix € > 0, x <y. Choose g < --- < x,, = x so that
n
Y |F(w)) = F(zj-1)| > Tr(z) —e.
1

Notice that we can do this since T is defined via a supremum; that is, we have

TF(CB):sup{Z|F(:L‘j)—F(:L‘j1)|:nEN,—oo<xo<--~<:L‘n:x}.
1

Now, we have that
o< <xp=x <Y,
so we get that

n

Y IF(w)) + F(aj-1)| + | F(y) - F(z)|
1
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is in the collection
n
fa y):sup{Z|F(xj)—F(:z:j_1)]:neN,—oo<a:0<~-<a:n:y}.
1

Notice as well that we can write

Hence, we have that

n

Tr(y) £ Fy) = Y |F(xj) = Flaj-1)| + |F(y) = F(2)| £ [F(y) — F(x)] £ F().
1

If x € R, we have that

’|+ 20if x>0
| +x= ,
Oifz <0

so that |z| +x > 0. Hence, we have that
Toly) £ Fly) = 3 [F(w)) — Flaj1)| £ F(a) > Te(x) — ¢ £ F(a).

This holds for all € > 0, so letting it go to 0 gives
Tr(y) £ F(y) > Tr(z) & F(x).
The choice of x < y was arbitrary, so we get that T + F' is an increasing function. O

Problem 36 (Folland Theorem 3.27). (a) F' € BV iff Re(F) and Im(F') € BV.

(b) If F: R — R, then F' € BV iff F is the difference of two bounded increasing functions.
(c) If F € BV, the set of points at which F' is discontinuous is countable.

(d) If F € BV and G(x) = F(x+), then F’ and G’ exist and are equal a.e.

Proof. (a) (= ): Assume F' € BV. Then we have
Tr(o0) = hm sup{Z]Fx] $]_1)|:nGN,—OO<l‘0<"'<ZCnZZL‘}<OO.

Notice we may write F' = Re(F') + iIm(F). Substituting this in, then, we have

(3)
lim sup {Z [Re(F — Re(F)(zj_1)] + i[Im(F)(z;) — Im(F)(z;_1)]| : =00 < T9 < -+ < & = :r} :

Notice that for all x, this bounds above

sup {Z |Re(F)(x;) — Re(F)(zj_1)| :n €N, —00o < xg < -+ < & = x}
1
and

sup {Z Im(F)(z;) — Im(F)(zj—1)|:neN,—co <29 < -+ < xp = :r} ,
1
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since we have

N
> IRe(F)(x;) = Re(F)(zj-1)] + illm(F)(z;) — Im(F)(z;-1)]]
1

N
=> \/[RG(F)(%) — Re(F)(zj-1)]? + [Im(F)(z;) — Im(F)(z;-1)]?
1

N N
> max {Z [Re(F)(xj) — Re(F)(zj-1)l; ; [Im(F) () — Im(F)(fL‘jl)l}

1

for any partition. Taking the limit, then, we get that each of these are finite, and so Re(F') and
Im(F) € BV.
(<=) : Assume Re(F) and Im(F) € BV. Applying a triangle inequality in (1), we get

sup {Z |F(z;) — F(zj—1)|:neN,—oco<zg < -+ < xp = :1:}
1
< sup {Z |[Re(F)(z;) — Re(F)(zj_1)]:neN,—co <z < -+ < = x}
1

+ sup {Z Im(F)(z;) —Im(F)(zj—1)|:neN,—co<zg < -+ <z = x} ,
1

and taking the limit as z — oo implies Tr(00) is finite.
(b) For this, we need a few facts.
(1) Notice that if F': R — R is bounded and increasing, then F' € BV. This is because, for all
x, we have

Tp(x):sup{Z|F(acj)—F(a:j1)| :neN,—oo<x0<---<xn:x}
1

:sup{ZF(:pj)—F(:cj1):n€N,—oo<xg<-~'<xn:$}
1

=sup{F(x) — F(xg) :n €N, —c0 < zg < 2} < 2M,

where here we used the fact that F' was increasing, so |F(x;) — F(z;—1)| = F(z;) — F(zj-1)
for z;_1 < xj, and we used that M bounded F. So Tr(o0) < 2M < oo.

(2) Notice that if F,G € BV and a,b € C, then aF + bG € BV. This follows by the triangle
inequality, since

~—

TaF+bG (x

= sup {Z laF(xj) + bG(xj) — aF(xj_1) — bG(zj—1) :neN,—co <z < -+ <@y =1
1

n
S]a|sup{Z\F(a:j)—F(xj_1)]:neN,—oo<:E0<---<:cn:x

—_— —— Y—

1
—Hb[sup{z |G(zj) — G(zj_1)|:neN,—co<zg < - <ap=2
1

= |a|Tr(x) + |bTe («

~—
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Thus, taking the limit as * — oo, we have
Tor+c(00) < |a|Tr(o0) + |b|Te(00) < oo.

( = ): Assume that F' € BV. The prior problem tells us that Tr + F and Tp — F are
increasing functions. Furthermore, we have that they are bounded; we see that (for y > x)

Tr(y) £ F(y) > Tr(x) £ F(x)
implies that
|F(y) — F(2)| < Tr(y) — Tr(z) < Tp(oo) — Tr(—00) < oo,
Tr(y) — Tr(z) > £F(x) F F(y)
= Tp(y) — Tr(z) > max{F(y) — F(z), F(z) — F(y)}
= Tr(y) —Tr(z) 2 [F(y) — F(z)],

and we use the fact that Tr is an increasing function (see Equation (3.24) and the remark
after). This implies that F' is bounded, and so furthermore we have Tr + F' is bounded. Thus,
we have that

1
F = 2(
is a difference of bounded increasing functions.
( <= ): Assume that F' is the difference of two bounded increasing functions. Since they are
bounded and increasing, we have that (1) tells us that they are in BV, and (2) tells us that
linear combinations of BV functions are in BV. So F is in BV.
Let F' € BV. By Theorem 3.23, the set of discontinuities of an increasing function is count-
able. Write F' = Re(F') + iIm(F'). Since Re(F),Im(F) : R — R, we can use (b) to express
them as the difference of two increasing functions, that is, we have that Re(F) = G; — G,
Im(F) = Hy — Hy. So F = (G1 — G2) + i(Hy — Hz). Since these have a countable number
of discontinuities, this implies that F' has a countable number of discontinuities (the set of
discontinuities for F' is the union of the sets of discontinuities for each function, and a union of
a finite number of countable sets is countable), as desired.
Assume F is real valued. By (b), we have that F' € BV implies that F is the difference of
two increasing functions, say H and K for notational simplicity. So F(x) = H(z) — K(x).
Let S(z) = H(xz+), and T(z) = K(x+). By Theorem 3.23, we have that H and K are
differentiable almost everywhere (and hence, F' is differentiable almost everywhere), and S’ =
H', T'" = K’ almost everywhere. Furthermore, if F(z) = H(z) — K(z), we have G(z) =
F(z+) = H(z+) — K(z+) = S(x) — T(z) is such that G’ =S8 —T', and so G' = H — K' = F’
almost everywhere.

We have it holds for real valued functions, so consider now F' € BV such that it is complex
valued. Write F' = Re(F) +ilm(F). Let Gi(z) = Re(F)(z+), Ga(z) = Im(F)(z+). Then
G(z) = F(z+) = G1(x)+iGa(z), so G1 = Re(G), G2 = Im(G). By prior, we have Re(F)" = G}
and Im(F)" = GY, exist and are equal a.e., so we get that F’ = Re(F) +iIm(F) = G| +iG,
exists and they are equal almost everywhere.

Tp +F) (Tr — F)

1
2

O
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James Marshall Reber, ID: 500409166 Math 6212, Homework 8

Remark. Thomas O’Hare was a collaborator.

Problem 37. Suppose that fi, fa,..., and f are in L{ (U). The condition in (a) and (b) below
imply that f,, — f in D’(U), but the condition in (c) does not.

(a) fne LP(U) (1 <p<oo)and f, = fin the LP norm or weakly in LP.

(b) For all n, |f,| < g for some g € L{. (U), and f,, — f a.e.

(¢) fn — f pointwise.

Proof. Recall throughout that a sequence (F,) C D'(U) converges to F in D'(U) if, for all ¢ €
C(U), we have (F,, @) — (F, ) (i.e., pointwise convergence).
(a) First, assume that f, — f in the LP norm. Let ¢ € C¢°(U) arbitrary. Then we have that

(frnr ) Z/fnv-
; |<fn,so>—<f,<,o>|=1/<fn—f>so] < [15a = 1llel

Since the ¢ are functions with compact support which are bounded, we see that they are in
LY for g such that (p,q) = 1 with 1 < p < oo (this follows from Proposition 6.12). We can
apply Holder to get that

J15a= 1Al <1 Sl
with [|¢|l; < co. Since f, — f in LP, this implies that this goes to 0. Thus, we have

(frsp) = (f, )

for all ¢, so we have that they converge in D/(U). If we assume that they converge weakly,
then this implies that

lim [ fnp = / fe
n—oo
for all ¢ € LY(U), with (p,q) = 1. Notice that C>*(U) C LI(U), so we get that it holds for all

v € C°(U), and thus we have convergence in D'(U), as desired.
(b) Choose ¢ € D(U) arbitrarily. Since g € Li (U), we get that for all ¢ € D(U), gp € L

loc

(utilizing the fact here that ¢ has compact support). Notice that

|fal < glol € L'(U),
so we see that DCT applies here. In other words, we have that

Jm (o) = i [ fug = [ lim s = [ fo=th0
The choice of ¢ was arbitrary, so we get that it converges weakly — i.e., as distributions, f, — f.
(c) We see that fi(z) =t~ x4 (z) € LL (U), fi — 0 pointwise as t — 0. Notice that we can
write f;(z) = t~'x(0,1)(x/t), and so this is an approximate identity for f(z) = x(g1)(x). We
have [ f =1, and applying Proposition 9.1, we see that f; — § in D’ as t — 0. Notice that
d # 0 as distributions (take any function which is non-zero at the origin), and so we have the
desired result.

0
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Problem 38. The product rule for derivatives is valid for products of smooth functions and dis-
tributions.

Proof. The goal is to first show that
(WF),0) = (WF', ) + (W'F, ¢),

for all ¢ € D(U), F a distribution, ¢ a smooth function. We will then use induction to show that
it holds for general products.
Fixing a ¢, we see that the usual product rule gives us

(F' ) = (F', o) = —(F, (")
= —(F, ¢+ o) = —(F,¢'v) — (F, o)
= —(YF,¢') — (W'F, ).
We have as well that
(WF), @) = —(WF,¢'),

so substituting this in, we get

(WF', ) = (W), 0) — (W'F, ).
Rearranging, we have

(WF), ) = (WF', 0) + (W'F, ),

as desired. The choices of F' € D'(U), ¢ € C*®(U), and ¢ € D(U) were all arbitrary, and so we
have the product rule.

For the generalized product rule, we induct the usual product rule. Assume it holds for multi-
indices of magnitude up to kK — 1. Let a be a multi-index such that || = k and write o =
(a1,...,a,). Without loss of generality, assume o1 > 1 (Pigeonhole principle says that there must
be one coordinate greater than or equal to 1; if v is not, then apply the following argument to an

index that is). Let 8 = (aq — 1, a9,...,ay), then |5| = k — 1, and furthermore we have
d
O*(YF) = —d°(YF).
WF) = S0y F)

By the induction hypothesis, we get

d il 5
— —— (") (0°F
B | 2 @)

Notice that the derivative is linear with respect to distributions, since for f, g distributions, ¢ a
test function, we have

(f+9)0)=—(f+g9.¢)=—(f,¢) = (g,¢") = () + (g, 0)
=(f"+4. ),

and for a a constant, f a distribution, ¢ a test function, we have
((@f), o) = —(af,¢) = —a(f,¢) = a(f’, ¥).
Thus, using the linearity, we get

| X smewen | = S g [ewen).

dar I~
dzq eyl oly! eyl
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Using the base case, this gives
! d d
> % [(dmzp) (°F) 4 (974) <d85F>] .
7+6:6’7.. I xI1
Simplifying this (akin to the usual product rule), we get
ol
> L@@ )
V+5:a/7"
So we see that the generalized product rule follows for products of distributions and smooth func-
tions. 0
Problem 39. A distribution F' on R is called homogeneous of degree X if F o S, = r*F for all
r > 0, where S,(x) = rx.

(a) Show that § is homogeneous of degree —n.

(b) If F is homogeneous of degree A, then 0*F' is homogeneous of degree \ — |a.

(c) The distribution (d/dx)[x(0,00)(z) log(z)] discussed in recitation is not homogeneous, although
it agrees on R\ {0} with a “function” that is homogeneous of degree —1.

Proof. (a) Fixing ¢ € D(U) arbitrary, we have that

(608, 0) =178, 0 08,) =r"p(0/r) = r7"p(0) = (r"8, ).
Hence, as distributions, d o S, = r~™J, and so ¢ is homogeneous of degree —n.
(b) Since F' is homogenous of degree A, we see that

(FoS.,¢)=("F,p)
for all test functions ¢. Applying things directly, we see that we have
(0°F 0 Sy, ) = 1" (0"F, 0 0 S,

= (=)l (P 0%(p 0 57).
Now, we have that

O*p(x/fr) = r~ ! (/r),
where ¢/ = 0%p. To see this, we proceed by induction. For single derivatives, this is simply
the chain rule; we have

plwfr) = ).

Assuming it holds up for indices of magnitude up to n — 1. Let o be a multi-index such that
|a| = n. We have then that

dal dan

0%p(z/r) = dzor T o o(x/r).
1 n

If o, = n, we rewrite this as
d=t d
W@@@/T%

and we use the fact that it works for n = 1 to get that this is equal to

don—1 d
— pm1E21 (/7).
dxSn dxy,
We then use the induction hypothesis along with linearity of the derivative to then get that

this is equal to

don
pon rm;;: (/7).
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If a;, < n, we can simply invoke the induction hypothesis to get the same result (that is, let
B =1(0,...,0,a,), then since a;,, < n we have |3| < n, so we can apply the induction hypothesis
to 0% (x/r) and we get the result). We proceed in the same fashion for the other v, ..., an_1
indices (if they are equal to n, do the argument above, otherwise invoke induction hypothesis).
This leaves us with
prormee i man o (g fpy — plel o (5 /)
using the fact that
la| =01 + -+ + ap.
Thus, we have

(0°F 0 Sy, 0) = —r~"U(F, o/ 0 S71)

(Flipping the S, back ) = (=1)l¢lr=lel(F o S, o)

(Using the fact that F is homogeneous) = (—1)lelr=lel(rA F, ')
(Moving the derivative back over, using linearity) = (r*~1*l9%F, ).

Hence, since the choice of test function was arbitrary, we have that 8“F o S, = r* 1?92 F so
0“F' is homogeneous of degree A — |a|.

We follow an argument similar to the book. Consider F(z) = Xx(o,0)(2)log(x), Fe(r) =
X(e,00) (@) log(z), where € > 0. We remark that F(z) € Li,(R). The only non-trivial part
for this is examining the integral over intervals [a, b] C R which contain the interval; if we show
that it’s integrable on these, we get that it is integrable on all compact sets K C R. Notice

that if [a, b] contains the interval, then a < 0, b > 0, so we have
b
Tr=€

b
/ F(z)dx = / log(z)dz = lim | xlog(x) — z
[a,b] 0 e—0

| o log(o)
lime log(e) = limg =7,

Notice that

and applying L’Hospital we have this is equal to
1

€

lim = lim —e = 0.

=0 —= e—0
€

Hence, the above integral is
/ F(z)dz = blog(b) — b < 0.
[a,b]

We deduce then that F(z) € Ll _(R). A similar argument shows that F. € L{. (R).
The goal is to use DCT to deduce that F. — F in D'(R). Fixing ¢ € D(R) a test function,
we have that
lim(F,, ) =lim | Fe(z)p(x)dr = lin(l) X(e,00) () log () () dz
e—

e—0 e—0
Notice that
X(e.00) () log () (2)| < [log(2)|Xxn(0,00) () M,
where |o(x)] < M < oo (we know this exists since ¢ has compact support and is smooth). If
we show this is in L', we can apply DCT to move the limit inside. Thus, we wish to show that

M |log(x)|dz < .
(0,00)NK
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Since K compact, it is closed and bounded; that is, there exist R sufficiently large so that
K C [-R, R]. We then can bound this integral by examining

R 1 R

M | log(x)|dx < M/ |log(x)|dx = —M/ log(z)dz + M/ log(x)dz
(0,00)NK 0 0 1

= Rlog(R)+ M(2— R) < 0.

Thus, this is in L!(R), so we can apply DCT to get

lsg (£, ) = iy [ X(coo)(0) oB(@)p(a)d = [ X(00) (@) Bl = (F.it)

e—0

Notice the choice of test function was arbitrary, so F, — F in D'(R). Consequently, we have
that F! — F’ in D'(R). Fixing ¢ € D(R), we have that

. / R F / — _ / — /

M (F, ) = = lim(Fe, ') = —(F,¢) = (I, ¢)

since F, — F'. The choice of test function was arbitrary, and so we have the desired convergence.
Now, fixing € > 0 and ¢ € D(R), we have

(FLoSyg) = =1 Fa(po 8,1Y) = —r " [ log(a)lpla/n)Vda,

€
using the fact that F; is locally integrable. Expanding the derivative on the inside using the
chain rule, we get that this is equal to

—7“_2/ log(z)¢'(z/r)dz.
Now we integrate by parts. Let dv = ¢/(z/r)dx,v = ro(z/r), v =log(z), du = dx/x. Then we

have that the above is equal to
2 |rtogta)etarn)  — [T ag

Since ¢ has compact support, we can evaluate this; we get that this is equal to

2 [7’ log(e)p(e/r) + / ) W(xx/r)dx} '

Thus, pulling out a constant r, we have that this is equal to
rt [log(e)gp(e/r) + /OO go(:;/r) dw] .
Letting € = €/r, u = x/r, du = dx/r, we can rewrite this as
1 |:10g(7"6/)(p(6/) +/ p(u) du] =1 [log(r)cp(el) + log(e)p(€') + //00 (pgiu)du]

=" [log(r)p(€) + (Fl1, )]

Taking € — 0, we get ¢ — 0, and by what we’ve noted earlier we have this converges to

rUE ) + 103“%(0) — rUF o)+ logr(r) (6, ¢) = <r1F’ + logr(’")a, <p> .

o0

Thus, since the choice of test function was arbitrary, we have that as distributions

FloS,=r'F + M(S.
r

So F’ is not homogeneous.
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Now, for ¢ € D(R — {0}), we note that (¢, d) = 0. So, for all r > 0, ¢ € D(R — {0}), we see
that
FloS, =r'F.
Hence, away from the origin, we have that F' is homogeneous of degree —1. The function
with which it agrees with is the one from recitation/page 288; that is, it agrees with f(z) =

1'71)((0700) (x)
]

Problem 40. Define G on R™ x R by G(z,t) = (47rt)_"/26_|5’3|2/4tx(0700) (t).

(a) (0y — A)G = 0, where A is the Laplacian on R".
(b) If p € C(R™ x R), the function f = G * ¢ satisfies (9y — A)f = ¢.

Proof. (a) We follow Folland’s hint. Fix e > 0. Let G*(2,t) = G(z,t)X(c,00) (t). Notice that G° — G

in D’; we show this via an application of the DCT. Fix a compact K C R™ x R. Since G(z,t) is
always positive, we can iterate the integral by Tonelli. Let K’ denote the projection of K onto
the t-coordinate (the last/time coordinate). We integrate over K to get an upper bound of

/Gxt / G(x,t)dzdt.
/Rn

Writing things, we have that the right hand side is equal to

/ (4rt)"/? / e~ lol /4t gy
K'N(0,00) n

Using Proposition 2.53, since t here is positive, we get that

/ e~ IaP /gy — (4rpynl?,

so we have that the integral above evaluates to

[
K'N(0,00)

This is finite since K’ is bounded (if it was not, we would have that K is unbounded in the
last coordinate, contradicting the fact that K is compact). Hence, G(z,t) is in L] _(R™ x R).
Furthermore, the same argument gives that G¢(z,t) is locally integrable for all € > 0. Now,

fixing ¢ € D, we have that
G9) = [ G latiotat),

Since ¢ € D(R™ xR), it has compact support and is smooth. Thus, it is bounded. Furthermore,
letting K = supp(y) and letting M be such that |p(x,t)] < M for all x,t, we have that
|Gz, t)p(,t)| < MG(x,t)xk, and since MG(x,t)xx € L', we can invoke DCT to bring the
limit as € — 0 on the inside of the integral; in other words,

e—0

lim [ Gz, ) (. 1) = / Gla, )o@, 1).

This holds for all ¢ € D(R™ x R), so we get that G — G as distributions as € — 0.
Recall from the lecture notes that we have

0:G = AG,

where
A= Z —
Xy
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for (z,t) € R™ x (0, 00) (that is, Green’s function satisfies the heat equation). We will deduce a
weaker result of a.e. convergence by using the Fourier transform (which is easier than actually
calculating it, and we only need it almost everywhere). Transforming with respect to the space
variable, we see that we have

[0:G)"\(m, t) = 8, G (m, 1).
This is a consequence of Theorem 2.27 (b). Notice that, by Proposition 8.24, we get that

the Fourier transform of

1 —|x|? /4t

maps to

~

G(m,t) = e~ 42 Iml*t

after letting a = 1/(4nt). Hence,

~

0G(m,t) = —47r2]m\2e_4"2|m|2t = —4m?|m[>G(m,t).

Now, we note that

= —4m?|m[>G(m,1).

Thus, see that
[0:G])N(m, ) = AG(m, t).
We have then that
[0:G — AG]" = 0,

so they are equal almost everywhere. Furthermore, Green’s function is continuous on R™ x
(0, 00), so we have that they are honestly equal, although almost everywhere equality is sufficient
for what we’re doing.

Now, notice that

<(6t - A)Gea 90> = <6tG67 SO> - <AG67 ‘10>'

Notice as well that



So we get
(0 = B)G ) = —(G", (9 + D)) ]
Using the definition of G¢ and the fact that this is locally integrable, this gives

<@—Ammm:—@w&+mw=—/n()amma+mw%w

Since this is integrable (using the fact that G is locally integrable and ¢ is bounded, smooth,
and has compact support, so all of its derivatives are also smooth, bounded, and have compact
support), we can change this to an iterated integral using Fubini; thus, we have

- /n /600 G(z,1) (0 + A)p(, t)dtdz.

Now, we expand the integral with linearity to get

_ / ) / ~ G, )0l )t — / ) / G, ) A (o, Ddtds.

Notice that the integral on the left can be integrated with respect to ¢ via integration by parts.
Letting u = G(z,t), du = 0,G(z, t)dt, dv = Oyp(x, t)dt v =p(z,t), we get

/00 G(z,t)0pp(z, t)dt = G(z,t)p / G (z, t)p(z,t)dt

—G(:E,e)go(x,e)—/ G (z,t)p(x, t)dt.

Substituting this back in, we have

[ Gl el o+ /R ) / 0, ), ) did — / n / " G ) Aol t)dida,

Recalling that 0;G = AG, we get

/Rn /eoo atG(q:,t)go(:c,t)dtd:c:/]Rn /:o AG(e. ) o(x. t)did.

