James Marshall Reber, ID: 500409166 Math 7221, Homework 1

Remark. Thomas O’Hare, Nick Bolle, and Hao-Tong Yan were collaborators.

Problem 1. Let
T:[0,1] = [0,1], Tx =2z (mod 1)

Consider the interval
k k+1
which has dyadic rational endpoints. Let A be Lebesgue measure.

(1) Compute T~1(ED).
(2) Calculate the Lebesgue measures of E and T-(E}). Show they are the same.
(3) Using properties of measure, show that

for all open intervals I.
(4) Show the same holds for all open sets U.
(5) Conclude that the same holds for all Borel measurable E.

Proof.

(1) On [0,1], we can rewrite T" as

20 if0 <z <1/2,
Tx =
90 —1if 1/2 <z < 1.

Using this alternative characterization, we see that

E k+1 E+2" E+1+27
—1 _
T (E]?) o |:2n+1’ on+1 > |: gn+l 7’ on+l >
(2) Since this is a half-open interval, we see that
E+1 kK 1

Similarly, since we have the disjoint union of two half-open intervals, we see that

_ k+2"4+1 k+2" k+1 k

1 n _

)\(T (Ek)) = ( on+1 - on+1 > <2n+1 - 2n+1>
_ 2 _ 1
- on+1 - 27

We see that for all £ and n we have that
ANT™HER)) = MER).

(3) Let I = (a,b) C [0,1] be an open interval. The dyadic rational numbers are dense in [0, 1]
(see |here), so we can create an increasing sequence of dyadic rational half-open intervals,
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say {E;}52, with By C Ep C -+, such that (J;Z, Ej = I. We now use (2) and continuity
from below to deduce that

MNT YD) =Tt G E;|l]l=X G T-YE;) | = lim NTY(E;))
=1 =1 J—00

= jhgo MEj) = A G E; | = (1)
j=1

In R, an open subset U can be written as a countable union of disjoint open intervals, say
{1152, Using this and (3), we have

[e.9]

MTTHO) =2 [T (L] 5] | =X |j Ty | = i/\(Tfl(Ij)) = i)\(fj)

J=1 Jj=1 Jj=1 J=1

Remark. Note that if it holds for all open sets U, it holds for all closed sets C. If C' is
closed, then C¢ = U is open, so U¢ = C. Using the fact that this is a finite measure space,
we can then calculate the following:

MT™HEC) = MTTHU)) = MTTHU)) =1 = NT~H(U)) = 1 = AU) = A(U) = A(C).

Remark. We use the fact that if N is a null-set, then
AMFUN) = A(F).
This follows by subadditivity and monotonicity;
AME) S AFUN)<SANEF)+AN)=XF) = MFUN)=AF).
A Lebesgue measurable set can be written as the union
E=FUN,

where F' is a F, set and N is a set of measure zero with respect to Lebesgue measure. We
show it will hold for all Lebesgue measurable sets, and then in particular we get it holds
for all Borel measurable sets.

Since I is an F, set, we have F' = [J;2, C;, where {C;}72; is a sequence of closed sets.

Let D; = UZ:1 C;. Note that D; is a closed set, since it is a union of a finite number of
closed sets. Then D = J32, D; = 2, Cj = F and we have
MTHF)) = XT7H(D)) = lim N(T~Y(D;)) = lim A(D;) = M(D) = A(F)
j—o0 j—o0

by an argument similar to (3).
The goal now is to show that A(T~!(N)) = 0. If we can do this, then we have that

MNTHE) = MTHF)UTYN)) = MT7HF)) = MF) = A\(FUN) = \(E).

We now note that 7' is a continuous map on [0, 1]. Since N has measure zero, for every
€ > 0 we can find an open set U with the property that N C U and A(U) = €. Thus, we
have



Since we can do this for every e > 0, this implies that A(T~1(IN)) = 0. This concludes the
proof.
Alternatively, invoke the next theorem or Caratheodory.

O
Problem 2. State Theorem 1.1 from Peter Walter’s book. Use it to prove the prior problem.
Proof. The theorem is as follows:

Theorem (Walters, Theorem 1.1). Suppose T : (X, M,u) — (Y, N,v) is a measurable transfor-
mation of probability spaces. Let C be a semi-algebra that generates N. If for each A € C we have
T~ 1(A) € M and u(T~1(A)) = v(A), then T is measure-preserving.

The conditions for the prior problem are y = v = A (Lebesgue measure) and the o-algebras are
the Borel g-algebras. The collection of all intervals form a semialgebra which generates the Borel
o-algebra (see, for example, Folland Proposition 1.2), and as we’ve shown before the measures
agree on all intervals (we technically only showed open intervals, but to get a half open interval or
a closed interval involves adding points of measure zero, so it doesn’t change anything). Invoking
the theorem, we have that they agree on all Borel sets, telling us that our map is measurable. [

Problem 3. Prove that a proper subspace of R™ has zero Lebesgue measure.

Hint. You can use the fact that a proper subspace is the graph of a linear function from 7" : R*¥ —
R"™* for k the dimension of the subspace and use Fubini’s theorem.

Remark. I originally said use Theorem 2.44 from Folland, which is still technically true but the
theorem says invertible matrix, so you have to modify the proof. This ended up being the same
thing as Nick Bolle’s proof, so credit to him for writing this up.

Proof. Let V = R* C R™ be a proper subspace. Consider a map T : R¥ — R"* where the graph
of T is V. Consider the set

I(T) = {(x,y) € Rk x R"* :R”:Tx:y}.

Now use o-finitness and Fubini;

V) = [ e = [ G (@ndim).) dve) = |

R
Here, X is understood to be the Lebesgue measure with respect to whatever R™ we’re integrating
over. O

. A{T'z})d\(z) = 0.

Problem 4. Let G, H be locally compact Hausdorff groups which are also second countable. Let
T : G — H be a continuous surjective endomorphism. Let m be a left Haar measure on G. Let
mga, mg be Haar measures on G, H respectively. Define a measure 4 on H by

w(E) = mg(T~1(E)) for all Borel E C H.

Prove the following:
(1) wis a left Haar measure on H;
(2) there is a ¢ > 0 such that
n=c-mmgs;
(3) if we suppose that G = H is compact, i.e. mg(G) < 0o, and mg = my, then prove that
c=1.
Note that we can conclude from (3) the following result.

Theorem. If T is an endomorphism of a compact group G, then T preserves the Haar measure on

G.
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Remark. If we have these properties, note that G and H are also o-compact. Since it’s second
countable, we have a countable basis {U,}. Since we are in LCH space, for each z € G (or H) we
can find a neighborhood K, compact. Taking the interior, we have a precompact neighborhood U,
for every x € G. Since {U,} is a basis, we can find z € U,, C U,. Closure of U,, is contained in
K, and a closed subset of a compact set is compact, so U,, is precompact. We then get {U,, }»cc
covers G (or H). Since the base was countable, we get a refinement of this to {U,, }3°,. Taking
closures, we get a countable cover of X by compact sets, implying o-compact.

Proof. We recall that left Haar measure on a topological group G is a nonzero left-invariant
Radon measure p on G. In other words, u satisfies the following.

(a) For all x € G and E a Borel set, we have
w(wE) = u(E).
(b) For all compact subsets E, we have
p(E) < oco.
(c) For all Borel subsets E, we have
u(E) =inf{u(U) : E C U,U open}.
(d) For all open subsets U, we have
uw(U) =sup{u(K) : K C U, K compact}.
We now proceed to the problem.

(1) We have that p is the pushforward measure, o = T (m¢). We show that this is indeed
a measure on the Borel o-algebra.
(a) We see u(2) = ma(T~1(@)) = ma(2) = 0.
(b) For {E;}52, a countable disjoint collection of Borel sets, we have

[e.e] e}

p| L E | =me [TV LB || =me || |T7UE) | =D ma@ NE)) =D wE;).
=1 =1

J=1 J=1

So this is a measure. We next check that it is a left Haar measure.
(a) For z € G and F a Borel set, we see that we have

w(aE) = ma(T™ (@ E)).
Since T a surjective endomorphism, there is some h € G with T'(h) = . We now write
T Y2E) ={g € G :T(g) = xe for some ¢ € E}
={9€ G:T(9) =T (h)e for some e € E}
={geG:T(htg) € E}
=h{ge G:T(g9) € E} = hT"H(E).
Using the fact that m is a left Haar measure, we can write the above as
waE) = ma(T™ ' (2E)) = ma(hT~1(E)) = ma(T~'(E)) = u(E).

Hence we have left invariance of p.
(b) For this to be true, we need to assume the map is proper. If T' is proper, it is clear
that we have this property, since for £ compact we have

WE) =mg(T™H(E)) < oo
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To get that T is proper from the results, we note that 1" is a surjective, continuous
endomorphism between LCH groups which are o-compact. We can then use the Open
Mapping theorem for topological groups — see here| (Theorem 2.6) or here. Thus T'
is an open mapping. Now take £ C H compact. The goal is to show that T-1(FE) is
compact. Let {U,} be an open cover of T-1(FE); that is, suppose we have

T-Y(E) C | JUa.

Since we have G is a o-compact LCH space, we can assume that the U, are precompact;
that is, U, is compact (use Folland Proposition 4.39, not obvious but follows). We
can apply T to get

ECT (U Ua> =1

Since T is an open map, T'(U,) is open. We now use the fact that F is compact to get
a finite refinement. We have

n
Ec|Jrw).
i=1
We now take preimages to get

n n n
T YE) C T ' TW) = | ker(T)U; C | ker(T)T:.
i=1 i=1 i=1
Note that the product of compact sets is compact (by Tychonoff and continuity of the
product), so |Ji, ker(T")U; is compact. This gives us that 7 !(E) is a closed subset
of a compact set, hence it is compact.
(¢) Regularity follows by Folland Theorem 7.8, since G and H are second countable
LCH spaces and we’ve shown that u is a Borel measure which is finite on compact sets.
(2) This follows by Folland Theorem 11.9. Since (1) shows that p is a Haar measure, we
can use that in conjunction with the theorem to find such a constant.
(3) Since G compact, we have mg(G) < oo, so

WG) = ma(T~H(G)) = ma(G) < oo,

and we have
ma(G) = cu(G).
Solving for ¢ gives ¢ = 1.


http://topology.auburn.edu/tp/reprints/v31/tp31209.pdf
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James Marshall Reber, ID: 500409166 Math 7221, Homework 2

Remark. Everybody was a collaborator.

Remark. I was focused on attempting as many problems as possible as opposed to writing com-
pletely rigorous arguments. There are plenty of typos and incorrect solutions. Let me know if you
find any and I will update it.

Unless otherwise specified, T is invertible and measure preserving.

Problem 5 (Petersen 1.4.1). Show that T if T is a measure preserving transformation, then

U = Ur defined on L?(X, M, i) by
Ur(f) = f(Tx)

is unitary. What if T" is noninvertible?

Proof. Recall an operator Ur : L?(u) — L?(y) is unitary if it satisfies two conditions:

(1) Up is surjective.

(2) Ur preserves the inner product.
We check these conditions now.
(1): For surjectivity, we need to show that for all g € L?(y), there is an f € L?(u) with Up(f) =g
(at least in L? equivalence, so almost everywhere). Since T is invertible and measure preserving,
we have go T~ : X — R is an L? function, and Up(goT™') = goT ' oT = g (at least almost
everywhere). This gives us surjectivity.
(2) : For preserving the inner product, we take f,g € L?(x) and notice

WﬂﬁmwnzéﬂﬂwMﬂww@)

We have T~ (X) = X, so preforming a change of variables y = T~!(z) and using measure preserving
we have

wmmm@»—ﬂf@awwm—vw.

Notice that in the proof of (2) we only used measure preserving. So we always get Ur : L?(u) —
L?(p) is an isometry if T' is measure preserving. If T is not invertible, the questions is whether Ur
is surjective, and it’s not true (see the discussion on Carmen). O

Problem 6 (Petersen 1.4.2). Show the following:
(1) The one sided Bernoulli shift o((z,)) = yn with y, = 241 on [[(7{0,1}, where py = 1/2
and p; = 1/2, is isomorphic to the doubling map on the circle. That is, it’s isomorphic to
T:[0,1) — [0,1), T(x) =2z (mod1).

(2) The two sided Bernoulli shift o((2,,)) = y, with y, = 2,41 on {0,1}%, where pp = 1/2 and
p1 = 1/2, is isomorphic to Baker’s map. That is, it’s isomorphic to

)2z (mod 1),y/2)if 0 <z <1/2
T@W”‘ﬂm (mod 1), (y +1)/2) if 1/2 <z < 1

)

T:00,1) % [0,1) — [0,1) x [0, 1).

Proof. We recall what an isomorphism of systems means. Two systems are isomorphic if there exists
a o-algebra isomorphism ~ : (X, M,p) — ([0,1), B, A) for which the following diagram commutes:
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(1)

(X, M, 1) — (X, M, p)

ul I

(Y,N,v) —2— (Y,N,v)

Let X = [[;2,{0,1}, M is the o-algebra generated by cylinders, and p = p where p is
induced on X by the property p({0}) = 1/2 and p({1}) = 1/2. Let Y = [0,1), V" = B([0, 1)),
and A\ Lebesgue measure. We have a natural map v : X — Y given by v((x,)) = 0.zox1 .. .;
i.e. a point is mapped to its binary sequence. A maybe more rigorous way to express -y is

[e.9]

v: X —[0,1), Y((zn)) = Z Qi+1"

Every element in [0, 1) has a binary expansion, so it is surjective. Moreover,

N (@) =) = Y 507 = 2 51+
1=0 =1
T(y((an)) =T (Z ;;) = ‘% (mod 1) = %
=0 1=0 =1

So yoo = To~y. We see vy is not necessarily injective, since a sequence ending in repeated 0s

or repeated 1s gives us issues (akin to base ten and ending in repeated 9s or 0s). However,

we note that the collection of points where it is not injective has zero measure (since it is

countable), so it is injective off of a set of measure zero. Notice that the set of measure zero

is T-invariant in [0, 1) and p invariant in X, so removing them doesn’t change the dynamics.
We next claim that v is measure preserving. Take the dyadic rational interval

1
The preimage v~ !(I) where
C(],nﬂ--'ﬂCO’(]:{(.%n) eX xg=0,21 :0,...,$n20}
is an intersection of cylinders. We see
1
on = A[0,1/2")).

p(y ' (1)) = p(CopN---NCop) = on

Now the same kind of argument applies to general dyadic rational intervals. Examine
1
I= [p, Pt ) .
2n’  2n

’)/71([) = Ca’n N---N 007().

The same argument now applies. So v is measure preserving. Thus + is an isomorphism of
dynamical systems.

We claim the same kind of argument as above applies, except now we imagine the map
v:X —[0,1) x [0,1) is going to send a sequence (x,) to two binary representations. Let
m :]0,1) x [0,1) — [0,1) be the projection onto the first coordinate and 72 the projection
onto the second. Then

Let « = p (mod 2), then

oo

m((@a) = Y 5

0
7



oo

m(((2n))) =

Tn
27.
It’s surjective onto each factor map, so surjective onto [0,1)2. The issue now are sequences
which are constant in either direction, but those again have measure zero and are preserved
by both maps so we can neglect these. It is injective once we throw these out. We just

need to check measure preserving, but again this is just a matter of checking on the dyadic
intervals. To check that it is a conjugacy, we note

rote 7 (S5 55 - (S5 5
Yo ((@n)) = ¥(yn) = (Z it g) - (Z e ;) -
1 1 1

0
So we get that it is an isomorphism of systems.

0

Problem 7 (Petersen 1.4.3 Modified). Let G, H be locally compact Hausdorff groups which are
also second countable. Let T': G — H be a continuous surjective endomorphism. Let m be a left
Haar measure on G. Let mqg, my be Haar measures on G, H respectively. Define a measure p on
H by
w(E) = mg(T~Y(E)) for all Borel E C H.

Prove the following;:

(1) wis a left Haar measure on H;

(2) there is a ¢ > 0 such that

n=c-mg;
(3) if we suppose that G = H is compact, i.e. mg(G) < oo, and mg = my, then prove that
c=1.

Note that we can conclude from (3) the following result.

Theorem. If T' is an endomorphism of a compact group GG, then T preserves the Haar measure on

G.

Remark. If we have these properties, note that G and H are also o-compact. Since it’s second
countable, we have a countable basis {U,}. Since we are in LCH space, for each z € G (or H) we
can find a neighborhood K, compact. Taking the interior, we have a precompact neighborhood U,
for every x € G. Since {U,} is a basis, we can find z € U,, C U,. Closure of U,, is contained in
K., and a closed subset of a compact set is compact, so U, is precompact. We then get {U,, }.ecq
covers G (or H). Since the base was countable, we get a refinement of this to {U,, }3°,. Taking
closures, we get a countable cover of X by compact sets, implying o-compact.

Proof. We recall that left Haar measure on a topological group G is a nonzero left-invariant
Radon measure p on G. In other words, u satisfies the following.

(a) For all x € G and E a Borel set, we have
u(wE) = u(E).
(b) For all compact subsets E, we have
u(E) < oo.
(c) For all Borel subsets E, we have

u(E) =inf{u(U) : E CU,U open}.
8



(d) For all open subsets U, we have
p(U) = sup{p(K) : K C U, K compact}.
We now proceed to the problem.

(1) We have that p is the pushforward measure, u = T, (m¢g). We show that this is indeed
a measure on the Borel o-algebra.
(a) We see (@) = mg(T~1(@)) = mag(2) = 0.
(b) For {E;}32, a countable disjoint collection of Borel sets, we have

[e.e] e}

pl L E | =me [T LB | =me || T ' (E) | =D ma(T(E)) = uE)).
= j=1

j=1 j=1

So this is a measure. We next check that it is a left Haar measure.
(a) For x € G and E a Borel set, we see that we have

$(zE) = ma(T~ (2 E)).
Since T' a surjective endomorphism, there is some h € G with T'(h) = . We now write
T Y2E) = {9 € G :T(g) = xe for some e¢ € E}
={g9€ G:T(g) =T (h)e for some e € E}
={geG:T(hg) € F}
=h{ge G:T(g9) € E} = hT"}(E).
Using the fact that m is a left Haar measure, we can write the above as
W(aE) = ma(T™ @) = mg(hT(E)) = ma(T~(B)) = u(E).

Hence we have left invariance of p.
(b) For this to be true, we need to assume the map is proper. If T is proper, it is clear
that we have this property, since for £ compact we have

W(E) = ma(T7(E)) < .

To get that T is proper from the results, we note that 1" is a surjective, continuous
endomorphism between LCH groups which are o-compact. We can then use the Open
Mapping theorem for topological groups — see here (Theorem 2.6) or here. Thus T
is an open mapping. Now take £ C H compact. The goal is to show that T~1(FE) is
compact. Let {U,} be an open cover of T-1(FE); that is, suppose we have

T-Y(E) C (V.

Since we have G is a o-compact LCH space, we can assume that the U, are precompact;
that is, U, is compact (use Folland Proposition 4.39, not obvious but follows). We
can apply T to get

ECT (U Ua> =JTrwa).

Since T is an open map, T'(U,) is open. We now use the fact that E is compact to get
a finite refinement. We have

Ec|JTw).
i=1
9
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We now take preimages to get

Y(E)c TN TW) = O ker(T)U; C LnJ ker(T)U;.
=1 =1 =1

Note that the product of compact sets is compact (by Tychonoff and continuity of the
product), so |Ji, ker(T")U; is compact. This gives us that 7 !(E) is a closed subset

of a compact set, hence it is compact.
(c) Regularity follows by Folland Theorem 7.8, since G and H are second countable
LCH spaces and we’ve shown that u is a Borel measure which is finite on compact sets.
(2) This follows by Folland Theorem 11.9. Since (1) shows that p is a Haar measure, we

can use that in conjunction with the theorem to find such a constant.
(3) Since G compact, we have mg(G) < 0o, so

(@) =ma(T~H(G)) = ma(G) < o,
and we have
mg(G) = cu(G).

Solving for ¢ gives ¢ = 1.
O

Problem 8 (Petersen 1.4.4). Show that a homomorphism of measure-preserving systems is onto,
up to a set of measure 0.

Proof. Consider (X, M, u,T), (Y,N,v,S) measure-preserving systems, v : (X, M, u) = (Y, N,v).
We say 7 is a homomorphism of these systems if:

(1) v is measurable (meaning = (N) C M);
(2) v is measure preserving (meaining u(¢ "1 (E)) = v(E) for all E € N);
(3) We have yoT = S o+ almost everywhere.