Recall as well

d
AG(x,t) = —G(z,t).
(1) §%ﬁ<a>
Hence, we can rewrite this as

21: / " / @G(’% t)p(, t)dtda.

Applying Fubini, this is the same as

Z/ / —— G (2, t)p(x,t)dzdt.
T Je n dxj

Without loss of generality, we examine 7 = 1; the argument will be the same for all other j.
Here, we iterate the integral again;

/ / /G z1,y, t)p(r1,y, t)dridydt.
Rn— 1 d$1

4As an aside for my future notes, the reason this doesn’t end up being the 0 distribution is because of the issue at
the origin for Green’s function. Like Folland remarks, issues with continuity leads to ¢ functions.
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2
Let dv = (),%G(a:l,y,t)dxl, v = ﬁG(ml,y,t), u = p(x1,y,t), du = ﬁcp(:zl,y,t)dxl. Then

integration by parts tells us that the integral is the same as
r1=—00

/ /R" 1
/ / / —G(21,y,t)—p(z1,y, t)drdydt
1 l 1 17y7 l 1 1?y7 1 y )

where we use the fact that ¢ has compact support. Integrating by parts again, letting dv =
2

%G(ml,y,t)dxl, v = G(z1,y,t), u = %gp(ml,y, t), du = j—xfap(xl,y,t)dajl, we get (after

simplifying like above)

/ / /G x1,y,t (351 y, t)dxdydt.
Rn— 1

Hence, we have that it comes out to

] d2
/ G(z,t) -z, t)drdt.

Repeating this same argument for all of the other variables, we get that this comes out to

n 00 d2
G(zx,t)—5p(x,t)dxdt,
S [ 60zt

d
7G xl)yv )@(ﬁlaya /G x1,Y, )Tm¢($17yvt)dxl dydt

dl’l

which is the same as

[ee) oo
/ G(z,t)Ap(z, t)dzdt = / / G(z, t)Agp(a:,t)dtdx
€ R nJe

Substituting this into our original integral, we are left with

((0r — A)GE, @) = - G(z,e)p(x,€)dx.

That is, we have it is equal to

(47r6)_"/2/ e_lx‘2/4€<p(a:, €)dx.
Letting x = 2t\/€, we have
77_"/2/ e_|t‘2g0(2t\/g, €)dt

Now, we can apply dominated convergence theorem here, since p(2t1/€, €) has compact support
K and upper bound M, so

M p(2tv/e, )] < Me P xe(t) € L' (RY).

Bringing the limit inside, we have
lig (0 — )G, ¢) = (9~ D)Gug) = limr =2 [ e (e, )
— 2 /24(0,0) / ey
= ¢(0,0) = (4, ¢),

5This is a long detailed argument to conclude that (AG®, ¢) = (G, Ayp), which we could’ve simplified greatly by
just noticing the above.
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where here we again use Proposition 2.53. Since this applies for all ¢ € D, we get that as
distributions (0 — A)G = 4.
(b) Here, we have

(0 = A)(G = p) () = ((0r = A)G) x p(x) = (0 — A)G, T00)
= (6, 72) = 129(0) = ¢(—x) = p(x),
where the first equality comes from Proposition 9.3. Hence, we have that as functions,

(Or = A)(G*p) = .
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James Marshall Reber, ID: 500409166 Math 6212, Homework 9

Remark. Thomas O’Hare was a collaborator.

Problem 41. Suppose that F' € §’. Then
(8) (r,F)" = e2mimv i
B = (TR,
(b) 9°F = [(=2miz)*F]"
9°F = (2mim)*F.
(c) For T € GLy(R), (FoT)" = |det T|~'F o (%)~}
(d) (F )" = ¢F for ¢ € S.

Recall the following first.

Proposition (Properties of Fourier Transform, Proposition 8.22). For f € S, we have the
following'

— 727Tim-y]/c\( )
Where h(z) = e*mim=,
, then (foT)" = |det T|~1f o (T*)~1.

a
=
N
m
)
I

Let F € 8, ¢ € S, then we have the following properties (as a modification of these properties
for distributions, see Folland page 284-285):
(i) (0°F,¢) = (=D)I*U(F, 8%¢).
(ii) For ¢ € S, we have (Y F, p) = (F, ).
(i) ()P, 0) = (F, 7y,
(iv) For T € GL,(R) we have (F o T, ) = |det T|~(F,p o T™1).
(v) If i € S, then F s (z) = (F, 7p1)), where ¥)(z) = th(—z).

Recall as well we define the Fourier transform on distributions F € S’ via
<F7§0> = <Fv<1/5>7

where ¢ € S.

Proof. (a) Let ¢ € S. Letting h(y) = e 2™ we have

((ryF)", @) = (1 F, @) = (F, 7y @) = (F, [hy]") = (F, hep) = (hF, ).
The first equality holds by definition of the Fourier transform on distributions. The second
equality follows from how translations act on distributions [property (iii) above]. The third
follows from properties of the Fourier transform on f € S [property (b) above]. The fourth
follows from the definition of the Fourier transform on distributions. The final equality follows
from how Schwarz functions multiply with distributions [property (ii) above]. Since this holds
for all ¢ € S, we have that
(r, )" = hF = ¢ 2mmy |
as distributions.
We now prove the second equality. Let ¢ € S. Letting h(y) = €™, we have

(ryF, ) = (F,7_y0) = (F, [r_y]") = (F,hp) = (hF, ) = (hF, ).
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(d)

The first equality follows from how translations act on distributions [property (iii) above]. The
second follows from the definition of the Fourier transform on distributions. The third follows
from how translations relate with the Fourier transform [property (a) above]. The fourth follows
from how Schwarz functions multiply with distributions [property (ii) above]. The last follows
from the definition of Fourier transform on distributions. Thus, as distributions,

7y F = (XM F)N,
Let ¢ € §. Then we see that
(0°F, ¢) = (~1)PU(F,0%) = (~1)*NF,0°¢) = (=1)(F, (27im)* @)
= (=1)*N(@2rim)*F, §) = ((—=2mim)*F, @) = ([(-27im)* F]", ).
The first equality follows from how derivatives act on distributions [property (i) above]. The
second follows from the definition of the Fourier transform on distributions. The third follows
from how derivatives interact with the Fourier transform [property (f) above|. The fourth
follows from how Schwarz functions multiply with distributions [property (ii) above|. The fifth
follows from using linearity in the first coordinate. The final follows from the definition of
Fourier transform on distributions. Thus, as distributions, we have
°F = [(—2miz)*F)".
We now prove the second equality. Let ¢ € §. Then we have
(0°F, @) = (0°F,3) = (~)*U(F,0°B) = (~)*I(F, [(~2miz)"¢]")
= (~1)*(F, (~2miz)"p) = (2miz)"F, o)
The first equality follows from the definition of Fourier transform on distributions. The second
follows from how the derivative interacts with distributions [property (i) above]. The third
follows from how derivatives interact with the Fourier transform [property (e) above|. The
fourth follows from the definition of the Fourier transform on distributions. The final follows

from using linearity and how Schwarz functions multiply with distributions [property (ii) above].
Thus, as distributions, we have

doF = (2miz)*F.

Let T € GL,(R). Then we have

(FoT)" g) = (FoT,3) = |det T (F, o T~} = |det 7|~ (.| det T|(p 0 T*)")

= (F,(poT*)") = (F,poT") = |det T| " (F o (T") ", ).
The first equality follows from the definition of the Fourier transform on distributions. The
second follows from how invertible linear functions interact with distributions [property (iv)
above]. The third follows from how the Fourier transform interacts with composition of invert-
ible linear functions [property (c) above]. The fourth follows from linearity and how Schwarz
functions multiply with distributions (in order to move |detT| to the other side) [property
(ii) above]. The fifth follows from the definition of the Fourier transform on distributions.
The sixth follows from how distributions interact with invertible linear functions [property (iv)
above, with slight modification]. Thus, as distributions, we have
(FoT)" = |det T|"F o (T*)~".

This is the more interesting property. Recall that for ¢ € S, we have

<F*w,¢>=/<F*w>¢=<F,W>
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by Proposition 9.10. Taking the Fourier transform, we have
(Fx1h,0) = (Fx1,0).
Next, we wish to show the following identity:
1" = 9.

To see the identity, recall that for Schwarz functions we have

)Y (z) = p(—x) = P(z).
U(x) = ().
This follows by the fact that F is an isomorphism on S (Corollary 8.28), since if G denotes
the inverse Fourier transform, F the usual Fourier transform, P the reflection function (i.e.

P(¢)(x) = ¢(~z)), we have

We remark that

GoF(¢) =FoG(v) =1,
G(¥) = Po F(4),

SO

PoFoF(yp)=FoPoF).
Since F is an isomorphism on S, we have that for all ¢ € S there exists a ¢ so that G(p) = 1.
The above holds for all 1, so in particular we have

PoFoFoG(p)=PoF(p)=FoPoFoG(p)=FoP(p).

Hence, for all ¢ € S, we have
FoP(y)=PoF(¢).
That is, we have that reflection commutes with the Fourier transform.
Now, notice that taking the Fourier transform of both sides of

G(y) = Po F(1h),
gives us
Y =FoPoF(y),
so that, using the commutativity of P and F, we have
Y =PoFA(y).
Note that P o P = Id, so taking P of both sides, we have
P() = FO();
that is, reverting to old notation, we have
[ = .
This coupled with Proposition 9.10 gives us that
(F 2, 3) = (F, ¢ x [{]")
Next, we note that R R
@[ = [
To see this, note that property (d) above gives
FOR)FO W) = F(F(e) = FO ).

Hence, we have

G(FD (o) FO (1)) = F(p) * FH (1)
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Note that
P(yp) = P(Y)P(p);
this is due to the fact that
P(p)(z) = (bp)(—z) = ¥(—z)p(—z) = (P(¥)P(p))(2).
Hence, we have
GFD () FO () = (P o F)FD () FO () = (F o P)(F () FP (v))
= (Fo P)(P(¢)(P o F)(¥)) = F(PP (o) (PP o F) (1))
= F(eF(¥)).

The first equality here follows by expanding out the definition of G, the second follows from
using the fact that P and F' commute, the third follows from using the identity () = P and
writing F' () = F@ o F, the fourth follows from the fact that P distributes over multiplication,
and the last follows from the fact that P(?) = Id. In other words, reverting to old notation, we
have that

G+ [ = [oP]".

This gives us

(F,@x[¢)") = (F, [py]").
Using the definition of the Fourier transform for tempered distributions as well as how
Schwarz functions multiply with distributions [property (ii) above], we get

(F,[pg]") = (F. o) = (UF, )
Thus, we have
(F'x1,0) = (Fi, ).
Since the choice of ¢ was arbitrary, we have that as distributions,

F o+t = Fi.
0

Problem 42 (Folland Proposition 9.7). Let U C R™ be open. Let {V,,} be an increasing family of
precompact open sets whose union is U. We have that C2°(U) is dense in C*°(U) with respect to
the topology generated by the family of seminorms || - ||, 4], where for m € N, a a multi-index, we
have
Hf”[m,oz} = Sll£|8af(l')’

€V,
Proof. Recall Proposition 4.39, which says that if X is a o-compact LCH space, then there is
an increasing sequence of precompact open sets such that V,, C Vj41 for all n and X = [JI° V.
Let {V,,} be such a family for R™ which generates the family of seminorms. Notice that any other
choice for such a family will generate the same topology, since we have that 0 f; — 0 f uniformly
on compact sets for all o if and only if || f; — fllm,a — O for all m,a (see the remark before
Proposition 9.7 in Folland page 291). The goal, then, is to show that for all p € C*(U),
there exists a (k,) C C2°(U) so that ||y — ¢||jm,a) — 0 for all m,a. Using C*° Urysohn’s lemma
(Proposition 8.18) we can find v, so that 0 < ¢, < 1, ¥, = 1 on V,,, and v, = 0 outside of
Vit1- Let K, = p1p,. Then this is smooth, since a product of smooth functions is smooth, and it
has compact support due to 1, so k, € C°(U). Furthermore, we have that

[6n = @llpm,a) = sup |0%(kn — @) (2)| = sup [0%(Ynp)(x) — 0% (2)].
r€EVm TEVm
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For m < n, we see that , = ¢ on V,,, since x € V,,, C V,, implies that r,(z) = ¥, (z)p(z) = o(z).
Thus, for m < n, we have that ||k, — SDH[m,a] = 0. So, for all m, « fixed, we can choose n sufficiently
large so that s, = ¢ on Vp,, and hence [|kn — @|[m,a] = 0. Thus, we get that £, — ¢ in C>®(U).
The choice of ¢ was arbitrary, so we get that C2°(U) is dense in C*°(U). O

Problem 43 (Folland Theorem 9.8). Let U C R™ be open. We have that £'(U) is the dual space
of C*(U).

Proof. We prove what Folland states afterwards; that is, we prove

(1) If F € £'(U), then F extends uniquely to a continuous linear functional on C*°(U).
(2) If G is a continuous linear functional on C*°(U), then G|oe () € E'(U).

For (1), let F € &'(U). We need to show that we can extend this, and this extension is unique.
Recall that the support of F' is defined to be the complement of the maximal open set where F
vanishes, and we have that I’ vanishes on an open set U if (F,¢) = 0 for all ¢ € D(U). Recall as
well that £'(U) is the space of distributions with compact support.

Since the support is compact, we can invoke C* Urysohn to find 1 so that ¢» = 1 on supp(F).
Define a linear functional G on C*°(U) where

(G o) = (F,p9).
First, note that G is a linear functional, since
|<G780>’ < c’ Z Ha,ygoHu(supp(w)) < C’ Z ||¢"[m,o¢]
la|<N la|<N

where ¢,k are test functions, r some scalar constant, and we use the fact that F' is a linear
functional. Next, notice that if ¢ € C°(U), then we have

<G790> = <F790¢> = <F790>a

so (G indeed extends F'. Next, we need to show that the extension is continuous. Since it is defined
on a dense subset (by the prior problem), the fact that it is continuous implies that it is a unique
extension of F', and so we’ll have our result.

To see continuity, we invoke Proposition 5.15. Note that F' is continuous on CZ°(supp(v)).
The topology on C2°(supp(v)) is defined by ||0%¢||., so applying the proposition tells us that we
have

(G,9) = (E @) <C Y 0% (W)

la|<N
for some constant C', using the fact that F' is continuous. Notice that the product rule tells us that
(W) = Y (9°9)(07¢).
Bty=a
Hence, we have

(Gol<C Y > 10%lullo" o,

|a|<N p+y=a

where the uniform norm is taken over the set supp(¢)). Choose m large enough so that supp(¢) C
Vin; we know such an m exists, since |J Vi = R™ and the set is increasing. Doing so and letting C’
absorb constants, we have that

(G o) <C D 110"l < C" > @l

la|<N la|<N
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where again the uniform norm in the second inequality is over supp(v)). Hence, Proposition 5.15
tells us that this is continuous, and we see that from the remark earlier we get that this is the
unique extension of F.

Now we show (2). Let G be a continuous linear functional on C*°(U). Again, using Proposition
5.15, we get

(G,o) < C Y Nellmal
|| <N
for all ¢ € C°°(U). Notice that we have ||| (o) < [[0%¢]u, so restricting our view to C2°(K) for
arbitrary compact K C U, we get that G is continuous on C2°(K). Thus, Gloe ) € D'(U) by
Folland page 282 (ii). The goal from here is to show that G has compact support. Notice that
if supp() NV, = @, then
’<G7 SO>‘ <C Z H(pH[m,a] =0,
|| <N

so (G,p) = 0. Thus, following the definition of support, we have that supp(G) C V,,; that is,
supp(G) is compact (its a closed set contained in a compact set). So G|cee ) C E'(U).

We now note that the above proves that £'(U) is the dual space of C*°(U). Let G be in its dual
space. Then we see that using (2) and restricting it to the space of test functions it agrees with
some F' € &'(U). Thus, for all p € CX(U), we have

<Fa 90> = <Gv 90>'

Since F' extends uniquely to some continuous linear functional on C*°(U), we must have that this
linear functional is G' by the density argument prior. Thus, we can define F' on all ¢ € C*°(U) by

(F o) = (G, ).
Since this extension is unique, we can without loss of generality label G as F. Going the other
direction, for F' € £'(U), we can identify it uniquely with a continuous linear functional on C*°(U)
by (1). Hence, on all C*°(U), we have that F'is a continuous linear functional, so we see that the
dual space can be identified as £'(U). O
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James Marshall Reber, ID: 500409166 Math 6212, Homework 10

Remark. Thomas O’Hare was a collaborator.

We note the following lemma (left as an exercise in the class notes, also remarked by Folland on
Folland page 301).

Lemma. Let k£ € N. The following are equivalent:

(a) f € HHR™),

(b) [me|f(m) € L2(R™) for |a] < k,

(c) (L4 |m[*)¥/2f(m) € L*(R™).

Proof. We first show (a) <= (b). By Plancherel, we have that
DoIovfIE =D M@ HNE =Y leim) f3,
laf<k laf<k la| <k

where we use the Fourier transform on distributions properties (see Homework 9, Exercise 1),
as well as the fact that the Fourier transform of a distribution defined by a function agrees with
the Fourier transform of the function (see Folland page 295). Thus, we see that

1/2 1/2
Ifllgy = | Do N0FIB | = | D l@mim)*fIl3
o] <k o<k
For (b) <= (c), we need to first find constants C and Cy greater than 0 so that
CL(1+ [m[)? < 37 jm®) < Ca(1+ [m )2,
la| <k
Recall from Folland Proposition 8.3 that we have
m®| < (1+[m))*
for |a| <k, since
[m®) = [ma |- < (L4 [m])® - (L4 |m])® = (1 [m])2= = (1+ [m])!*) < (1 + |m])".
Now, notice that
m®? = ma [ mg 2o < (L ) < (14 [m).
Taking square roots of both sides leaves us with
m®| < (14 [m|*)H/2.
Hence, we can choose Cy to be Z| al<k 1 and we get the desired upper bound.

For the lower bound, recall that we have Y7 |m;|* is strictly positive on the unit sphere |m| = 1.
Since this is compact and the function continuous, it admits a minimum ¢ > 0. Thus, for all m,

we have
n

>

1

k
m;

|m

n
> = > |ml* > |m|s.
1

Now, we have

n

1+512|m§y] < 2F2571 N Ime.
1 la <k
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Choosing C1 = 27%/25, we get the desired lower bound. Since these are constants, |m®|f(m) €
L2(R™) if and only if (1 + |m|?)¥/2f(m) € L*>(R™). O

Problem 44. For s € R, ( € R", let
ws(€) = (1 + ¢
Show that L?(R™,w;s) equipped with the inner product

(fi9) = (f, 9)L2(R",ws) = (wsf, W59>L2(Rn) = /(ws(a:)f(x))(ws(w)g(x))dx
is a Hilbert space. Moreover, show that
S C L*(R™,ws) C S,
and show that C2°(R™) and S are dense in L?(R"™, wy).
Proof. We remark that
L*(R™,wy) i= {f € Lipo(R") t ws f € L*(R™)}.

First, we wish to show that the prescribed inner product is indeed an inner product. There are
three properties we must show.

(1) First, we see that it is linear in the first component. Let a,b € C, f,g,h € L*(R", w;).
Then we need to show that

(af +bg,h) = a(f,h) +b(g,h).
Notice that

(af +bg, h) = ][(a@(z)(af‘+-bg)(x))(a@(w)h(x))dx
— [ @t @) + (@) b9(a) @)z

—a [ (@) (@) @@TR@)ds + b [ (@n(e)g(a)) @olA)ds
=a(f,h) +b(g,h).
(2) Let f,g € L?>(R",w;). We wish to show that

(9, f) = (£, 9)

This follows from noting that

(f.9) = /(ws(l‘)f(l’))(ws(x)g(x))dx = /(ws(iv)f(ﬂf))(ws(x)g(ﬂf))dﬂf = (9, 1)

(3) Finally, let f € L?(R™ ws). We wish to show that (f, f) > 0, with equality if and only if
f = 0 almost everywhere. Notice that we have

(f.f) = / (s () f(2)) @s (@) [ (@)) i = / (wal) f ()Pl = / (14 [22)°| (2)2de > 0.

If the integral is equal to 0, we have that (1 + |x|?)%|f(z)|? = 0 almost everywhere, which
implies that f(z) = 0 almost everywhere. If f = 0 almost everywhere, we see clearly that
the integral evaluates to 0. Hence, we have the desired result.

86



We then get an associated norm

1712 = (/. 1) = / (14 |22)°| £ () 2.

We wish to show that L?(R",ws) is complete with respect to this norm. For f € L?(R" w;s), we
have that ||f|| < oo so that wsf € L?(R™). Now, notice that (f,) C L?(R",ws) Cauchy implies
(wsfn) C L2(R™) is Cauchy, since

an - fm”2 = (fn — fms fn — fm) = <Ws(fn - fm)aws(fn - fm)> = st<fn - fm)H%

Since L?(R™) is complete, we get that wsf, — ¢ in L?(R). Defining f = w;'g, we see that
Wsfn — wsf in L2(R), but this then means that

1o — fIP = / ()| fulx) — (o) P = / (s @) fo() — g() Pz — 0.

Hence, f,, — f in L2(R", wy), so the space is complete. Thus, L?(R",w;) is a Hilbert space.
We need to show that if ¢ € S, then ¢ € L?(R", w;). Notice that ¢ € S ¢ L'(R") C Li (R")

loc

(Folland Proposition 8.17). We then need to show that wsp € L?(R"); by the remarks earlier,
this implies that ¢ € L?(R",ws). That is, the goal is to show that

leoll = /(1 + ]2 ]?)*|p(a)|*dz < oo
Note that for s > 0, we have
(1+ [ < (1+ 2],
since
(L [2)® = [(1+ [2)?)° = (1 + 202 + [2[1)* > (1 + |2*)°.
For s < 0, let k = —s so that k > 0. Then we have
(A +]e)™F <O+ 2™ o 1L+ [z <O+ 2P,

and this follows from Folland page 181, where we see that we can set C' = 4*. Combining these
facts, we have

/ (1+ [22)° o) Pz < C / (1+ ) *| () 2d

for some constant C' which depends on s. Since ¢ € S, we have that ||¢||(n,q) < oo for all (N, ).
Thus, there’s some constant C'y so that

()] < Cn(1+ [a])™
for all N natural numbers. Squaring, we have
lp(@)]* < CR (1 + [a) 72N,

Thus, for some constant C’ which depends on N, we have

/(1 + ’«T‘Q)s’(p(x)‘de < C’/(l + ‘x|)2(st)dx

for all N. Choose N so that
N >n/2+s,
then we get that this integral is finite (Folland Corollary 2.52), so that wse € L?. Hence,

¢ € L*(R", wy), and since the choice of ¢ € S was arbitrary we have that S € L%(R", ws).
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We now wish to show that f € L*(R",ws) C &’. In other words, the goal is to show that if
f € L*(R™, wy), then it defines a tempered distribution. Letting f € L?(R",ws), we wish to show
that for all ¢ € S, we have

(frp) = /f(m)ap(x)dx < 0.

Notice that we have
[ t@etas < ‘ [ @@ < [15@le@)as

using the triangle inequality. Next, since ¢ is Schwarz, we get that

(1 + |z)™p(2)| < Cn

for some constant Cy and all natural numbers N. Thus,
()] < Cn(1+ [2]) 7,

so for all natural numbers N, we have

/ F@)llp(@))dz < Cy / F@I1+ [al)de = O [ 1F@I(1+ o)1+ Jol)da.