The goal is to show that v is essentially surjective, meaning surjective off of a set of measure zero.
Consider

Z ={y €Y : thereis no x € X with p(z) = y}.
We see
v (2)=2.

Since it is measure preserving, we see

u(e™(2)) = (@) =0 =v(Z).

Off of Z, we see that ¢ is surjective. g

Let’s recall some of the terminology.
Let (X, M, u,T) be a measure-preserving system. For f: X — (0,00), consider

Iy={(z,t):0<t < f(x)}.

This is the collection of points “under f.” We identify (x, f(z)) and (T'z,0). We have the following
picture:
10



For n € Z, define

Sy f(TF(x)) ifn >0
Sp(x) = 01fn—0

— S5 F(T7F(@)) ifn < 0.

Problem 9. Use Poincare recurrence to show that S, (x) — oo as n — oo. The same kind of
argument can be used to show S, (x) — —o0 as n — —oc.

Proof. Notice that f~1((0,00)) = X. By continuity of measures, there must be some a > 0 so
that u(f~1((a,00))) # 0. If we let E, = f~!((a,00)), then by Poincare recurrence almost every
r € B, returns to E, infinitely often, so f(T%(z)) > a infinitely often for almost every x € E,.
Consequently, for almost every = € E,, we have S, (z) — oo as n — co. Now this holds for each
E, (technically, even if the set E, has measure zero it will still hold), and we can write

X:UEG.

a>0
The union of sets of measure zero will be measure zero, so it holds for almost every z € X. O

Forz e X,0<t< f(x), s € R, define
n(z,t,s) :=min{k € Z>p: s+t < Sp1(x)}.
This is called the hitting number.
Problem 10. Show that n(z,t,s) is well-defined, and satisfies the property that
Sn(ats) <8+ < Spat,s)+1-

Proof. The fact that n(z,t, s) is well-defined follows from the fact that S, (z) — oo, so there must
be some n so that s+t < S, (z), and the minimum will be unique. The fact that it’s a minimum
tells us that we have the above identity. O

For t > 0, define
Tsf(x, t) = Tf(ac7 t,s):= (T"(z’t’s)(az), s+t = Sy(ats) (x)).
Problem 11. Show that S, satisfies the cocycle relation; i.e.,
Sntm = Sp + S o T,
Proof. We see that

,_.

m— m+4n—1

o T (z F(TI(x Z F(TH(x)) = Spmn(x) — Sp(z).

J=0

11



Problem 12. Show that ng = n(-, s) satisfies the coycle relation; i.e.,
n(z,t,s+q) =n(z,t,s) + n(T”($’t’s) (x),s+1t— Sn(w,t,s) (x),q).
Proof. Notice that
n(T"(‘”’t’s)(x), s+t — Spat,s(T),q) = min {k €EZ:s+t+q— Spas(r) < Sk+1(T"(x’t’S) (:z))} )
By the cocyle relation for S,,, this is the same as
n(T™@5) (1), s+t — Sn(ets) (@), q) =min{k €Z: 5+t +q < Sp@igthi1(®)}
After changing variables appropriately, we see
n(T”(m’t’s) (), 8+t=Sp(2,,5)(7),q) = min{a € Z: s +t + ¢ < Sat1(x) }—n(z,t,q) = n(x,t, s+q)—n(z,1,q).
This gives us the cocycle property. ([l
Problem 13. Show that Tsf is a flow.

Proof. There are two things we need to show.
(1) We see that

k
n(x,t,0) =min{k € Z:t < Sgy1(z)} =min< k€ Z : t < Zf(T](m))
=0

Since 0 <t < f(z), this implies that
t < Si(z) = f(x),
so n(x,t,0) = 0. Therefore
T (2, 1) = (T°(@), t = So(a)) = (x.1).

So Tof is the identity.
(2) We next need to check that the R action is satisfied, meaning
7! (2,t) =T o TS (2,1).
Notice

7/ (qu (x, t)> =TH (T (2), g+t — Spppg)(7))

)

_ <Tn(Tn(z,t,q) (x) S Ht—=Sn(,t,q) (z),s) (Tn(x,t,q) (33))

S+ 4+t = Snag) () = Sprneta @) 54180 gy (@) (T (x)))
Use the cocycle property for n to get

n(Tn(x,t,q) ('T)a s+t — Sn(wﬂf,q) (x)v S) = n($a t7 s+ Q) - n(xa ta Q)a

SO
Tn(Tn(z,t,q) (m),s+t75n(zyt,q) (z),s) (Tn(m,t,q) (J})) — Tn(x,t,erq) ((E) )

Now

(z),s) (Tn(x,t,q) (:E)) = Sn(:t,t,erq)fn(m,t,q) (Tn(w,mq) (x))
12
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Plugging in the definition, we get

n(z,t,s+q)—n(z,t,q)—1 ' n(z,t,s+q)—1 4
Sr(wstysta)—n(ata) (T () = > FEitreba(@))y = 3" f(T(x))
=0 j=n(,t,)

= On(z,t,s+q) (‘T) - Sn(m,t,q)‘
Substituting this in, we have
S”(%Wl) (l’) + Sn(T”(f”*tv‘I)(a:),erthn(z’t’q)(x),s) (Tn(x,t,q) (:E)) = Sn(a:,t,s+q) (l’)
So
T (T (2,1)) = (15D (@), 5 4+ g+ £ = S () = Ty (1)

Thus this is actually a flow.
O

We call {Tsf }ser the induced flow (or flow built under a function). Note this is the flow going
upward with unit speed.

Problem 14 (Petersen 1.4.7). Verify that the flow built under a function is measure preserving.

Proof. The goal is to show that for fixed s € R that Tsf is a measure preserving system. The rest
can be deduced from 1.4.C. Thus fix some s € R, and examine

TH: Ty =Ty,

T (,1) = (T (@), 5+t = Spgas (@)

Consider £ C I'y measurable (under the appropriate product measure). We need to show that

ur (T)71(E)) = s (B),
where 11y denotes the appropriate product measure. Let’s examine
(T))HE) = {(z,0) €Ty : (T"") (@), 5+ = Sp(a,5) (7)) € E}.
Consider
E,={(z,t) €Ty : (T"(x),s+t— Sp(x)) € E}.
This is a disjoint collection for n > 0, and so we can decompose
(T)HME) = || En-
n>0

So it suffices to show that

ps(En) = ps (T (En)).
Now we can realize F,, as

E, ={(z,t) €Ty :n(x,t,s) =nand (T"(x),s +t — Su(z)) € E}.

Now we can write (abusing Fubini-Tonelli)

f(x)
p(En) = /GX (/0 XE”(a;,t)dt) du(x).

Notice



Since it is a measure preserving transformation with respect to the first variable, we see that this
doesn’t change. The question remains about whether it is a measure preserving transformation
with respect to the second variable. However, for fixed x € X and s € R we see that this is just
a translation, which is going to be measure preserving. So for fixed x the integral on the inside
remains the same, i.e.

e f@
[ vasmeian= [ e, @@, 0a

and then we can use the measure preserving property to get that after a change of variables this
will be the same for all z, so

,uf(Tsf(En)) = :uf(En)'
Now

pr((THHE) =) up(Bn) = (T (En)) = ps(B).

n>0 n>0

So it’s indeed measure preserving. O

Problem 15 (Petersen 1.4.10). Let (X, M, ) and (Y, N, v) be Lebesgue spaces. Let T : L?(v) —
L?(p) be an isometry which is multiplicative, meaning

T(fg) =T(f)-T(9)

whenever f,g and fg € L?(v). Show that there is a homomorphism ¢ : X — Y such that
Tf(x) = f(px) almost everywhere.

Proof. The claim is that T'(xg) is a characteristic function for every E CY with u(E) < co. This
is where the multiplicative property comes in. Notice that

T(xe)? =T(xe)T(xe) =T(x%) = T(xze).

So almost everywhere we have that T'(xg) is either 0 or 1, which means it is a characteristic function
for some set F' C X. Furthermore, since we have an isometry we have

Ixrll2 = lIxele = w(F) =v(E).
Define @ : N' — M on the sets of finite measure by p(F) = F. Then
T(xXE) = Xa(F)-

This is defined on every measurable set with finite measure, and since we are in a Lebesgue space
we can get it for all measurable sets by taking limits. So actually @ : N' — M is uniquely defined
on all measurable sets. One can check that it’s a homomorphism. If we take Lebesgue spaces to be
probability measure spaces, then 7'(1) = 1. If we check complements, we have

xXe+xge =1 = X\ @(E) = p(E).
For finite unions we use the modular equation
XEUF = XE t XF — XEXF,
so applying T' to both sides we have
P(EUF)=o(E)Ua(F).
Induction then gives the result. For infinite unions, let B,, = U, E;, B, /' B, then

XB, — XB
14



and we can apply dominated convergence to get xg € L?(v). T is an isometry, so T'(xg) — T(xB),

and that implies
9 (U Ez) =Ja(E).
1 1

This is then a homomorphism of o-algebras. We can find ¢ which will induce @. This will satisfy
the problem. O

We recall some definitions first. A o-ring on a set X is a subset of P(X) satisfying the following
properties:
(1) o €R.
(2) For all A,B € R, we have AUB € R.
(3) For all A, B € R, we have A\ B € R.

A function p: R — [0, 00] is a premeasure if it satisfies the following properties:

(1) w(@) = 0.
(2) We have

K (l_l An) = ZIU’(ATL)
1 1
We recall the Caratheodory-Hopf Extension theorem.

Theorem (Caratheodory-Hopf Extension). Let X be a set, R a o-ring on X, and p: R — [0, 00] a
pre-measure on R. Then there is a measure ' on o(R) which extends p. Moreover, if p is o-finite,
then ' is unique.

The following problems are credited to Fabrice Baudoin (see here).

Problem 16. Let B, C R" be a sequence of Borel sets that satisfy B,+1 C B, xR. Let us assume
that for every m a probability measure pu, is given on (R",B(R")) and that these probability
measures are compatible in the sense that

Nn(Al X oo X An—l X ]R) = ,un_l(Al X - X An—l)-

Suppose they also satisfy
pin(Bn) > €
where 0 < € < 1. Show that there exists a sequence of compact sets K,, C R" such that we have
the following.
(1) K,, C B,,.
(2) Kny1 € K, xR
(3) pn(Fn) > €/2.

Proof. We can use the regularity of Lebesgue measure. For every n, there is a compact K C B,
satisfying

% €

Define
K,=(K; xR )N n(K:_; xRN K.
We see that K,, C B,, by construction. We also see that
Kppi=(KfxRY)N---N(Ky xR)NK}:, C (K7 xRN n(K;_, xR)NK;) xR

=K, xR.
15
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Finally, we can use the fact that the measure is finite to get
tin(Kn) = pn(Bp) — tn(Bn \ Kn) = pin(Bn) = tin (Bn \ ((Kik X Rn_l) N---N(K, ; xR)N KZ))
> fin(Bn) = pin(Bn \ (K7 X R"™1) =+ = i (Bn \ (Kpy_1 X R)) — pin(Bn \ K)
> pin(Bn) — pn(Br \ K1) — pa(Ba \ K3) — -+ — pn(Bn \ Kp)) > €/2.
O

Problem 17 (Petersen 1.4.12). Use the Caratheodory-Hopf Extension theorem to prove Kol-
mogorov’s Consistency Theorem: Let A be an index set and for each n = 1,2, ... and each n-tuple
(@1,...,an) of elements of A, let i, . q,) be a Borel probability measure on R". Assume that

(1) If 7 € Sym(n) and T+ is the corresponding transformation of R™ (i.e. sends the basis elements
to their shuffled basis elements), then

uf(al’m,an)(E) = M(al,...,an)(Tfl(E)) for all Borel £ C R".
(2) I Iqpm : R™k — R™ is the projection map defined by

Hn—i—k,n(-rl’ v 7xn+k) = ($17 s 73311)7
then
Iar,.an)(E) = “(aly---,anM)(H;}rkn(E)) for all n,k =1,2,..., and all Borel E C R".

Then there is a probability space (2, F, P) and a family {f, : @« € A} of measurable functions
on () such that we always have

:u(al,..‘,an)(E) = P{w : (fa1(w)’ R vfozn(w)) € E}

Proof. Let’s see what our second condition is saying. It is saying that

M(a1,...,an+k)<E X Rk) = M(al,...,an)(E)'

This is what it means for the measure to be consistent.
Consider the measure space (Fun(2,R),c(Q,R)) where o(2,R) is the o-algebra generated by
the cylindrical sets

{f € Fun(Q,R) : f(t1) € I1,..., f(tn) € I},
where I1,..., I, are intervals and ¢1,...,t, € Q.
Consider the cylinders
Clar,.an)(B) = {f € Fun(,R) : (f(1),..., f(an)) € E}.
Define
1(Clar,an) (E)) = H(ay,....an) (E)-

The consistency assumptions show that p is well-defined. We also get u(@) = 0. We need to
establish o-additivity to win. To do so, let (C)) be a sequence of pairwise disjoint cylinder with
their union C a cylinder as well. Let

N
FN:UO’I’M
0

Dy =C\ Fy.
We can write
w(C) = p(DN) + p(Fn)-
The goal is to show
li Dy)=0.
Ngnoo'u( N)
16



N
n=1"

The fact that Dy is a cylinder implies it only uses a finite sequence of times (t,) We may

assume that every Dy can be described as
Dy ={f € Fun(,R) : (f(a1),..., f(an)) € By},
where By a Borel set. Notice that By is a sequence which satisfies
Byi+1 € By x R.

Now suppose the limit converges to some € > 0 for contradiction. Then p(Dy) > € for all N.
We can use the above problem to get some compact sets (K ). This is nonempty by assumption,
pick (z1,...,2}) € K,. Using a diagonal argument, we get a sequence (x,) such that for every n,
(z1,...,2n) € Kp. So the sequence

{f € Fun(Q,R) : (f(a1),..., flan)) = (z1,...,24)} € Dy.

This implies
(\Dn # 2,

but this is a contradiction. So we must have the limit is 0. Thus we can invoke Caratheodory to
get a probability measure P so that (Fun(2, R), o(2,R), P) is a probability measure space. Choose
family {7, : @ € A} with 7o (f) = f(a). O

Problem 18 (Petersen 2.3.1). State and prove versions of the Maximal Ergodic Theorem and
Pointwise Ergodic Theorem for one-parameter measure preserving flows.

Let’s recall the two theorems first.

Theorem (Maximal Ergodic Theorem). If f € L'(X, M, ) and (X, M, i, T) is a measure pre-
serving system, then

n>1 "N

/ fdu >0, where f*(x) = sup — Zf T”C
{f*>0}

Theorem (Pointwise Ergodic Theorem). Let (X, M, u) be a probability space, T : X — X an
invertible measure preserving transformation, and f € L*(X, M, u1), then

(1) we have

n—1
Tim % zoj F(TH@)) = F(x) exists ae.,

(2) we have f is T-invariant almost everywhere

(3) we have that if A € M with T~ = A, then

/ fdp = / Fdu,

1n—1
—ZfoTk%?inLl.
n

0

(4) we have

Proof. Let’s consider a one-parameter measure preserving flow on (X, M, ). This is a family of
maps {T'(t,x) : t € R} which satisfies for all t € R T'(t,z) : X — X is an invertible measure
preserving map, T(t + s,z) = T(t,T(s,z)), T(0,z) = z, and T(—1,z) = T~ (x).

Examine the operator

A (f)w) = TO‘/ R0



for » > 0. This will be our averaging operator here. Now the goal is to examine
[ (@) = sup A, (f) ().
r>0

This will play the role of our maximal function. Ideally, we’d like to show that

/ f(z)dp > 0.
{f*(x)>0}

E.={x: f*(x) > €}.

If x € E,, then this means there is some 7, > 0 so that

Ar, (f)(@) > €.
Now since z is fixed, let T, : R — X be defined by T, (t) = T'(¢t,z). We have

A (f)(z / V)t > e,
(Hi) |B Tz,0)| rw,O)

In other words, there is some 7, > 0 so that

/ F(To(t))dt = / f(2)du(z) > e
B(rz,0) z(B(r2,0))

The claim now is that the set {T;(B(r4,0))}zex covers Ee, but this is clear since x € T, (B(ry,0)).
Now take F, = T, 1(E.) C R. Since T} is measure preserving and invertible, we have that the balls
B(rs,0) cover F, up to a null set (which we exclude anyways). We can then apply a Vitali lemma
and use {T,} so that for all ¢ < A\(F,) = u(E,) there is a k so that z1,...,x; € E, and the balls

Bj = B(ry, z;) are disjoint and Sk 1(Ty;(Bj)) > 37 e, The rest of the argument now applies like
the Hardy-Littlewood maximal theorem to give us

0 S/ f(z)dp(z).
{f*(z)>¢}
This applies for all € > 0, so take a limit to get the result.

Let € > 0 be fixed and examine

Being T-invariant is the same thing as saying f*(7'(1,z)) = f*(z). Notice
pra) =swp e [ @ T i =swp e [ e
1 *
= ililg m B J(T(t,2))dA(t) = f*(x)

by the supremum property. The Lebesgue differentiation theorem now kicks in to give us f = f in
this case. We get all properties except the T-invariance of f (of which I’'m not sure is going to hold
in the flow case?) O

Problem 19 (Petersen 2.2.5). Identify
f(z) = lim A,(f)(x) almost everywhere

n—oo
in each case.
(1) Consider (X, M, u, T) where X = {0,...,n—1}* M the o-algebra generated by cylinders,
w is given by p(j) = p; where 2871 p; = 1, T is the left shift map, and

f((@n)) = x4iy (20)-

In other words, f is the function which tells you whether a sequence has i at the 0 index.
18



(2)

(3)
Proof.
(1)

Consider (S, B, \, Ry) where R, : St — St is given by R, (z) = z+a (mod 1) and f = x;
for some interval I.
Consider (R, B, \,T) where f € L' and T(x) = z + 1.

We calculate

n

n—1 n—1
An(F) () = - S FT ) = - 3 Xy o).
0 0

This is the function which measures the frequency of {i} in the first n entries of the sequence
(n). So

flan) =

— 1 if there are infinitely many occurrences of i in (2, )n>0
0 otherwise.

Since rotations by « are dense, regardless of where we start, we have that

f@) = xi(2).
We again examine B
AR =3 fla ).
0

Let f = x7 for an interval. Then

n—1
A(F)) = - S xilo 4 ),
0

and we see
f(z) = lim A (f)(z) = 0.

We see that this holds for characteristic functions of compact sets. Let P : L' — L! be the
function P(f) = f* (we know this works by the pointwise Ergodic theorem). It is linear by
the linearity of A,, and the limit. Note that | P| < 1, so it is continuous. We know on all
characteristic functions it will be zero, so we can do the usual argument to get that for all
L' functions it will be zero.

O

Problem 20 (Petersen 2.2.6). Show that if

then

n—1
Z f(T*(x)) — oo almost everywhere,
0

/xfdu>0.

Proof. Notice that this is saying for almost every z € X there is an n so that f,(xz) > 0. Following
the argument for the Maximal Ergodic Theorem, we get

If

/ fdu=/fdu20-
{f*>0} X

/fdu:0,
X
19



then f = 0 almost everywhere, which contradicts the property of lim, o f, going to infinity almost
everywhere. Thus we have
/ fdp > 0.
X

Problem 21 (Petersen 2.3.1). Let T': X — X be an invertible, measurable, nonsingular trans-
formation on a o-finite measure space (X, M, u) in that T" preserves the o-ideal of null sets of pu.
Recall T is nonsingular if y(T(E)) = u(T~(E)) = 0 for any measurable set E with u(E) =0 (a
weaker notion of measure preserving).

A set W € M of positive measure is called weakly wandering if there is a sequence ny — oo
such that the sets T™* W are all pairwise disjoint. Show that if 7" has a weakly wandering set, then
there does not exist a finite invariant measure equivalent to pu.

Recall that two measures m and p are said to be equivalent if for all £ measurable with
m(E) = 0 we have u(F) = 0, and if E is measurable with p(E) = 0 then m(E) = 0. We write
m o~ (L.

O

Proof. Recall a measure m will be invariant under T if m(T~(E)) = m(E) for all E measurable.
Let W € M be a set with u(W) > 0, m a finite T-invariant measure. Suppose m ~ pu for
contradiction. Notice that if {T"*W} are all pairwise disjoint, m(T™ W) = m(W) for all k& (by
T-invariance), and we have

> m(T™W) < m(X)

k=0
by monotonicity and disjointness. This can only happen if m(W) = 0, but we assumed that u(W) >
0 and m ~ p, a contradiction. Since p(W) > 0, this forces m and p to not be equivalent. O

We recall a few definition. We work over (X, M, 1) a measure space. A collection 7 C M is a
o-ideal if the following are satisfied:
(1) oeJ,
(2) when A € J and B € M with B C A, then B € 7,
(3) if {A,} C J then JA, € J.

Problem 22. Show that if 7 is the collection of all sets of measure zero, then 7 is a o-ideal.

Proof. We see (1) is satisfied, since (@) = 0. Monotonicity gives us (2), and o-additivity gives us
(3). O

A set W € M is wandering if the collection {T~"W} is pairwise disjoint. A map 7' is conser-
vative if every wandering set is in J, the o-ideal of sets of measure zero.

Problem 23 (Petersen 2.3.2). Let T" be as in Petersen 2.3.1. Show that X has a decomposition
into disjoint, measurable, invariant conservative and dissipative parts, X = C'U D, in the following
sense:

(1) T|C is conservative.
(2) D={T"W :n € Z} for some wandering set W.

Proof. Notice that a measurable subset of any wandering set is a wandering set. Let B C W, W
wandering, and take 7"(B), T™(B) for some n,m € Z. Then T"(B) CT™(W), T™(B) C T™(W),
and
T™(B)NT™(B) CT"(W)NT™(W) = 2.
The choices of n and m were arbitrary, so B is wandering.
20



Notice unions of wandering sets from disjoint 7" invariant sets X and Y will be wandering.
Suppose A and B are wandering sets with A C X, BCY, X and Y T-invariant and X NY = &.
Take n,m € Z. Then

T"(AUB)NT™AU B) = (T"(A) UT™(B)) N (T"™(A) UT™(B))
= (T"(A) N T™(A)) U (T™(A) N T™(B)) U (T"(B) N'T™(B)) U (T"(B) N T™(B)) = @.

Consider now a sequence of increasing wandering sets with respect to C, {B,}. The claim is
that B =, Ba is a wandering set as well. Take n,m € Z, then

™ (U Ba> =Jrm® ), 1" <U Ba> = JT™(B.).

« « « [e%

We see that
T(B) N T(B) = | (T (Ba) N T (Bs).
a’ﬂ
For any «, 3, there is a vy so that B,, Bg C By with B, a wandering set, so we have
T"(By) NT™(Bg) CT"(B,)NT™(By) = @.
This holds for all n, m, «, 3, so in particular B is a wandering set.
We can then consider the collection
I'={W e M : W is a wandering set}.

We’ve just shown that, under the partial ordering C, chains have upper bounds. We invoke Zorn’s
Lemma to find a maximal W € I'. Consider the set D = {T"W :n € Z}. This is T invariant, since
TYD)={T""'W:neZ}y={T"W :ncZ}=D.

Let C = D¢. This will also be invariant, since
TC)=T"'(D°)=T"'(D)°=D°=C.

Take B C C measurable and wandering. Suppose pu(B) > 0, so that B is non-empty. Then B C C,
W C D, C and D are T-invariant subsets which are disjoint. By the above, we get that B LW is
going to be a wandering set which contains W, contradicting maximality. We must have p(B) = 0,
so that B € J. This tells us that T'|C is conservative. O

Problem 24 (Petersen 2.3.3). Let T' be as in Petersen 2.3.1. Show that 7' is conservative if and
only if

oo
P(u) = Z wo T*
0
takes only the two values 0 and oo almost everywhere for each non-negative u € L*>(X, M, ).

Proof. Assume a probability measure space.

(= ): If T is conservative, then if F is wandering we have that u(F) = 0. So taking E € M,
w(E) > 0, we have that almost every point = € E goes to E. So P(u)(xz) = co almost everywhere,
where U = xg. A linearity argument now applies to get that this holds for all w € L*°.

(<= ): Let E C X be a measurable set which is wandering, and consider xg € L* positive. Then
we see that P(xg) takes either the value 0 or co almost everywhere. If P(xg)(x) = oo, this means
that T%(z) € E infinitely often. Since F is wandering, this is impossible (off of a set of measure
zero, maybe) so P(xg)(z) = 0 almost everywhere. Consequently x7 = 0 almost everywhere, and

0 =/ XEdp =/ xedp = p(E).
X X
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Problem 25 (Petersen 2.3.4). Verify that the induced transformations T4 and T really are measure
preserving transformations when T is.

Proof. We break it up into parts.

(1) We show T4 is measure preserving. We define a bunch of sets which have convenient
properties and hope things work out. Let £ C A be measurable.
First, notice that

T,Y(E) = | [(AnnT™(E)),
n>1

pa(T3 () = — S uldn 1T (E)),
Next, let )
Fo=A, F,={zeX :Tfzec A Tiz¢ Afor0<j<k}fork>1.
Notice that
T F)={zeX : Tz c ATI ¢ Afor 1<j<k+1}
= Agt1 U Fryq-
Now we see that
p(E) = p(ENA) = p(EN Fp).
Since T' is measure preserving, we have
W(E O Fy) = u(T~Y(E N Fy)) = u(T~ (B) N T~ (Fy)) = (T~ (B) 0 Ay) + (T~ (B) 0 F),
We can continue this inductively; that is, we have
W(T="(E) 1 Fy) = y(T~""1(E) N T (F,)) = (T~ (B) 0 Fusy) + p(T~ D (E) 0 ).
Letting this go to infinity gives
w(E) = S u(T="(B) 1 Ay).
n>1
Thus
P (E)) = — o S (A, T (E))
wA) 7=

- M(lA)u(E) — ja(B).

So T4 is measure preserving.

(2) We show T is measure preserving. If the set is in A’, then the preimage will just be the set
again, so the measures are the same. If the set is in A, then the preimage is divided evenly
into the complement and A’. If the set is in X \ A, then the preimage lies evenly in X \ A
and A’ (evenly here doesn’t mean actually evenly, just means that the sum of the measures
will be equal to the measure).

O

Problem 26 (Petersen 2.3.5). Describe the action of T4 in these cases.
(1) X =10,1), Ry =2+« (mod 1), and A=[0,1/2).
(2) X ={0,1}%, o is the shift, and A = {z : 2o = 0}.

Proof.

(1) Will just end up being R, =+ a (mod 1/2).
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(2) Shift a bunch? Unsure.
U

Problem 27 (Petersen 2.3.6). Prove directly that if 7' is a measure preserving transformation on
a finite measure space and p(A) > 0 then E={n >1: u(T""AN A) > 0} has bounded gaps.

Proof. Proceed by contrapositive. We can enumerate E = {n;} in increasing order. No bounded
gaps implies that for all ¢ > 1 there is a k so that ng1 — ng > i. Moreover, for each ¢ there is a j;
so that u(T7 " AN A) = 0. So we’ve found an infinite collection {T'""i(A)};>1 of almost disjoint
sets, and by the usual recurrence argument this forces p(A) = 0. This establishes if F does not
have bounded gaps, then p(A) = 0. O

Problem 28 (Petersen 2.4.1). Prove that if 7" is ergodic, then so are the induced transformations
Ty and T.

See here.

Proof. Let’s first show T} is ergodic if T is ergodic. Recall that if T is ergodic, then T-1(E) = E
if and only if F is either null or conull. Let’s try the usual trick of decomposing our space into nice
sets. As usual, let
Ap={r € A:na(z)=n}.
Recall we can write
T,4(E) = | |(A.nT(B)).

n>1
Suppose F C A is such that T, *(F) = F. Then we have
F=||(A,nT™(F)).
n>1
Let {F}} be as last time —
Fp={zeX :T'xz) e A, T(z) ¢ Afor 0 <j <k}

Let
E=||F.nT(F)).
n>1
Let
K=EUF

Recall that we had
T Y A) =EUF, T YFy) = Agq UFpp.
So
T-YK)=T"YE)UuT YF)

= JI(Far U Ew) n T~ ()] U [(B U R) N TH(E)]

n>1
=JE.nTF)U|JENT(F)=EUF =K.
n>1 n>1
Thus K is T-invariant, so K is null or conull. If it is null, then p4(F) = 0. If it is conull, then
K= (A\F)U((X\A)\ E),
SO
A\ F C K°.
Then pa(F¢) = 0 so that it is conull.
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The other part is similar. ]

Problem 29 (Petersen 2.4.2). Prove that if T is ergodic (on a space of finite measure), f > 0, and

1 n—1 '
lim sup — Z f(I7(x)) < oo almost everywhere
[

n—oo
then f € L%
Proof. Notice that

n—oo

n—1
f*(x) := limsup % Z f(T9(x))
0

is a function so that f* o T = f* almost everywhere. Since T is ergodic, the only T-invariant
functions are the constant functions (almost everywhere), so f* is constant. That is, f* = C' < o0
almost everywhere for some C € R.

Now let

Te = Ixgr<iy + EX(r>)-
Then this is a bounded function, so fx € L'(x), and moreover we see that

1 n—1 . 1 n—1 )
=~ ST (@) < =3 f(T(x).
0 0
Thus we have f; < C, and the Birkhoff Ergodic Theorem tells us that

/fkd,u = /f,;kdu < Cu(X) for all k.

Now we can apply the monotone convergence theorem (since fx 7~ f) to get
klim /fkd,u = /fd,u < Cu(X) < oc.
— 00

Thus f € L(u). O

Problem 30 (Petersen 2.4.3). Which of the equivalent characterizations of ergodicity fail when X
has infinite measure?

Proof. Let’s recall the equivalent characterizations. Throughout, (X, M, u, T') is a measure preserv-
ing system of a probability measure space. The following are equivalent (all results from Petersen):
(1) T is ergodic.
(2) For all measurable f we have foT = f implies f is constant. [Proposition 2.4.1]
(3) 1 is a simple eigenvalue of the transformation U induced on L?(X, M, u) by T. [Theorem
2.4.2)
(4) For every f € L'(X, M, i), we have

[Theorem 2.4.4]
(5) For every f,g € L?(X, M, 1) we have

n—1

Tim = S0 ,6) = (£,1)(g.1).
0

[Proposition 2.4.5]
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Let’s recall what ergodic means when X has infinite measure. A measure preserving system
(X, M, i, T) is ergodic if T71(E) = E implies u(E) =0 or u(X \ E) = 0.

The goal now is to examine (X, M, u, T') a measure preserving system which is o-finite and figure
out which of the following are still true.

(1) = (2): Assume T is ergodic. Let f be a measurable function which is T-invariant.
Consider the set

El =E.:={zecX: f(z)>r}

T

We claim this set is invariant under 7. Notice that since f o T = f, we have
THE)={zcX: f(T(x)>rt={zxecX: f(z)>r}=E,.

Since T is ergodic, this forces pu(E,) = 0 or u(X \ E,) = 0. If f is not constant, there is an r so that
0 < u(E,) < co. Notice this means that u(X \ E,) # 0 as well, and thus we have a contradiction.
(2) = (1): Let E € M be a T-invariant set and consider f = yg. This is a measurable function,
and we see that

xpoTl = XT-1(E) = XE-
This implies xg is constant almost everywhere, so xg = 0 or 1 almost everywhere. If ygp = 0
almost everywhere, we have

w(E) = /XEdH =0.

If xg = 1 almost everywhere, then x x\g = 0 almost everywhere, so

pXVE) = [ xopda =0,

This holds for every T-invariant set, so T is ergodic.

(I) = (3): Notice that 1 is always an eigenvalue. We need to show that it is a simple

eigenvalue, meaning Uf = f implies f is constant almost everywhere. But f being T-invariant
implies that it is constant almost everywhere by the equivalence of (1) < (2).
(3) = (1): Notice 1 is always an eigenvalue, since constant functions are invariant. For it
to be a simple eigenvalue means that Uf = f implies f is constant almost everywhere. So all
f € L*(X, M, u) which are T-invariant are constant almost everywhere. Does this imply that
every measurable function which is T-invariant is constant almost everywhere? Doesn’t seem to be
necessarily true.

(1) <= (4): The Birkhoff ergodic theorem doesn’t necessarily say what we want for this to
work.

(1) <= (5): The implication still works in infinite measure spaces. The converse doesn’t

necessarily hold (the containment doesn’t hold true).
O

Problem 31 (Petersen 2.4.4). Consider (X, M, i, T) a measure preserving system of a probability
measure space.

(1) Prove that T is ergodic if and only if

1 n—1

- ZM(Tk(A) NB) — pu(A)u(B) for all A, B € M.
0

(2) Prove that T is ergodic if and only if (1) holds on a semialgebra which generates the o-
algebra.

Proof.
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(1) (== ): Assume that T is ergodic. We can write the condition as

n—1
.1 k
Jim ~ ZO:M(T (4)nB) = lim — Z/XA ))x5(x)dp.
Now using the fact that T is ergodic and the Birkhoff Ergodic Theorem, we have
1 n—1
: - —k K
Jim =% xa(T™ () = Xi(2)

Notice we have

R p(A
[ @ = @) = w(4) = (o) = M((X)) — u(A),
since x% is constant almost everywhere and since p(X) = 1. Multiplying this by xp gives
lim EZXA z))x(x) = n(A)xs ().

Now use the dominated convergence theorem to get
n—1 1 n—1
— — 1 — k —
/ (nlggo - ZXA (o ))> dp = lim ZO:M(T (A) N B) = u(A)u(B).

(<= ): Let A= B = E, where F is a T-invariant set. Then

n—1
> WE) = u(E) = u(E)”.
0

This means p(E) =0 or u(E) = 1.

(2) (= ): Clear, it holds on the entire algebra.
( <= ): We just need to show that the property on the semialgebra implies the property on
the o-algebra. See Theorem 1.17 [4]. Elements in the algebra can be written as disjoint
unions of elements in the semialgebra, so it’s clear that it will hold on the algebra. Now
assume that A, B are in the o-algebra. Fix € > 0 small (where the smallness will be chosen
in the future). We can find Ay, By in the algebra so that u(AAAp), u(BABy) < e. Notice
that

1
n

(T~5(A) 1 B)A(T(Ao) N B) € (T~H(A)AT*(4g)) U (BABy).
Taking the measure and using measure preserving, we have
i ((T‘k(A) N B)A(T*(Ag) N B)) < 2.
Thus
(TH(A) N B) — (T~ (Ag) N Bo)| < 2e.
Now, notice
(W(T7H(A) N B) = p(A)u(B)| < (T~ (A) N B) — (T~ (Ao) N Bo)| + [i(T~*(Ao) N Bo) — u(Ao)i(Bo)
+|u(Ao)u(Bo) — u(A)u(Bo)| + [u(A)u(Bo) — u(A)u(B)
< e+ [(T~*(Ao) N Bo) — u(Ao)u(Bo)l.
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n—1 n—1

ST AN B) 37 T (4) 1 By)

0 0
% > (T *(Ao) N Bo) — u(Ao)u(Bo)| + |1(Ao)p(Bo) — i(A)u(Bo)|
+|pu(A)u(Bo) — p(A)u(B)|

Z (T~ (Ao) N Bo) — u(Ao)p(Bo)

i
L

+ u(Ag)e + p(A)e.

We can choose € > 0 small enough so that € < 1/u(A) and smaller than 1. Notice that
|(A) — u(Ap)| < e so that pu(Ap) < e+ u(A). Putting this all together, we get

< de+ Zu *(Ao) N Bo) — pu(Ao)(Bo)| -

n—1
LS W(THA) N B) — p(Au(B)
0

Now taking the limit as n — oo of both sides to get

lim < 4e.

n—o0

- Z w(T B) — u(A)u(B)

We have € > 0 small arbltrary, so taking € — 0 gives us the desired result. So this holds on
the o-algebra.

O

Problem 32 (Petersen 2.4.5). Let T be ergodic and v < p a measure on (X, M) such that
v(T~!) < v. Show that v(T~!) = v and v is a constant multiple of u. Note: (X, M, u) is a
probability measure space.

Remark. I followed this, but I don’t actually think it is right as is. I hopefully cleaned it up.

Proof Assume without loss of generality v is a probability measure as well, so ¥(X) = 1. Let
g= a” be the Radon-Nikodym derivative, so that for all £ € M we have

v(E) = / gdp.
E
Consider A = {g > 1}. Notice that

:/d,u</gduzy(A)<1
A A

T7HA) = (TH(A)\ AU (T (A) N A,

so we have p(A4) < 1.
Notice as well that

S0
v(T7HA)) = v(T ' (A)\ A) +v(T7'(A) N A).
We now use the fact that v(T~!) < v to get

V(T YA\ A) + (T (A) N A) < v(A).

Use the fact that
= (A\T ' (A)uANT (4)
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to get
v(T7HA)\ A) + v(T7HA) N A) S v(A\T7H(A)) + v(ANTH(A)).
Simplifying, we have
v(T7H(A)\ A) < v(A\T7I(4)).
Now assume that p(A) > 0. Since T is ergodic, we have
U(ANT1(A)) = ((ADT ™ (4)) > 0,

The first observation we have is
WA\ = [
T-1(A)\A
Now
T A\A={recX:g(T(x))>1,g(x) <1}.
Substitute this in and use the fact that v(T~1(E)) < v(E) as well as the earlier inequality we
derived to get

T A\ A) < /T_I(A)\AQ(T(w))du(l’) = (TN T A\ A)) < v(T™HA)\A) < v(A\T7H(A)).
Now again use the inequality v(T~!(E)) < v(E) as well as the fact that 7' is measure preserving
and invertible to get

v(A\T71(A)) = (T~ HT(A)\ 4)) < u(T(A)\ A) = / gdp < p(T(A)\ A) = u(A\T~1(A)).
T(A)\A

But we have
PANTHA) + u(ANTH(A)) = u(A) = w(T7H(A) = p(T~HA)\ A) + (T~ (A) N 4),
which implies
PANTH(A)) = u(T7H(A)\ A).
Thus we have
p(THANA) < p(T7HA) N\ A),
which is a contradiction. Thus u(A) = 0. Thus g < 1 almost everywhere. Notice that if g < 1
strictly almost everywhere, then

o) = [ o< [ du=pucx) =1

which contradicts the fact that v is a probability measure. This implies that g = 1 almost every-
where, but this means that yu = v.

Now if we had normalized v above, so that v(E) = k(E)/k(X) for some finite measure x, then
we see that this adjusts g by a constant. However if g is a constant almost everywhere, then « is a
constant multiple of p. O

Problem 33 (Petersen 2.4.6). Let X = [0, 1] with Lebesgue measure m. Then T (preserving m)
is ergodic on X if and only if for every continuous f

n—1

1
- Z f(TF(z)) — /fdm almost everywhere.
0

Proof. The forward direction is clear, since continuous functions are measurable. The backward

direction is more interesting. By an earlier equivalence, we just need to show that this property

holding for continuous functions, then it holds for all L' functions. Use Lusin’s theorem for density

of continuous functions in L*. O
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Problem 34 (Petersen 2.4.7). Let T be an ergodic measure preserving transformation on a
nonatomic probability space (X, M,u). Let U : L*(X,M,u) — L*( X, M, u) be the unitary
operator associated to T'.

(1) Show that every point of the unit circle is an approximate eigenvalue of U in the following
sense: Given A with |A\| = 1 there are f,, € L? with ||f,|l2 = 1 for all n. and |U f,—Afnll2 — O.
(2) Deduce the spectrum of U is the entire unit circle.

We recall Rokhlin Lemma (see here).

Theorem (Rokhlin Lemma). Let 7': X — X be an invertible measure-preserving transformation
on a probability measure space. If the collection of periodic points has measure zero, then for every
€ > 0 and n fixed there is a measurable set E such that the sets {T77(FE) ;‘;& are pairwise disjoint
and such that

wWEU---UT"Y(E)>1—e
Remark. See here.

Proof.

(1) Take A € C with |A] = 1 (so that it lies on the unit circle). Fix € > 0. Take the set in
Rokhlin’s lemma, E,,  so that {77 (Eme)}?:0 almost covers X and they are pairwise disjoint.
Define f,, . by

an(T’(:c)) =\ forz e E.,
and 1 everywhere else. Then

[fnelle =€+ (1 —€)Al=1.
Notice that if € B, and 0 < j < n — 1 we have

U(fa, )T (2)) = fa,(T7 (@) = N1 = A o(TV ().