Using Holder’s inequality, we have

[l <ox ([1s@ras \m|>Ndm)1/2 (fa+lehas) "

Now, we can choose N = max{R,2|s|} so that —N < 2s and N > R, where R is chosen sufficiently
large so that N > n; that is, R is chosen so that Folland Corollary 2.52 applies, and hence the
integral on the right is finite. Since —N < 2s, we get that (1 + |z|)™" < (1 + |#|)?%. If s > 0, then
note that

(1+[a))® < 2%°(1 + |z*)*,

since

(1+[a))? < 22(1+ [2]?).
If s < 0, then we note that

(L+Ja))® < (14 [2f*),
since if s = —k for some k > 0, we have

(L+J2)) 2 < L+ [a) ™" o (L4 |2)F < (14 [2])*F,
and the inequality on the right follows from our observation above; that is, it follows from
(1+ ) = [(1+ 2))*]* = (1 + 202 + [« > (1 + [2*)".

The integral on the left is now bounded above by

o [iwra+ \x|2>8dx)1/2 < oo

for some constant C' depending on s. Since in either case it’s finite (since f € L?(R", wy)), we have
that

[ H@plans < .

so that f defines a tempered distribution. Thus, L?(R", w,) C S'.
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Finally, we need to show that C2°(R") is dense in L?(R"™, wy) (the fact that S will be dense follows
from this). This follows from the fact that C°(R™) is dense in L?*(R") (Folland Proposition
8.17). For w,f € L? we can find ¢ € C°(R") so that

lwsf = ¢ll3 <e.
Letting ¢ = pw; !, we get that
|ws f — wﬂﬁ”% <,
and we still have that ¢ € C2°(R™) (the product of smooth functions is smooth, and ¢ has compact

support, so the product will be a smooth function with compact support). By what we’ve observed
earlier, we see that

1f =9l = llws f — wstll3 < e
Hence, for all € > 0, we can find ¢ € C2°(R") so that
Hf - wH <€,
and thus C°(R"), and so S, is dense in L?(R", ws). O
Problem 45. Show that the Fourier transform F and its inverse F~! generate unitary maps of
HF(R™) onto L?(R™, wy):
FHMR") = FLHFR") = L*(R", wy,).
Proof. Recall that
H* = {f eS8 : ALf e L?},
and —~
A = [(1+ |m[) /2 f)Y.
Recall that a map is unitary if it is surjective and preserves the inner product. Note that the inner
product on H* is defined by

(fs9) ) = /(Akf)(A’“g)dﬂc = /(1 + [m[*)*F(f)(m) F(g) (m)dm.

We'll first show that H* ¢ F~1(L?*(R", ws)), and then show that L?(R™, w,) C F(H¥). Doing so,
we get that L?(R", w,) = F(HF) (i.e. the Fourier transform is surjective onto L?(R", wy)). Let
g € H*, then g is a tempered distribution such that

Aeg = [(1+|mP) %) e 2
Using Plancherel and applying the Fourier transform, we have that this implies that
(1 + [m|)*?*G = wyg € L.
We have then that there is some h € L? so that

wrg = h almost everywhere.

Thus, we have that, almost everywhere, g = w,c_lh. Note that g is both a tempered distribution and
a function in L? (i.e. an equivalence class of a function in L?), and as a function in L? it agrees with
wk_lhﬁ So we can define a distribution f = g such that it is equal to w,:lh as a function (in L?).
Furthermore, we have that f¥ = g as distributions (since the Fourier transform is an isomorphism
on tempered distributions), and we have that wy,f € L2,

If we have that f is locally integrable, then we win, since f € L?(R",wy) such that fV = g,
and since the choice of g was arbitrary we have H* ¢ F~1(L?(R",wy)). To prove that it’s locally

6The remark here is just to be extra careful about our interpretation of what’s going on, since we're juggling
distributions and functions.
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integrable, it suffices to prove that it’s integrable on sets of the form Eg := {x : || < R}. Thus,
we wish to show that

téRuwwm<oa

Using the fact that as functions we have that f = wk_lh, we can write this as
| i)t e
Er
If k> 0, we have (1 + |z|>)~%/2 < 1, so we can bound this above by
/ Ih(z)|de < oo,
Er

since h € L? implies that h € L{. (R") by Folland Proposition 6.12. If k < 0, we have that over

loc
Egr, (14 |z|?)7%/2 < (1 + R?)7%/2 = C a constant. Thus, we see that we can bound the integral
above by

C |h| < 0.
Egr

Thus, for all k € R, we get that as a function f is locally integrable, so f € L?(R",wy) and it is
such that f¥ = g. Hence, we have H* ¢ F~1(L?(R",wy)), or F(HF) C L2(R",wy).

We now wish to show surjectivity. Let g € L?(R",w;). We wish to find f € H*(R") so that
F(f) = g. Notice that g € L?>(R", w;,) implies that

wrg = (14 [2[*)*2g € 12,
By Plancherel, we see that
[(1+ 2*)*/2g]" € L2,
By the first problem, we know that g € L?(R",wy) defines a tempered distribution, and hence we
can use the Fourier transform of distributions to define f = g¥. We see then that

Arf = [+ |22 F]Y = (1 + |2})F/2g)Y € L2,

and f is a tempered distribution, so f € H*. Furthermore, F(f) = g, so we get that the Fourier
transform is surjective and F(H*) = L2(R", wy).
We now need to show that it’s unitary; in other words, we wish to show that

(F(): F(9) = (f, 9))-
Note that

<ﬁmwf1/a+WWfqumf@mem
~ [(@@F ()@@ F@@)E = (F(). ).

Thus, the Fourier transform is unitary. So F is a unitary isomorphism from H* to L?(R"™,wy,).
Notice as well that the Fourier inverse is a unitary isomorphism. We have that

(ﬂm@f</u+WWﬁfummmemMm
=/u+mﬁ%ﬁmwmmf®mmmmn=/a+mﬁﬁf@uwmf®wmmmn

= /(1 + [m[*)*FH () m) FL(g) (m)dm = (F~H(f), F~H(g))
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using Plancherel and the properties of the Fourier transform from the last homework. Hence, it
still preserves the inner product. The argument that F~! is surjective follows from the same kind
of argument outlined in the last paragraph. Alternatively, we could use the fact that FH* =
L?(R™,wy,) and use the periodicity of the Fourier transform (which follows from the periodicity
of the Fourier transform for functions, proven on the last homework) to get F G gk = F1Hk =
FAL2(R™, wy,). Even though this is the Fourier transform as a distribution, we have that L?(R™, wy,)
consists of locally integrable functions, so distributions defined by functions. Using the fact that
the Fourier transform as a distribution agrees with the Fourier transform as a function, we can
interpret F?) to be reflection, which is a bijection of L*(R",wy). Thus, F'H* = L2(R",wy), and
the Fourier inverse is surjective. Thus, we also have that the inverse Fourier transform is a unitary
isomorphism. ]

Remark. Note that this problem gives us that S C H? is dense in the topology of H?.
Problem 46. For t < s, show that H® is a dense subspace of H? (in the topology of H?).

Proof. We first must show that H® C H!. Letting f € H*, we have that as a function it is such
that A,f € L?. Taking the Fourier transform, we have that

F(Asf) = 1+ |m?)2f e L2,
SO
/(1 + |ml2)* | F(m)[2dm < .

Since t < s, we see that (1 + |m|?)! < (1 + |m|?)?, so
/u+mﬁﬂﬂmen</a+meﬂmen<w.

Thus, we have F(A¢f) € L?, and by Plancherel this implies that A;f € L?. So f € H*. Thus,
Hs C H'.

For density, we remark that F(H®) = L?(R",w;) C F(H') = L?*(R",w;) by the prior problem.
We showed that S C L?(R", ws) in the first problem, so we have S C L?(R",w,) C L*(R",w;). Now,
the Fourier transform maps Schwarz functions to themselves, and so since the Fourier transform
is a unitary isomorphism we have that S € H®* C H', and we have that S is dense in H'! in the
topology of H'. Thus, we get that H*® is dense in H' in the topology of H', as desired. O

Problem 47. Prove the following:
(a) 9 is a bounded linear map from H® to H*~1®l for s € R, o a multi-index.

(b) A¢ is a unitary isomorphism from H® to H*™! for s,t € R.

Proof. (a) Note that we’re interpreting this as the distributional derivative as opposed to an honest
derivative. We have that 9% is a linear map defined on &', so we restrict it to H® to get a linear
map. Furthermore, we see that the image will be

O%(H®) = {0°f : f € S/, Ayf € L2).

We wish to show that this is H*~1%l. The derivative of a tempered distribution is still a tempered
distribution, so we just need to show that

As_|a|8af e L2

Note that, expanding this out and taking the Fourier transform, we have that this is equivalent
to showing that
(1 + ‘m|2)(s—|a\)/2(aaf)/\ e LQ.
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By the prior homework, we see that as distributions we have

(0° )" = (2mim) f(m).
Hence, this reduces to showing that

(1 + [m[>)=leD2pp)lelme f e L2,
Taking this integral, we have
[ mpyl miel e 2 Fm) Pam.

In the inequality in the above Lemma, we have that there is some constant C' so that

m® < C(1+ |m[*)l*V/2,
Substituting this in, we have that the above integral is bounded above by

C’/(l + |m?) 7+ [m )l f(m) Pdm = C’/(l + |m[*)*| f(m)Pdm < o
for some constant C’, since A,f € L?. By Plancherel, then, we see that this forces
A8_|a|8af S L2,

so the image of 9* is H*~12. Finally, we wish to show that this map is bounded; in other
words, for all f, we have that

10% fll (s=1ap) < Cll Sl (s)-
Notice that

1/2
10% £l oo [/ |8af 21+ |m) )s—aldm}

< (2m)l [/|f 2(1 + |mf?)°d T/?

= 2m) I f ]l

by the arguments above (and implicitly using the properties of the Fourier transform on dis-
tributions, and then using that the Fourier transform of a distribution and a function which
defines the distribution agree). Hence, the mapping is bounded.

We now claim that A; is a unitary isomorphism from H*® to H~. First, we show that A;(H®) C
H*™'. Let f € H*, then the goal is to show that A;(f) is a tempered distribution such that
As_¢Arf € L2. To see that A;f is a tempered distribution, we need to show that for all ¢ € S,

[eppim < o

We have that for some 1, K € S with & = ¢, & = 1, this integral is equivalent to

/[<1+rm\ /2 Fam)])Y pdm = / - |m[)2 F(m)] Vrdm = / T )2 Fm)p(m)dm

by Plancherel. Next, since we have (1 4 |m|?) > 1, we get that (1 + [m|>)¥? < (1 + |m|?)*/2,
since t < s. So we can bound this above by

[ 2y myam.
Finally, we remark that Asf € L2, so Plancherel says F(Agf) € L?, and

F(Asf) = (L+|mP)*f e L.
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Using Holder and the triangle inequality, we have that

/ (1 -+ [ml?)*/2 Flm)(m)dim < / (L -+ [ml2) 2| Fm)l [ (m)ldm < [Asf 2l < oo

Thus, A:f defines a tempered distribution.
Next, the goal is to show that A,_;A;f € L?. We remark that A;A; = Ay to see this,
notice that for any f, we have

n =4 [+ |m|2>t/2ﬂv)

- [(1+|m2>3/2 [( +mP)7) ] }
- [(1 + |m|2)(s+t)/2f] = Nspe(f)-

Thus, we see that As_;A;f = Asf € L? by assumption. Consequently, At_1 = A_,, since
MA_y = Ag, and Ay f = [f]v = f almost everywhere, so they are equal as distributions, and so
Ag is the identity. Likewise, A_;A; = Ag which is the identity, so A; is invertible with inverse
A_;. Thus, for f € H*, we have A,_;Ayf = Aof € L?, as desired. So A((H®) Cc H*7L.

To see that A; is surjective, then, we simply note that for ¢ € H*~!, we have that A_;g € H®,
since AsA_1g = Ay g € L?. Thus, Ay(H®) = H* L.

Finally, we need to show that it preserves the inner product; that is,

(Atf7Atg)(s t) = (/f, )
Notice that

(Arf. Aeg)os) = / (Aaehe f) (B iirg) = / (Aaf)(Bg) = (F.9))

Thus, it is a unitary isomorphism.
O

Problem 48. If k € N, then H” is the space of all f € L? that posses strong L? derivatives 0“f, as
defined in Folland Exercise 8.8 for |a| < k and these strong derivatives coincide with distribution
derivatives.

Proof. Recall that in Folland Exercise 8.8, we defined the strong partial derivative of f € LP as
a function h € LP such that

. —1
;13%) ly (T—yejf —f)—=hl=0.

We generally denote h as 0;f when it is unambiguous. For multi-indices, we have that 0% f as a
strong LP derivative corresponds to the iterative definition; i.e., if @« = 84 ¢e;, then 0% f = 8]-85 f=
ol 0; f as strong LP derivatives. Since it’s defined iteratively, the approach is going to be induction.

The goal is to show H* = ;I\k , where we define
HF = {f € L?: f posses strong L? derivatives for |a| < k}.

The first step is to show that H* C H*, and that, when defined, the distributional derivative
coincides with the strong LP derivative. The strategy is to do something like Folland Exercise
8.18 (a) (which we did in recitation).

We note that f € H*, k > 0 implies that f € L? as a function by the Lemma above (by the
equivalence, we see that |mo‘\f(m) € L*(R") for |a| < k, which implies that f(m) € LA(R"), and
so Plancherel tells us that f(m) € L?(R"); see also Folland page 302, the remark right after
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property (vi)). We now take the distributional derivative, labeling it as 0% f. Taking the Fourier
transform of this, we have that the last homework gives us

dof = (27Tim)af.
The Fourier transform of f as a function and as a distribution agree, so it suffices to now view f

as a function. Notice that the Lemma above tells us that the quantity above is in L? for |a| < k.
We will first show that

. -1 . N
Limny fly ™ (7—ye; f — " = @mimy) fll2 =0,
where we view f € H* as a function (instead of as the distribution it defines). We now recall that

(Tye; /) = 270 ).

Thus, squaring this, we’re examining

. 2
e2mim-(ejy) _ N
lim < L onim, yf<m)y> dm.
y—0 Yy
Notice that
e2mim-(e5y) _ ‘ e2mim-(yej) _ 1
———— —2mim;j| < + 27|m;|.
) Y

Notice as well (from the recitation earlier or from a MVT application, see Rudin’s Principles of
Mathematical Analysis, Theorem 5.19 with a slight modification) we have

e27‘rim~(ye]-) -1
< 2m|m;|.

Note that we have |m°‘|f€ L? for all |a| < k. Thus, for all |a| < k, we see that we can apply the
DCT to bring the limit inside, giving us that this goes to 0 as y — 0. Hence, we have

Y [Py~ (e, £ = ) = 032 = T lly ™ 7y, £ = ) = 0312 = 0,
SO
i [[y™ (7, f = f) = 03 fll2 = 0.

Thus, the distributional derivative 0; f is the strong L? derivative.

For general multi-indices, we induct on |a|. Thus, we assume that we can show it for |a| < k,
and we wish to show it for || + 1 < k. Letting § = a + e, 1 < j <n, the goal is to show it holds
for B assuming that it holds for a. We have the same set up as above then, with the minor change
that we replace f with 0“f; thus, we have

lim (
y—0

Again, we see that the inside will be bounded by

e2mim-(yej) _ 1

Y — (27m')mj

2
laaf(m)\) dm.

eZm'm-(yej) -1

Y

eQwim-(yej) -1

—27m'mj < +27T|mj|,

and we now have the bound given by

€2ﬂim-(ye)j) 1
——| < 27my],
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so the same result applies as above to give us that the limit is 0. In other words, this establishes
that

lim |y~ (7—ye; 0 f — 0°f) — 07 f||l2 = 0,

y—0

where 3 = a + ¢;, so that the distributional derivative 9P f is the same as the strong L? derivative
°f. . -

The goal now is to show that H* ¢ HF. Assume f € H*. Again, we try using the strategy
from Folland Exercise 8.18 (a). Assume that the partial L? derivative of f, denoted 0; f, exists.
Then the goal is to show that mjf € L? for 1 < j < n. This will give us that f € H' by the

Lemma above. Proceeding iteratively, we get that 9* implies that [m®|f(m) € L2(R™) for |o| < k,
and so we apply the Lemma above to get that f € H¥(R™).
Denoting the partial L? derivative as 9; f, we have

lim Hy (T—ye, [ = f) = 8ij2 =0

y—0
Applying Plancherel and taking the Fourier transform, we have that

éli% ||y71(./—'-(7_—yejf) - F(f)) - F(ajf)Hz =0.

By the results above, we see that this implies that

e2mim-(yej) _ 1
F(f) () — F(9;f)

Y

lim
y—0

2
Using the reverse triangle inequality, we get that
= [F@5h)lly = [19;fll2 < o0

e27rim-(yej) -1
Jl_.' S
(=]

Squaring everything, we see that this is the same as

tiy [ [Fom) P

The goal now is to find a bound based on this.
Let y = 1/n,

lim
y—0

e2mim: (yej) _ 1

dm = / |0 f () |2dz < oo.

2

)

fulm) = |F(m) (n(emims/ — 1))

we note that R
liminf f,, = lim f, = 472 f(m)m;|%,
n—oo n—oo

since this is a derivative. Recalling Fatou’s Lemma, we see that

/]f(m)]24ﬂ2\mj]2dm < hnrggf/fn(m)dm = nl;rréo/fn(m)dm < 00,

so we have that f(m)m] € L? for 1 < j < n. Thus, f € H', and from prior we have that the
distributional derivative 0; f coincides with the strong L? derivative o;f.

Now, assume that we have shown that it holds for multi-indices |a| = r < k, we wish to show
it for multi-indices of the form [3| = r + 1 < k; that is, multi-indices of the form 8 = o + e,

where 1 < j < n. In other words, we have that f(m)|m®| € L%, and the goal is to show that

( )|mP| € L2. Notice that 0°f as a strong L? derivative exists, and since it is defined iteratively
we have that it is defined so that

lim ||y~ (7_ye, 0% f — %) = 0" flla = 0
y—0
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We remark here that we have that it holds for multi-indices |a| < r, so f(m)|m®| € L? for |a| < r,
so f € H". By the prior result, we have then that 9%f as a distributional derivative agrees with
the strong L? derivative 0®f, so we can unambiguously refer to it as either. This is important,
since when we take the Fourier transform of 9°f, it wouldn’t make sense as an L? derivative (in
the sense that we wish to use Fourier properties to rewrite it), but as a distributional derivative we
can apply the problem from the last homework to get our desired result.

Applying Plancherel, we see that we have

liny [y~ (F(7ye,0° ) = F (")) = F0° )]l
and applying the reverse triangle inequality we have that

mim-(ye;) _
Fo° ) <1>

Y

Now, by the remark earlier, we can interpret 9% f as the distributional derivative, so we are able to
rewrite it as

lim
y—0

= |[F@ )|, = 167 F12 < oo.

F(0°f) = (2mim)*F(f),
and using the fact that the distributional Fourier transform agrees with the functional Fourier
transform, we have that

F(0°f) = (2mim) f(m).
Substituting this in, we get

. 2
€27mm-(yej) -1

(a2 i 2 Fom) dm = 97|12 < oo,

Again, a Fatou argument applies, so letting y = 1/n and

Fulm) = |m® Fam) (memmsin — 1)),

we have

liminf f, (m) = lim_f,,(m) = 47| f (m)m®m; ?,

and so
47r2/|ma|2|f(m)|2|mj\2dm < liminf/fn(m)dm = lim [ fu(m)dm < oco.
n—0o0 n—oo

Thus, we have |m“||mj\f(m) € L2, or in other words |m?|f(m) € L% Thus, the inductive argu-
ment applies, giving us that [m®|f(m) € L? for |a| < k, so f € H*. By prior, we see that the

distributional derivative coincides with the strong L? derivative. Thus, we have that H* = H* and
the derivatives coincide, as desired. ]
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James Marshall Reber, ID: 500409166 Math 6212, Homework 11

Remark. Thomas O’Hare was a collaborator.

Remark. A family member is going through health issues due to the pandemic, so I will not be
super focused on the next few homework assignments. I'm sorry for the quality.

Problem 49. Prove that if H¥ C C}, then s > k + n/2. (Note this is a converse to the Sobolev
embedding theorem.)

Proof. We follow Folland’s hint. Assume that H® C C(’f . First, remark that s is such that s > 0,
since for s < 0 we have that elements in H® may not be functions, so this inclusion doesn’t make
sense (by the remark in Folland page 302). Note that the identity function is a linear map,
clearly, and we have that H® and C'(’)c are Banach spaces with respect to their norms. Thus, we
are in an appropriate setting to apply the Closed Graph theorem (Folland Theorem 5.12). The
first step, then, is to show that the identity map is closed. Let (f,,) C H® be such that f, — f in
H#, and let g be such that Id(f,) = f, — g in C§. The goal is to show that 1d(f) = f = g in C.
Notice f,, — f in H?® if

= 12y = [+ ) Faton) — Fom) P = 0.
fSince s > 0 by assumption, we get that
1fo = FI3 = 1IFn — FlI3 = / [fu(m) = f(m)[2dm < / (1 + [m[?)*[fu(m) — F(m)[2dm,

0 fn — f in the L% norm, and hence almost everywhere. Since these are in C}, we have that
fn — f pointwise. Notice that if f,, — g in C}, then we have that for all o such that |a| < k,

10%fn = 9%glu — 0.

In particular, we get that f, — ¢ pointwise, so we have that f = g pointwise. Since f = g as
functions, we have that Id(f) = f = ¢ in C{f. So the identity mapping is closed, hence continuous.

The goal now is to show that 9% € (H®)* for || < k. From what we’ve shown above, this
equivalently follows from showing that 9% € (C§)* for |a| < k, and this follows since this is just
taking the derivative and evaluating at 0. Since H® C C(])“ and it continuously embeds, we can
define a functional by f +— 9%f(0) for |a|] < k; this is a continuous linear functional on H®, since
we map f into its continuous function analogue using the identity function, and then we use the
fact that 9§ is a linear functional on C¥ for |a| < k. By Folland Proposition 9.16, we have
that (H*)* = H~%. So unambiguously referring to this new linear functional by the same name,
we have 0%9 € H™* for |a| < k. Note that this means that

/(1 + Jm|?) %1898 (m)|2dm < .

Using properties of the Fourier transform, we recall that 95 = (2m’m)“g and & = 1. So we have
that

4n? /(1 + [mf2) "~ m®|dm < oc.
Notice that we can use the lemma from the last homework to bound below by

c/(1 +[mf2) "= dm < 4r? /(1 + [mf2) "~ m|dm < o
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for some constant C. Recall from Folland Corollary 2.52 that the integral on the left is finite
iff —s+k < —n/2, or in other words, s > k + n/2. Thus, if H* C C}, then we must have
s>k+n/2. O

Problem 50. Suppose sg < s1, tg < t1, and 0 < A < 1. Let
S)\:(l—)\)SQ—I-)\Sl, t)\:(l—)\)tg—i-)\tl.