Notice as well that 1

FE < —.
u( n,e) ]
Now on F' = Ug_l Tj(Enve) we have U f, e = Afne. So they are equal on a set of measure

greater than or equal to 1 —e —1/(n+ 1). Now

1

1/2 1/2
HUfn,e - )‘fn,EH2 < (/ ’Ufn,e - >‘fn76|dﬂ> < (QN(FC))l/Z < V2 <6 + > .
Fe n+1

We can set € = n~! and take n — oo to get the result.
(2) Notice the choice of A € C with |[A| =1 didn’t matter.
O

Problem 35 (Petersen 2.4.8). Suppose that (2, M, u, o) is a Markov shift determined by a given
stochastic matrix A and fixed probability vector p with all p; > 0. Prove that if (Q, M, u,o0) is
ergodic, then A is irreducible.

Proof. The goal is to show that for any ¢, j we have there is a k so that aﬁj > 0, where aﬁj = (Ak)i,j.

In other words, af, ;18 the probability that wy = 7 and the probability that wy = j, where w € €.
We define this as N
ko Mo (C) NGy

aj ;= 1) , Cr={weQ:wy=k}

Notice that
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so there must be some n so that the term on the left hand side is positive, and for this n there
must be some k € {0,...,n — 1} so that u(c=*(C;) N C;) > 0. Since u(C;) > 0, we are done. [

Problem 36 (Petersen 2.4.9). Prove that for any ergodic measure preserving transformation on a
nonatomic space there is a set A of positive measure so that the return time n 4 is unbounded.

Remark. See herel

Proof. We invoke Rokhlin’s lemma again. Fix € > 0 arbitrary. We see that for every n we can find
an n so that
p(Ep,UT(E,)U---UTY(E,)) >1—¢

and so that these sets are disjoint. Notice that by disjointness and measure preserving, we have

1 1-

L2 np(Ey) > 1—e = —= > p(Ey) > n+§.

So take z € Ey, then ng, () > n. Consider E = (2| E,. If there is an € E, Then z € E,, for
all n, so ng, (x) > n for each n and hence ng(x) is unbounded. It might be, however, that E' is
empty. We see from here we need to be careful about our choices of E,,.

How do we fix this? We can first find £ so that Ej, T'(E;) are pairwise disjoint and pu(E;) < 1/2.
Set X1 = X \ T(Ey). Then for x € Ey, nx,(x) > 2 and p(X;) > 1/2. Now using the proof of
Rokhlin, we can find Fy C Ey so that T?(Ey) C Ey, T(Es), T3(Es) C T(E;) and u(Ey) < 1/4. Set
Xy = X1\ T?(E3). Then u(Xs) > 1/4 and ny,(z) > 4 for z € Ey. Continue in this fashion. Then
w(Xy) > 1/2" and nx, (x) > 2" for z € E,, where E, is chosen appropriately. Set X, = ) Xp.
Then p1(Xs) > 0 and nx_ () is unbounded. O

Problem 37. Let G be a (first countable) compact topological group, and let g € G. Show that
there exists a sequence ng " oo so that ¢g"* — e as k — oo.

Proof. Notice that the map L, : G — G defined by Ly(h) = gh is a measure preserving homeomor-
phism. Fix y € G. Take a neighborhood basis {U,,} for y. Without loss of generality, assume that
this is a decreasing sequence of sets, i.e. U,+1 C U,. By Poincare recurrence, we know that

I'y, = {x € Uy, : = is infinitely recurrent}

is such that pu(T'y,) = u(U,) > 0, so I'), # &. For each n, let y,, € I'y,. Then we have that there is a
sequence (m}) so that g™y, € U, for all k (note here that we need to choose these sequences so
that m’lz < mj for k <n, but doing so isn’t hard and it’s just a matter of refining the sequences if
needed). Taking m,, = m]’, we note that ¢y, € U, and we claim that this shows ¢""y, — y. To
see this, take any neighborhood U of y. Since {U,} is a decreasing basis, we have that there exists
a N so that for alln > N U, C U. Now for all n > N, we have that ¢y, € U, C U. This holds
for all neighborhoods U, so this implies convergence.

Now we have y, — vy, ™"y, — vy, and we wish to show ¢ — e. To get this, we claim that
(g™ yn )y, L = g™ — e. Since multiplication is continuous, we have

lim (gm’“‘g,/n)y;1 = (lim gm”yn) (lim y;l) .

1

By continuity of inversion, y,! — ™!, so using this and the above we have

lim g™ = lim (g™ ya)yr = ((Jim g™ ) (Jim vi') = W)™ =e.

lim

n—oo n—oo

d

Problem 38 (Petersen 2.4.10). Show that if 7" has discrete spectrum, then there is a sequence of
integers ny * oo with T — I in the strong operator topology on L?. In other words,

IT™(f) = fll2 = 0 for all f € L*.
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Remark. See herel
As Thomas pointed out, I'm implicitly assuming the space is “nice” enough for things to work
(i.e. L? is a separable Hilbert space).

Proof. Let {fx} be a sequence of orthonormal eigenfunctions for U on L?. Then U(f;) = f;(T) =
Aifi with |\;] = 1. For each i, we can find a sequence {n;} so that \" — 1 (follows by the last
problem). Now take any f € L?. We can approximate it with the span {f}, so there is some
g € span{ fi.} so that || f — g||2 < €, € > 0 fixed. Notice that

[T f = fll2 < T g = glla + [|T™g = T™ flla + || — gll2 < 2.
This holds for all € > 0, so we get the result.
O

Recall that a measure preserving transformation has Lebesgue spectrum of multiplicity N
(where N is a finite or infinite cardinal number) in the case that there is a set A of cardinality N
and a set of functions

{fj:AENEZ}
which together with 1 form an orthonormal basis for L?(X, M, 1) and such that
Urfr; = frj+1 forall A€ A, j € Z.

A measure preserving transformation 7" on (X, M, u) is a K-automorphism if there is a subo-algebra
A C M such that

(1) T-1(A) C A.

(2) UpZ_ . T™(A) generates M.

(3) ﬂ?;oo T"(A) is trivial.

Recall Petersen Proposition 2.5.11.

Proposition (Petersen Proposition 2.5.11). Every K-automorphism has countable Lebesgue spec-
trum.

Problem 39. Show that for every N there exists A1, ..., A, € A pairwise disjoint sets with positive
measure.

Proof. We can use Rokhlin’s lemma to find By, ..., B, € M pairwise disjoint with positive measure.
By property (2) of K-automorphisms, we have that we canapproximate the B; arbitrarily well with
A; € A. By (1), we can choose A; € T"(A) by choosing n large enough, so L?(X,T"(A), u) has
dimension at least N, forcing T™(.A) to contain at least N pairwise disjoint sets of positive measure.
We can then take preimages to get them in A. O

Problem 40 (Petersen 2.5.1). Finish the proof of 2.5.11 by showing that the orthogonal comple-
ment of UM is countable.

Proof. Fix n. Use the last problem to find A4, ..., A, € A with positive measure which are pairwise
disjoint. Pick f € W\ {0}. Note that such an f exists because otherwise (X, M, ) is atomic. Set
w; = fxa, oT. Note three things:

(1) The w; are linearly independent (disjoint support).

(2) The w; € V.

(3) The w; € (UM)*.
To check this last fact, take E € A and examine yg o T € UM. Taking arbitrary w;, we see that

(wiaXEOT):/szT 1(E) = /f IXT-1(E) = /f 1a;nE) = 0.

So dim(W) > N for all N, and we get it’s infinite. O
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A map is weakly mixing if
n—1
1
- > (T H(A) N B) = p(A)u(B)| = 0 for all A, B € M.
0

A map is strongly mixing if

\u(T~%(A) N B) — u(A)u(B)| — 0 for all A, B € M.
Problem 41 (Petersen 2.5.4, Ornsteins Criterion). Prove that a weakly mixing Markov shift is
strongly mixing.

Proof. We follow Theorem 1.31 [4]. We will show that weak mixing implies the matrix A is
irreducible and aperiodic (in this context, there exists some N so that AN > 0). Then we will use
that to establish strong mixing.

Let Cj = {w € Q : wp = j} be the cylinders. Weak mixing here says that

n—1
1 _ .
=S IWTHE) N Ch) = W(Cp(Cy)| = 0 for all i, .
0

Notice k
G Iate))
EA(A N
so substituting this in we get
C. n—1
MZ\aéj—pﬂ — 0 for all 4, j,
n 9
0
or
1 n—1

— E \aij—pj]—>0f0ralli,j.
/’/L 2.
0

Using a real analysis exercise Theorem 1.20 [4] we get that there is some subsequence (n) so
that

a;k — pj.
This gives us irreducible and aperiodic. The renewal theroem tells us that
a;'; = pj.
Notice that for any two cylinders now,
W(TH(C) N1 Cy) = ab ju(C) = pyu(C) = u(Cy)(C).
Since the cylinders generate things, this is sufficient. O

Problem 42 (Petersen 2.5.5). Prove that T' is weakly mixing if and only if
n—1
.1 —k 2| _
Jim 20: lu(T7*(A) N A) — u(A)?| =0 for all A€ M.

Proof. The forward direction is clear, so let’s assume this condition and show that T' is weakly
mixing. We follow the proof of Theorem 5.5 [3] (for a similar result on strong mixing). Fix
A € M. Consider the subspace H C L?(X, M, 1) generated by the constant functions along with
{U%x 4 : k € Z}. Notice that

WWmD:/mmeZM@kMDZMM7
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SO
n—1
1

=3t 1y = a1
0

n

n—1
)] = 2 3 lu(4) — (a)| =o.
0

Notice as well that ‘ ' ‘
(U xa, U xa) = (UM Txa,xa) = n(T*7(A) N A)
so for fixed j and varying k£ we have

;Z‘<UkXA7UjXA>—<UkXA, {1, U7xa)| = Z!M THi(A) N A) — (A = 0.
k=0

Thus for all f € H we have

lim *Z‘ "xa, f) = (xa, ><17f>)=

n—oo N

Notice this is a closed subspace. Decompose L?(X, M, u) = H @ H*, so for all f € L?(u) we can
write f = fi + fo, f € H and fo € H*. Then

nh_}rr;oﬁz:‘ Fxa, ) = (xa, 1), f) —nh_g)lOEZ‘ "Xa, f1) = (xa, 1)(1, f1)| =0

Note here we utilized the fact that the constant functions are in H so that (1, fo) = 0, and then we
used linearity. Consequently we have the result holds for all f € L?(u). Now for B € M, we have
xB € L%(p), so

nh_{gOEZ‘ (U*xa,xB) — (xa, 1){L, xB) —nlggoﬁz ‘u B) — u(A)u(B)| = 0.
Thus T is weak mixing. O
Recall that a system is n-mixing if for all choices of n sets A1,..., A, € M we have
lim w(T™A N---NT™A,) = p(Ar) - - 1(Ay).

inf; m;—o00
infi#j \mi—mj\—mo
Problem 43 (Petersen 2.5.6). Prove that Bernoulli shifts, mixing Markov shifts, and ergodic
automorphisms of a compact abelian group are n-mixing for all n.

Proof. Let’s show Bernoulli shifts are n-mixing for all n.

Consider (2, B, p, o) where Q = {0,1}%, o(w) = ', where w’(n) = w(n + 1) and p and B are the
usual things (p is generated by vector pg = 1/2 and p; = 1/2). If we show it on cylinders, we win.
Consider the cylinders

={weQ:wn) =7}
We examine

. m t o b
e (e (C) 0 0T C)).
inf;z5 |mi—my;|—o00

Notice

o™M(C)) ={w e Q:w(ty+m) =i}
Thus fixing myq, ..., m, distinct and far enough apart (which we can by construction of the limit)
we have

ml(C’ﬁ) ﬂ---ﬂam”(C;:) ={weQ:wlti+m1)=71,...,w(tn + mp) = Jn}
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Since we assume things are far enough apart and distinct, we can use the definition of p to calculate
p(e™(C3) M- N o™ (Cfr)) = p(Cfr) - - p(Cr).
As we take things further and further apart, this doesn’t change, so we get n-mixing.
Mixing Markov shifts are isomorphic to a Bernoulli shift, so I don’t think we need to do any kind

of argument there. I believe ergodic automorphisms of a compact abelian group also have this nice
property, so I think this suffices. O

Problem 44 (Petersen 2.5.7). Show that there is no concept of “uniform mixing” for measure
preserving transformations. That is, if

W(T(A) 0 B) = u(A)u(B)
uniformly for all A, B € B with A C B, then every set in M has measure 0 and 1, so (X, M, u) is

isomorphic with the space consisting of a single point.

Remark. There is a paper by Halmos (see here) which discusses this problem. The hint Petersen
gives is essentially the gist of Halmos’ argument.

Proof. Let’s first just assume that it converges uniformly for all A, B € M. That is, for all
A, B € M and € > 0, there exists an N so that for all n > N we have

(T4 B) - u(A)u(B)| < e
If we let B =T7"(A), then this says that

1(A) — p(A)?] < e,
We can do this for all € > 0, so this forces p(A) to be 0 or 1. The choice of A was arbitrary, so the
measure of all sets must be either 0 or 1.

Now we go back to the original condition. The goal is to show that with the condition of uniform
convergence for all A, B € M with A C B, we have uniform convergence for all A, B € M. So take
A, B € M arbitrary. The goal is to show that for all € > 0, there is an N so that for n > N we
have

W(T™"AN B) — p(A)u(B)| <
Fix € > 0. Notice that AN B C B, so there is an N such that for n > N we have
(T (ANB)N B) — u(AN B)u(B)| < ¢/2.
Simultaneously, we have A N B¢ C B¢, so for all € > 0 there is an NN such that for n > N we have
W(T™"(A N B) N B%) — (AN B)u(BY)| < /2.
Now, notice that
n(AN B) = p(AN B)u(B°) = p(AN B)(u(X) — u(B%)) = (AN B°)u(B).
So we may rewrite the above as
(T (AN B )N B°) — u(ANB°) + u(AN B)u(B)| < €/2.
Notice
ANB = (ANB°NT"B)U(ANB°NT"B°),
so that
THANBY) = (T"™T(AnB)NB)U(T (AN B N B,
wWANB®) = (T (AN BC)) =u(T " (ANB)NB)+ u(T " (AN B°) N B,
w(T(ANB)NB°) =u(ANBS) —uw(T (AN B°)N B).
Use this to rewrite the above again as
(AN B)u(B) = (T (AN B°) N B)| = [T (AN B°) N B) = n(AN B°)u(B)| < €/2.
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Now note
T"A)=T""ANB)UT " (AN B°),
A=(ANB)U(ANB°,
hence
(W(T7"(A) N B) — p(A)u(B)|
— [(T"(AN B) N B) + p(T""(AN BY) N B) — (AN B)u(B) — p(A N B)u(B)|
< (T (AN B) A B) — u(AN B)u(B)| + [n(T™"(AN B%) N B) — u(AN BYu(B)| < e.
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James Marshall Reber, ID: 500409166 Math 7221, Homework 3

Remark. Thomas O’Hare was a collaborator.

Problem 45. Suppose T acts ergodically on a probability measure space (X, M, u). Let A be a
T-invariant probablility measure on X. Prove the following.

(1)
(2)

Proof.
(1)

If A< p, then A = p.
If A is T-ergodic and A\ # pu, then A L p.

Let g = 3—2 be the Radon-Nikdoym derivative. The first step is to show that this is 7-

invariant, using the fact that p and v are T-invariant. So we need to show that
goTl =g.

Since p is T-invariant, we have
AT ) = [ gdute) = [ (goD@dlue T @) = [ (goT)@)du(a).
T-1(A) A A
Since A is T-invariant, we have

NTA) = XA = [ g(e)dta).

Putting these together, we see that for all A € M we have

/gdu:/gonu.
A A

By Folland Proposition 2.23, we see that this implies ¢ = g o T" almost everywhere, so
that ¢ is T-invariant p almost everywhere. This means that g is constant, so that A\ = cu
for some constant ¢ > 0. Notice that A\(X) =1 = cu(X) =¢, so ¢c=1. Thus \ = p.
Now use the Lebesgue-Radon-Nikdoym theorem to write
A=A+ Ao, Al < pand Ao L p.
We can also decompose X = Fj U Ey with Ao(E7) = 0 and A\ (E3) = 0. The next claim is
that Ay and Ay are T-invariant. This follows, since
MAX= A= oT 1= NoT '+ XoT "
Notice that
MoT ! <<,uoT_1 = U,
Mol P LpoT ™ — XgoT™1 Lp
By the uniqueness of Lebesgue-Radon-Nikdoym, we have
)\1:)\10T_1, A2 = Ao oT 1.
Thus A1 and Ay are T-invariant. Notice that
BIUE,=X=T"YX)=T"YE)uT 1 (E,).
By the T-invariance of A\; and A2, we see that
/\Q(Tfl(El)) = )\2<E1> =0, /\1(T71<E2>) = /\1(E2) =0.

By the uniqueness of Lebesgue-Radon-Nikodym, we have that By = T-1(F;) and Ey =

T~1(Es). Since T is ergodic, one of these must have measure zero and the other must have

full measure with respect to A. If A(E1) = 1 we have a contradiction, since this would imply

A=A < pand (1) tells us that A\ = u. Thus we must have \(F3) = 1 so that A = Aa L p.
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Recall that a map T is weakly mixing if, for all A, B € M, we have
1 n—1 ]
— 2T (A) N B) = w(A)u(B)| 0.
j=0

Problem 46 (Petersen 2.6.2). Suppose T is weakly mixing.
(1) Show that S =T", m > 1, is weakly mixing.
(2) Show that S defined so that S™ =T, m > 1, is weakly mixing.

Proof. Recall one of the equivalences for weakly mixing. That is, T is weakly mixing iff there exists
J C Z>q of density zero so that

Jdim p(T7"(A) N B) = p(A)u(B).
né¢J
Recall as well that T is weak mixing iff 7" has no measurable eigenfunctions other than the constants.
(1) Fix m. We claim that J; = {n € N: mn € J} has density zero. To see this, notice that for

fixed n we have

|[J1N{0,....,n — 1} \JO{O m(n — 1)}
n n
[JN{0,...,m(n—1)}[ mn |Jﬁ{0 m(n—1)} mn _ ]Jﬂ{O m(n —1)}|
Take the limit as n — oo to get
(J1) = m - d(J).

Since d(J) = 0, this tells us that d(J;) = 0. Moreover,
lim p(T7™"(A)NB) = lim p(S™"(A) N B) = p(A)u(B).

n—oo
néJy n¢Jq
This gives us that S =T is weak mixing for all m > 1.

(2) Now suppose that S™ = T, where m > 1 is fixed. Suppose that S had a measurable
eigenfunction which is not constant, say f. Then Sf = Af for some |A| = 1, X\ # 1. Notice
that S™f = Tf = A" f, with |[\™| = 1, A # 1. Therefore we have that T is not weak
mixing. The contrapositive gives us the result.

0

Problem 47 (Petersen 2.6.4). There are examples of weakly mixing measure preserving transfor-
mations that are not strongly mixing. For now, consider some easier counterexamples.

(1) Find an example of a sequence {a,} so that

1% .
nh_)rrolo - kZ_O lag| =0, nh_)rglo an # 0.

2) A sequence {A;} of measurable sets, each having measure «, is called strongly mixing if
J

lim pu(A, N B) = au(B) for all B € M.

n—oo
It is called weakly mixing if

n—1
Jim — ZO 1u(A; N B) — au(B)| =0
j:



Proof.
(1)

(3)

Find an example which is weakly mixing but not strongly mixing.
A sequence {4;} as above is called mixing of order k if
lim w(An, NN Ay, NB) =a*u(B) for all B € M.

inf; n;—o0
inf;2; [ns—nj|—o0

Give an example of a sequence that is mixing of order 1 but not of order 2.

Let J C Z>¢ be an infinite set of density zero (for example, we could say J is the set of
primes, see here). Define a sequence {ay} where

lifkeJ
ap = .
0 otherwise.

Then we see that the limit of a; does not exist, but the limit of the series tends to 0.
Presumably the idea is to use the last part to prove this part. The idea (maybe) is to take

A; distributed around your space so that
Something not au(B) if k € J
WAL B) = s not au()
ap(B) otherwise.

Then by the same argument as the last part, we get that this will come out to give us weak
mixing but not strong mixing. The question is whether we can place these sets so that this
is true.