Show that if T is a bounded linear map from H*® to H'" whose restriction to H*! is bounded from
H*' to H"', then the restriction of T to H** is bounded from H** to H® for 0 < A < 1.

Remark. I've found that this is a proposition in one of Folland’s other books (Introduction to
Partial Differential Equations, Second Edition), and that the hint follows the proof of the
theorem pretty closely modulo actually showing that F(z) is holomorphic (what he says seems
kinda bogus and I don’t see how you can fix it). If you ignore wanting to establish an actual upper
bound based on A, you can show that it’s bounded without invoking the Three-Lines Lemma, which
means avoiding the issue of holomorphicity and dealing with complex numbers. I already did a lot
of the work to apply the Three-Lines lemma, so there’s some unnecessary things here, but the end
result should still be correct.

Proof. We first claim that T is bounded from H*® to H! iff A;,TA_, is bounded on L?. This follows
from the fact that A;, A_, are unitary isomorphisms (see the last homework), and A_, : H® — H?,
A HY — HP. Note that we can identify L? with HY. To see this, by definition we have that

H={f eS8 :Aof € L*},
and so remarking that

Nof = [ +[mP)° ] = 1,
we see

H ={feS:felL?.

We note that f € L? defines a tempered distribution by Holder’s inequality, since for ¢ € S we
have

o)l < / Fllel < I ll2llellz < oo,

so in fact we have L? = HY. Hence, we really have A_; : L? — H® and A, : H' — L?, so
T : H® — H' is bounded iff A;«TA_5 : L? — L? is bounded.

Next, we observe that A, is well-defined for all z € C, where we note that we define it for complex
numbers in the analogous way;

A(f) = [+ my2f]
If f =g, then
FOA(F) = (1 + [mP)2F = (1 + ImP)2§ = F(A.(9)),

and so since the Fourier transform is an isometric isomorphism we have A,(f) = A.(g). Further-
more, assume that z = bi € C, where b € R (that is R(z) = 0). We wish to show that A, : H®* — H*
is unitary for all s € R. Note that

A(H?) = {A.f: f€S Af e L?}.

We first show that Ag(A,f) € L?, establishing that A,(H?®) C H*. Note that (1+|m|?)*/2 is slowly
increasing. We prove this by induction on |«a|. For the case |a| = 0, we have

(L4 m)"2| =1 < (1+ n])°
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by the above result. Now, assume that it is slowly increasing for |a| = k — 1. To deduce the result
for |a| =k, we let B = a+e;, 1 < j <n, and we note that

07 (1 + [m|*)"2] = 10°0; (1 + |m)""?|

- |(z) e ()

_9 a 2\bi/2 _2my
—26(1+|m\) T )|

We now invoke the general product rule as well as the induction hypothesis (since |§| < |a| = k—1)
to get that this is equal to

b al s bi/2 _2my
3| X gt (e mp) o (e
It+y=a
< 9 Z ‘86 ( + |m| )bz/Q)‘ 2m]
=3 Sty 1+ [m]?
Ity=a
b 2m
< Z il j
2,2 s+ ) o ()|

Invoking product rule again for the derivative on the right, we have

2[07(my) 1+ m*) M <2 Y
n+¢=vy

,g,\a"mj|ra<<1+ mf?) .

Notice that 0Ym; = 1 if v = e;, m; if ¥ = 0, and 0 otherwise. So there is a constant C’ so that we
can bound this above by

C" [lmsllo7 (1 + |m|*)~H + 1077 (1 + [m|*) 7] .

We now claim that (1 + |m|?)~! is slowly increasing. If this is true, then noting that |m;| <
(I + |mj]) < (1 + |m]), we can find constants C, and N(v) so that this is bounded above by
Cy(1+ [mp)N (7). Substituting this into the original sum, we have an upper bound of

D+ mP) R < 2>
St+v=a

,%(C&(l + ’m‘)N(t?))(CA/(l + ‘mDN('y)).

Taking maximums and absorbing constants, we see that there are constants Cz and N () so that

07 (1 + [m|*)"2] < C(1+ fm NP,

So, by induction, we get that this is slowly increasing.
In this, we assumed that (1 + |m|?)~! is slowly increasing. We now prove this, using induction
again. Notice that

1+ [m)7H < 1= (1+]m])°,
so we have it holds for the base case |a| = 0. Assume it holds for |a| = k — 1, then we wish to show

it holds for || = k, where § = a + €, 1 < j < n. Again, we have

071+ [m[*) 71 = [0°0; (1 + [m|*) | = 200%(1 + [m|*)"*my| = 20 (1 + |m[*) " [(1 + [m[*) " my].
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We now invoke product rule on this to get that it is equal to

al _ _
2| 3" N [07(1 + [m|?) ] [35(1 + [m?) 1mj}

Y+o=a

al _ _
<2} o 107(1 + |mf2) ™| )55(1 +ml?) 1mj‘ .

y+o=a
Note that |y| < |a| =k — 1 and |[0| < |a| = k — 1 by assumption. Thus, we can use the induction
hypothesis to find constants C.,, N(v) so that

97(1+ mf?) 7] < € (1 + fml) YO,

Next, we expand 9°(1 + [m|?)~'m; with the product rule to get

P mPy | = | 3 2@+ )@ my)|

W+ 1!

Recall that 8<mj =11if ( =ej, m; if { =0, and 0 otherwise, so there is a constant C’ so that this
is bounded above by

¢’ [I35_ej(1 + )l | + 107 (1 + m?) ]

Since |§] < |a| = k — 1, and we have the observation that |m;| < (1 + |m;|) < (1 + |m]), we can
use the induction hypothesis plus the observation to get that there are constants Cs, N () so that
this is bounded above by Cs(1 + |m|)N(©®). Hence, absorbing constants and maximizing again, we
get that there are constants Cg, N(3) so that

10°(1+ [m[*) 7! < Cp(1 + [m )V,

Thus, by induction we have (1 + |m|?)~! is slowly increasing. Consequently, we have (1 4 |m|?)
is slowly increasing as well.

Since this is slowly increasing, we note that A, applied to a distribution is still a tempered
distribution, and so applying As to this makes sense. Now, notice that

oV INPRSCRV;
As(Af) = Ay [(L+ Im2)2F] 7 = (14 fmf) /2 F]
We remark here that this sort of trick also establishes that
AsA, = A

bi/2

By Plancherel, it suffices to show that
[ 1+ Y2 Fom) P < o,
Notice that this is equal to
[ e Fomm < oo

since the modulus of a positive real number to a complex power is the positive real number to the
power of the real part. We know that the latter integral is finite, since f € H®, so we have that
A, (H®) C H".

Next, for surjectivity, let ¢ € H®. We wish to find f € H?® such that A,f = ¢g. Utilizing the
fact that the Fourier transform is an isomorphism on tempered distributions, we get that there is
a distribution f so that f = (1 + |m|?)~%/2G. Thus, we have

Aof = [0+ pP2F) " = [ Py [+ )29 = g
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Since the choice of g was arbitrary, we have that A, is surjective.
Next, we wish to show that A, preserves the inner product on H?®. To see this, note that by
definition and the observation we made earlier on complex powers and the modulus, we have

(A-f.A9) = [(AA TR g)dm
= [ | 072 FmGomyam

_ / (1+ [m?)* Fm)g(m)dm. = (. 9)

Thus, if ®(z) = 0, then A, is a unitary map on H*, as desired.
Define s(z) = (1 — 2)s0 + 281, t(2) = (1 — 2)tg + 2t1. For z € C with 0 < R(z) <1 and ¢, € S,
we define

F(2) ::/[At(z)TA—s(z)(P] ).

We now diverge from the hint, with the goal only being to show that the function is bounded. Note
apriori we have

1T fll(to) < Coll fllesoy> 1T flery < Coll Fllsy)-

Notice that for R(z) = 0, we get (using Plancherel, Holder, and definitions/observations)

1/2 1/2
z)| S/!A—t(z)TA—s(z)SOW\ < (/‘A—t(z)TA—s(z)(P‘z) (/W?)

1/2
- </H(1+ |m[2)t(z)/2.7:(TAfs(z)<P)]v 2) 14]l2
</’ 1+ [m|?) O 2F(TA_ 0 )(2>1/2H¢Hz

1 2
_ ( [y |f<TA_5<z>so>|2) ol
= |TA_s)ell o) I ll2 < CollA_szyPll s 1012

= Co (/(1 + |m[?)* | F(A—y z>90)|2>1/2 112

= o (fasimpys s miyorzgl) i,

1/2
G ( / raﬁ) lélla = Collgllalle .
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Similarly, for R(z) = 1, we get that (using Plancherel, Holder, and definitions/observations)

1/2 1/2
2)| §/|A—t(z)TA—8(z)90”w‘ < </|A—t(Z>TA—S<Z)‘p|2> (/W)P)
L2\ V2
_ </“(1+ |m’2)t(z)/2]:(TA_S(Z)¢)] ) 1412
o 1/2
= (f[a+meyerzan o) wi

1/2
_ ( Ja+impy |f<TAs(z>so>|2) Il
= HTAfs(z)QOH(tl)HwHQ < Cl”Afs(z)QOH(ﬂ)”w”Q

1/2
_ o ( Jo+ |m12>81|f<A_s<Z)go>|2) ol

:Cl</(1+!ml2)sl (1 + |m|?) “W() [

NG
_o ( [ ) lolls = Callglallell.
For 0 < R(z) < 1, we get that

1/2 1/2
< [T opliol < ( [1noTa o) ([ 1o8)
S12\ /2
_ </“(1+ |m!2)t(z’/2f(TA—s<z><P)] ) 1112
o\ 1/2
= ([ o mprorzan o) v,

1/2
2
(/<1+|m| VRO | F(TA_ 0 >|) ol
ITA syl ¥l < CLllA sy ellon 61l

1/2
o ( [+ A r?) Il

—ar(fasmpy

1/2
<a ( Ja+impys \@2) [éllz = Crllgl s sy ll#ll2 < 0.

(14 mf?) /2] ) Il

Remark. If you can show that F'(z) is holomorphic, we have at this point the Three-Lines lemma
would apply and you could actually get an upper bound based on A for 0 < A < 1. Thomas
suggested something like Morea’s theorem but I don’t see how to apply that here.

Thus, the function is bounded for 0 < $(z) < 1 by taking the maximum between these three
constants. Using duality (Folland Theorem 6.14), A;;)T'A_,.)p is a bounded map on L?. By

the remark earlier, we have that T is a bounded map from H** to H for 0 < A < 1. O
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For s € R, the periodic Sobolev spaces are defined as
H*(T") := {f e D(T"): Z(l + |m\2)s|f(m)|2 < oo} .

We define the periodic Sobolev norm as

ey = (320 + mp2y Fom)2)

Problem 51. For s,t € R and s > t, show that the space H*(T™) is continuously and densely
embedded in H'(T™), and

[ 1ty < ([ fllms(rmy for all f € H3(T™).
Proof. Notice that
1 Fregeny = D1+ [m) [ f(m) P,

)
and since ¢ < s, we get that (14 |m|?)! < (1 + |m|?)*, hence

£z = S+ 2 Fm)E < SO+ [mP) )P = 1112 ony-
In other words,
||f”Ht('ﬂ'") < HfHHS(T")

Next, we wish to show that the embedding Id : H*(T") < H(T") has dense image. Let f € H!(T")
be fixed. Define fj; a distribution so that

~ o Fm) i [m| < |M]|
fM(m)_{Oif|m|2M.

We first remark that this indeed defines a distribution. Let
F(z):= Y fu(m)Em(),
mezZ™

where E,,(7) = €™ Since f € H'(T™), we note that
Y (1 +Iml?) f(m) < oo,

which forces f(m) < oo for all m € Z™. Since F is a finite sum of things, we have that it defines a
function in L2(T™), so a distribution. Furthermore, this distribution is such that F(m) = f/.]\\J(m)
We label the distribution fy; to be the L?(T") function F', so without ambiguity we can just refer
to it as fys. Notice that fay € H*(T™), since

fallzszny = D A+ 1mPPIFm)P = Y 1+ m)*[f(m)? < oo,
mezZn mez”
|m|<M

which we note is finite. Notice that fy; — f in HY(T"), since

~

far = fllaeeny = > (L mP)Y | far(m) = Fm)P = > (14 [m)[f(m)]* =0,

meZ™ mezZ"
Im|>M
since the series is convergent. Thus, H*(T™) C H*(T") is dense. O

Problem 52. Show that the dual (H*(T"™))* of H*(T") is isometrically isomorphic to H~*(T").
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Proof. We proceed in two steps. First, let f € H=%(T™). We wish to show that ¢ — (f,¢) is a
continuous linear functional on H*(T"), where ¢ € H*(T"). Notice that we have

(fooy=(f" 2= > Y (m)@(m)
mezZn

Hence,

[(Foo)l < D0 @A ImP) 2L m)](1+ [m[?)*215(m)],

mezZn
and applying the Schwarz inequality we have

[(F o)l < M=o omy [l 225 (2m)-

So the linear functional is bounded, with norm at most [|f[|_s) < oo. We note that the lin-
ear functional has norm equal to || f||—), since choosing g to be a distribution so that g(m) =

HfH(__ls)(l + |m|2)=5 f(m) (the case where [ fll(=s) = O follow trivially since the norm of the linear
map needs to be greater than or equal to 0, so we can assume || f||(_s) # 0), we have

(f.9) = er_ > Fm)P+ mP)* = (11l

mGZ"

Hence, it is continuous, and so it is in the dual of H*(T"), with norm equal to its H~° norm.
Next, let G € (H*(T™))*. The goal is to show that it agrees with some f € H°. Notice that,
via Fourier series, we can identify H*(T™) with

12 = {(am)mezn : am € C for all m € Z", Y (1 + [m[*)*|am|* < oo},

where s € R. In other words, I2 is the equivalent of L?(R", w;) for little [2. As a result, we equip
it with the inner product

((@m), (b)) 2,5) = > (1 + [m[*)*ambpm,
and hence it has associated norm
1/2
)l = lamls = (350 + [mP)lanf?)

We note that [2 is a Banach space (and hence a Hilbert space) with respect to this norm. To see
that it is a vector space, notice that (a;), (b;) € 12 tells us that

(am +bm) IFa.ey = DL+ M) am +bml* <> (1 +[m*)*(|am| + [bm])?
= > (1 +[m)* (Jam|* + 2|am||bm| + [bm|*)
= llamlfog +2 D [+ m)*laml[(1 + [m[*)2[bm]] + b .0

We now recall Cauchy’s inequality for general 12, giving us that this is bounded above by

/ /
lam oy +2 (3500 + ) lan?) " (300 + i) lbml) ]+ [l

= llamlIfo.0) + 2Mlamll 2,5 1bmll 2,5 + 10ml1fa.0)
= (llamll2.6) + 1bmll 2,5,

SO

Ham + bm”(Z,s) < HamH(Q,S) + ||bmH(2,s) < 00,
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hence (@, + by,) C 12, For scalars ¢, we have

. 1/2
leamll) = (D0 + mP)leaml®) ™ = lelllamlla.5) < o,

Thus, (ca,,) C 12 as well. Therefore 2 a vector space.

We’ve shown the triangle inequality and the scalar property for norms, so all that remains is
lamll(2,s) = 0 iff ay, = 0 for all m € Z". The converse is clear, so we show the implication. If
||am||(2’s) =0, then

0< (14 [mP)lam|* <Y (L +[m]*)*|am|* =0,
and hence, we have (1 + |m|?)%|a,|*> = 0 for all m € Z"™, which is only possible if a,, = 0 for all
meZ".

The last thing to check is that it is complete with respect to its norm. Let (a?,) C I? be a Cauchy
sequence; in other words, for all € > 0, there exists an N so that for n,r > N, we have

lam — amll2,6) <€

Fixing m, we have that o/, is therefore a Cauchy sequence in the underlying field (say C), since
2 2
(L |m[*)|ag, — ap|” < llap, — a5l 2,6)-

Thus, a?, — a, for fixed m. The goal is to show that a?, — a, in the (2 norm. Notice first that
(am) C 2, since

sup [|ap,[l2,s) < C,

neN

and hence for all n we have
Y A+imPYlapP <.
Im|<M
Let M,n — oo to get
lamll(2,5) < C-
Now, we show that [|a;;, — aml[(2,s) — 0. We do the same trick, namely we have that for all € > 0,
we can find N so that for n,r > N,

> (4 |mP)lay, — ap,|” < llay, — ap,ll2.5) < €
[m|<M
Letting M, r — oo, this tells us that for all € > 0, we can find an N so that for n > N,
lam — amll2,s) <€

Thus, a, — a,, in 2, and so [? is a Banach space with respect to the norm.
We now show that it is a Hilbert space with respect to the prescribed inner product. Notice that

(cam + kbm, dm)(2,s) = Z(l + \m[Q)s(cam + kb )di = c(am, dm)(z,s) + k(b dm)(2,s)7

(ama bm)(2,s) = Z(l + |m|2)samm = (bma am)(2,s)v
(s am) = Y (1+ [m]*)*|am|* > 0.

Hence, we have that it is an inner product, so I2 is a Hilbert space. Since it is a Hilbert space, we
have that it is self dual (Folland Theorem 5.25), so (I2)* = 2.

~

Consider G : H*(T") — 12 defined by G(f) = (f(m))mezn; in other words, the Fourier transform
as distributions. We’ve already seen that the Fourier transform is defined on D’(T™), since this is the
space of distributions with compact support. It suffices to show that this is a unitary isomorphism
of spaces, then. Notice that, by construction, G(H*(T")) C I2. We then need to prove surjectivity.
By the discussion on Folland page 297-298 (for details, check Folland’s Fourier Analysis and
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its Applications, specifically Theorem 9.6 and the discussion before), we have that the Fourier
transform on periodic distributions is an isomorphism. Take a sequence (@, )mezr C 2. Define
a distribution F € D'(T") to be such that F(m) = am; by the discussion in Folland, we know
such a distribution exists. We then check that this distribution is in H*(T™). If it is, we have
that G(F') = (am)mezn, proving surjectivity. The fact that it is in H*(T") follows by construction,
though, since

A+ mPYEm)P = (1 +[ml?) am|* < o
since (an,) C 12. Thus, the mapping is surjective.
To see that it preserves the inner product, notice that

(G(F),G(@) 2y = p_(L+|mI*) F(m)G(m) = (F,G)s).

Thus, G is a unitary isomorphism between Hilbert spaces.
Since G oG~! : 1?2 — C is a bounded operator on /2, using the fact that G is bounded and G is a
unitary isomorphism, we get that duality tells us there is a sequence (by,)mezn € lg so that

GoG Mam)= > 1+ [m|*)*ambm.

mezZ"

Define g to be the distribution in D'(T") so that g¥(m) = (1 + |m|?)*b,,. In other words, g is
the distribution defined by

(g,0) = (9", @) = D _(1+ [m|*)*B(m)by.
Notice that
G(p)=GoG ' oG(p) =GoG  ((B(m))) =D (1 + m[*)*B(m)by
= ) 9" (m)@(m) = (g",¢") = (g,)-

mezZm"
Thus, these define the same distribution. Furthermore, g € H—*(T"), since
gl sy = D [Gm)PA+m) ™ = Y |[(1+m) o> A+m*) ™ = > (1+[m]*)*|bpf* < co.
mezn mezn mezn

So we have that every element in (H(*))* can be identified (uniquely) with a distribution in H (%),
So the map from H(~%) to (H®))* given by f + (f,-) is bijective, isometric, and linear (since the
inverse Fourier transform is linear and integration is linear), so its an isometric isomorphism. [

Problem 53. Suppose s > k +n/2. Show that Id : H*(T") < C*(T").

Proof. Let f € H®. Then we have that
> (L [m)|f(m)|* < oo.
mezZ”
From prior discussions, we have that
F= Z J/c\(m)627rim-x
mezZ"

defines a distribution. We note that, as distributions, f = F. This follows, since

(F o) = (F,p") = /ﬁ(m)wv(m)dm = /f(m)sov(m)dm = (f,e") = (f9).
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We see that

0% f ()| = (2m)'°! < @m)llme 37 |fm)]

mezZm™

me Z J/c\(m)e%rimw
mezZ"

<0 Y (1 +m)M2 Fm)],

mezn

where C' is some constant (which we found from the Lemma from the prior homework). Using the
Schwarz inequality, we have that this is bounded above by

1/2 1/2 1/2
C ( >+ !ml2)slf(m)!2> < >+ !mIQ)’H> = C|fll(s) ( > (1+ !ml2)""“‘s> :

mezm™ mezm™ mez"™

Now, since s > k + n/2, we have that 2(k — s) < —n; in other words, we have that the series on
the right converges (by a generalized integral test, see this for an example). Thus, the Sobolev
embedding theorem holds. O
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James Marshall Reber, ID: 500409166 Math 6212, Midterm

Problem 54. Let 1 < p < g < oo and (X, i) be a finite measure space.

(a)
(b)

What is the domain of the identity map from LP(u) to LI(u)?
Is the identity map from part (a) continuous on its domain? Prove or disprove.

Remark. I'm going off of the definition that the domain of a map is the space of elements where
the function can be uniquely defined. That is, if T': X — Y is a map, we define the domain of T" to
be the maximal subset D C X so that, for all x € D, T'(x) € Y is defined uniquely. I tried looking
in Folland for a definition of domain but the one there doesn’t line up with what the problem is
asking for (Grafakos seemed to implicitly be using this one, but never formally stated what he
meant by domain).

Proof. (a) Let T : LP(u) — L%(u) be the map such that T(f) = f (i.e. the identity map). The

domain, then, is the collection of maps f € LP(u) such that T(f) = f € L9(u); that is, the
collection of maps which are in LP(u) and which are in L9(u). Thus, the domain of the map
is LP(u) N L9(p). Recall from Folland Proposition 6.12 that, on finite measure spaces, we
have that L9(u) C LP(u); hence, the domain will be LP(u) N LY(pn) = L4(u), equipped with the
p norm. To prevent confusion, let’s denote the domain with

D={feLP(u):feLliu}

then D = L9(u) as sets and we have that D is equipped with the p norm.

The question is whether 7' : D — L%(u) is continuous on its domain D. Inspired by Homework
1, Problem 4, we first show that 7" is a closed map. Assume that T'(f,) = f, — g in L(u),
fn — fin D. The goal, then, is to show that f = g as functions in L9(u). Since f,, — f in D,
which is equipped with the p norm, we have that

pl{z | fnle) = $@)] > ) < Sl — F5 0

by Chebychev’s inequality (Folland Theorem 6.17); thus, f,, — f in measure. Likewise,
T(fn) = fn — ¢ in L9(u) equipped with the ¢ norm, so we have that another application of
Chebychev gives us

pl{z: [ fale) — 9(@)] > ) < Sl —gll§ 0.

Hence f,, — ¢ in measure. Invoking Folland Theorem 2.30, we see that f = g almost
everywhere, and since we are viewing these are functions in L9(u), we have that T(f) = f =g
as functions in L4(u). Thus, T'(f,) — T(f) in L9(p), so that T is a closed map.

Next, we note that the domain D is a dense subset. Using Folland Proposition 6.7, we
have that the simple functions are in D (since they are in L(u)), the simple functions are in
LP(u), and they are dense in LP(u). Thus, letting ¥ denote the set of simple functions, we have
¥ C D C LP(u) so that D is a dense subset of LP.

If T were continuous on its domain D, then we claim that its domain would be all of LP(pu).
Since T' is a closed map and D is dense, taking arbitrary f € LP(u), we can find a sequence
(fn) C LP(u) such that f, — f, so

T(f) = f= lim f,= lim T(fn)
is uniquely defined, so f € D. If the domain is equal to LP(u), we have that LP(u) = L9(u).

This, however, is not always true; following Folland page 185 and taking, for example, p = 1
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and ¢ = 2, we have ((0,1),\) (X the Lebesgue measure) is a finite measure space. Notice that
f(z) =2~ Y2 is in L' since
1 1
£l = [ 2 Pan@) =217 =2
0 =0

but
1

= Q.

1
2 _ -1 —1n
wm-Axcwm )|

So f ¢ D, since T(f) = f ¢ L?*(\), and hence the containment L?(\) C L!()) is strict. Thus,
the identity function 7" : LP(u) — L%(u) need not be continuous.

0
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Problem 55. For 0 < p < 1, let (X, M,pu) and (Y, N,v) be o-finite measure spaces and f a
measurable function on the product space X ® Y. Then

/X [/Y\f(a;,y)lpdu(y)] 1/pclu(gc) < [/Y (/X|f(x?y)‘d,u($)>pdl/(y):| 1/p‘

Proof. We remark that this is the “flipped” version of Minkowski’s inequality for integrals. We
somewhat expect this to hold, since in general these kinds inequalities flip for 0 < p < 1 (see
Homework 2 Problem 1 (a), for example). To prove this, we will follow Grafakos’ hint for
proving the usual Minkowski’s integral inequality (Grafakos Exercise 1.1.6 (a), the same hint
is also in Measure and Integral: An Introduction to Real Analysis by Wheeden and
Zygmund, Exercise 8.8) and use a sort of “flipped” Hoélder in place for Holder (Grafakos
Exercise 1.1.2 (c)). We first prove the desired lemma.

Lemma (“Flipped” Holder, Grafakos Exercise 1.1.2 (c)). For r < 0 and g > 0 almost every-
where, define

—1y-1
lgll- = gl

In other words, we define it as we have for the positive numbers:

lall. = [</(g_1)r>1/|r]1 B (/g_|r|>—1/|r _ (/gr>1/r'

We define L" for r < 0 in the usual way, which is that L" is the space of functions where the || - ||,
norm is finite.

Let 0 <p<1,qg=p/(p—1). If g is strictly positive almost everywhere and lies in L? and f is
measurable such that fg is in L', then

1£glle = 1 f1lpllgllg-

The goal is to prove this by applying the usual Holder (Grafakos Exercise 1.1.2 (a) with
k = 2, Folland Theorem 6.2). That is, the goal is to use the following.

Theorem (Hoélder’s Inequality). Suppose 1 < p < oo and 1/p+1/qg = 1. If f and g are measurable
functions on X, then

1£glly < 17 1lpllgllg-

Proof of Lemma. Let r = 1/p so that 1 < r < co. We examine

st = [ 1re = 110

Multiplying and dividing by |g|"/" (and thus using the fact that g is positive), we get

/ Fal Vg1~V

We now can apply Holder using r and ¢/, where ¢’ is chosen so that 1/r + 1/¢’ = 1. This gives us

i< ([ Ifg|>1/r (/ |g|—q’/r)1/ql.

Notice that ¢/ = r/(r — 1), and substituting in 1/p = r, we have
/ 1/p 1 1

T -0 " p(=p/p)  1-p
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Hence, we have

r 1/p p—1 7

nﬂﬁs;(/um)pQ/ww)(p”.

Multiplying both sides by ([ \g|q)(p71) , we have

(/@W)VJHﬂEEEQ/U@OPZHfgﬁ

where we note it’s valid to do since g € L9. Taking pth roots of both sides, we get

(p—1)/p 1/q
(/mﬁ nﬂuz(/mﬁ 17l = lgllllfllp < 11 gl

as desired. (]

and so

Assume without loss of generality that f(x,y) > 0 (to simplify notation). We rule out some
extraneous cases first in the hopes of getting the appropriate assumptions for the above lemma.
First, if there is some positive measurable set £ C Y so that for all y € E, we have

/f@wwm:w,
X

then we see that the inequality clearly holds; taking the pth power of the right hand side, we have

o= [ ([ swina)) avw) < [ ([ femaun) an)

So we assume that for almost every y € Y,

/f@www<w.
X

:A(Lﬂmwmwfwwfmzw

then the inequality trivially holds again, so assume that

/Y ( /X f(x,y)du(:r)>pdu(y)- o

Similarly, if we have

Using the fact that f(z,y) > 0, we have that for almost every y € Y,
0< [ Fa)duta) < .
X

The goal now is to show that we can reduce to the case where for almost every y € Y we have
0< [ Fa)duta) < .
X
Let £ C Y be the collection

E:{eriéf@wMM@=0}

={y €Y : f(x,y) =0 for almost every x},
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where the second equality comes from Folland Proposition 2.16; that is, for fixed y € Y,

/ f(z,y)du(z) =0 < f(z,y) = 0 for almost every x
X

Observe that we can write the left hand side as

faapa)| [ fpa) + [ ieara) " e,
Al | o

Since for y € E, f(x,y) = 0 for almost every z € X, we have that

Fapan)| dute) = FopPdvty)]  duta).
X Y X Ec

Finally, observe that the right hand side of the inequality is equal to

P )dn(z) ) dvly Fy)du(e) ) dvly) + F () ) dv(y)
(s ) ww = [ ([ svae) wwr+ [ (f )
- [ ([ stwiint@)) avi.

So proving the inequality reduces to proving it in the case where

/ f (@, y)dp(z) > 0
X

for all y € Y (for the case where this does not hold for all of Y, this holds on E°, and by what we’ve
shown above showing it for E€ is sufficient). Thus, we may assume that for almost every y € Y,
we have

0< /Xf(w,y)du(m) < o0,

[ / ( /. f(x,y)dﬂ(w)ydy(y)r/p<oo_

For notational simplicity, let
— [ s duto) < oc.
X

Translating, the assumptions then state that 0 < h(y) for all y € Y, h(y) < oo for almost every y,
and ||h]|, < oo.
Going back to the inequality, notice that the pth power of the right hand side can be written as

[ ([ st

By the assumptions we made earlier (that is, 0 < h(y) < oo), we see that we can write this as

([ stainta)) ant /(/fzydu ) 1(/fa:ydu( ) avto)
= /Y/X </X f(z’y)dﬂ(2)> et / / )P f () dp()dv(y).

We see that Tonelli applies, since h(y)P~!f(x,y) > 0, hence we can rewrite this as

// @y / / )P f (,y)dv(y)dp(z).
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Now, the goal is to use the flipped Hdélder lemma above. By our notes earlier, we note that
g(y) := h(y)P~! is such that g > 0 almost everywhere (the notation is changed in order match the
lemma). Notice as well that we assumed that ||h||, < co which tells us that g(y)f(x,y) € L*(v(y))
for almost every z; to see this, fix z € X and note that we have

[ sttt = [ ([ f(z,y>du<z>>p1f<x,y>du<y>.

Integrating this with respect to x, we have

/X [/Y </X f(z,y)du(z)>p_1f(:r,y)dz/(y)] dp(x)

_ /X /Y ( /X f<z,y>dﬁ<z>>p_1f<m,y>du<y>du<x>
= /Y /X ( /X f(z,y)du(z))p_lf(%y)d,u(x)d’/(y)

= [ ([ st aut))” vt = 1oz < o

so Folland Proposition 2.20 tells us that, for almost every z, we must have

/ o(0) (2. 9)dy) < oo.
Y

Since we will be integrating this with respect to X after applying the inequality, we remark that
gf € L'(v) for almost every z is sufficient.
Finally, we need to check that g € L4(v), recalling ¢ = p/(p — 1). Notice that

lgllt = /Y o(y)tdv(y) = / ()™ du(y) = / h(y)Pdu(y) < oo.

Hence, ||g||q < 00, so g € L9(v). The conditions are then met to apply the lemma. Fixing z € X
where gf € L'(v), we see that

/yg(y)f(x’wd”(y) > (/Y f(w,y)pdu(y))l/p (/Yg(y)qdy(y))l/q

for almost every x. Using the fact that ¢ = p/(p — 1), we see that the right most value will be

(/Y g(y)qdy(y)>1/q _ (/Yg(y)p/(p_l)dy(y)>(p_l)/p
= (/Y (/X f(z’y)dﬂ(2)>pdy(y)>(pWp’

so after integrating both sides with respect to X, we have

[ [owseaatine = [ ([ fapid) aw

/X[(/Y (/Xf(z,y)du(z)>pdu(y)>(p_1)/p (/Yf(m,y)pdu(y)>l/p] du(z)
~([ ([ revme) aw) ™" [ ([ repaw)” e
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Dividing both sides by

</y (/X f(z,y)du(z)>pdy(y>) <p—1)/p7

which we remark is valid to do by our assumptions prior, we get

( /Y ( /X f(w,y)du(x))pdv(y))l/pz /X ( /Y f(x,y)pdu(y))l/pdu(x),

as desired.
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Problem 56. For 1 < py < p < p1 < 00, let LP**° denote weak LP. Then
LP,OO C LPO + Lpl

Proof. Recall that
P> = {f € Fun(X,C) : [f], < oo},

where

[f]p = sup a)\f(a)l/p.
a>0

The goal is to write f = g+ h, where g € LP° and h € LP'. Fix some constant A > 0 (say A =1 if
you like). Let E = {x : |f(x)| > A}. Recall the functions

ha= fxpe + A(sgnf)xe, ga=[f—ha.

Notice these functions are such that f = ga + ha. If we show that g4 € LP° and hy € LP', then
we win.

The idea comes from the proof of the Marcinkiewicz Interpolation theorem (Folland Theorem
6.28). Recall Folland Proposition 6.24, which says that if 0 < p < oo, then

[ 1= [0y

Recall as well Folland Proposition 6.25, in which we have that

Ar(a) if a < A,

Mgal@) = Ap(a+A), Any(a) = {0 if a > A.

The proof of the prior proposition was Quiz 2. Combining these two results, we have that
[ee]
/|gA|p°du :po/ apo_lAgA(a)da
0

o

:po/ apolx\f(a—l-A)daSpo/A P\ ¢ (a), da
0

where to get the inequality, we use a change of variables 3 = a+A and note that (3—A)P0~1 < gro—1
and then relabel the s as as. We also have that
0 A
/‘hA‘pld,U, = p1/ Ctpl_l)\hA(a)da = pl/ apl_l)\f(a)da.
0 0
These match the results on Folland page 204.
Let k be such that

[f], = supar(a)/? =k < .
a>0

Then for any «, we have

kP
a)\f(a)l/p < supa)\f(a)l/p =k = Af(a) < —

a>0 oP
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Thus, substituting this into the first equation, we have

/\QA\pOdMSPO/ o=\ (@)da

A

o0
< kppo/ aPo—P—1gq
A

o
:k:ppo/ aPo Pl
A
[o.¢]
oz:A:|

where here we use the fact that pg < p, so limg_o &?°7P = 0. Thus, taking poth roots, we have
that [[gallp, < oo, giving us that g4 € L.

Similarly, substituting the above in the second equation, we see that this gives

Po—p

A
|ha|Ptdu :p1/ a” "I (@)da
0

A
Skppl/ oaPrP=1gn
0
_p|A
aP1—P
=k’py
a=0

p1—p
where here we use the fact that p < p1, so there are no issues for o”'™P at 0. Thus, taking p;th

roots, we have that ||hal|,, < oo, giving us that hy € LP'. Hence, f € LP° 4+ LP'. The choice of
f € LP*° was arbitrary, so we get that LP>>° C LPo + [P1,

0
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Problem 57. For x € T, let
PN(.T) = 2F2N+1(1I) — FN(.T),
where Fiy denotes the Féjer kernelm

(a) Prove that the sequence Py is an approximate identity.
(b) Prove that Py(m) =1 when |m| < N 4+ 1 and Py(m) = 0 when |m| > 2N + 2.

Proof. (a) Recall that a sequence is an approximate identity if it satisfies three properties:
(1) We first want to show that supy |[|Pn|j1 < co. We see that, for all N, we have

PNl = 12Fon+1 — Enlln < 2[[Favgall + ([ Ev|h

using Minkowski’s inequality (Folland Proposition 6.5) and the linearity of the integral
(to pull out the 2). Since the Fejér kernel is an approximate identity (by the lecture notes
from 2/10 or Grafakos Proposition 3.1.10), we see that

sup || Pn|[1 < 2sup | Pan 1 + sup [Pyl < oco.
N N N

(2) We now want to show that

/ Py(z)dz = 1

for all N. Fixing an N and using that the Fejér kernel is an approximate identity, we see
that

/PN(m)dx _ /(2F2N+1(x) ~ F(2))dz = 2/F2N+1(x)dx _ /FN(x)dx _o_1-1.

Hence, we have the desired result.
(3) Finally, we wish to show that for any neighborhood V¢ of 0, we have that

/ |PN‘d{£ — 0.
v

Since we’re on the torus, it suffices to show that for all § > 0,

/ |Pyldz — 0.
s<lol<1/2

Again, we use that |Py(x)| < 2|Fon+1(z)| + |Fn(x)|, so that if V = {x: 6 < |z| < 1/2},

og/ PN]da:§2/ \F2N+1(x)]dx+/ Py (2)]da-
1% 1% Vv

Taking the limit as N — oo of both sides gives us

0< lim / |PN|dx§2[lim / |F2N+1(a:)|da:] + lim / () |dz = 0
N—o0 Vv N—oo 1 N—o0 Vv

since (Fy) is an approximate identity. Thus, we have that
lim / | Pn|dz =0,
N—oo Vv

as desired.
Hence, (Py) is an approximate identity.

"This is called the de la Vallée Poussin Kernel — sce Grafakos Exercise 3.1.4.
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(b) We have that
Py(m) =2Fyn11(m) — Fx(m)
by linearity of the Fourier transform. Utilizing Grafakos Proposition 3.1.7 (the details from
which will be shown after the problem), we see that

— {1— L if | < 2N + 1

Fong1(m) = 2N+2
+1(m) 0 otherwise.

Likewise,

|m| -
F]\V(m): —Nlﬂlﬂm\g]\f
0 otherwise.

Thus, for |m| > 2N + 2, we get that ﬁ]\\/(m) = 0, since both components will be 0 in this range.
Now, for |m| < N, we see that

™ m| m|
PN(m)_2(1_2N+2 Uy
(4N +4—2m| N+1—|m|

N 2N +2 N+1
_ 4N +4 —2|m| — 2N — 2 + 2|m|

2N +2
2N 42

ToANt2

For |m| = N + 1, we see that we have

— |m| 2N +2—|m|
Py(m)=2(1- =2
n(m) < 2N +2 2N +2

_AN+4-2/m| _4AN+4-2N+2 2N 42

=1.
2N +2 2N +2 2N +2
So if [m| < N + 1, we have I/Dj\v(m) =1, as desired.
0
Remark. Grafakos Proposition 3.1.7 claims that
S i
F _ 1— 2mija
CEPY (1-525)e
To see this, recall that we define the Féjer kernel by
1
Fn(z) = m[D0($) + -+ Dn(z)],
where ‘
Dj (x) — Z €2mm~m
[m|<j
denotes the Dirichlet kernel. Notice that we have
N
1 271 271
FN(IE)ZTH A Dj(l‘) Z ijr .~ N_|_1 Z Z z]a: ),
J=0 k’ 0]jl<k k=—o00 j=—00

= {(k,j) € Z* : |j| <k < N}.
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We apply Tonelli (With respect to counting measures) to get

1 [e.o] o0

A Y ) = e 3 Y (k)
J

k=—00 j=—00 =—00 k=—oc0o

1 oo
— 2mijx Eu(i
N+l Z € | Ex(5)],
j=—00
where E(j) ={k € Z : |j| < k < N}. Notice that for fixed j we have
. N+1—|j| for |j| <N
B = {0 |
otherwise,
since this is just counting the number of integers between |j| and N. Substituting this in, we have
N +1—j] o LN o
F — T 1— TijT
V@ =D e 2 N+1)¢
l7I<N liI<N

as desired.
Grafakos then uses this to note that

|m| -
F]\V(m): — a1 if Im| < N
0 otherwise.

To see this, we use linearity of the Fourier transform to note that
N

= i1\ g
FN(m) = Z <1 N’—i 1> e2ij (m)
j=—N
‘]‘ / 2mijx ,—2mirm
= Z ( N1 e e dx

j=—N

_ 2miz(j—m) —
Z ( N+1>/e o

j=—N
T 0 otherwise.

To see the last identity, note that if j # m,

N+1

— L if | < N
0 otherwise,

since

) 1/2
/ Q2riet=m gy — L owia(i-m)
T 2miz(j —m) o=—1/2
1 eTi(G—m) _ g—mi(j—m)
- w(j—m) 2i
_ sin(m(j —m))
m(j —m)

using DeMoivre. Since j —m € Z — {0}, we have that this evaluates to 0, as desired. Note that if
j = m, we get that the integral is
/ dr =1,
T
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Problem 58. Prove the Fourier inversion theorem: If f, J?E L', then f agrees almost everywhere

~

with a continuous function fy, and ()Y = (f¥Y)" = fo.

Proof. We follow Folland’s proof (see Folland Theorem 8.26). Fix ¢t > 0 and = € R". Set

42| |2
— 2rim-x—mt [m| _

p(m)
Using Folland Theorem 8.22 (a) and Folland Proposition 8.24, we see that

B(z) = F (e2mimee=mml®) (2) =, F (e ) (2)

=7, ((tQ)—”/2 €—7r|z|2/t2> _ t—ne—ﬂ|az—z|2/t2.

Let g(x) = e~ Then recall that for ¢ > 0, we defined the approximate identity g;(z) =
t=g(x/t) = t—"e~™1=*/*  Hence, we see that

e(2) = gi(x — 2).
By Folland Lemma 8.25, we see that

/ o(m) F(m)dm = / B(2)f(2)dz = / gz — 2)f(2)dz = gi % f(2) = | % au(2).

Note that
n/2
/g(:z:)dx = /e‘”'xQdaﬁ = (E) =1
T

by Folland Proposition 2.53. Hence, invoking Folland Theorem 8.14 (a)/Quiz 4, we see
that f * g — f in the L' norm as ¢ tends to 0. We now utilize the fact that f € L' to apply
the dominated convergence theorem (Folland Theorem 2.24, abbreviated as DCT). That is,
examining the integral

li —mt?|m|? 2mm-x 7 d

tim [ e 2T F ),

o~

we see that the absolute value of the inside of the integral comes out to e~ I™I* f(m)| < |f(m)| €
L', so we can apply DCT to move the limit inside. Thus, we have

lim 67ﬂt2|m|262ﬂ-m'mf(m)dm _ /%ln(l) efwt2|m|2627rm-xf<m)dm _ /eZWm-xf(m)dm
—>

t—0
= [f]¥().

Since these converge to the same thing, we see that [f]Y = f almost everywhere. Using Riemann-
Lebesgue lemma (Folland Theorem 8.22 (f)), we recall that the Fourier transform will be a
continuous function which vanishes at zero, and so there is some (unique) fo € Cp(R™) so that

~

[f]Y = fo. Thus, f = fo almost everywhere (which also gives uniqueness; if gy were another
function, we would have fy = go almost everywhere, but since these are continuous this implies

90 = foll
Finally, we need to show that [f¥]" = [f"]Y. The idea is to replace f in the equation with f

(as mentioned in Grafakos Theorem 2.2.14). Doing so grants us [(f)"]Y(z) = fo(z) = fo(—z),

8Brieﬂy, two continuous functions which are equal almost everywhere are equal in fact everywhere by a contradic-
tion argument; if they weren’t equal everywhere, there would be some point at which they differ, and we can find a
very small open ball around that point which would have positive measure in Lebesgue measure, and so we have a
contradiction to the fact that they are equal almost everywhere. Grafakos uses this fact a few times without proof,
and I don’t see a proof in Folland anywhere.
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so applying a change of variables we see that [(f)"]Y(—z) = fo(z). Notice that [(f)"]Y(—z) =

-~

()" () by definition. Finally, we claim that f = f = f¥. To see this, notice that

f(m) = /f(l')€2ﬂim.xd$ = /f(_x)€27rzmxdx
We now preform a change of variables using Folland Theorem 2.44. Let T'(z) = —x (this

is in GL,(R) since det(T) = (=1)" # 0) and let g(z) = f(z)e?™ ™2 (this is integrable, since
[1f(@)e*™me|dx < [|f(z)|dx < 0o). The theorem gives us

/f(—g;)e%im'zdx = /q(—x)daz = /qu(az)daz = |det(T)\1/q(x)dx
= ’(‘Un‘_l/f(w)e%im'xdl‘: /f(x)eQﬂim'xdx.

Hence, we have

£Y(m) = F(m) = F(—m) = / F()emimady = / f(—a)e=2mm e 4 = Fm).

Using this claim, we see that

(DN @) = ()N @) =[] ().
Thus,
(£ = fo

L =1 = fo.

and we deduce that
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Problem 59. Suppose that F' € §’, G € £'. Prove the following.

(a) FGisin S

(b) If v € S, then G« € S.

Proof. Recall the notation: F' € 8’ means F' is a tempered distribution (that is, a continuous linear

functional on §) and G € &£’ is a distribution with compact support.

By Folland Proposition 9.11, we see that Gisa slowly increasing C*° function (defined b
y
G(m) = (G, e2mim “))- Based on how we defined the Fourier transform of tempered distribu-
tions, we have that Fis still a tempered distribution defined by

(F, ) = (F,3)

for all ¢ € S (by the discussion on Folland page 295 and the lecture notes from 3/2). It
suffices, then, to show that if F' is a tempered distribution, ¢ is a slowly increasing function,
then F4 is a well-defined element of S’, where we will define F'y via

(FY, ) = (F,¢);
in other words, where we define it the usual way (see the discussion on Folland page 294).
The result is then proven by showing that the product of a Schwarz function and a slowly
increasing function is a Schwarz function (matching the discussion in Grafakos Definition
2.3.15). To see that ¥y is a Schwarz function, we merely need to check that for all N,
[l v,y < oo

Fixing N and «, we have

[l (va) = S;leL(l + |z ™0 (V) ()]

= sup (L+[2)™| > o= ,(aﬁw 2))(@p(x))

z€R”™

Btr=a
< sup (1+ o) >0 B ,I 07 ()||07 ().
zeR? Bty=a

Since 1 is slowly increasing, we have that
07(2)] < Cp(1 + [z,

where N () is some positive integer depending on 3, Cj3 is some constant. Substituting this
into the above, we have

< N NB)Y 197
[9lova < sup (1+12)™ 37 2 (O + DY) ()

Bty=a

< ¥ 5w+ >|a%o<x>}

Btr=a

=y = ﬁ, Callellv.q <
Bty=a
since ¢ € §. The choice of N and a was arbitrary, so we get that ¥y is a Schwarz function.
Hence, (¢ F, @) = (F. <p1/}> is well-defined for all ¢, so ¢ F is a tempered distribution. Translating
this back, we have that F'G is a tempered distribution, defined by (FG, @) = (F,Gy) for all
peS.
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(b) The goal now is to show that G % 1 is a Schwarz function, where ¢ € S. Note apriori we know
that G *1) is a slowly increasing function by Folland Proposition 9.10, using the fact £’ c &
(lecture notes 3/2, Grafakos page 120). Notice that we have a Fourier transform defined on
&', simply by defining it to be the usual Fourier transform on &’. Using the properties of the
Fourier transform on 8" and S, the goal is to show that F(G * 1) € S, and hence use Folland
Corollary 8.28 to get that Gx 1 € S.