TODO
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James Marshall Reber, ID: 500409166 Math 7221, Homework 4

Remark. Thomas O’Hare was a collaborator.

Problem 48 (Petersen 5.2.4). Show the following.

(1) We have
n—1
ha, T) = nlgroloH (T_”(a) \/ T_k(a)>
k=0
(2) We have
n—1 00
h(a,T) = nh_g)loH (a \/ Tk(a)> =H (a \/ Tk(oz)> .
k=1 k=1
(3) We have

Proof by Suzuan.
(1) This is the same kind of trick. Notice that

\_/ T_k(a)> —H (\/ T_k(a)> - H <\_/ T_k(a)) :
k=0 k=0

k=0

H (T‘”(a)

Now H(T !(a)) = H(a) for any «, so we have

n—1 n
H (\/ T_k(a)> =H (\/ T_k(oz)> ,
k=0 k=1

thus

n—1
H (T—”(a) \ T"f(a)) =H (a

k=0

\V T_k(a)> :
k=1

Take the limit.
(2) Same kind of trick as in (1). Notice

n—2
\/ T_k(a)) .
k=0

Take the limit.
(3) Notice by (2) we have

h(e,T) = lim H (a

n—o0

\n/ T—k(a)> = lim H (a

k=1

\n/ Tk(a)> = h(a, T7h).
k=1

Problem 49 (Petersen 5.2.6). Show that o < § implies h(a,T) < h(53,T).

Proof. Examine Petersen Proposition 5.2.13. This says that for any countable partitions, we
have

h(a,T) < h(B,T) + H(alf).

Since o < 3, we can use Petersen Proposition 5.2.7 to get H(«|S) = 0.
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Alternatively it follows by definition. Since a@ < 3, we know that H(a) < H(S). Notice that
T Ya)<T™ (ﬁ) since the preimage plays nicely with unions, and by induction this keeps holding.

Thus \/Z;(l) Fla) < ViZo T7%(B). Finally we see that
H (\/ Tk(a)> <H (\/ Tk(ﬁ)> .
k=0 k=0
This holds for all n, so dividing by n and taking limits gives the result. ([l

Problem 50 (Petersen 5.2.7). Show that

h (\7 T—ka,T> = h(a, T).

k=n
Proof. We follow Walters Theorem 4.12. Note

<\/ T *a T) —TIEEOTH <T_\/1T_k <\7 T"(a)))
k=n k=0 =n

1 m+r—1 ) m+r—1 1 m+r—1 '
= b (V) < () (V)

) — W(T"(a).T),

So this boils down to showing that h(T~"(«),T) = h(a,T). By an induction argument, it suffices
to show that h(T~'(a),T) = h(a, T). This follows, since

n n—1
k=1
_nh—>Holo:LH<\/T ) = h(a,T).

k=0

The entropy of the transformation T is defined as
h(T) = sup h(a, T).
(e

This gives a numeric value to the average uncertainty of where 7" moves points with respect to a
partition «.

Problem 51 (Petersen 5.2.8). Show that
W(T*) = k|(T).
Proof. Assume k > 0. Let a denote finite partitions. We see that
R(T*) > sup h(a, TF).
o

In particular, by the last problem we see that

n—1 k—1
h(a, T*) = (\/ T > = lim_ %H VT |\ T
i=0 =0

kn—1 kn
.1 i ) k s
= lim —H \/ T () | = lim k—H \/ T (a) | =kh(a,T).

n—oo n



So for every finite partition we have the result, and thus
sup kh(a, T') < h(T").
(0%

Now for any partition « we see that
k=1
W, T <h | \/ T7 (), T* | = kh(a, T"),
j=0
since a < \/?;é T—7(a). For negative k, we simply use h(T~') = h(T). We know this holds since
h(a, T~Y) = h(a, T) for all a. O
Problem 52 (Petersen 5.2.9). Show that I(T 'a) = I(a)oT.

Proof. We recall
I(a) = - 3 log(u(4))x(®).

Aca
Notice that

I(a)oT ==Y log(u(A)xa(T(x)) = = > log(pu(A))x7-1(4)(x)-
Aca A€cx
Assuming the transformation is measure preserving, we have
log(u(T~1(A))) = log(u(A)),

SO

Ia)oT=— 3 log(u(A)xa(x).

AeT—1(a)
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James Marshall Reber, ID: 500409166 Math 7221, Final

Whenever not specified, assume that T : X — X is a measure preserving transformation of a
Borel probability measure space (X, B, ).

Problem 53. Consider the two-to-one map
1
T(x) = 5(1: —1/z), T(0)=0
on R.

(1) Show that T preserves the measure dx/(1 + 22).

(2) Show that the change of variables z = tan(¢) carries 7" to a Lebesgue measure preserving
map S of (—7/2,7/2).

(3) Show that S is isomorphic to the one-sided Bernoulli shift B(1/2,1/2); here we normalize
the Lebesgue measure on (—m/2,7/2).

Proof.

(1) The half-open intervals generate the Borel o-algebra, so by Walters Theorem 1.1 it
suffices to check that 7" is measure preserving on them. Let I := [a,b) be an interval. Let
© be the measure generated by dx /(1 + 22); i.e.

W(E) = /R e

1+ 22
The goal is to show
b
arctan(b) — arctan(a) = /
a

Fix z # 0 in R. We solve the equation

dx
1422

1
T(x)=2 = o — - =22 = 2> — 212 —1=0.
x

Solving, we have solutions given by
r=z+V22+1.

Assume for now we have an interval I such that 0 ¢ I and b # 0; we eliminate these cases
since we need to deal with the fact that the preimage has three values at zero. For such an

interval I, we have

W) = @ s

Using the above analysis, we see that T-1(I) = [a1,b1) U [az, ba), where [a1,b1) C (—00,0)
and [ag,bs) C (0,00). Explicitly, we have a1 = a — Va2 +1, by = b — Vb*+1, ay =
a++va?+1,by=>b+ b2+ 1. We can rewrite the above integral as
b—VBH1 b+ 1
u(r ) = [ e
a—Va?+1 I+ a+va?+1 1+x
= arctan(b — Vb? + 1) — arctan(a — v a? + 1) + arctan(b + \/b? + 1) — arctan(a + Va2 + 1).

Recall the following trig identity:

“’) if zy < 1.

x
arctan(x) + arctan(y) = arctan <
— 1y
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arctan(z — v/ 22 + 1) + arctan(z + /22 + 1) = arctan (

Notice that for all z € R we have
(z—V2+ D)+ V2+1) =22 -2 -1=-1<1.
Hence we can apply the identity for all z € R. Doing so, we see

VL4 VL
1—(z=V22+1)(z+Vz2+1)

2z
= arctan > = arctan(z).

Thus substituting in a and b above for z, we get that
w(T~H(I)) = arctan(b) — arctan(a) = p(I).

We now deal with the cases involving zero. Suppose a = 0. Then T=1(I) = [a1, b1)U[ag, ba)U
{0}, where a; and b; defined as before. We notice that 0 doesn’t contribute anything, so the
argument still works the same. The same kind of argument applies if b = 0, and if 0 € I we
can break up I = [a,0) U [0,b) and apply the prior arguments to each case there. Thus T’
is measure preserving on all half-open intervals and the result follows.

Define S : (—7/2,7/2) — (—7/2,7/2) by

S(t) = arctan (; (tan(t) - tanl(t)» .

The goal is to show that this is a Lebesgue measure preserving transformation. If we
can show that tan(z) : (—7/2,7/2) — R is measure preserving with respect the Lebesgue
measure on (—m/2,7/2) and the measure p defined above on R, and if we can show that
arctan(z) : R — (—7/2,7/2) is measure preserving with respect to Lebesgue measure, then
we get that S is measure preserving (see Walters Remark (2) on Page 19, though the
result is an easy calculation). Take an interval I := [a,b) C R. Then the first step is to
show that
A(tan='(1)) = u(1).
In other words,
dy

x1(tan(x dm:/x Yy)———.
/(_W/W) O R

This is just a substitution though — let y = tan(z), dy = dz(1 + y?). Then

[ruttaneds = [

1+ 42

as desired.
To see that arctan : R — (—7/2,7/2) is measure preserving, let I := [a,b) C (—7/2,7/2).
Again, we just need to check
d
/XI(afCtaﬂ(x))HZg = /Xl(y)dy‘

If we let y = arctan(z) then dy = dx/(1+ 22) and we get the above result. This shows that
S is a composition of measure preserving transformations, hence measure preserving.

We consider normalized Lebesgue measure on S (that is, if A denotes Lebesgue measure,
we take the measure v defined by v(FE) := A(E) /7). Consider X = (0,1) C [0,1) — this set
has full measure since we’ve just removed a point. Take

v: X = (—7m/2,7/2), o(z) :=mx —
43
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This map is invertible with inverse given by
z 1
P2/ = X, TN @) =T

We check that the map is measure preserving. Take I C (—n/2,7/2). Then

1 w/2
A D) = [ atetenan = | )@ =2 _

—m/2 ™ ™

We see ¢! is also measure preserving; taking I C (0, 1), we have
/2 ) dr 1
o) = [ e @5 = [ iy =)
—7/2 T 0

Now if T : [0,1) — [0,1) is the doubling map defined by

Tr(z) =2z (mod 1),
then we claim that ((—7/2,7/2),v,S) is isomorphic to ([0,1),A,T2). This amounts to
showing that ¢! 0§ = Ty o p~! almost everywhere. Notice that (using a little bit of
precalculus)

(50 = 20

tan(z)2—1
2t(an)(a:) )

N =

arctan (

+
s

arctan(— cot(2x))

N = N =

s
2e/r+1if —7/2 <2 <0
- {2:13/77 if0 <z <m/2,
and
20 ) if 0 < oM (z) < 1/2
207 (x) —1if1/2< o (2) < 1

) 2/m4+1if —7m/2<2<0
| 22/mif0 <z < w/2.

Ty (z)) = {

Thus these are equal almost everywhere, and so this is an isomorphism between 75 and
S. We can then use the isomorphism between o the one-sided left shift on B(1/2,1/2)
and T, (see Walters (2) near the top of Page 58) to get the isomorphism from S to o
(see Walters Remark (1) on Page 58 — here we use the transitivity of an equivalence
relation).

O
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Problem 54. Let X = [0,1] with Lebesgue measure m. Then T' (measure preserving) is ergodic
on X iff

n—1

ikzo f(TFz) — / fdm a.e.

for each continuous function f.
Proof. (= ): This follows by Petersen Theorem 4.4, since continuous functions are measurable.

The argument is as follows: assume 7 is ergodic. Then from Petersen Theorem 2.2.3 (1) we
know that for continuous f we have

n—1
Fla) = tim > s(r¥a)

exists almost everywhere. Since f is T-invariant by Petersen Theorem 2.2.3 (2), we get that
f is constant almost everywhere by Petersen Proposition 2.4.1. Set f(x) = C € R almost
everywhere. Using Petersen Theorem 2.2.3 (4), we have

/de)‘:/xfd)‘:C)\([O,l}):C.

This gives us the result.
( <= ): Assume we have it for all f continuous. Let g € L'. Notice that for arbitrary continuous
f we have

n—1 n—1 n—1
S o))~ [ gdm| < | S lg(T (@) - FTH @]+ |5 FEH@) - [ g +] / <f—g>dm\
k=0 k=0 k=0
1 n—1 1 n—1
< | Sl @) ~ AT )| + | Y AT @)~ [ fdm| 1 = gl
k=0 k=0

Fix € > 0. By Folland Proposition 7.9 (i.e. density of continuous functions in L'), we can choose
f so that || f — g||1 < €/3. Integrating both sides of the inequality, this leaves us with

el n—1
/ ’iZg@km)— / gdm| dm < / CS lo(T (@) — £ @) | dm
k=0 F=0
13
+ [ |2 FT@) = | fdm|dm+ /3.
[jpEreen- |

Since f continuous on a compact domain, we get that it’s bounded. Defining

we see that each f, € L' since f € L', and |f,| < supgeo,1) [f(2)]. These observations tell us that
the dominated convergence theorem (Folland Theorem 2.24) applies. Using the assumption we

get

dm — 0.

n—1
3T @) ~ [ pdm
k=0
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Thus we can choose N sufficiently large so that for n > N we have

1 n—1
/ PMCACE [ s

Now using linearity of the integral and the triangle inequality, we get an upper bound

1 n—1
/ 2 2 o) - [ gam

Applying a change of variables and using the fact that 7" is measure preserving, we then get

1 n—1
[ |7 Zowen - [ gim

dm < €/3.

1 n—1 i .
am < 5 [ 19T @) ~ HT*@)ldm + 2¢/3.
k=0

n—1

1
dm < =% " llg = flly +2¢/3

k=0

n—1
< %2(6/3) +2¢/3 =e.
k=0

The choice of € > 0 was arbitrary, so this implies that %ZZ;(I) g(T*(x)) — [gdm in L'. Recall
convergence in L' implies there is a subsequence along which it converges almost everywhere. Since
we know that lim, o 2 Zz;é g(T*(x)) =: g(z) exists almost everywhere by Petersen Theorem
2.2.3 (1), we get that we must have g = [ gdm almost everywhere for every L' function g. We

can now apply Petersen Theorem 2.4.4 to finish the result. O
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Problem 55. Suppose that T is ergodic and f > 0 is measurable. Prove that if
n—1

1
li - T*z) < o0 ace.
1msupn2f( x) < oo a.e

then f € L'

Proof. Let
n—1
f*(x) ;== limsup % Z F(T*(2)).

We claim that f* is T-invariant. This follows from the first paragraph of the proof of Walters
Theorem 1.14. The idea is to let

n—1

Then we have that

(71;—1> tnt1(z) — an(T(z)) = 2,
f(x)

lim sup —= =0,
n—00 n

and

imsup ("8 s (o) - 0, (7)) = £°(0) = £1(T0).

n—oo
Since T is ergodic, this implies that f* is constant almost everywhere. Since f > 0, this implies
that 0 < f* = C < 0co. Let

Jr = fXxp<k + kXf>ke
This is a bounded function, so f € L'. Moreover f, / f, so we get that

n—1 n—1
%ka(Tﬂ(x)) < %Zf(TJ(a;)) for all n.
j=0 J=0

Let

n—1

fr(x) := limsup % Z fk(Tj (z)).
=0

n—o0

The above observation tells us that f; < f* = C almost everywhere. Petersen Theorem 2.2.3
(4) tells us that

/ frdp = / frdp < Cu(X) for all k.
b's X

We can now apply the monotone convergence theorem (Folland Theorem 2.14) to get
/fdu = lim /fkd,u < Cp(X) < oo
k—o0

Thus we have f € L. O
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Problem 56. For m = 1,2,..., prove that T" is weakly mixing iff 7" is weakly mixing.
Remark. We may assume T is nice enough so that the criteria applies.

Proof. Recall Petersen Theorem 2.6.1. We have two equivalences for weakly mixing. First, T’
is weakly mixing iff for every measurable A, B there exists J C Z>( of density zero so that

lim (T "(A) N B) = p(A)u(B).

n¢J
Second, T' is weakly mixing iff 7" has no measurable eigenfunctions other than the constants.
(= ): Fix m and let J C Z>( be a set of density zero. We claim that J; = {n € N: mn € J}
has density zero. To see this, notice that for fixed n we have

[0 {0,..on =1} _ |Jn{0,...,m(n — 1)}
[70{0,...,mn — D} mn _|J0{0,....,m(n—D} mn _[J0{0,...,m(n -1}

Take the limit as n — co to get B B
d(Jy) =m-d(J).
Since d(J) = 0, this tells us that d(.J;) = 0. Now, take A, B measurable. Since T is weakly mixing,
we have that there exists a J with density zero so that
i w7 (A) 0 ) = A5
By the prior observation, we have Jj has density zero, and if we set .S :=T™ we see that

Jdim p(T7""(A) N B) = lim u(S™"(A) N B) = u(A)u(B).
né¢Ji n¢Ji

This gives us that S := T"™ is weak mixing for any m > 1.

(<= ): The goal is to prove that for fixed m > 1, T™ weakly mixing implies T" is weakly mixing.
We proceed by contrapositive; namely we will show that T" not weakly mixing implies that T™ is
not weakly mixing. Since T is not weakly mixing, we have a measurable eigenfunction f which is
nonconstant, so Ur(f) = Af, A # 0. But then we see that Urm (f) = (Ur)™(f) = A f, so f is also
a non-constant eigenfunction for 7. By our equivalence, this forces T to not be weakly mixing,

thus proving the contrapositive. O

48



Problem 57. Show that
h(T) = sup{h(c,T) : a is a countable measurable partition with H(«) < oo}.
Remark. Recall that
MT) := sup{h(a,T) : « is a finite partition}.

Proof. If « is a finite partition, say o = {41,..., Ay}, then
Z p(A;) logy(1(As)).

It’s a finite sum of finite things, so we get that H (o) < 0o. We can make a finite partition countable
by adding empty sets. Let 5 = {41,..., Ay, B1,...} be a countable partition, where B; = & for all
1> 1. Then

Zu ) logy (1 Zu ) logy (1 Zu ) logy (1(Ai)) = H(a) < oc.

We now clalm that h(a,T) = h(B,T). Recall
ha,T) :== nh_)rglo HaVvT lav..-vT " a)/n.
It follows readily from the above calculation and the definition of join that for each n we have
HavTav.-.-vT ") =HEVT V.- vT "),

Hence the result follows. So we can view the set of finite partitions as a subset of the set of countable
partitions with finite entropy, and this tells us that

h(T) := sup{h(a,T) : « is a finite partition}
<sup{h(a,T) : a is a countable measurable partition with H(«) < co}.

We now need to show the other inequality. Let o be a countable partition such that H(a) < oo.
Write o = {Ay,...}. Let ay, = {A1,..., Ap_1, By}, where

"
j=n

Now by Petersen Proposition 5.2.13 we have
ho,T) < h(ap,T) + H(a|ay,) for all n.
By construction, a; < as < --- and ay = \/ffz1 a, = a. Using Petersen Proposition 5.2.7 and
Petersen Poposition 5.2.11]1] we get that
h(a,T) < lim h(an,T)+ H(a|la) = lim h(a,,T) < sup{h(a,T): « is a finite partition}.

n—oo n—oo
This holds for all @ countable measurable partitions with H(«) < oo, so by supremum properties
we get,

sup{h(a,T) : « is a countable measurable partition with H(a) < oo}

< h(T) :=sup{h(a,T) : v is a finite partition}.

Hence we have equality. O

1Slig;ht caveat here — technically the proposition only works for finite partitions, but the remark right after
Petersen Proposition 5.2.12 points out that it still works if we have a countable partition with finite entropy
using Petersen Corollary 6.2.2.
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Problem 58. Use the Shannon-McMillan-Breiman Theorem to compute the entropy of an ergodic
Markov shift.

Proof. Let A = (a;j) be an n x n stochastic matrix with fixed row probability vector p (i.e. we have
pA = p). Assume our elements are given by {1,...,n} without loss of generality. Let « be the
partition given by the time 0 cylinders, so

a:={{(xy) rxo=1}:1<i<n}.

This partition is a generator (see Petersen Example 5.3.4, although the calculation is easy).
Thus the Kolmogorov-Sinai theorem (Petersen Theorem 5.3.1) tells us that h(a,o0) = h(o).
We now use the Shannon-McMillan-Breiman theorem (Petersen Theorem 6.2.3) to calculate
h(a, o).
For 1 <i,5 <nlet
Cij:={(zn) 120 =14,21 = j}.

For a fixed sequence () let k; jm((2)) be the number of occurrences of a; followed by a; in the
sequence {xg,...,Tmn}. That is, we have

Figm(@) = 3 xew, (0 ().
k=0

Notice that we can write the information function of the sequence (x,) as

n n

XCi((en Ei jom((n

L () = —logy | [[ Y- T akiom (@)
i=1 ij=1

= — | D xci((za) loga(pi) + D kijum((xn)) loga(aij)

i=1 ij=1
Dividing by m + 1 and taking the limit, we see that the sum on the left vanishes. It suffices to then

look at L
i Figm((@n))

m—00 m+1
Since o is ergodic, Petersen Theorem 2.4.4 tells us that

m—1

Z XCi,; © o k= / xc; ;A = p(Cy j) = pia;; almost everywhere.
X
k=0

i Figm((@n)) :n%iinoo< m ) (’fi,j,m((ﬂﬁn))) ~ pran.