Using properties of the Fourier transform on tempered distributions (which is Homework
9, Problem 1; see the remark afterwards for a proof), we recall that for ¢ € S, we have as
distributions,

F(Gx 1) = F(G)F ().
By Folland Proposition 9.11, 7(G) is a slowly increasing function, and we note that F(v)
is a Schwartz function (using Folland Corollary 8.28). In (a), we showed that the product
of a Schwarz function and a slowly increasing function is a Schwarz function, so we see that
F(G)F () as a function is a Schwarz function. Applying the inverse Fourier transform (denoted
by G) to both sides, we have that

G =G(F(G)F())

as distributions in §’. Since the Fourier transform on § is an isomorphism (Folland Corollary
8.28), we have that as a function, the right hand side is a Schwarz function (see the third claim
following this proof). Note that two functions define the same distribution iff they are equal
almost everywhere (see the second claim following this proof). Thus, G x ¢ = G(F(G)F(v¥))
almost everywhere (with respect to the Lebesgue measure). But as noted earlier, these are
both continuous, so in fact they are equal everywhere. Thus, G * 1) is a Schwarz function.
Alternatively, we can prove it directly in the following way (Grafakos Theorem 2.3.20).

Notice that G x ¢ (x) = (G, Tx@ Since G is a continuous linear functional, we have that

(G )] <C Y sup [0%p(z —y)l,

lal<k yEVN

by the proof of Folland Theorem 9.8, where we have that the (V,) are an increasing sequence
of precompact open subset of R" whose union is R". Choosing an M large enough, we have
VN C{y € R": |y| < M}. Thus, we can rewrite this as

(G )] <C Y sup |0%(x —y)l.
|a\§k‘y|§M

Since ¢ € §, we have that for any integer J,

sup_ (1+ [z = y))?|0%(z — y)| = Ca,g < <.
(z—y)eR"
For |z| > 2M, we observe that

sup [0%¢(z —y)| < sup Cos(1+ |z —y))™ < C(1+ |2))~7
ly|<M ly|<M

for some constant C’. Substituting this in, we see that

G x (@) = [(G,ma)| <C" Y (14 Ja) ™ = C" (1 +[af)

ol <k

for constants C”,C". Notice this holds for all J, and so we see that ||G * ¢ (x)||(n0) < o0
for all N. To get it for all multi-indices «, simply notice that 0%(G x ¢) = G * (0%), and so
applying the same argument to this gives us that ||G * 9 (z)||(n,q) < oo for all (IV, ). Hence, it
is Schwarz.
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Remark. In the last problem, we used the properties of the Fourier transform on tempered dis-
tributions (Homework 9, Problem 1, see also Folland page 295, Folland Exercise 9.17).
Since we technically haven’t proven this yet, we submit a proof here.

Claim. For F € &, 1) € S, we have
Fxg=0F.
Proof. Recall that for v € S, we have

(Fxv) = [(Frv)e = (Fosd)

by Folland Proposition 9.10. Taking the Fourier transform of F'xt and taking arbitrary ¢ € S,
we have

(Fx1h,0) = (Fx1,0).
Now, we want to use the following identity:
[ = ¢,
To see this identity, recall that for Schwarz functions we have
V(@) = d(~2) = d(x).
We recall that in the proof of Problem 5 we showed that

P(x) = ().
For notational simplicity, let the reflection function be denoted by P(f) = ]?, let the Fourier

transform be denoted by F(f) = J?, and let its inverse be denoted by G(f) = fY. Notice that
taking the Fourier transform of both sides of

G(y) =PoF(¢y)
gives us
1 =FoPoF(v),
so that, using the commutativity of P and F, we have
Y =PoFA(y).
Note that P o P =1d, so taking P of both sides, we have
P(y) = FP (),
that is, reverting to old notation, we have
[W]" = 4.
Using this and Folland Proposition 9.10, we get that
(Fx9,@) = (F,¢9) = (F,3 [{)]")
Next, we’d like to use the identity
G x W] = [py]".
To see this, note that Folland 8.22 (d) gives us
FOR)FO W) = F(F(e) + FO ).

Hence, we have

G(F () FO (1)) = F(p) * FH (1)
124



Note that
P(pp) = P()P(¢);
this is due to the fact that
P(e)(z) = (Yp)(—x) = Y(—z)p(—z) = (P()P(p))(2).
Hence, we have
GFA (@) FD () = (Po F)FD () FO ) = (F o PYFD () FO ()
= (Fo P)(P(¢)(Po F) (1)) = F(PP () (PP o F) (1))
= F(pF(¥)).
The first equality here follows by expanding out the definition of G, the second follows from using
the fact that P and F' commute, the third follows from using the identity 73 = P and writing
FB) = F@ o F. the fourth follows from the fact that P distributes over multiplication, and the
last follows from the fact that P?) = Id. In other words, reverting to old notation, we have that
P x [ = [pg]".
Thus, we have that

(F, @+ [0]") = (F, [¢d]")

Now, by how Fourier transforms work for tempered distributions, we have

~

(F,[py]") = (F, o0)).
Finally, by how Schwarz functions multiply with tempered distributions, we have that
(F,pp) = (VF, @).
Putting this all together, we get that
(F'x1,0) = (Ft, ).
Since the choice of p € § was arbitrary, we have that as tempered distributions,

F 9= Fy.

Remark. Recall that f € L _(R") defines a distribution, via

(f0) = /fsa

In this case, we say that the function f defines the distribution. In the prior problem, we used the
following claim.

Claim. Two functions define the same distribution if and only if they are equal almost everywhere
(note that we are working over R™ with the Lebesgue measure).

Proof. ( <= ): This direction is clear; if f = g almost everywhere, then for all ¢ € D(R™), we have

/ fe= / 9%
so they define the same distribution.
( = ): This is the less trivial direction, which we took advantage of in the problem. Suppose that
f and g define the same distribution, so that for all test functions ¢ € D(R™), we have

(f7<p>=/f<p=/gso=<g,s0>-
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In other words, we have that

/(f—g)cp—

for all ¢ € D(R™), so it suffices to show that if h is such that it defines the 0 distribution, then A is
0 almost everywhere. We first want to show that, for all rectangles E' = [a1,b1] X - - - X [ap, b,] € II,

[ =0
E

Using the C* Urysohn (Folland Proposition 8.18), we can construct a sequence (¢,,) C C°(R™)
so that ¢, — xg pointwise, 0 < ¢, < 1 for all n (take a sequence of open intervals U,, which decrease
to E, have ¢, be 1 on E and 0 outside of U,,). Notice that we have

|heon| < hxul < [hxgl,
and since h € Li (R™), we have that this is in L'(R"). Thus, we can use DCT to get

0= lim hson—/th—/

Thus, | g h =0 on rectangles. We can then take a family of cubes (rectangles where the side lengths
are the same) such that x € @Q, for all r, I(Q,) — 0 (I here is the length function, which returns
the length of one of the sides), and we see that

1
lim ——— dy= f(z) =0
iy 3oy o fwdy =@
for almost every x € R™ by Folland Theorem 3.21 (Lebesgue Differentiation Theorem), so h =0
almost everywhere, as desiredﬂ ([l

Note as well that we implicitly used the fact that the Fourier transform of a distribution defined
by a function agrees with the Fourier transform of the function (so that the Fourier transform is
what you want it to be). We prove this as follows.

Clalm Let F' be a distribution deﬁned by f €S8, then F agrees with the distribution defined by
f € S. In other words, we have that F is defined by f eS.

Proof. Let ¢ € S, then we wish to show that for all such ¢,

(F,0) = (f,0).

(F,p) = /fw /f<p (f, )

using Folland Lemma 8.25. Thus, as distributions they agree, so F is defined by fe S. O

Note that

So taking the Fourier transform of a distribution defined as a function, we can take the Fourier
transform as a function or as a distribution and get the same result. Since the Fourier transform
is an isomorphism on both § and &', taking the inverse Fourier transform yields the same result.

9This was how we learned Lebesgue differentiation in 6211 last semester; the claim in Folland seems to differ
slightly in the sense that it’s any sequence of sets which are shrinking “nicely” to a point x.
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Problem 60 (Quiz 1). Suppose that p,q € (0,00) and 1/p + 1/q = 1. Prove that if f,, — f in
LP(R) and g, — g in LY(R), then f,g, — fg in L'(R).

Proof. First, we remark that since 1/p + 1/¢ = 1, we cannot have 0 < p,q < 1. Assume that
0 < p < 1. Then this implies that 1/p > 1, and so there is no 0 < ¢ < oo so that 1/p+1/q = 1.
An analogous argument applies for 0 < ¢ < 1.

The goal, then, is to show

[ fngn = fglli = 0.
Notice that we can add and subtract by fg, to get
angn - fg”l = ”fngn - fgn + fgn - ngI < H(fn - f)gnHI + Hf(gn - g)Hl-

Apply Holders to this to get

1(fn = Hgnlls < [lfa = Flipllgnlla,

1/ (gn = 9)llx < [ f1lpllgn — gllg-
Now, if g, — ¢ in LY, we have
lgn — gllq = 0.

We can use the reverse triangle inequality here to get

llgnllg = llgllql < llgn — gllq =0,

so we have that || gnllq — [|g]lq < co. Hence, taking the limit, we have

[ = Fllpllgnlly = 0,

1 flIpllgn — gllq = 0,
so we get that
”fngn - fgul — 0,
as desired. ]

Problem 61 (Quiz 2). Suppose that f a measurable function and A > 0. Let
E(A) :=A{z:|f(z)| > A}

and let
ha == fxEgea) + Asgu(f)XE),
ga = f — ha.
Show that
Agala) = Ap(a+ A),
and

) Ala)ifa< A
Mnale) = {0 if o > A.

Proof. Recall that

Ap(a) = p({z - |f(2)] > a}) = p(E(a)).
Hence,

Aga(@) = p({z - |f(z) — ha(z)] > a}).
Examining the set, notice that we can write

{z:[f(x) = ha()] > o} ={z: f(z) —ha(z) > o} U{z : f(z) — ha(z) < —a}

={z: f(x) —ha(z)>a}U{z: f(z) < —a+ ha(z)}.
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Since E(A), E¢(A) are disjoint, we can write this as
{z:]|f(x) —ha(z)| >a} ={z:2 € E(A), f(x) > a+ha(z)} U{z:xz € E°(A), f(z) > a+ ha(z)}
Wz:z e E(A), f(r) < —a+ha(x)}U{z:x e E°(A), f(zr) < —a+ ha(z)}

If v € E(A), we get that ha(x) = Asgn(f), and if z € E(A), we get that ha(x) = f. Hence, we
can rewrite the above as

{z:|f(z) —ha(z)| >a}={z: f(x) > A+a}U{z: f(x) < —A—a}
={z:|f(z)[ > A+a}
Thus, we get that
)\gA(a) :)\f(Oé—I-A).
Similarly, examine

{z:|ha(z)] > a} ={z:ha(z) > a}U{x: ha(zr) < —a}

={r:zx€ E(A),ha(z)>a}U{z:xz € E(A),ha(z) > a}

Wz :z e E(A),ha(x) < —atU{z:x € E(A),ha(x) < —a}.

If z € E(A), we see that hy(x) = Asgn(f). If x € E°(A), we get that ha(xz) = f(x). Thus, we
rewrite the above as

(o ha(e)] > 0} = {o: A> f(2) > o, f(2) > AYU {2 s —A < f(z) <~ f(z) < —A)
If o > A, we see that this will be 0. If & < A, we see that this will be the same as {x : |f(x)| > a}.

Hence, we have
Af(a) ifa < A
A p—
na (@) {0 it o> A

Problem 62 (Quiz 3). Let f,g € L*(R). Prove the following:
(a) fx(gxh)(x)=(f=*g)=h(z)almost everywhere.
(b) fx(g+h)(x) = f*g(x)+ f*h(z)

Proof. (a) This one is trickier than it seems. Recall that f * g(z) = [ f(z — y)g(y)dy. Using this,
we write out

f*(g*h)(x /fx— (g = h)(y)dy

= /f(w — ) [/g(y - z)h(Z)dz} dy
= / fx —y)g(y — 2)h(z)dzdy.
We now wish to iterate the integral. To do so, we need to check that Fubini applies. Write
= / fx —y)g(y — 2)h(z)dzdy.
Then we wish to check that k(x) € L'(R). We have
[ k@l = [|[ [ 1= wgto =2y iz < [[[ 17~ )ty = 2lip(ldzdyds

< Ifll1llgllellAllr < oo
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iterating Young’s inequality. Hence, k € L*(R), so for almost every x, we have that
/ flz=y)gly — 2)h(z)dzdy < oo;
Hence, taking absolute values, we get for almost every x,

/ [f (@ = y)llg(y — 2)[[h(2)|dzdy <[ fllallglllP]1,

so Fubini applies. Thus, switching the order, we get

[ 16 = vt - mieayaz = [ < [ra=y —z)dy) h(2)de.

Doing a change of variables (u =y — 2z, y = u + z, du = dy), we get

/ </ flx—u— z)g(u)du) h(z)dz = /(f x g)(x — 2)h(2)dz = (f * g) x h(x).
(b) This is just an application of linearity of the integral.
Problem 63 (Quiz 4). Suppose ¢ € L'(R) is such that [¢(z)dz = a, and define ¢i(z) =
“Lp(x/t). If f € LP(R), p € [1,00), then f * ¢; — af in the LP norm as t — 0.
Proof. Note that
/gpt(a:)dx = /t_lnp(a:/t)dx = /go(u)du =q for all t > 0,

preforming the change of variable v = x/t, du = dz/t. The same change of variables gives us
loel|1 < co. Thus, we see that

[xoi(x) —af(z /f x —y)es(y)dy — /f )iy dy—/[Tyf( ) = f(@)]er(y)dy.

We take the p norm to get

pewer-stn [ - smf )
</ (/'Tyf z)||ee(y )Idy)pd:p>1/p
< [([rmro- f<x>\prwt<y>\pdx) 7

— / el — Fllpdy,

where the first inequality comes from the triangle inequality and the second from Minkowski for
integrals. Notice that the inside is bounded by |¢+(y)|2]|f]l, € L'(R), so DCT applies to bring the
limit inside. In other words, we have

fimsup |« o1(e) — af @)l < i [ ldwllryf = flydy = [ i leew)lf = flady.

Now, writing out the inside, we have

[ tim el f = flady = [t e oto/0lIms - flydy
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Let z = y/t, dz = dy/t, so we get that this is equal to

[ i el = Fldz

Note the LP norm is continuous with respect to translation, so we get that the inside will be 0. In
other words, we have that the integral comes out to zero, so

liminf ||¢ * f — af||, = limsup ||¢ * f —af]|, = 0.
=0 t—0
Thus, we have that it converse in the p norm. O

Problem 64 (Quiz 5). Suppose f,g € L'(R") N L?(R") are complex valued functions and f@ IS
LY(R™) N L?(R™). Then

a) [ fo=[f3.
(b) <fa g>2 = <f’/g\>2

Proof. Note that Plancherel says the Fourier transform on L? agrees with the usual Fourier trans-
form on L' on the set L' N L2.

(a) Using the above remark, we can use the usual Fourier transform definition for L!. Thus, we

have
[ Fustas = [ < / f(z)e_gm-y.de) 9(y)dy
==j(/jf(Z)g(y)e‘Q“”*zdzdy-

Using Tonelli and taking absolute values, we note this is integrable, so we see that we can use
Fubini to iterate the integral. We have that the above is equal to

[ @awemrayaz = [ ya)a:

(b) One could just say this follows by Plancherel. If you want to see the calculation, we set h = g,
and we note that

/ﬁ(y) = /h(z)e_zmz'ydz _ //g\(z)e_gmz.ydz
= /’g\(z)e%rizydz

=9"(y) =9(y)

where the last equality is interpreted as almost everywhere equivalence, and the second to last
equality is a result of Fourier inversion. So using (a) and this, we see that

(=[5 [ fh= [Fn= [ F5= (7.9

Problem 65 (Quiz 6). Suppose f € LY(T). Then |f(m)| — 0 as [m| — co.

Proof. By a consequence of Fejérs theorem, we have that trigonometric polynomials are dense in

LY(T) (alternatively, invoke Stone-Weierstrass). Fix e > 0. By the prior remark, there exists a

trigonometric polynomial P such that || f — P||; < e. Let M denote the degree of P. By hypothesis,
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M < oo. Notice now that for |m| > M, we have that P(m) = 0 (this is a consequence of problems
from prior homeworks). Hence, we see that

|f(m)] = |f(m) — P(m)| < || f — Pl < e,

using the fact that ||f|]u < |Iflli- We can do this for all € > 0, so we see that |f(m)| — 0 as
|m| — oc. O

Remark. Note that this just says it goes to 0, not how fast it tends to 0. We can make this go to
0 arbitrarily slow by future homeworks.
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Problem 66 (Young’s Inequality). Prove the following:
For a,b >0, p,q € R5 such that 1/p+ 1/g = 1, we have that

a?  b?
ab < — + —.
p q

Furthermore, show we have equality iff a? = b9.

Proof. If a,b = 0, then the result is clear. Assume a and b > 0. The log function is concave, so we
have that for ¢t = 1/p,

1 1
In(ab) = In(a) + In(b) = ; In(a?) + 51n(bq) =tIn(a?) + (1 — ) In(b?) < In(ta? + (1 — t)b?).
Exponentiating both sides gives

abgtap+(1—t)bq:;+—.

If b = 0, it’s clear we only have equality if a = 0, i.e. aP = b?. Assume b > 0. Let 8 = b, a = dP.
We can rewrite this as
al/Pgl/a < oy é
p q

Since b > 0, 8 > 0. Divide through by g to get
al/rplt/ia—t < a . 1
B q

Since 1/p+1/g=1, we get 1/g— 1= —1/p. Let t = a/3. Then we have

t 1
< — 4 -,
p q
and moving things around we get
tl/P — E < 1
p q

We wish to then maximize this function. Taking the derivative, we get

)

and solving gives us that t = 1 is a critical value. To see that this is a maximum, notice that for
t < 1, we have that the function is (strictly) increasing, and for ¢ > 1 we have that the function is
(strictly) decreasing, so the maximum is achieved at ¢ = 1. Hence, we have that the maximum is
achieved when o = 3, or in other words when a?P = b9. ]

Problem 67 (Folland Lemma 6.1). If a >0, b > 0, and 0 < A < 1, then
b < Xa+ (1 - \)b,
with equality iff a = b.

Proof. Young’s inequality gives



Let A\=1/p, 1 — X\ = 1/q, then we have that 1/p+1/q = 1. Let a = a'/?, 8 = b'/9. Then Young’s
inequality gives

al/Pbl/‘I < g + é
p q

Replacing variables, we get
a bt A < ha+ (1 - M\)b
as desired. The equality condition comes from Young’s inequality. O

Problem 68 (Folland Theorem 6.2). Suppose 1 < p < oo, 1/p+1/q = 1. If f and g are measurable
functions on X, then

1£glle < [1f[lpllgllq-
In particular, if f € LP, g € L9, then fg € L', and in this case equality holds iff a|f|P = B|g|? a.e.
for some constants «, 5 with (a, 8) # (0,0).

Proof. The result is clear when || f|[, = 0,00 or ||g|l; = 0,00, so we rule these out. Notice that it
suffices to assume that || f||, = ||lgll; = 1. If not, since these are not 0 or oo, we have that there
exists constants a,b such that [|af||, =1, ||bg||; = 1. Showing it for these, we see that

labfgllr = [abll| foll1 < [lafllplbglly = labll|l flpllgllg;
so that we have

Ifglly < [[fllpllgllq

as desired. Thus, it suffices to show that

| fglli < 1.

Now, notice that by Young’s Inequality we have

[f(@)” lg(@)]
[ (x)g(x)] < s to.

Integrating both sides gives
1 1
fally < =IIfI5 + = llgllf-
I£glly = ZIflp + 2 llgla

Since || ||, = llgll = 1, we have that

1 1
Hfg“lgi—i_*:la
p q

as desired. Finally, to get the equality case, we simply note that in Young’s inequality we have
equality iff a? = b9, and since these functions are the scaled functions we substitute this in for the
desired result. i

Problem 69 (Folland Theorem 6.3). If 1 < p < 0o and f,g € LP, then
1f +glly < I llp + llgllp-

Proof. The case of p =1 is clear; we have

I + gl =/!f+g\ S/!fH/!g! = 11l + llgll.

If f4+ g =0 a.e., the result also follows, since these are positive functions. Now, assume f 4+ g # 0
a.e. and 1 < p < co. Notice that we can write

F+glP =1f+gllf+ 9P < (fI+1gDIf +glP~"
134



Apply Holder here. We get

/\fl!f + gl = A+ 9Pl < WFplLE + gl g,

/Iglf + gl = Nlgllf +glP it < llgllpll1F + 9P~ g,

1/q
15+ < ( / |f+grq<p-”> Ul + gl

We chose ¢ to be the Holder conjugate of p, that is, the number so that 1/p+ 1/¢g = 1. Solving for
q, we get ¢ = p/(p — 1). Rewriting this, we then have

so that

(r=1)/p
I +alp = [15 4 < ([1r+ar) " Al loll) = 17 + g1 (U1 + o)

Dividing ||f + g|[5" from both sides gives
1f +gllp < Ifllp + llgllp-

Problem 70 (Folland Theorem 6.6). For 1 < p < oo, L is a Banach space.

Proof. First, we need to show that LP is a vector space. Notice that LP C Fun(X,C), which is a
vector space, so it suffices to show that it is a vector subspace. That is, it’s closed under addition
and scalar multiplication. Let f,g € LP, then we need to show that f 4 g € LP. By Minkowski, we
have

1+ glly < 1 fllp +llgllp < oo
Next, if r € C, f € LP, we need to show that rf € LP. Notice that

1/p 1/p
Hrfnp:(/ |rfrp) =(|r|p / |f|p> — rlll < oo,

so rf € LP. Hence, it is a vector space.

Next, we need to show that || - ||, is a norm. Clearly, we have that || - ||, > 0. In our proof of
it being a vector subspace, we also established that ||rf|, = |r|||f|l,- The Minkowski inequality
gives us the triangle inequality. We finally must establish positive definiteness; that is, || f||, = 0 iff
f =0 a.e. For the forward direction, assume || f||, = 0. Then this implies that

(/f\p)l/pon/\f\pzo.

We earlier showed that this can happen if and only if | f|P = 0 a.e., but this can happen if and only
if f =0 a.e. The other direction is clear as well. So, || - ||, is a norm.

Finally, we need to show that it is complete. We utilize Theorem 5.1. Let (f,) C L? be such
that

D lfally =M < oo
Let G = 3% | ful, G =3 | ful. We have that

k
> 1l
1

1Gallp = ‘

k
< ally DM fall = M
1
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for all k. Hence, G5 € L', so montone convergence theorem applies to give us that

hm/Gg:/GPgMP,

and hence G € LP. Moreover, G < oo a.e., so » f, converges a.e. Denote F' = Y f,,. Then we
have |F| < G, so F € LP as well. Moreover,

k
IF =Y fal? < (2G)P € L',
1

so the dominated convergence theorem applies to give
k P k
FoY gl =tim [|F=Y 1,
1 » 1

and hence we have that every absolutely convergent series converges, so the space is complete. [

p

lim =0,

Problem 71 (Folland 6.1). When do we have equality in the Minkowski inequality?