. . 1

lim —Fk;m= lim —
1

m—oo M, m—oo M

Notice now that

Therefore .
1
mi—I—llagl — — Z piai jlogs(ai ;) almost everywhere as m — oo.

i,j=1
Putting it all together, we see that

n
h(o) ==Y piaijlogy(aiy).
ij—1

Notice this matches the calculation given in Petersen Example 5.3.5. O
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Problem 59. Let T : X — X is a homeomorphism of a compact metric space, asis S : Y — Y. Let
¢ : X =Y be a continuous surjective map such that So¢ = @ oT. Prove that hrop(T) > hrop(S)
by using

(1) the Adler-Konheim-McAndrew definition;

(2) the Bowen definition.

Remark. In the above scenario, we say that the system (X, 7") is a continuous extension of the
system (Y, S).

Proof. First notice that the compatibility condition (i.e. the condition that S o ¢ = ¢ o T) applies
for iterates, meaning

Skog):Sk_loSogpzsk—logpoT:---:gpoTk.

We use this fact in both proofs.
(1) We follow Walters Theorem 7.2. Recall that

hop(T) := sup{h(U,T) : U an open cover of X }.
Let U be an open cover of Y. We first claim that
H(p ' (U) = HU),

where we recall that

H(U) = log(N (U)),
N(U) = smallest cardinality of finite subcover of U,

and o' (U) = {1 (U) : U e U}.

Since ¢ is continuous we have ¢~ (U) consists of open sets. Since Y C |J; ¢, U we have
that o™ 1(Y) = X C Upyey v '(U). Thus for every open cover U of Y we have a cor-
responding open cover W for X. Let A = {A1,...,A,} C U be the finite subcover
with smallest cardinality. The above observations tell us that ¢~ '(A) C W is a finite
subcover, and therefore H(p~'(U)) < H(U). If we can refine it further, then we have
B={pt(A1),...,07(An)} CW for m < n. We have p(B) = {A,..., A} C Ais an
open subcover by surjectivity. Since .4 was chosen to have smallest cardinality, we must
have m = n. Therefore H(¢~1(U)) = H(U).

Recall that for two open covers U and W, we define U VW ={UNW : U e U,W € W}.
We claim that ¢ LU VW) = o1 ({U) vV ¢~ (W). Notice that

e T UVW) ={o HUNW):U cUW eW}
={e U)NeT'W):UeUWeW} =o' U Ve (W)

Now let U be an open cover. By definition (Petersen Proposition 6.3.2) we have

n—oo N

n—1
h(S,U) := lim e (\/ Si(u)> .
=0
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By what we’ve just shown and the compatibility condition for ¢, we have

n—1
h(S,U) = lim %H (cp_l (\/ S”(“)))
1 n_le:O
= lim —H (\/ 90_1S_i(U)>
=0

n—1
— lim ~H (\/ T_icp_l(L{)> = h(T, o 1 (U)).

n—o00 N )
=0

Hence hrop(S) < hrop(T).
Petersen Proposition 6.3.7 tells us that

1
htop(X) = lim limsup — log,(r(n,€)),
e—=0t n—osoco N
where
r(n,e) :=min{|E| : E C X is (n,€) — spanning},

and we recall that an (n,e)-spanning set is a set F' C X so that for all x € X there is a
y € F so that

d(TF(z), T*(y)) < efor 0 < k <n— 1.

Since ¢ is continuous (hence uniformly continuous) we have that for all € > 0 there is a
d(e) > 0 such that

dx (z,y) <é(e) = dy(p(z),9(y)) <e.
Let FF C X be an (n, €)-spanning set. We can define the Bowen-Dinaburg metric as
d)T(’n(:c,y) = max{dX(Ti(:c),Ti(y)) :0<i<n}.

Notice that this measures the distance of orbits. Using the observation above, we have the
for all € > 0 fixed and each 0 < i < n there is a d(¢,7) > 0 so that

dx (T"(2), T'(y)) < 8(e,i) = dy(p(T"(2)), p(T"(y))) < e.
Using the compatibility condition for iterates, we have
dx (T'(x), T'(y)) < 8(e,i) = dy (S'(p(@)), S (p(v))) <.

Take §(e) = min{o(e, i) : 0 <i < n}. In terms of the Bowen-Dinaburg metric, we have

dy ,(2,y) < 6(e) = dy.,,(p(x), (y)) <e.
Let
BX(z):={y e X :d} ,(z,y) < e}

denote the balls with respect to this new metric. The above tells us that
#(BE, (@) € BY (p(x)).

Consider an (n,d(€))-spanning set for X. The above observation coupled with surjectivity
says that the image of this set gives an (n, €)-spanning set for Y. Thus the minimal car-
dinality for an (n,d(¢))-spanning set for X will be at least the minimal cardinality for an
(n, €)-spanning set for Y. Hence

ry(n,e) < rx(n,d(e)).
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Monotonicity of logarithms and the independence of n tells us

1 1
lim sup — log(ry (n,€)) < limsup — log(rx(n,d(e))).
n—oo N n—soo N

Taking € — 07 gives
hrop(5) < hrrop(T),

as desired.
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James Marshall Reber, ID: 500409166 Math 7221, Homework misc

Let G be a locally compact abelian group. Let
G= {x:G — S':xis a continuous homomorphism}.
We call G the collection of characters of G.
Problem 60. Show that G is an abelian group under pointwise multiplication.
Proof. Let x1,Xx2 € G. Then for any x € G we have

(x1x2)(z) = xa(@)x2(z) = x2(z)x1(z) = (xax1)(2)
Thus x1x2 = x2x1 and we have that the group is abelian. O

We now recall the compact open topology. This is the topology generated by sets of the form
B(K,U)={x € G: x(K) CU, K C G compact and U C S* open}.

It is a difficult exercise to prove that G equipped with the open compact topology is a LCA
group (see here). Here’s a list of facts.
(1) G has a countable topological basis iff G has a countable topological basis.
(2) G is compact iff G is discrete.

(3) (CA}’) is naturally isomorphic to G, with isomorphism given by « — a where a(y) = ~(a) for
all v € G.

(4) If G is compact then G is connected iff G is torsion free.

(5) If G1,Go are locally compact abelian groups, then

G;<\C;2 = é\l X C/l\g
(6) If I a subgroup of G, then
H={g9€eG:v(g) =1vy e}

is a closed subgroup of G, and GT/?I =T.

(7) If H is a closed subgroup of G and H # G, then there exists a v € G with v # 1 such that
~v(h) =1 for all h € G.

(8) Let G be compact. The members of G are all mutually orthogonal members of L?(m),
where m is Haar measure.

(9) If G is compact, the members of G form an orthonormal basis for L?(m).

(10) If A: G - G is an endomorphism, we can define the dual endomorphism A:G— Ghby

A'y ~vo A for v € G. Note A is an automorphism iff A is an automorphism.

Problem 61. Prove that the only homomorphisms of T” to T = S! are maps of the form

mn

(21, .., 2n) > 2"t - z0' where my,...,my € Z.

To prove this, follow these steps.

(1) Show that every closed subgroup of T! is either T' or a finite cyclic subgroup consisting of
all pth roots of unity for some p > 0.

(2) Show the only automorphisms of K are the map z — —z and the identity.

(3) Show that the only homomorphisms of K are maps of the form

on(z) =nz (mod 1), n € Z.

(4) Deduce the result.
54


https://kconrad.math.uconn.edu/blurbs/gradnumthy/loccptascoli.pdf

Proof. We follow the steps.

(1)

Let’s view T! = R/Z = [0,1]/ ~ with 0 ~ 1 so that things are in terms of addition.
Consider H a closed subgroup of T!. Suppose it had an infinite number of elements. This
implies that there is some limit point zg. So for all € > 0, there is an a # zy which satisfies
d(a,zy) < e. The metric is invariant under the group operation, so d(a — 29,0) < €. So
be = a — 29 € H are e-dense around 0. By adding these b, to themselves over and over, we
get that H is € dense in T!, so H = T*!.

If H is finite, it has order say p, so for all a € H we have pa =0 (mod 1). For pa to be
an integer implies that it is a rational number with p as the denominator. The only rational
numbers with p as a denominator are

{0,1,...,17;1} — 1/p).

p

This is a cyclic group with p elements, and we see that H C (1/p) and has the same size,
so H = (1/p).
Consider 6 : T! — T! an automorphism. Notice 6#(0) = 0. Notice 1/2 is the only element of
order 2, and so we must have 6(1/2) = 1/2. Now 1/4 and 3/4 are the only elements of order
4, so either 6(1/4) = 1/4 or (1/4) = 3/4 and vice versa for 3/4. Consider 0(1/4) = 1/4.
We need to have intervals are mapped to intervals, so consider the interval [0,1/4] C T!.
We have 60([0,1/4]) is an interval, and the endpoints are fixed, so it is either going to be
[1/4,1] (where we flip the order and note that 1 = 0) or [0,1/4] (we keep the order the
same). There is no element of order 2 in [0,1/4], so we cannot have it mapped to [1/4,1],
and thus we must have [0,1/4].

Now suppose we have that 6([0,1/2"]) = [0,1/2"] for 0 < n < k — 1. The goal is to show
it holds for k. Take 1/2% € [0,1/2%71], and notice it is an element with order 2* so must be
mapped to an element of order 2¥. The only elements in T' with order 2% are

{ 1 3 2k 1}

S’ 9" ok .

We see that none of these are in [0,1/2¥71] except for 1/2¥, so this must be fixed. Thus we
have that the interval [0,1/2*] is fixed by the same argument as above.

Note that there was nothing special about [0,1/2"]; we can apply this argument to all
subintervals. This gives us that all elements of order 2™ are fixed. But by continuity this
gives us that it is the identity.

The same kind of argument works if we set 6(1/4) = 3/4, except 0(z) = —xz.

We now check that the only homomorphisms of T! are of the form 6,(z) = nz, where
n € Z. Suppose 0 : T' — T! is an endomorphism. If it is non-trivial, its image is a closed
connected subgroup of T!, so using (1) we have that it must be the whole group (i.e. it is
surjective). The kernel is a closed subgroup, so either ker(f) = T (trivial) or ker(§) = H,,
where

H,={z€[0,1):pr=0 (mod1)} = (1/p).
Notice we have an isomorphism
01:T'/H, »T',  61(xz+ Hy) =pr (mod 1).

Examine the induced isomorphism

0:T/H, =T,  O(z+ Hy) = 0(x).
55



Then we have that 6 o 0] !'is an automorphism of K. By (2), we know that this must be
cither the identity (so 6 = ;) or the inverse map (so § = 6;'). This forces (z) = px
(mod 1) or §(z) = (—p)z (mod 1).

(4) Embed and check on generators.

Problem 62. Suppose

T: (X, M,pn) — (X,N,v)
is a measurable map between probability spaces, and suppose we have A is a semialgebra that
generates N such that for all A € A,

Show that
E={CeN: T H0)=v(C)}
is a o-algebra equal to N. Use this to deduce (5) from (4) in the prior exercise.

[In other words, state/prove Theorem 1.1 from Walters and use it to establish (5) in the last
problem.|

Proof. Note that we have
ACE.

Let a(A) be the algebra generated by the semialgebra. The first remark is that
a(A) C €.

To see this, recall that the algbera is created via finite disjoint unions (see Walters Theorem
0.1), so all E € «(A) are of the form | |, E;, where E; € A. We have that

g (T‘l (I_I E)) = (I_I T‘1<Ei>) =Y WTTHE) = Y vE) = v (I_I E> ,
=1 i=1 i=1 i=1 .

hence EF € £. The next thing to note is that £ is a monotone class. This follows from the continuity
of measures and the fact that we’re dealing with a probability measure space. By the monotone
class theorem, this implies that

o(a(A) =N CECN,

so & = N. This implies measure preserving by definition.

The conditions here are such that p = v = A (Lebesgue measure) and the o-algebras are the
Borel o-algebras. The collection of all intervals forms a semialgebra which generates the Borel
o-algebra, and as we’ve shown before the measures agree on all intervals, so invoking the theorem
we have that they agree on all Borel sets, telling us that our map is measurable. O

Remark. The actual statement of Walters is as follows:

Theorem (Walters, Theorem 1.1). Suppose T : (X, M,u) — (Y, N,v) is a measurable transfor-
mation of probability spaces. Let C be a semi-algebra that generates N. If for each A € C we have
T~1(A) € M and pu(T71(A)) = v(A), then T is measure-preserving.

I tried to modify the above to fit the original spirit of the problem.

Problem 63. Suppose T : (X, M,u) — (X, M,pn) is a measure preserving transformation of
probability spaces. Let E C X be a measurable set with 0 < p(E). Then almost every x € E
returns to E infinitely often.
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Proof. Consider

E* = E\ ﬁ JT7E

n=1j>n
Notice that if x € E**) then x does not return to E infinitely often. The goal is to show that the
measure of £** is 0. By DeMorgan’s, we have

E*™* =FEnN G (T (E))°

n=1j>n
o0
U N (T (E))
n=1 ji>n
Taking the measure then gives
o0
(B <Y n|En(T(E)
n=1 jzn
oo
<> ulEn(T(E)
n=1 j>1
o
=) =0
n=1
where
o0 .
E*=E\||JT7E
j=1
Poincare’s theorem tells us that p(E*) = 0. O

Problem 64. Let (X, M, u) be a probability space, T : X — X invertible, injective, measure
preserving transformation. Let A C X be a measurable set with u(A) # 0. Define

na:X —N, na(z) :=inf{n >1:T"x € A},

N:={ENA:EeM},
WiA— A, TA(HT) = TnA(x)x,
Ap={r € A:na(z) =n}.
We call T4 a derivative transformation (or induced transformation).
(1) Express why n4 should be finite and defined for almost every x € A.
Show that n 4 is measurable.
Show that A is a o-algebra.

Show that 114 is a measure on N.

(2)
(3)
(4)
(5) Show that (A, N, ua) is a probability space.
(6) Show that T4 is measurable.

7) Show that T4 is a measure preserving transformation.

(

Proof.
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(1) This follows by Poincare’s theorem.
(2) The assumed o-algebra on N is the trivial one, P(N). So it suffices to show that it is
measurable on each k € N. Notice that

k—1
n;ll({k:}) —{zeX:Tre e A Tix ¢ Afor 1 <j<k}=T"A)\ U T (A)
j=1

These are all measurable sets (since T is measurable) so n;'({k}) is measurable for all
ke N.
(3) We see that A € N, since X N A = A. Let {E; N A}, CN. Then
UEnA)=AnJE eN.
i=1 i=1
If EeN,then E=ANF, F € M. We need to show A\ E € M. To do so, notice
A\E=ANE°=AN(A°UF°)=ANF°eN.
(4) Notice
p(2)
palo) =220 — .
=)

Notice

i (u@ mA)) = <|_|<Ei mA)) - 5 (Z (B mA)) =3 ua(Ein A)

i=1 i=1 i=1 i=1
This is indeed a measure. Notice
pa(A) =1,
so it is a probability measure.

(5) Follows by (4).
(6) Let £ C A. Then

T(E)={zcA: Ty ecE}=| A n{zcA: Tz c B} = | J(4.nT"(E)).
n>1 n>1
Moreover, notice that the A, are disjoint (useful for next part).
(7) We define a bunch of sets which have convenient properties and hope things work out. Let

FE C A be measurable.
First, notice that

T7H(E) = | |(AnnT™(E)),
n>1

pa(Ti(E) = — S uldn 1T (E),
Next, let )
Fo=A, F,={zeX :Tfzec A T/xz¢ Afor0<j<k}fork>1.
Notice that
T F)={zeX : Tz cATI ¢ Afor 1<j<k+1}
= Agt1 U Frq.
Now we see that

p(E) = p(ENA) = p(EN Fp).
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Since T is measure preserving, we have
WENF) =T (ENF)) =T HE)NTH(F)) =T (E)NA) +u(THE) N F).
We can continue this inductively; that is, we have
WT(B) N Fy) = p(T"HE)NTH(F,)) = (T~ "D (E) N Fopa) + (T~ "D(E) 0 En).
Letting this go to infinity gives
p(B) = 3" u(T"(B) 0 Ay).

n>1

Thus

pa(T7HE)) = M(lA) > WA, NT(E))
>1
= 2 (E) = (D).

So T4 is measure preserving.
O

We now go through the construction of a primitive transformation on a superset.
Consider --- C Y3 C Yy C Y] C Yy = X to be a decreasing sequence of measurable sets. We
can take {X;} to be the copies of Y; such that they are all disjoint. Notice each X; is a measure

space, via the induced o-algebra M; = {EN X, : E € M} and induced measure u; = ﬁ Let
X = |_|i20 X;. We equip X with the appropriate o-algebra and measure, labeled M and 1. Let

FEC X. Then we have that
oo
A(E) =Y p(ENXn).
n=0

We have a picture of X being a tower built over Xg = X. Suppose T : X — X is an invertible
measure preserving transformation of a probability space. Define ¢;; : X; — X; to be the map
defined by the inclusion Y; C V;. If T': X — X is a measure preserving transformation of a
probability space, we get an induced map

f : 5{: N 5{: f _ (,0;:172(53\) if 7 € X; and SOZ_Jrle(./%'\) #+ O,
’ T(pi0(Z)) otherwise.

While notationally cumbersome, this can also be described via a picture (sometimes called Kaku-
tani’s skyscraper):

-T’:

’fr?-'"x
- X,

o -

s

e + Xy
Fa
-
- Xo
Tx=T"% x

For simplicity, define 7 : X — X to be the projection map (so that we can view 7(7) € X).
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Problem 65.
(1) Show that T is measurable.
(2) Show that T preserves [i.
Proof.

(1) Let E C X be a measurable set. The goal is to show T~(E) is also measurable. Let
E, = FENn X, n > 0. Note thatA each F, C X, is a measurable set. Then we get
E = |_|n20 E,,, so if we show each T~!(FE,) is measurable then we have the result. Now,

for n > 1, f‘l(En) can be thought of as ¢, ,—1(E,). The claim then is that for n > 1,
©nn—1(Ey) is a measurable set. But this follows by viewing this as the inclusion Y;, C Y,
and then using the fact that measurable subsets of Y;, are measurable subsets of Y;,_1. Now
we consider Ey. We see

T (Ey) = {Z € X : For some i, Z € X; and 30z+1z( ) =@ and T(n(Z)) € Eo}.
In other words, if we view Ey C X as well, then

T~ (Ey) = | | Fn, where F,, = T (Eo) N Y, NY,, C X,
n>0

Each of these are measurable sets, so we get that f‘l(Eo) is measurable as well.
(2) We now need to show that for £ C X, we have

A(T(E)) = i(E).

Notice by the description in (1), we have

= || TN (En) =T Y(Eo) U |_| T-Y(E,)

n>0

where E! is E,, = E N X,, but viewed in X,,_;. Taking the measure of this, we have

=Y wT N E)NY,nYiy) + > e
n>0 n>1
=Y wT N E)NYunYiy) + > ulEn
n>0 n>1
YEo)) + > u(En) = n(Bo) + > p(Bn) =Y u(En) = A(E).
n>1 n>1 n>0

So this transformation is measure preserving.

O

Now let (X, M, u, T) be a measure-preserving system (meaning (X, M, u) is a probability space,
T : X — X is an invertible measure preserving transformation). For f : X — (0,00), consider

Ip={(z,t):0<t < f(a)}.

This is the collection of points “under f.” We identify (x, f(z)) and (T'z,0). We have the following

picture:
60



For n € Z, define

Sy f(TF(x)) ifn >0
Sp(x) = 01fn—0

— S5 F(T7F(@)) ifn < 0.

Problem 66. Use Poincare recurrence to show that S,(z) — oo as n — oo. The same kind of
argument can be used to show S, (x) — —o0 as n — —oc.