Proof. For the case p = 1, we notice that Minkowski says

[1z+a< [151+ [l

That is, we have equality here iff we have equality

If +gl=Ifl+ 9] ae.

To get this, it’s sufficient to note that we have equality here iff fg > 0 a.e. For the case 1 < p < o0,
we recall that the proof involves using Holder’s inequality. That is, we have constants «, 5 such
that

alfl = + g,
Blgl = 1f +gl".
In other words, we have equality iff there exists constants such that af = g a.e. O

Problem 72. Prove the following claim: if | f| < ga.e., then ||f||s < g.

Proof. If |f| < g, we have that E = {z : |f(x)| > g(z)} is such that u(E) = 0. Since ||f||s is an
infimum, we get that g(z) > || ]| a.e. O

Problem 73 (Folland 6.2). Prove Theorem 6.8. That is, prove the following:

(a) If f and g are measurable functions on X, then ||fgll1 < ||fll1llgllce- If f € L' and g € L,
1fglly = [[flI1llglloo i lg(2)] = llglloc a-e. on the set where f(x) # 0.

(b

(

) ||+ loo s @ norm on L.
(¢) Ifn — flloo — O iff there exists E € M such that pu(E¢) =0 and f,, — f uniformly on E.
d) L is a Banach space.
(e) The simple functions are dense in L.

Proof. (a) We have
1alls z/fg! =/|fr|g|.

Write E = {z : |g(z)| > ||g||sc}. Then we have that

[ sttt = [ 1s1ta1+ [ 171l
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Since the infimum is actually attained, we have that u(E) = 0. Hence, we have

4 = = < oo — 9] = ) .
@ fistol= [ 1stol= [ il < [ 15l = gl [ 171 = gl

We now proceed to the case of equality. Notice that we have ||g||oc > |g| a.e. (by an argument
similar to above), so we get that

() [flllglloe = [fllgl = 1£llglloc = [£llg] = O.
Recall that || f||; = 0 if and only if f = 0 a.e., so we have

[ 110gle — lg) =0

if and only if f =0 a.e. or |g| = ||¢]|co-

(b) We wish to show that || - ||o is a norm. First, notice that by construction || - ||cc > 0. We then
have three axioms to establish:

(a) (Scalars) Let r € C, then we want to show |7 f|lco = |7|||f|lcc- For r = 0, we clearly have
the desired result, so assume r % 0. Now, notice that we have

rfI = 1rllf1 < Irll flloca-e.,
SO

17 flloe < Irlllflloo-

Now, consider 7~ 'rf. We have that

17717 flloo = 11 fllso < 1 HlI7 Flloos
so that
171 flloo < [I7floo-

(b) (Non-Degeneracy) We wish to show that || f||ec = 0 iff f = Oa.e.
(=) :If||f]lco =0, since the infimum is achieved, we have that

w({|f] >0}) =0 = f =D0ae.

(<) :If f =0 a.e., then we have that u({x : f #0}) =0=pu({z : |f| > 0}), so
| flloo < 0, which implies || f|o = 0.

(c¢) (Triangle inequality) We need to show that, for f,g € L™,

1f + glloe < [[flloc + 9o
Notice that
[f + gl < [f1+ 19l < [ flloe + llgllocae.,
SO
1f + 9lloe < [ flloc + [|9lloo-

(¢) (=) : Assume [|f, — fl]loo — 0. We wish to find an £ € M with u(E°) =) and f, — f
uniformly on E. We have |f, — f| < ||fn— flloca.e.. Let F, ={x : [fu(z)—f(z)] > || fn— flloo}-
Let FF =|JF,. Let E = F°. We notice that u(F') = 0, since

() = (JFn) <3 n(F) =o.

We now wish to show that f,, — f uniformly on E. For all x € E, we have that |f,(z)— f(z)| <

|| fn = flloo, and since || fr, — f|loc — 0 we get uniform convergence.

( <) : Assume that there exists an F € M with u(E°) =0 and f,, — f uniformly on E. Let

|| - ||, denote the uniform norm on Ej; that is, || f|l, = sup{z € E : |fu(x) — f(x)|}. Then we
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have that |f,(z) — f(z)| < ||fn — fllu for all z € E, so that |f, — f| < || fn — fllua-e., so that
| fro = flloo < ||fn — fllu- Since the uniform norm goes to 0, we win.

L*> c Fun(X, C), so it suffices to show it’s closed under finite addition and scalar multiplication.
Let f,g € L*°. We have that

1+ glloo < 1 flloc + ll9lloc < 00,
and if r € C, we have
17 flloo = [7[llflloo < o

So it’s a vector space. It suffices to then show that it’s complete. Let (f,,) C L™ be a Cauchy
sequence. Notice that |f, — fim| < ||fn — fimllcace. Let Epp = {2 |fu(z) — fiu(2)] >
[ fn— fmlloo}s B = U, 1 Enm- We note that u(E) = 0. Let F' = E°. We see that || fn, — fi[lu <
|| fn = fmlloo, which goes to 0. So this has a uniform limit defined on F', denoted f. Since f is
such that f,, — f uniformly on F' and F¢ =0, we get that ||f, — f|lcc — 0; that is, f, — f in
L. So it is complete.
We need to show that the simple functions are dense in L. It suffices to show it for f > 0 (the
standard argument). Let ¢, be a sequence of simple measurable functions such that ¢, 7 f.
Notice that ¢, < f < ||f||cca.e. Since f € L>, we have that this is finite, and since this is a.e.,
we have that the set E° where this doesn’t hold has measure 0. So on FE, f is bounded, and
¢©n — f uniformly, hence ||f — ¢n|lcc — 0.

O

Problem 74 (Folland 6.6). Suppose 0 < pg < p1 < oo. Find examples of functions f on (0, 00)
(with Lebesgue measures) such that f € LP iff:

(a)
(b)
()

Po <p <p1,
po < p < p1,
P = Po-

Proof. TODO O

Problem 75. Let f be a non-negative function on [0, 00) and let Ly be a function on R defined by

Ly(t) = /0 et f () da.

Let tg = sup{t : Ls(t) < oo} so that L¢(t) is finite on (—oo,tp).

(1) Prove that
Lf(xtl + (1 - l’)tz) < Lf(tl)mLf(t2)17x7

for any t1,ts < tg, x € [0, 1].
(2) Use part (1) to conclude it’s convex.

Proof. (1) We have

Lyt + (1 - o)tz) = / A=Y £ () gy
0

= [ et pgay
0

- /O T () (2 1 () dy.
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We now apply Holder with 1/p =z, 1/g =1 — z to get
| ) (@) ay

< < I etwﬂy)dy)z ( I e”yf(y)dy> -

= Ly(t1)"Ly(t2)' "

(2) It’s log convex, which means it’s convex.

Problem 76.

Problem 77 (Folland 6.14). If g € L°, the operator T defined by T'f = fg is bounded on L? for
1 < p < 0. Its operator norm is at most ||g||o, With equality if p is semifinite.

Proof. Let 1 < p < co. We wish to show that T'f is bounded on L?; i.e.,
ITfllp < Clifllp

for some constant C. Notice that for 1 < p < co we have

1/p 1/p
1751, = 1 al, = ( / \fg\”> - ( / rf\prgrp) |

Since ||¢]jco < 00, we have that g < ||g||sa.e. Hence, we have

1/p
ITfllp < </|f|”|l9l|€o> = [|glleo I f1I-

So the operator is bounded. Furthermore, we see that for 1 < p < oo, we get ||T']|, < ||g|/cc- For
the case where p = oo, we see that

ITflloo =inf{c =0 : u({z : [f(2)]-]g(x)] > c}) = 0}.
Since |g(x)| < ||g||cca-€., we have
ITflloo < inffc >0 : p({z = |[f(@)]- gl > c}) = 0} = [ fllocllglloo,
so again we have

1Tloo < llglloo-
We now wish to show that there is equality in the case where p is semifinite. Fix € > 0 and define
Ac ={z : |g(x)| > |l9]lcc — €}. By semifiniteness, there exists a B C A, with 0 < p(B) < oo.
Notice then that we have

ITIxslle = 1TxBllp = llgxaslly > [[(lglle = €)xBllp = ([gllec — €)lIxBllp,

so we have that

1T > [lglloc — €
The choice of € was arbitrary, so we get that

1T = llgloo,

and so coupling this with before we have equality. O
Problem 78. In the space LP(RY) with Lebesgue measure, examine the function
[~ Jz[ <1
xr) =
fo(@) {0 otherwise.

Show that fy € LP if and only if pa < d.
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Proof. We use Corollary 2.52 from Folland, with the modification that we are now looking at
f(z) = |x|~*P. With this, we see that f is integrable (i.e. fy € LP) if and only if ap < d. O

Problem 79. Let (X, M, u) be a finite measure space. Let f € L. Prove the following:

(1) Forall 0 <p < oo, f e LP.
(2) We have that lim, 0 || fllp = || f1]c-

Proof. (1) To show that f € LP, we wish to show that ||f||, < oo for all 0 < p < co. It suffices
to then show

51 = [ 147 < .
We first must establish the following claim.
Claim. We have that |f| < || f]|« a.e.

Proof. Pick any a such that a > ||f|lcc. By infimum properties, we have that u({x
|f(z)] > a}) =0, so that | f| < a a.e. for every such a. Hence, we have that |f| < || f]lec. O

Since |f| < ||fllco, We get that

1915 = [ 1P < [ 1718 = 112 X) < .
Taking pth roots on both sides, we get

1£llp < N1 flloops(X)P < o0,
So f e LP.
(2) By the inequality above, we have

limsup ||, < limsup | fllocpt(X)Y? = | flloo-
p—00 pP—00
It suffices to then show that ||f|o < liminf, o [|f]|p- If |[fllcc = 0, we are done. Fix

a < ||fllso, consider Eq :={z : |f(x)| >a} ={x : |f(z)[P > aP}. We Chebychev this to
get

1
WED < o (U1 o auE) < [ 1P
Taking pth roots gives

ap(Ea)"? < | flps
and taking the liminf as p — oo gives

a < liminf || f||,.
p—o0

Since this applies for all a < || f||oo, we get that ||f|lec < lminf, o0 || f|lp-

Problem 80 (Folland 6.7). If f € LP N L for some p < oo, then show the following:
(1) f e LP for all ¢ > p,
(2) [[flloo = Timg—oo || fllq-

Proof. (1) We wish to show that || f|l; < oo for all ¢ > p. This is equivalent to showing that
1915 = [ 1717 < .

We can rewrite |f|? = |f[P| f|97P. Notice that |f| < || f]lco, SO

/ o= / FPIFE < IFIBIAIS? < oo
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Taking qth roots gives us the desired result.
(2) Taking gth roots in the above inequality gives

1£1lq < IFIB A1 PVe,
so taking lim sup as ¢ tends to infinity gives

limsup || fllg < || flloo-
q—0o0

Let a < ||f|lco, set Eq ={z : |f(x)| > a}. Then we have that u(E,) > 0, and furthermore
w(E,) < 0o, since f € LY and Chebychev applies to give

p(E) < - / 17 < oo,

Using this, we have

o) < [ 119 0 aulE < 11,

and taking liminf as ¢ tends to infinity on both sides gives

< limi .
a < liminf || fll,

This applies for all a, so we have that || f||e < liminf, .o || f||4-

Problem 81. Show that the two definitions of L°° are equivalent:
(1) inf{c >0 : |f(z)| < ca.e.},
(2) inf{e>0 : u({o : |f()>c}) =0}

Proof. Let ¢ > 0 be such that |f(x)| < ¢ a.e. Then we have that E = {x : |f(z)| < ¢} is such that
w(E°) = 0. Notice that E° = {z : |f(z)| > c}, and so we have that ¢ is such that

inf{¢ >0 : p({z : |f(x)] >c}) =0} <ec
Since this applies for all ¢, infimum properties tell us that
inf{c>0 : p({x : [f(x)|>c}) =0} <inf{c>0 : |f(x)] <cae}.

Next, let ¢ > 0 be such that u({z : |f(z)| > ¢}) = 0. Examining F = {z : |f(z)| < ¢}, we notice
that this implies that u(E°) = 0, so that |f(x)| < ¢ a.e. Hence, we have that

inf{c>0 : |f(x)] <cae} <eg
and since this applies for all such ¢ infimum properties tell us that
inf{c>0 : |f(zx)] <cae}<inf{c>0 : p({z : |f(z)| >c}) =0}
In other words, these values are in fact equal. O

Problem 82. Fix a g € L'. We can define a linear operator on L> such that T'(f) = [ fg. We
define
il =sun | [ g3 5 17l =1}
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Proof. One direction is clear. Notice that for || f||c = 1, we have

/fg‘ < [17ls < [ Wfllsl = [ 16l =gl

Since this applies for all such f, we get that
I < Tigll-
We now wish to show that ||g||; < ||T|. Let f = sgn(g). Then we have that

[ 19 = [ 161 =1,

gl < 1T

and since || f|loo = 1, we get

O

Problem 83. Show that for 1 < p < oo a real-valued measurable f belongs to LP if fg € L' for
every g € L9, where p and ¢ are conjugates.

Proof. We want to show that there exists a constant M so that ||fg|[1 < M for all g € LY with
llgllg < 1. Assume that there is not. Then we can construct a sequence (g,,) C L? with ||gn|lq <1
such that [ |f]|gn| > 3™. Now, we have that

9= 2"gn| € L,

lgllo = [ 32 "lgnl| <> 2 =1
So we have

[1sal= [18 (X2 oul) = [ S5 2 "1lonl =3 [ 277 1lanl > - 55 =

so we have a contradiction. Hence, ||fg|1 < M for all g € L9, and so we get

1fllp = sup /fg< sup ||fl < M < oo
llgllq<1 lgllq<

since

0

Problem 84. Prove that if f, — fin LP, 1 < p < oo, gx — ¢ pointwise, and ||gi|lcc < M for all
k, then f,g, — fg in LP.

Proof. We want to show that
angn - ngP — 0.
Rewrite this as

fngn_fg:fngn+fgn_fgn_fg:f(gn_g)+gn(fn_f)'
Hence,

[ frgn = f9llp < 1f (90 = Dllp + lgn(fr = F)llp-

Now, taking pth powers, we have

lgn(fu — F)IE = / gnlP 1 — P < Mp/un S0,

so we have that this goes to 0. Taking pth powers again, we have

17 (g — )12 = / FPlgn — gl?.
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We now have
l9n = glP < 27(Ignl” + |g|") < 2717,
since ||gn|lco < M. Hence,
|[Plgn — glP < 2PFE 0P| fIP.

This is in L', and we have that |f|P|g, — g/P — 0, so dominated convergence theorem applies to
give us

1 (gn = 9)lIy — O.
In other words, we get the desired result. O

Problem 85. Let 1 < p < ¢ < co. Prove that LP N L* C L9. That is, any bounded function in
LP is also in LY for all ¢ > p.

Proof. Let f € LP N L. We wish to show that f € L9. That is, we wish to show that

[t <.
Notice that, since p < ¢, we can write
[1se= [ispise.

/ 1< A1 oo

Since f € L, we get that || f||cc < M, so in particular f < M a.e. Hence, we have that

/ 1< IFIZIA1 P oo < IFIZM < oo,

We then apply Holder to get

0

Problem 86 (Folland 6.5). Suppose 0 < p < ¢ < oo. Then LP ¢ L7 iff X contains sets of
arbitrarily small positive measure. We also have LY ¢ LP iff X contains sets of arbitrarily large
measure.

Proof. We show the first.

(=) : Proceed by contrapositive; that is, assume that X does not contain sets of arbitrarily small
positive measure. Then we have that there is a ¢ > 0 so that there is no £ € M with u(F) < c.
We wish to then show that if f € LP, then f € LY. Let A, = {z : n < |f(x)] <n+1}. Then
either (Ay) > c or pu(Ay,) = 0. Since X = J,, An, we must have that there are only finitely many
Ay, with p(Ay) > ¢ in order for f € LP. But this then implies that f € LY.

( <= ): We assume that the space contains sets of arbitrarily small measure. We can then
construct a sequence of sets (E,,) so that they are disjoint, and so that 0 < p(E,) < 27". Consider

f = anxg,, where a, = u(E,)""/%. We have that
P P
= [ (X anxs,)

/|f’p=/‘ZGnXEn

= /ZM(E”)_p/qXEn _ ZM(En)l_p/q < ZQH(l—p/g) < oo,

while the same is not true for the ¢ norm. O

Problem 87 (Folland 6.14). If g € L, the operator T defined by T'f = fg is bounded on L? for
1 < p < 0. Its operator norm is at most ||g||o, with equality if p is semifinite.
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Proof. Notice that, for all f € LP, we have

1/p 1/p
\fallp = ( / rmp) < ( / |frp|rgu€o> — lglloll -

Hence, || Tf]l, < |lgllc when [|f|l, = 1. We then wish to show that ||g|cc < ||T'f]|, when g is
semifinite.

Examine E = {z : g(x) > ||glloc — €} for € > 0 fixed. If u(F) < oo, then we have that yg € LP,
hence defining f = xg/p(E), we have || f||, = 1 and

1T =T fllp > llgllee — e

If wW(E) = oo, we can find F C E so that u(F) < co. Let f = xp/u(F) in this case, and we have
the same result. We can do this for all € > 0, so letting ¢ — 0, we have

171 = [lglloo-
O

Problem 88 (Folland 6.17). With the notation as in Theorem 6.14, if x is semifinite, ¢ < oo, and
M,(g) < oo, then {x : |g(x)| > €} has finite measure for all € > 0 and hence S, is o-finite.

Proof. We first wish to establish that M;(|g|) < M,(g). Let f € ¥ arbitrary with ||f|l, = 1. We

can write
n
f = Z QL XEy >
1

where a;, € C. Notice that

' [ 7] = ‘ / iamm ; [axsla

Divide Ej, = E} U EZ, where g > 0 on E{ and g < 0 on EZ. Then we have (letting by, = —ay,)

n n n
Z/akXEk\g\ = Z/%(XE; + xg2)l9l Z/akXEig—akXEgg
1 1 1

n n
Z/akXEég +bXp29 /Z(akxE,g +bixp2)g
1 1

Write S, := {z : g(x) # 0}. We wish to show that u({z : |g(z)| > €}) < 0o; denote this set as
E. Assume otherwise; that is, u(F) = co. Then we have that, since p is semifinite, there exists a
B C E such that 0 < u(B) < co. In particular, we have that for all n, there exists a B, C E with
n < p(Bp) < co. Now, we note that

eu(By) = /B ¢ < /B gl = / g, = u(B)VP / (gl 1 (Ba)~ Y < (B /7 M, ().

So rewriting this, we have

< My(9)-

(Bt < Mal)

u(By) < (qu(g)> V1)

That is, u(B,,) is bounded. This contradicts our observation, and so we have that p(F) = 0. This
applies for all €, so we get that S, is o-finite. O
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Alternate proof. Consider Ge = {z : [g(x)| > €} where p(G) = co. Let m = My(g). By semifinite-
ness, there exists an F C G, with

(%)q < u(F) < oo.

Let
- sgn(g)xr
p(F)P
Note that || f||, = 1. Then we have that
91 -
[ 6] [ i > e = e
which is a contradiction (since m < m). Thus, we must have had G, was finite. t

Problem 89 (Folland 6.27). The operator

Tf(x) = /0 S (@t y) )y

satisfies || T f]|, < Cpl| fllp for 1 < p < oo, where

m >

Cp = / 27 YP (2 + 1) Vda.
0

Proof. O

Problem 90 (Folland 6.41). Suppose 1 < p < oo and 1/p+ 1/q = 1. If T is a bounded linear
operator on LP such that [(Tf)g = [ f(Tg) for all f,g € LP N L9, then T extends uniquely to a
bounded operator on L" for all r in [p, ¢] (assuming p < q).

Proof. The goal is to first extend it to L%, and then use Riesz-Thorin to extend it to all p < r < g¢.
Note that we will (ambiguously) label the extended operator and the original operator by T’ this
will be fine, since we extend the operator via density of LP N L? and there is uniquely one such
operator. First, notice that we have ||T'f|, < M| f|l,, since T is a bounded linear operator on
LP. Next, for g € L? we wish to determine ||Tg||. Notice that, by the density of LP N L? in LY,
we can take a sequence g, — ¢ in L? and a sequence f, — f in LP where (f,), (g,) C LP N L9.
Furthermore, by Holder we see that

/(Tf)g

for f € LP, g € L9. Since g, — g in LY, f, — f in LP, we extract subsequences which con-
verges almost everywhere simultaneously, label them (gy, ), (fn,). Notice that Fatou’s Lemma and
adjointness gives us

[ sro)| < tmint | [ 5,00, [@han| < M1l

Notice this holds for all f € LP, so fixing g € L? we invoke duality to get

ITgll, = sup {' / f(Tg)' Sl = 1} < Mg,

Hence, T is a bounded operator on L9. ]

< T fllpllglla < Ml fpllgllg

= lim inf
k—o0

Problem 91 (Folland 8.1). Prove the product rule for partial derivatives; that is, prove that
o ol
9%(fg) = Z W(G@f)(@”g).
Bty=a
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Use this to prove that
%2’ f) =20 f + > 52’07,

BPOUf) = 0P F) + D 507 (2 f),

Proof. Let a = (a1, ...,ap). We induct on n. First, notice that for the case n = 1, we have the
generalized Leibniz rule;

k' oy
k

ok (fg) = Z P (0 g,
i+j=k
To see this, let’s first write it in terms of factorials (noting that k — i = j);

k

E\ o) (ki
"(fg)=> (i)f(’)g('“ ),
i=0
Now, the case k = 1 is clear; this is just the normal product rule. That is,
(f9)M = fg+4'f
Assume it holds for £ = m — 1. We wish to show it holds for m. We have then
(fo)™ = [(fg)]" "
= [fg+90" = (19" + (g )
m—1 m 1 m—1 m 1
_ - (i4+1) (m—1—1i) - (i) ,,(m—i)
(e B

=0
i=1 i—1 i=0 L
(m) m =1\ i) i) N (L) ) ) o ()
=M+ > ()T > ) e T+ f
1= =1
) N [(m 1 m=INT ) (m—i) ¢ (m)
=g+ > L), )| e .