Proof. Notice that f~1((0,00)) = X. By continuity of measures, there must be some a > 0 so
that u(f~1((a,00))) # 0. If we let E, = f~!((a,00)), then by Poincare recurrence almost every
r € B, returns to E, infinitely often, so f(T%(z)) > a infinitely often for almost every x € E,.
Consequently, for almost every = € E,, we have S, (z) — oo as n — co. Now this holds for each
E, (technically, even if the set E, has measure zero it will still hold), and we can write

X:UEG.

a>0
The union of sets of measure zero will be measure zero, so it holds for almost every z € X. O

Forz e X,0<t< f(x), s € R, define
n(z,t,s) :=min{k € Z>o: s+t < Sp+1(x)}.
This is called the hitting number.
Problem 67. Show that n(z,t,s) is well-defined, and satisfies the property that
Sn(ats) <8+ < Spats)+1-

Proof. The fact that n(z,t, s) is well-defined follows from the fact that S, (z) — oo, so there must
be some n so that s+t < S, (z), and the minimum will be unique. The fact that it’s a minimum
tells us that we have the above identity. O

For t > 0, define
T (x,t) = T (2,1, 5) .= (T (), s+t — Sn(ats)(T))-
Problem 68. Show that S, satisfies the cocycle relation; i.e.,
Sntm = Sn + Sy oT™.
Proof. We see that

,_.

m— m+4n—1

o T (z F(T7(x Z F(TH(x)) = Spmn(x) — Sp(z).

J=0
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Problem 69. Show that ng = n(-, s) satisfies the coycle relation; i.e.,
n(z,t,s+q) =n(z,t,s) + n(T”($’t’s) (x),s+1t— Sn(w,t,s) (x),q).
Proof. Notice that
n(T"(‘”’t’s)(x), s+t — Spat,s(T),q) = min {k €EZ:s+t+q— Spas(r) < Sk+1(T"(x’t’S) (:z))} )
By the cocyle relation for S,,, this is the same as
n(T™@5) (1), s+t — Sn(ets) (@), q) =min{k €Z: 5+t +q < Sp@igthi1(®)}
After changing variables appropriately, we see
n(T”(m’t’s) (), 8+t=Sp(2,,5)(7),q) = min{a € Z: s +t + ¢ < Sat1(x) }—n(z,t,q) = n(x,t, s+q)—n(z,1,q).
This gives us the cocycle property. ([l
Problem 70. Show that Tsf is a flow.

Proof. There are two things we need to show.
(1) We see that

k
n(x,t,0) =min{k € Z:t < Sgy1(z)} =min< k€ Z : t < Zf(T](m))
=0

Since 0 <t < f(z), this implies that
t < Si(z) = f(x),
so n(x,t,0) = 0. Therefore
T (2, 1) = (T°(@), t = So(a)) = (x.1).

So Tof is the identity.
(2) We next need to check that the R action is satisfied, meaning
7! (2,t) =T o TS (2,1).
Notice

7/ (qu (x, t)> =TH (T (2), g+t — Spppg)(7))

)

_ <Tn(Tn(z,t,q) (x) S Ht—=Sn(,t,q) (z),s) (Tn(x,t,q) (33))

S+ 4+t = Snag) () = Sprneta @) 54180 gy (@) (T (x)))
Use the cocycle property for n to get

n(Tn(x,t,q) ('T)a s+t — Sn(wﬂf,q) (x)v S) = n($a t7 s+ Q) - n(xa ta Q)a

SO
Tn(Tn(z,t,q) (m),s+t75n(zyt,q) (z),s) (Tn(m,t,q) (J})) — Tn(x,t,erq) ((E) )

Now

(z),s) (Tn(x,t,q) (:E)) = Sn(:t,t,erq)fn(m,t,q) (Tn(w,mq) (x))
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Plugging in the definition, we get

n(z,t,s+q)—n(z,t,q)—1 ' n(xz,t,s+q)—1 '
Sr(ststa)—n(ata) (T () = > ittt (@)) = 3" f(T(x))
Jj=0 J=n(z,t,q)

= Sn(ats+0)(¥) = Sn(a.t.q)-
Substituting this in, we have

Sn(at.g) () + Sp(rnteta) (@) 115, (2.0 (T (@)) = Sp50) ()

z,t,q)

So
T (T](@,1)) = ("D (@), 5 4+ g+ £ = Sy i) (2)) = Ty (1)

Thus this is actually a flow.

We call {T. f }ser the induced flow. Note this is the flow going upward with unit speed.
Let n € Z and define

Fn,s = {(.’I,',t) S IT: n(x,t, S) = n}
If we fix s € R, we denote the above as just I';,. Another way to view these points is as the following:

{(z,t) e T: T/ (z,t) = (T™(x),s + t — Sy (x))}.

That is,
T!(Fms) ={(T"(x),t +s—Sp(z)) : (x,t) € T} s}
Set
Xy =m(Ths).
Define

t1: Xp — [0,00), ti(z) = inf{t € [0, f(x)) : n(z,t,s) = n},
to : X, — [0, 00), to(z) = sup{t € [0, f(z)) : n(x,t,s) = n}.
We note that
n(x,ti1(x),s) =n.
This says that for ¢1(z) and t2(x) we have the property that
0<s+ti(z) <s+ta(z) <Spya(x),  Snya(e) = Su(z) + f(T"(2)),
0<s+ti(z) = Sn(x) < s+ ta(x) — Sulz) < fF(T"(2)).
We also have
0 < ti(z) < ta(z) < f(2).
Notice these are measurable functions by construction. Finally, we can write

Ips=A{(z,t) 1z € X, t1(x) <t <ty(z)},

TI(Ths) = {(T"x,t + 5 — Sp(x)) : (2,t) € Ty}
Let p1y denote po x A (1 times Lebesgue measure restricted to I'). For any E C I', we can write

f(=)
us() = | N ( /0 XE<x,t>dt) du(z).

Problem 71. Using the above, verify that

s (TL(E)) = u(EB).

Recall the Mean Ergodic Theorem.
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Theorem (Mean Ergodic Theorem). Let U : H — H be an isometry of a complex Hilbert space.
Let M = {x € H : Uz = z} be the space of vectors invariant under U. Let P : H — M be the
projection map. Then we have

n—1
1 .
Ap(z) = - g U’(x) — Px for all x € H.
=0

Problem 72. Proof the Mean Ergodic Theorem by following these steps.

(1) Show that it holds true for the space M.
(2) Let
N={z—-Ux:2€ H}.

Show that the theorem holds true for this subspace.
(3) Show that it holds for A, the norm closure of N.

(4) Show that it holds for N + (the orthogonal closure of AV).
(5) Deduce that it holds for all of H.

Proof.
(1) Notice that for all x € M, we have

Ulz = x for all j >0,

SO

n—1

1 .
—g Uj(m):@:x:Pxforallnzl.
ni= n

(2) Take y =z — Uz € N. Then

1 n—1 . 1 n—1 ' ' 1
£§2W@—Um25§:www—wﬂgﬂ:EM—UWM.
j=0 J=0

Taking the norm of both sides, we have
1 n—1 ‘ 9
- J z
3 U0 < el

since U is an isometry. Taking the limit as n — oo, we get that the norm tends to zero,
which is P(y). B
(3) Take A the norm closure of N. Let (yz) C N be a sequence with yr — y € N. Then

[An W) < [[An(y — yi)ll + | An(yr)]]-
Now y — yg, so choose k sufficiently large so that ||y — yx|| < €/2. Then

n—1 n—1 n—1
1 ; 1 ; 1
[An(y =l = |~ > U —we)|[ <~ DUy —m)l < - D _e/2=¢/2
J=0 j=0 j=0

This holds for arbitrary n, so choose n sufficiently large so that || A, (yx)|| < ¢/2. Then we
have that for n large,

[An(y)] <e.

We can find such an n for all € > 0, so ||A,(y)| — 0.
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(4)

First, we remark that N = NL. So take y € N+. That is, y is such that (x,y) = 0 for all
x € N. Since x € N, we can write it as . = z— Uz for 2 € H. Thus we have (z—Uz,y) =0
for all z € H. Using linearity, we have
(z=Uzy) = (z,y) — (Uzy) =0.
So
(z,y) = (Uz,y).
Now U is an isometry, so we can take its adjoint to get
(z,9) = (2, U"y).
Subtract again to get
(z,y —U*y) =0.
This holds for all z € H, so y — U*y = 0, or y = U*y. The goal now is to use this to show
that y = Uy. Notice
Uy = ylI> = (Uy =y, Uy — y) = (Uy,Uy) = (4, Uy) — Uy, y) + (v, )
=2(y,y) — (v, Uy) — (Uy,y).
Notice
(v, Uy) = U"y,y) = (¥, y),
(Uy,y) = (v, U"y) = (y,9).
Substituting this in gives
Uy —y|?=0 = Uy=y.
Thus, we have that N'- = M. Now apply (1).
We can write
H=NoM.
So every x € H can be written uniquely as = 1 + 2, where z; € N and x5 € M. Apply
A, to this and use the linearity to get the desired result.

O

We now move on to the Birkhoff Ergodic theorem. Suppose we have a sequence of real numbers

(aj);‘zl. Let m be a positive integer such that m < n. A term aj of the sequence we be called a
m-leader if there exists a positive integer p with 1 < p < m and such that

ag + -+ aprp-1 > 0.

For example, the 1-leaders are the non-negative terms of the sequence.
Problem 73. Show that the sum of m-leaders is non-negative.

Proof. First, notice that if a; is an m-leader, then we have a 1 < p < m so that

ap + -+ agpp-1 = 0.

Let p be the smallest such, and suppose k is the smallest numbers to that aj is an m-leader (that
is, ay, is the first m-leader). The claim then is that each of the a; in this are m-leaders themselves.
If a; in this is not an m-leader, then we see there is no 1 < p < m so that

ai + -+ agyp—1 > 0.

Consequently

ar+ -+ appp1 <0,

so we can omit it to get a smaller p. Thus

agp+ -+ a—1 > 0.
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This however contradicts minimality of p. So a; must be an m-leader.

Thus we have (aj);tf_l gives us some of the m-leaders, and we have that the sum of these is

greater than or equal to 0. For a4, ..., a, we repeat this process with all of the other m-leaders.
Thus each of these have their associated sequences, which are greater than or equal to 0, and adding
them all up gives us a number greater than or equal to zero. ([l

We will use this to prove the Maximal Ergodic Theorem.

Theorem (Maximal Ergodic Theorem). Let (X, M, u,T) be a measure-preserving system. Let

fi = (T ().
If

n—1
E = meX:ij($)20forsomen ,
j=0
then

/Ef(x)dx > 0.

Problem 74. Follow the proof of Halmos for the Maximal Ergodic theorem. That is, prove the
Maximal Ergodic theorem following these steps.

(1) Let
P
E,, = a:EX:ij(a;)ZOforsomepgm
j=0

Show that F,, "' FE.
(2) Deduce that it is sufficient to show

(x)dx > 0 for each m.

Epm
(3) Let m be an arbitrary positive integer. Consider for each point z the m-leaders in the
sequence fo(x),..., fntm—1(x). Let s(x) be the sum of the m-leaders. Let

Dy ={z € X : fr(x) is an m-leader of the sequence fo(x),..., fotm—1(x)}.

Show D;, is measurable.
(4) Let
9k = XDy, -

Show that
n+m—1

s= > fror
k=0

(5) Deduce that s is measurable and integrable.

(6) Deduce that
n+m—1

Z fr(x)dx > 0.
k=0 7Dk

(7) Observe that if k =1,...,n — 1, then the following conditions are equivalent:
(a) T(x) € Dy_1.
(b) fr—1(Tz)+ -+ fo—14p—1(Tx) > 0 for some p < m.
(©) (@) + -+ frsp1(2) = 0 for some p < m.
(8) Use the prior part to establish Dy = T~1Dj_;.
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(9)
(10)

(11)

(12)

(13)
Proof.
(1)

Deduce Dy, = T *D,.
Show that Dy = E,,.
Use the prior part to calculate

i fi(@)dz.
Use (6), (10), and (11) to conclude
n f(x)d$+m/|f(x)|dx20.
Em

Finish the Maximal Ergodic theorem.

If n < m, x € E, implies that Z?:o fj(x) > 0 for some p < n < m, so x € Ep,. This
implies F,, C E,,, which gives us increasing. Next, let

F= UEm

m>0

Take z € F. Then x € E,, for some m, so Z?:o fj(xz) > 0 for some p < m. But this implies
that € F, taking n = p+1. So F' C E. For the other direction, we see that x € E implies
Z;-l;ol [i(x) >0, s0 x € E,,_; for some n. Thus E = F.
If we can show
(x)dx >0
Em
for each m, then

/ f(z)dx = lim f(z)dz > 0.
E

m—r0o0 E
m

If x € Dy, then there is a 1 < p < m so that

@)+ + fogp—1(z) > 0.

Let G p(x) = fr(x) + -+ fryp—1(x) for each such p. Then Gy, is a measurable function,
and

-1
Fip = Gy, ([0,00))
is a measurable set. We can then express
Di= |J Fip
1<p<m

So Dy, is measurable.
Examine x € X fixed. Then s(x) is the sum of the m-leaders. Notice that fi(z) is an
m-leader if and only if x € Dj. Thus

n+m—1

> fr@)gr(x)
k=0

gives us the sum of all of the m-leaders in (f; (J:));Li(’;%l So

n+m—1

s(@) =Y fr(@)gr(x).
k=0

This works for each z € X.
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(5) Since Dy is measurable, gy is measurable. The product of measurable functions is measur-
able, and the sum of measurable functions is measurable, so s is measurable. Integrability
follows since s(z) > 0 (using Problem 16).

(6) We use the linearity of integration to get

n+m—1 n+m—1

/ d:c—/ Z fre(@)gr(z Z x)dx > 0.

(7) We observe the equivalence.

a) = (b) : If T(x) € Dy_1, then this says that fi_;(Tz) is an m-leader, giving us (b).
(¢): This follows by definition of f;(z).

(d): This says fx(z) is an m-leader, so x € Dy.

(a): If © € Dy, then fi(z) is an m-leader, meaning there is some p < m so that

fe(@) + -+ fegp1(z) >0,
and using the definition of f; we have
fe—1(Tx) + -+ + frypa(Tz) >0,

implying that fi_1(Tz) is an m-leader as well, or T'(z) € Dy_1.
(8) We have = € Dy, if and only if T'(x) € Di_1 by the equivalence in (7). Thus

I Dp)={reX :T(x)e Dy} ={x € X :2 € D} =Dy

(9) Proceed by induction to get T—%(Dg) = Dy,.
(10) We see

Dy ={z € X : fo(z) is an m-leader of the sequence fo(x),..., fnem—-1(x)}.

If fo(z) is an m-leader of the sequence, we get that there is some 1 < p < m so that

p—1
> @) >
§=0

This says that x € E,,. The same argument backwards works.
(11) We see

fr(z)dx = fk(T_k(:n))dx = folx)dz = f(x)dx
Dy, Do Do Do

(12) We see that
n+m—1 n+m 1

0< Z / fu(z dx—Z/ fu(z Dkfk(m)

k n
<n / f(@)da +m|fll1 > 0.
Em
(13) Dividing by n in (12), we have
m
| e+ 2 = 0
Em n

Taking the limit as n — oo, we get

f(z)dz > 0.
Em

This holds for all m > 0, so we get the result in (2).
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We now use this for Birkhoff’s Ergodic theorem.

Theorem (Individual Ergodic Theorem). If (X, M, u, T) is a measure-preserving system (X may
have possibly infinite measure) and if f € L', then

—_

n—

==Y f(T

Jj=0

3\*—‘

converges almost everywhere. Let f’(z) be the value to which it converges. The function f’ is
integrable and invariant. Furthermore, if ©(X) < oo, then

/f—/f

Problem 75. Follow Halmos’ proof for the Individual Ergodic theorem. That is, prove the theorem
using these steps.

(1) Let
f*(x) = limsup A, (f)(z), f«(x) = liminf A, (f)(z).

n—00 n—ro0

Show that these functions are T-invariant.
(2) Let a < b be real numbers. Let

Yop={zxeX: filz)<a<b< f*(z)}.

Show that Y =Y, ; is measurable and T-invariant.

(3) Show that Y can be assumed to be o-finite.

(4) Show that pu(Y) < co. To do so, take C' C Y a set with finite measure and show it is
uniformly bounded. (Hint: Use the Mazximal Ergodic theorem with h = f — bxc.)

(5) Show that u(Y) = 0. (Hint: Use the Mazimal Ergodic theorem with the functions h = f —b,
g=a—f)

(6) Applying the result to all (a,b) rational points, we get that the limit converges almost
everywhere. Show that f’ is integrable and measurable.

(7) Show that f’ is invariant.

(8) Show that if u(X) < oo, then f and f’ have the same integral.

Proof.

(1) The first thing to remark is that these functions are measurable, since limsups and liminfs
are measurable. Next, to see they are T-invariant, notice

n—o0 n—oo

F( () = limsup An(f)(Tw) = Timsup (3" F(79(x)
j=1

n—oo

— limsup An41(f)(z) = f*(x).

n—oQ

~tmsup (4ra()0) ~ 11(0))

The same argument applies with liminfs.
(2) Notice that

By = (f:) 7 ((—00,0a))
is a measurable set, and

Fy = (f*)7((b,00))
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(3)
(4)

(7)

is a measurable set. We then have
Y=Y, =E,NF,
is a measurable set. To get that it is T-invariant, notice that
T Y)={zecX T cY}={zcX: fi(T(zx)) <a<b< f*(T(zx))}
={reX:filx)<a<b< f (z)} =Y.
Since f € L'(u1), we have that o(f) (the support of f) is o-finite. Consequently Y C o(f),
so Y must be o-finite as well.

Note that we can assume b > 0; if b < 0, then we can repeat the same kind of argument
with —f and —a in place of f and b. Let g = x¢. Consider the function

h=f—bg.
Let
F={zxeX:A,(h)(z) >0 for some n}.

We note that Y C F. Let € Y. Since b > 0, we have that f*(x) > b, which implies that
for each x € Y there is some n so that A, (f)(x) > b. In particular, there is some n so that
Ap(h)(z) > 0.

Applying the Maximal Ergodic theorem, we have

/ h(z)de > 0 —> / F@)da > bu(C).
F F
Notice that

Aj@ﬂwﬁwm,

so we have

1£1lx
we) = ==

So every set of finite measure is uniformly bounded above by || f]|1/b, and hence u(Y) < oco.
Now apply the maximal Ergodic theorem to X with the function h = f — b. We see that
the set E in this context will be Y. So

/Xﬂ@—wzo
Y

We can also apply it to g = a — f to get

[ -t =0
Y
Putting these facts together, we have
p(Y)(a—0) =20 = uY)=0.

Apply the result to all rational points to get 11(Y, ) = 0 for all rational endpoints. Use limits
to get that the average limits actually do converge. We get integrability and measurability
by using Fatou’s lemma;

1 1 [
/ngﬁwmsn/;mmm=/mmm<w

T-invariance follows from the fact that f, and f* are T-invariant.
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(8) Finally we need to check the integrals are equal. If f'(z) > a, then there is at least one n

so that for all € > 0,

n—1

> (fix)—a+e) >0

Hence

for each € > 0, and so

A similar argument applies for f'( ) <b, giving us

/f(w)d:c < bu(X).

Write
kE+1
Xk,n:{xeX f()— on }
Note that X}, ,, is T-invariant (since f’ is). Thus we see
k kE+1
2—n,u(Xk n) < . flx)dx < o w(Xkn)s
k kE+1
S < [ e < B,
Xk,n

Taking the difference and summing over k, we get
< *u( )-

/f dx—/f v)da| < o

The choice of n was arbitrary, so let it go to infinity.

Problem 76. Assume the setting of the individual ergodic theorem. If f, =

show that the limit function f* is integrable.

Proof. Let
E={reX:f(s)= @)
Then on E we have

ff(z) = lim A, f(z).

n—oo
Now Fatou gives us

O

f* almost everywhere,

/|f*|du:/ |f*]d,u:/ lim |Anfd,u§liminf/ |Anf\dugliminf/ | Ay fldp.

Notice

- n—1
Aufl = = S F@ )| < = S 1@ e
"= nis
SO

n—1
imint | \Anf\duglgggf;; [\ a)in
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Since (X, M, u,T) is a measure preserving system, we have

[ [ igian= [ =151
Inducting gives us that
J 1@ @l = 7l for g = 0.

Substituting this in, we have
1 n—1
* < liminf — = .
[ 1471 < timing Xl = 11l < o

So f* is integrable. O
Problem 77. Prove the following corollary of the Individual Ergodic Theorem: If (X, M, u, T) is

a measure-preserving system of a probability measure space and if f € L'(u), then

/rAn<f> ~ldp 0,

where

£* = lim An(f).

n—o0

Hint: First prove it for bounded f. Then approximate.
Proof. Recall the dominated convergence theorem:

Theorem (Dominated Convergence Theorem). If (f,,) is a sequence of measurable functions which
converges pointwise to a function f and is dominated by a function g € L'(x), meaning

| ful < g for all n,
then
7}13&)/ | fn — fldu = 0.