(7)) =)

which we can deduce by writing things out:

(T—_ 11> + <mz_ 1> = m (—WZ)T(;)—! it (m(T—ni——li!)!z’!
(m—1)! (m—1

) )
(m—i)m—i—-G—1)  (m—i-D@)G—1)
(m — D) + (m — 1)l(m — i)

Recall that

(m —4)!(7)!
_(m=-Dii+m—i)  (m)m—-1)! [(m
N (m —4)!(4)! C(m—))! (z)

146



Hence, we have

(Fg)m) = flm)g 4 mzl <m> 0 glm=i) | pg(m) _ i (m> £0) gm=i)

1 (3

1 0
as desired.
Now, with the general Leibniz rule, we can induct on the size n. It holds for n = 1, so assume
it holds for n — 1. Let o = (a1,...,ap_1,a,). We can write it then as § = (aq,...,a,-1,0),

v=(0,...,0,a,), and we have 8 4+ v = a. Furthermore,

9*(fg) = 0°7(fg) = 0°(9"(f9))-
Apply the general Leibniz rule to get

T = Y O g,

151
. - InIn-:
in+tJin=0n n-Jn

Hence, we have

an! ,
o%(fg) = 0" Z 1 flin) g(n)

! ! ‘ ,
= ¥ 'O"n’" 3 %(QCf(Zn))(ang(Jn)).

iy, nlinl = Gl

Now adding i,, to the end of  and j, to the end of 1, we get that ( +7n = «, and so we can rewrite
this as

|
3 %(fﬂf)(a"g),
n+e=a >
as desired.
We now deduce the facts; we have

|
(@)= Y 0",
nNt+(=a
and we see that we can pull things out to get
|
rEtn=aorf 3 @),
=iz >

We see that differentiating 0¢z° gives us CxP~¢ if 8; > ¢; for all i or 0 otherwise, where C' is some
constant. Absorbing all the constants into the c¢,s, this gives us

0%l f) =220 f + > cys2°0f,

as desired.
The argument is analogous for the other fact. Choose the constants 0’75 so that they cancel out
with everything appropriately. O

Problem 92 (Folland 8.2). Observe that the binomial theorem can be written as follows:

k!
(21 + 32)* = Z Jxo‘, x = (21,22),0 = (a1, a2).

la|=k
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Prove the following generalizations:

(a) The multinomial theorem: If x € R",
k!
k _
(T4 + ap) —| E| a!x
o|=k

(b) The n-dimensinal binomial theorem: If z,y € R",

Proof. (a) We induct on n. We have it holds for n = 2, so assume it holds for n — 1. Then we wish
to show it holds for n. We have that

k!
(ml + e+ ajn)k = (xl + .o+ (xn—l —+ xn))k — Z ax?l e (xn—l + xn)anfl.

|a|=k

Now, apply the normal binomial theorem on the inside to get

p—1!
S
B1! 52!
B1+Pe=an—1

Notice then that aq + -+ + an_9 + 81 + B2 = k, and furthermore that

k! Oén_ﬂ . k! (677 1' o k!
al Bi!Be!  anlan ! By ar!leamo!Bif
Rewriting a = (o, . . ., a, where ay,—1 = f1, o = P2, we get
k!
k _ e
(14 Fa) = Z pEIE
|a|=k

as desired.
(b) Notice this says

(z+y)* = (1 +y)™ - (Tn+yn)™

We induct again on the size n. We have it holds for n = 1 by the binomial theorem, so now
assume it holds for n — 1. Then we have

(z+y)* = (v1+y)"  (Tn—1 + Yn-1)"" " (@0 + yn)*",
and by the binomial theorem and the induction hypothesis we get (letting o = (aq,...,an-1))

|
(x+y)* = Z B' | Z o Ty yn
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Distributing and rewriting 5 as = (B1, ..., Bn—1, zn) and likewise for v gives

(z+y)* Z ﬁ’y' v,

Bt+y=a

as desired.

Problem 93. If (p,q) =1, f € LP, g € L4, then we have

(1) f = g exists for all z.
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(2) f*g is bounded, uniformly continuous with

1f = gllw < 11 fllpllgllq
for p > 1.

Proof. Holder’s gives
(f # 9)(2)] = / f —y)g(y)dy\ < / @ — 9)llg@ldy < I flpllgly-

This holds for all z, so in particular we have

1 * gl < [1fllpllgllq-
This gives that it exists and is bounded. For uniform continuity, notice that

7y (f % 9) = (f % gl = [I(7y(f) * 9) = (F x 9)llu = [[(7y(f) = f) * gllu
< |l (f) = Flipllglla = 0
as y — 0 by the homework. O

Problem 94. Prove the general form of Young’s inequality directly; that is, if f € LP and g € L9,
then f+ g e L”, and [|f * gll. < [[fllpllglly (here, 1/p+1/¢=1+1/r).
Hint: (Both Folland and Wheeden + Zygmund’s hints) Show that

[f +g(x)]" < HfHZpHgHZq/ [fW)Plg(x —y)|*dy,
using the fact that
|fxg(z)] < /If(y)lp/rlg(l‘ — )| [ f )PP g — g e Ny,

and applying general Holder to the three functions with exponent r, py, p2, where 1/p; = 1/p—1/r,
lqu=1/q—1/r.
Proof. We have that

|f o g(x)| = /f(y)g(:r - y)dy‘ = ‘/ F@Pmg(x —y)7 - fyyPPm0 gl — ) 9 dy

< / @)/ g(x — )| - | f(y) AP g2 — y) |2/ gy,

Now, recall that generalized Holder (Exercise 6.31 in Folland) gives us
H Ji

n
<TT14illp;-
1 . 1

where 1 < p; < oo such that Y 7 p}l = r~1 < 1. Notice that
1 1 1 1 1 1
P q1 r p q T

by construction, so we get that generalized Holder applies to give
17/ lge = [0/ - | fpP=1 g — [/t

<P g(@ = N - N PEPD g - Ylg( = Iy,
Writing things out, we see that

1/r
AP gz — )2/, = ( [ 11Plate - y>|qdy) ,
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~ ([1rwray) o

= (£l
and similarly
lg(a = )17, = (gl )M
Taking everything to the rth power gives us

|[f*g(a)]” < HfHZ;pHgHZq/ IF@)Plg(x — y)|*dy.

Integrating both sides with respect to x gives

[1rxg@rdz =117 <gl <1711l [ [ 1#@)Plote — w)ltdyda.
Tonelli applies to then give us
1S gl < 11 gllg *NgllgLr 15 = 1Al gllg,
and so taking the rth root of both sides gives

I1f *gllr < 1 fllpllgllg;
as desired. OJ

Problem 95. Prove that there is no § € L'(R) so that f* 6 = f for all f € L'(R).

Proof. Assume there were. Then we have fx§ = f for all f € L'(R), so m(m) = f(m)d(m) =
f(m), and so choosing f so that f( ) # 0 we have that 5( ) = 1 for all m. But this then
contradicts the Riemann-Lebesgue lemma, since we must have 6 € Co(R"™). O
Problem 96. Let f,g € L'(R"). Prove the following:

(1) If 2°f € L' for || < k, then f € C* and 9°f = [(—2miz)* f]".

(2) If f € C*,0%f € L' for |a| < k,and 0°f € Cy for |a| < k—1, then (0% f)"(€) = (27€)® A(f)

Proof. (1) We induct on the magnitude of . Assume |a| = 1; WLOG assume a = (1,0,...,0)
(i.e. taking the derivative with regards to the first component). Then notice that

d - d —2mix-y
—_— Yy,
ao = dn f( )e y
The assumptions are such that Theorem 2.27 applies, so we have that
d ) .
= pwe vy = [ ) (-2rnize vy = [(~2riz) 1
T Rn

The induction step is the same as this, so the result follows.
(2) Writing things out here, we have

@16 = [ @ N evay,

Assume |a| = 1, and without loss of generality assume that o = (1,...0). Things here are
appropriately nice so that we can integrate by parts, and doing so gives us

~

| @ e ey = [ )amice ey = 2rie) o)
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Induction is clear.

O

Problem 97. Assume we are over R. If f(z) = e ™" where a > 0, then show that f(f) =

a—n/2e—7r§2/a'
Proof. The goal is to switch this to an ODE. First, we notice that
f(z) = (—2x7ra)e*mx2.

Now, we use the two properties from the last problem to get that
2m€

(FY(€) = [(~2riz) 11M(©) = = [(~2mea)1)°(€) = S1F1ME) =~ @),

a
Now, use an ODE trick here. We have that

4 (me2/afiey) = 278 eme?/aFiey _ 278 me?/aFey =
g (€)= =R e i) - =R e e =0

So 6”52/“f(£) = (C, a constant. Plugging in £ = 0, we get

=C= / Piaar
R
/ e dy = \/?
R a

Proof. We first consider the case over R%. This gives us

2
ezl g,
RQ

We use Corollary 2.51. This gives us that the above integral is equal to

o0 2
2 / e rdr.
0

—alX|? s
e~ Xy = =
R2 a

Since everything is positive, Tonelli tells us that

2 2 7T
(/ e % dx) = —,
R a

7(12? d \/7
Now, using the claim, we have

C = / —(ma)z? _ | T _ a71/2‘
Ta

2

We have the following claim.

Claim. If a > 0,

We can integrate this by parts to get

or in other words,

So we have



which gives

~

F(&) = a2 e,

as desired. OJ

Problem 98. Prove the following:

(1)
(2)
Proof.

If f,g € L', then ffg:ffﬁ
If f,g € L?, then [ fa=]fq.

(1) Since we are on L!, we have a nice formula to use:

[ Fagtarar = [ ( / f(y)e‘2m'ydy> g(z)dx
_ / / F(y)g(@)e ™ Vdyde.

Now, we check that it’s fair to use Fubini here. Taking the absolute value of the inside, we
have

/ [FW)llg(@)dyde = [[fll1llgll < oo

using Tonelli, so we can use Fubini to get

[ 1wo@e e rayis = [ [ g = rasy = [ 1) ( / g<x>e-2m‘ydx) dy

- / )3y dy.

Relabeling variables then gives us that these are equal.
Here, we must use the density of L' N L? C L? (which can be deduced by the density of
Schwartz functions). Let f, — f in L?, g, — g in L?. Notice that for each n, (1) gives us

/ﬁgn = /fngAn-

Plancherel says that ¢, — g in L? (same for f,). We then wish to show that ﬁgn — fgin
L?. Notice that we have

[ fngn = f9ll2 < lfn = fll2llgnllz + [lgn — gll2]l f[l2 — 0.
Finally, we see that
/fngn H/fg;
to see this, notice that we have
[Foan = [ Fo| < [ Foon Tl = 1o = Fal

Notice that we get
[ fngn — fng + fng — falli < [[fulgn — 9l + [lg(fn — fl1,

and using Holder we get

[ = Fll2llgllz + llgn = gll2ll fnll2 = 0.

So we have that these converge, as desired. The same argument applies in the other direc-
tion, and so we must have that these are equal.

O
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Problem 99. Show that . R

IXjz<k(y) = f(y)
in L2,

Proof. Simple DCT argument. U
Problem 100. If f € L' and ]?: 0, then f = 0 almost everywhere.

Proof. If f: 0 almost everywhere, then ]?6 L'. Apply Fourier Inversion to get that

[f*]Y = f = 0 almost everywhere.

Problem 101. Show that F is an isomorphism of S onto itself.

Proof. For all f € S, we have f € S by Corollary 8.23. Furthermore, we can define a map
F1:8 = Svia F7I(f) = f(—x) = fY(z), which is a composition of continuous maps. We see
that F o F1(f) = F(f¥) = (fY)" = f, F Lo F(f) = FL(f) = (f)¥ = f, so these functions
are indeed inverses of each other, and it follows that it is an isomorphism since F and F~! are
linear. (I

Recall Riesz-Thorin’s Interpolation Theorem.

Theorem. Suppose (X, M,pu) and (Y,N,v) are measure spaces and po,p1,q90,q1 € [1,00]. If
qo = q1 = 00, suppose also that v is semifinite. For 0 < ¢ < 1, define p; and ¢ by

1 t—1 t 1 1-1¢ t

— = b —=——

bt Do P Gt qo a1

If T is a linear map from LP° 4+ LP' into L% + L% such that || Tf| 4 < Mol fllp, for f € LP° and

ITfllgr < Millfllp, for f € L1, then [|Tf[lq, < My~ M{| fllp, for f € LP*, 0 <t < 1.

Problem 102. Suppose that 1 < p < 2 and ¢ is the conjugate exponent to p (i.e. (p,q) = 1). If
f e LP, then f e L9, and |[fllq < [ f]lp-

Proof. From prior remarks and Plancherel, we have

[flloo < I £Il1,
1£1l2 = [I.f]l2;
so by Riesz-Thorin we get
1fllg < 1 1ps
where 1 < p < 2. O

Problem 103. Prove the Fourier Inversion theorem: that is, if f € L', ]? € L', then f agrees

~

almost everywhere with a continuous function fy and (f)Y = (fY)" = fo.

Proof. Fixt >0, x € R". Let
_ 627Ti:p-ye—7rt2|y\2

©(y)
Notice that

A~ T —_ 2 2 —_ 12
S0(’2,):/62mmy€ wt*|y| e 27rzzydy.

Combining factors gives

)

(2) = / ¢TIyl =2y (=) g
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—mt?|y|?

So this is actually the Fourier transform of e at z — x. Using the prior problems, then, we

know that this will be
e—w\z—w\Q/tQt—n

= gi(z — x).
Using this, we see that

/@@ﬁwwyz/@@M@My:/w@—xﬁ@wyzf*w@)

Furthermore, DCT gives us that

o~

(/w@&ﬂwdy%(ﬂvwx

and Proposition 8.14 gives us that

fxgi(z) = f,
in the L' norm, so f = (f)v almost everywhere. Riemann-Lebesgue tells us that this will be
continuous. g

Problem 104. Prove Plancherel’s theorem: that is, if f € L* N L2, then f € L2, and F|(L* N L?)
extends uniquely to a unitary isomorphism on L?.

Proof. Let X = {f € L' : f € L'}. We first note that X C L2, since f € L' = f € L™ by
Fourier inversion, and f € L* N L' = f € LP for 1 < p < 00, so that f € L?. It is dense since
S C X by the fact that the Fourier transform on S maps S to itself. So X is dense in L2

Now, given f,g € X, let h = g. Then the Fourier inversion theorem tells us that h= g, so that

we have
()= [ 3= [ fi= [Fn= [ 5= T3

Since this holds for all f,g € X, we see that the Fourier transform preserves the inner product on
X. Since X is dense, we see that it extends by continuity to a unitary isomorphism on L?.

Now, we check that this agrees with our usual notion of Fourier transform on L'. We do the
same trick as in Fourier inversion. U

Problem 105 (Folland 8.18). Suppose f € L?(R).

(1) The L? derivative f’ exists iff ¢f € L?, in which case f’(f) = 2m’§f(§).
(2) If the L? derivative f’ exists, then

[/\f(x)%lxr < 4/\xf(x)\2d:1;/|f/(a:)]2dx.

(3) For any b, 8 € R,

N 4
[ v [ o27e R 10
Proof. TODO g
Problem 106. (1) Show that for all |t| < T, we have
1.2
sin(t) t|~ T
(2) Let Dy be the Dirichlet kernel on T!. Prove that for N € Zx(, we have
N N
4 1 2 4 1
SN <Dyl <3-24+ 252
772k:1k_H =3 7T+772};k‘
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Proof.

(1) These functions are symmetric, so it suffices to consider ¢ € (0,5] (note that at
t = 0 we will take the value to be 0). Let f(t) = t — sin(t), and notice that f(0) = 0,
f(r/2) = 7/2, and f'(t) = 1 — cos(t), which on (0,7/2] is going to be bigger than or equal

to 0. Hence, we have that f(¢) > 0, so that ¢ > sin(¢) on this domain, which gives us that
1 1 1
sin(t) t| sin(t) t°

Now, let f(t) = ﬁ - % Notice that as ¢ — 07, this goes to 0, so f(0+) = 0, and

f(m/2) =1—2 > 0. Notice that f'(t) = —sciisé((tt)) + t% We wish to show that this is greater
than or equal to 0 on the domain; notice that this is equivalent to
cos(t) 1 2 .

< - <= t° < tan(¢) sin(f).
sin?(t) — 2 () sin(?)
Recall that we showed that ¢ < sin(¢) on the domain, so it suffices to show that ¢ < tan(t)
on the domain as well. That is, letting g(¢) = tan(¢) — ¢, noting that ¢g(0) = 0, g(7/2) — oo,
and we have ¢/(t) = sec?(t) — 1, and we have that this is greater than or equal to 0 (i.e.
sec?(t) > 1) on (0,7/2]. Hence, we have the desired inequality.

(2) TODO

O

Problem 107. Prove Fejér’s theorem. That is, if f € C(T), then the sequence {on} of Cesaro
means of the partial sums of the sequence {Sy}, where

N
SN _ Z f(k)627rikx
—N

converges uniformly to f on T.

Proof. Recall that the Cesaro means here are

1 < 1 M
JM@ﬁ:A4+12;SN@):AJ+1§:E:f@k%mg

Writing out the definition of f(k:) on the torus, we see that we have

— [ swertay,
T

So substituting this in, we get

JM(QJ)

=

Z Z f 7271'1 (y— x)kdy

§=0k=—j T
Mg

M
/ M+1Z Z 67271'13/ x)kdy

J=0k=—j

— /T F@) Far(y — x) = [ Fa(z).
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Hence, using Proposition 8.14 (b) (noting that f continuous on T implies it’s uniformly contin-
uous and the Fejér kernel gives us an approximate identity), we get that

\f*Fn — fllu =0 = op — f uniformly.

O

Remark. Notice that this gives us the Weierstrass approximation theorem, since f x Fy is a
trigonometric polynomial for every N.

Problem 108. Show that the trigonometric polynomials are dense in LP(T!) using Fejér’s theorem.

Proof. Let f € LP(T™). By Proposition 8.14 (a), we see that f x Fy — f in LP, and by
construction f % Fy is a trigonometric polynomial. Hence, the trigonometric polynomials are
dense. 0

Problem 109. Use Fejérs theorem to establish that if f,g € LY(T!) satisfy f(m) = g(m) for all
m, then f = g almost everywhere.

Proof. Let h = f — g € L'(T). Then f(m) = 0. The goal is to show h = 0 almost everywhere.

We have that Fiy x h(z) = 0 for all n € Z-o. The sequence is an approximate identity, so we
have ||Fxy * h — h|l1 — 0 as N — co. This implies that ||a||; = 0, which tells us that h = 0 almost
everywhere. O

Problem 110 (Wheeden Theorem 12.48). (1) Let f be periodic and integrable (i.e. f
LY(TY)). If f(z) < B for all z, then also o,(z) < B. If f(z) > A, then o,(x) >
If |f(x)| < M, then |o,(z)| < M.
(2) If f(z) — *oo as & — xg, then o, (xg) — oo as n — oo.

€
A.

Proof. (1) If f(x) < B for all z, then we see that

on() = [ * F(z) = / f(W)Fy(z — y)dy < B / Fn(x — y)dy = B.

Likewise, if f(z) > A for all x, then

oula) = £ Fx(a) = [ F0)Fu(e =)y = A [ Fa(o— g)dy = 4.

Finally, if | f(z)| < M, we have

ou(@)] = | * Fy(2)] = ] [ rwpte - y)dy] < [1@liFwG —ldy < M [ Bt =gy = 0.

(2) Follows by Fejérs theorem.
O

Problem 111 (Grafakos Proposition 3.3.1). Prove the Riemann-Lebesgue lemma on the torus.
That is, if f € L'(T), then |f(m)| — 0 as m — co. This establishes that there is decay.

Proof. Fix € > 0. Since f € L'(T), we have that there is a P which is a trigonometric polynomial
so that ||f — P||1 < e. Let M be the degree of the polynomial. If |m| > M, then P(m) = 0. Thus,
we have

Fom) = 1Fm) — Bm)| < 1 — Pl < e

Thus, we have that f(m) — 0 as |m| — oo. O
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Definition. For 0 < v < 1, let

et @)
s, = o0 =

This is the homogenous Lipschitz seminorm. Let A, (T) = {f: T — C: ||f||1~Xv < oo}. This is
called the homogenous Lipschitz space.

Problem 112. Let s € Z>o (we will stay on T*)
(1) Suppose 0“f exists and are integrable for all &« < s. Then

Fm)| < (;)W

[F(m)|(1+|m[*) = 0

m # 0,

and thus

as |m| — oo.
(2) Suppose that
(a) 0%f exists for all a < s,
(b) *f € A,(T) for some v € (0, 1).

Then | |
. 1 lo°rll4
< 2l
[Fm)l < (2m)s2v+L sty

Proof. (1) We have

~

Fom)= [ fla)e > mda,
'ﬂ‘l

Let u = f(z), du = f'(z)dz, dv = e ?™@™dy, v = F_e~2™*m_ Then we have

1/2 i )
_ / 81f($)76727rmmdx'
w=—1/2 T1 2mm

7

Flm) = 5 flaye2riom

- 2mm

Notice that we have
i 1/2 i

f(l,)efZﬂ'iwm

P2 = L (1)

=0.

2mm w=—1/2 - 21m

Hence,
]?(m) - O f(x)e 2m@m gy,

2mm S

We can keep iterating this process to get
~ i § )
— o5 —27rza:md )
f(m) <27rm> /11-1 f(@)e v

O° f(x)e 2™ 0™ dy = 8%)

Now note that

T1
Taking absolute values gives us the desired bound;
N 55 f(m
Fom)| < 27

(2m|ml)*”
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(2) We again use that

-~ 6727rim:v
= o -1 2

f(m) . fx)(~1) Gy

Notice that doing a change of variables of u = x 4+ 1/2m and noting ™ — _1 gives us
J/l‘\( ) (_1)S+l / asf( 1/2 ) —27Timud
m)= u—= m)e u.
(2mim)* Jp
Hence, we have that
- P flx— 1/2m)e*2m'mzdg; = 8sf(x)€*27rimmdxj
T! -

or

0 f(a)e 2 = 3 [ [0°F(@) = 9w~ 1/2m))e >
T 2 Jp

Substituting this in gives us

fom) = 5o

Now, note that

90— \s Sf(x) — 0% f(x — m 6727rimx 2.
2(2mim)® /Tl[f) f(@) = 0" f(z —1/2m)] d

0°f(z) — 0°f(x — h)|

sup =12°fll& -
Sop Al 19°71ls,
Hence,
10° 15
flx) = f(x—1/2m)| < ———L.
0 F(0) = 0o = 1/2m)| < ot
> 10° £l
N 1 O fll 4
< 2l
TS Gyt @iy
as desired.

Recall that a function is of bounded variation if lim,_, o Tr(z) = Tr(c0) < 0o, where
Tr(x) = sup {Z |F(z;) — F(zj—1)|:neN,—oco<zg <+ <z = x} .
1

Remark. For simplicity, we denote
Tr(1/2) = Var(f).
Problem 113. If f is in BV(T!), then

Proof. Note that
Flm) = [ stpe>mmay
Integration by parts yields that

~ . 1/2 —2mimy
Fom) = syes=m| 7+ [ Sy

y=—1/2 2mim
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and since f and e are periodic, we get that

Taking the absolute value, we get

\ﬂm)g/T Ly Yalh)

1 27|m| 27t|m|
]
Problem 114 (Folland 9.3). On R, if ) € C*°, then
k
sk = —1)7 ( ‘>w(J) 0)s*k=9),
20:( ) j (0)

where the superscript denote derivatives.

Proof. We’ll do the case of k = 1, and hopefully the rest should be clear. Notice that, for ¢ € D,
we have

(1hd', ) = (¢, W> = —(,

(V)
—(60, ¢ +

)

)6,

V')
1//(0)90( ) = ¥(0)¢(0)
—(@'8, ) — (¥(0)d,¢)
= <¢( )8, ) — (1(0)8, ¢)
= —(®'(0)8, ) + ((0)d", ¢),

as desired. Doing an induction argument leads us to the general result. O
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