We have A,,(f) — f* pointwise. If f is bounded, say |f| < M, then
1 n—1 . 1 n—1 ‘ 1 n—1
=N foTI <=3 foTI < =Y M=M.
n n n
0 0 0
So A, (f) is dominated by M, and we apply the dominated convergence theorem (which applies
since we are over a probability space), and we get the desired result.

Now assume f is not bounded. Using simple functions, we can approximate f by bounded
functions. Consequently, we have

[An(f) = £l < 1 An(F = 9l + [[An(9) — g7llL + llg" = F7 [l

As we’ve noted earlier,

[An(f)l =

[An(f =g < 1If = gl
On the other hand, we examine the L! norm on the far right. Using the last part of the Individual

FErgodic theorem, we recall
/g*=/g, /f*=/f,
[1g=11=[1a=f1=lg = fl1.
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So we can make these terms as small as we want, say €/3 for some ¢ > 0 chosen arbitrarily. We
may then take n as large as we want so the middle term is smaller than €/3 by the first part. This
gives us

[An(f) = f*llr <€
for all € > 0. Thus it goes to 0. 0

Let (X, M,u,T) be a measure-preserving system on a probability space. We say that T is
ergodic if for all £ € M, we have

T-YE)=E = u(E)=0o0r 1.
Problem 78. Let (X, M, u,T) be a measure-preserving system of a probability space. Show the
following are equivalent.
(1) T is ergodic.
(2) The only members E € M with u(T~}(E)AE) = 0 are those with u(E) =0 or 1.
(3) For every E € M with p(E) > 0, we have

i (U T-”<E>) -

(4) For every A, B € M with u(A) > 0, u(B) > 0, there exists n > 0 with u(7T7"(A)N B) > 0.

(5) Whenever f is measurable and Up(f) = foT = f for all x € X, then f is constant almost
everywhere.

(6) Whenever f is measurable and Up(f) = f almost everywhere, then f is constant almost
everywhere.

(7) Whenever f € L?(uu) and Ur(f) = f for all x € X, then f is constant almost everywhere.

(8) Whenever f € L?(u) and Up(f) = f almost everywhere, then f is constant almost every-
where.

Proof. (1) = (2): Assume T is ergodic. Then if T-!(E) = E implies u(E) = 0 or 1. Assume
now that u(T~}(E)AE) = 0. Notice for n > 0 we have

W(T"(E)AE) =
To see this, first see that

Let x € T™"(FE)AE. This says that

reT™™E)\Eorxze E\T "(E).
In other words, x is such that either z is in E but T"(z) ¢ E or T"(x) € E but z is not in E. This
says that there is some point where T~*(x) € E but T~ +1(z) ¢ E or vice versa, which implies it

is in the set on the right.
Now, recall

T (E)AT I ~F(E) = T <EAT"“(E)) .
This is because preimages play nicely with unions and intersections. So using this fact, we have

n—1

EB)AEC | TUY(B)AT(E U T (T7YE)AE).

Now taking the measure, we have

T (B)AE) < np(T~H(BE)AE)
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since the system is measure preserving, and since we assumed p(7T~1(E)AFE) = 0, this tells us that
w(T " (E)AE) = 0.

Let o o
=N UrE
n=0 j=n
We have from the work above that
o o0
WExAE) < p | EA|JT(E) | <> WEAT(E)) =0.
=0 §=0

So i(Es) = p(E), and we see T~ (E) = Eu by construction, so u(FEs) = 0 or 1. Thus u(E) =0
or 1.
(2) = (3): Let

o0
F=|JT™E
n=1
Notice

= G T—""YE)CF

Since u(T~1(F)) = p(F), we have u(T~Y(F )AF) =0. Now T-}(E) C F, so
0 < p(B) = w(T~H(E)) < u(F),

and (2) forces pu(F) = 1.
(3) = (4): Since u(A) > 0, (3) tells us that

F=|]JT7™4)

n=1

is such that u(F) = 1. Now u(F N B) = u(B) >0, so

0<p (U (T™(A)N B)) <> (T (A)NB),
n=1
so there must be some n with
0<u(T™(A)N B).

(4) = (1): f E € M with T"Y(E) = E, 0 < u(E) < 1, then
0=p(ENES)=pu(T "(E)NE) forn>1,

a contradiction.
(1) = (6): Consider

E,={r e X: f(x)>a}.
We see that

T YE,) ={zx e X: f(T(x)) > a}.
Since Ur(f) = f almost everywhere, this gives us that (up to a set of measure zero which we take
out)
T (B ={z € X : f(T(x)) = f(x) > a} = E,.

By ergodicity, we have u(E,) = 0 or 1. This applies for all real @ € R. If f non-constant, there

would be some E, with 0 < p(E,) < 1, a contradiction.
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5): This is clear.

7): Functions which are L? are measurable, so this follows.

8): Same kind of argument as above.

7): This is clear.

1): Suppose T-1(E) = E with E € M. Then xg € L?(u), xg o T = xg for all z, so xg
is constant. Thus xyg = 0 or 1 almost everywhere, and

w(E) = /XEd,u =0or 1.

(6
(5
(6
(8
(7

el

)
)
)
)
)

0

Problem 79. Prove that if T is an ergodic invertible transformation of a probability measure
space, then T4 (the induced or derivative transformation) is ergodic.

Proof. Suppose E C A a measurable set. We need to show that if TZI(E) = E, then pa(E) =0
or 1. Recall

17'(B) = | (A n T (E)).

n>1
We will prove on induction that for ¢ > 0 we have
T EYNACE.

In other words, if ¥ under T comes back to A, it must also come back to E. For ¢ = 0, we have

T°(E)nA=FENA=ECE.

Now suppose we know this for 0 < i < n — 1. The goal is to show it holds for n. Fix some k£ € N.
Recall

A ={x € A:na(z) = k}.
Then
TH{ENA)NA=aifi<k.
Notice that
TH(E N Ag) = Ta(E N Ap),

since by definition this is the set of elements in F which return to A at time k. E is invariant under
T4, so this tells us

TA(ENAg) CE.
Now take i > k. We see
THENA)NA=T"HTHENAL))NA=T" Ty(ENAL))N A
From our prior calculation this tells us
T FTA(ENA))NACTFE)NA.
This holds for all k. Since & > 1, i — k <n — 1. So the induction hypothesis applies to tell us
T *E)NACE.

Now
Xp=JTE
i>0
is T-invariant, so Xg is null or conull by ergodicity. If it is null, we win (since F C Xg). If it is

conull, then A\ (Xg N A) is null, and Xg N A = E by our claim above. So A\ FE is null. O
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Problem 80. Suppose (X, M, u,T) is an invertible ergodic system on a probability measure space.
If A e M with u(A) > 0, then
/ nadp = 1.
A

Ap={x € A:na(z) =n}.

Proof. Recall

Let
F,=A,UTA,U---UT" 1 A,,.

Using the Kakutani diagram, we see
X =|]JF.

n>1
Now, notice that

X = U F), almost everywhere.
n>1

Since T is measure preserving and invertible, we have
p(Fn) = nu(An).
So
D () =) np(An) = p(X) = 1.

n>1 n>1

Finally, notice that we can decompose A into

A= A,

n>1

J ma@in@) =3 [ na@dnte)

n>1

and

On A, we see ny(x) = n, so this is equal to

/AnA($)du(x) = Zn/n du(z) = Zn,u(An) =1.

n>1 n>1

Problem 81. Prove that
T:00,1) —[0,1), T(z) =2z (mod 1)
is an ergodic transformation.

Proof. Use the L? equivalence. Let f € L?(u) be such that f o T = f almost everywhere. Then if
we write

f(:E) — Z an6—27rimv
as the Fourier series, we have
f(T(l’)) _ Z an€—2m'n2:c'

These series are equal almost everywhere, so this says that |a,| = |a2,| = |aan] = -+, so by
Riemann Lebesgue we get that this is 0 unless n = 0. (|
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Problem 82. Let X be a compact metric space, 5 the Borel o-algebra, and let u be a probability
measure with the property that pu(U) > 0 for all non-empty open U. Suppose T': X — X is a
continuous measure preserving transformation which is also ergodic. Then almost all points of x
have dense orbit under T'.

Proof. Suppose z € X does not have a dense orbit Op(z) = {T"(x) : n > 0}. The base for the
topology of X is countable, so we have {U,}5°; is a base. Since the orbit is not dense, there is a
U;j with the property that Or(z) NU; = @. Let f = xy,. Then

1n71
—ZXUJ. oTk(z) =0.
"

In the proof of Birkhoff ergodic theorem, we have that for almost every x this series converges to
the measure of U; which should be greater than 0. So the collection of all points x € X whose orbit
does not intersect U; has measure 0. Let E; be the set of these points. Now

o0
E= U E; = {z € X : x does not have a dense orbit}.
j=1
Notice p(E) = 0. So almost every point has a dense orbit. O

Problem 83. Prove the following corollary of the Individual Ergodic theorem:

Theorem (Borel’s Normal Number theorem). Almost all numbers in [0, 1) are normal to base 2.
That is, the frequency of 1’s in the binary expansion of almost every number in [0,1) is 1/2.

Hint: Construct a system and a function which measures the frequency.
Proof. Let B be the Borel o-algbera on [0,1). Then we consider the measure-preserving system
([0,1),B,\,T), where T : [0,1) — [0,1) is
T(z)=2x (mod1).
0
Problem 84. Let (X, M, i, T) be a measure preserving probability space. Show the following are

equivalent.
(1) T is ergodic.
(2) For all A, B € M, we have

n—1

> T (A)N B) = p(A)u(B).

1
"

Proof. (1) = (2): Assume T is ergodic. Consider x4, xp. These are measurable functions, and
moreover
xa0T? = xr-icay.
Notice that
(xaoT’) XB = Xr-i(A)nB-
We use the Birkhoff ergodic theorem and the fact that T is ergodic to get

n—1
1 ,
- > xaoTV — /XAdu = pu(A).
0
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Notice the Birkhoff ergodic theroem only tells us that the thing on the left converges to some
function f*. We know this f* is T-invariant, so f* is constant almost everywhere by ergodicity.
Furthermore, since we have a probability measure space, we know that

[ #rau= [ san
So f* = C for some C constant, and

C/d,u:C,u(X):C:/fdM.
Thus
[r= / fdp almost everyhwere,

and we have the desired above result.
Now we can mulitply xg to get

n—1

1 .
Z(XA oT7)xp — u(A)xp almost everywhere.
0

n

Integrating both sides grants us

n—1
/711 > " (xa o T)xpdp — p(A)u(B).
0

For each n, notice that linearity gives

1 n—1 A 1 n—1 4 1 A
/ =Y (a0 T)xpdu =~ Z/ (Oxa o T)xpdp) = — > (T~ (A) N B).
0 0

Thus we have the desired result.
(2) = (1): Assume now A = B = FE, and E is T-invariant (meaning T~!(E) = E). Then

n—1
LS WTHB)NE) = - > u(B) = u(B) = u(B)*
0

This forces either u(E) =0 or u(E) = 1. O
Remark. This same kind of result can be proven for just a generating algebra.
Problem 85. Show that the two sided shift (po,...,pr_1) shift is ergodic.

Proof. Recall that our space is X = A%, and our measure is defined by the property that if
F € C(X) depends on coordinates —N to N, then

— 2N+1
Jormn = fo (P )

o((wx)) = (yk),  where yp = Tp11.
The goal is to show that o is ergodic. Let E, F C X be subsets which depend only on finitely many
coordinates, say —IN to N. Then

o (E) = {(yk) : yji € E for j € {=N,...,N}}.

Let

Now

XE © 0" = Xo-i(p)
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depends on N — i to N + ¢ coordinates. Now if |i| > 2N + 1, then yg and xr depend on different
coordinates entirely, so

pe (E)NF) = /Xg—i(E)XFdM = (o (E)(F) = p(E)pu(F).

Now use the prior problem. O

Problem 86. Let (X, M, u,T) be a measure-preserving system of a probability space. Prove the
following are equivalent:

(1) T is ergodic.

(2) For all f,g € L?(p),

n—1

LS (URR) - (£ 9)
0
(3) For all f € L%(p),
n—1
SRS ) - (1L ).
0

Proof. (1) = (2): Assume T is ergodic. By the Birkhoff ergodic theorem, we know
1 n—1 4
W2 UR [ fin=s.2),

Notice that, since we are on a Hilbert space, (-,g) = ¢*(-) is a bounded linear functional. By
continuity, we get

n—1
g <i ZUH) = g"((£,1)) = (£, 1){L,g).
0

Using the fact that it’s linear, we have

n—1 n—1
v (i > U%f) = 2 (Uifa)
(2) = (3): Set f=g.
(3) = (1): Take f = xg where E is T-invariant. We know
Uixeoxe) = [ Ubxe - xpdn = oT(E) 0 E) = u(B).
By (3), this is equal to p(F)2. This forces u(E) =0 or 1. O

Let o(T') denote the spectrum of a bounded operator T. That is, we define
o(T) ={A € C:T — A does not have an inverse}.

Problem 87 (Bounded inverse theorem). Show that if 7' — Al does have an inverse, it must be
bounded.

Proof. Suppose T is a bounded linear operator (on a Hilbert space). The goal is to show that if
T has an inverse, it’s inverse is bounded. We will do this with the closed graph theorem. Let
(2, T~ (z)) = (z,y). The goal is to show that T'(z) = y. Let y, = T~ (x,). Then

(Wn> Tyn)) = (3, T(y))

since T is bounded. But this says that T(T~(x,)) = x, — T(y) and x,, — z. So we have x = T'(y),
and taking the inverse this forces 77!(z) = y. Thus we have that 7! is bounded. U
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Using the last problem, we can equivalently write
o(T)={A € C:T — A does not have a bounded inverse}.

Problem 88. Show the following.

(1) If the operator T is invertible, then

o(T™H=(T)'={\1: e}
(2) If T is an operator, then
o(T*)=(o(T)" ={X " : Xeoa(T)}.

Proof.

(1) First note that T invertible implies that 0 ¢ o(7"). So inverting the set makes sense. Next,
let A € o(T~1). Then T-! — I is invertible. But we can write this as

TP M=\ -T) 0T,

So (AT — T) is invertible, and hence A\~! € (7). This tells us that o(T~1) C o(T) L.
Now apply what we've done to T~ to get o(T) C o(T" 1)L or o(T)"t Co(T71).

(2) Suppose A € o(T) so that T'— AI is invertible. Then (T — A\I)* = T* — X\*I* = T* — X\*I
is invertible as well, so that \* € o(T*). This tells us o(T)* C o(T™*). Now use the same
argument on 7% to get o(T*)* C o(T). Applying * to both sides gives o(T™*) C o(T')* and

we’re done.
O
A Hermitian operator is one on a Hilbert space which satisfies the condition that
(f;Tg) =(Tf,9).
A normal operator is an operator T" on a Hilbert space which satisfies the condition that
TT* =T*T.
Problem 89. Show that a Hermitian operator is normal.
Proof. We see that
<f7 Tg> = <Tf7 g> = <f7 T*g>7
so for all g € H we have
Tg=T'g = T=T".
Now TT* =T? = T*T. O

An operator T is bounded from below if ||Tz|| > C||z|| for all x € H.

Problem 90. Show that if T is a bounded operator on a Hilbert space, then it is injective if and
only if it is bounded from below.

Proof. (= ) Assume it is injective. Notice that T : H — Im(T) is a bijective bounded continuous
map. Thus T is open by the open mapping theorem. Now being an open mapping implies that
T=!': Im(T) — H is continuous as well, so |7 'z|| < C||z| for some C > 0 and all z € Im(T).
This means that ||Tz| > % ||| for all z € H. This implies T is bounded from below.

( <=): Assume that T is bounded from below. Then if Tx = 0 if and only if ||Tz|| = 0, and since
for all non-trivial  we have || Tx| > 0 this forces z = 0. O

Problem 91. Show that if 7" is an injective bounded operator, then Im(7") C H is a Banach space.
Deduce it is closed.
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Proof. By the prior problem, we know that 7" injective iff T" is bounded from below. Let T': H —
Im(T"). Let (yn) C Im(7T) be a Cauchy sequence. We know that y, — y € H. The goal is to show
that y € Im(7T'). Notice we can define T=! : Im(T) — T. Thus

yn = ymll = ITT " (yn) =TT (ym) | = CIT " (yn) = T (ym) |-
Since (y,,) Cauchy, we have (T~!(y,,)) Cauchy in H, so it converges to some x € H. Notice that
T(z) =limT(T  (y,)) = limy, = y.
O
For a subspace K C H, we define
Kt={zeH:(z,y)=0foralyecK}.
Problem 92. Show that K= is a closed subspace.

Proof. The fact that it is a subspace is clear. Let (y,) C K+, and suppose y, — y. The goal is to
show that y € K+. Let 2* = (-, z). This is a bounded linear operator, and furthermore z*(y,) = 0
for all n. Taking the limit, we have z*(y) = 0. Soy € K. O

Problem 93 (Parallelogram identity). Prove that for all x,y € H, we have
2 2 2
o = ylI” + 1o+ yll = 2 [l + 1y’

Proof. Notice
lz = ylI* = (& —y,x —y) = 2> = {&,9) — (y,2) + |y,
|z + yl* = (@ + g2 +y) = ||z + {&,9) + (y,2) + [ly]*
Adding these together, we have

(@ —y,x—y) + (@ +y,z+y) =2z + 2|yl
O
Problem 94. Let C' C H a closed convex subset and z ¢ C. Then there is a unique = € C so that
—z|| = inf ||y — z||.
o = 2| = int lly — 2|
In other words, this infimum is achieved.

Proof. Let’s first prove it for z =0 ¢ C. If (z,,) C C is such that

— r = inf
lanll = inf [l

then we can apply the parallelogram identity to x, /2, x,,/2. This gives us

== BT

2
mw
5 :
We see ||z || = 7, ||zn]| — 7, and |[(xm, + 25)/2]| > r. So therefore

2
Tp — Tm
2

Simplifying, we have

ln = @ml|* = 2l|zm|® + 2]l |* — 4]

limsup ||, — zm||* = 0.
m,n
This tells us (z,,) is Cauchy, so z,, — x. Since C closed, x € C. For uniqueness, suppose z € C
satisfies ||z|| = r. Then the sequence (yi) where y; = z if k even and y; = z if k is odd is Cauchy.
The only thing it could converge to is 0, giving us the result. (|
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Problem 95. Prove that H = M & M~*.

Proof. First let’s show that M N M+ = {0}. Notice z € M N M+ satisfies (x,z) = 0 which means
|z|| =0, or x = 0.

Let 6 = inf c57 [l& — yl. Let y be the point minimizing this distance, so |z —y|| = 6. Take
u € M, let z =x —y. The goal is to show that (z,u) = 0. Scale u so that (z,u) is real. Now

F() = Iz +tul* = |12 + 2t(z, u) + ¢]|u]]*.
This is a real function, and it has a minimum at ¢ = 0. This follows since
zttu=x—(y—tu), y—tuc M, f(t)= |z — (y—tu)|* > 5*
We see that f(0) = 6% as well. Now
F1(8) = 2(2,u) + 2t|ul|.
If we plug in t = 0, we have
f(0) =2(z,u) =0,
since t = 0 was a critical point. This tells us the result. If we scaled u by say « # 0, then we see
that
20(z,u) =0,

so this doesn’t change anything. O

Problem 96. Prove that
(KHt =K.

Proof. It’s a matter of checking definitions to see K C (K+)*, so K C (K*)*. For the other
direction, it follows easily from the decomposition. We see K LN(KH)t ={0},and so (K+)* C H
implies (K)+ C K. O
Problem 97. Show that if T" is an operator on a Hilbert space, then

(1) ker(T*) = (Im(T)) "

(2) Im(T') = (ker(T*))*.
Proof.

(1) Let y € ker(T™). Then for all z € Im(T"), we have T'(x) = z for some = and

(y,2) = (y, T(x)) = (T"(y), x) = (0,2) = 0.
So y € (Im(T))*, giving ker(T*) C Im(T). Now let z € Im(T)*. Then for all z € H, we
see T'(x) € Im(T) and we have
(T'(z),2) = (z,T"(2)) = 0.

This forces T x (z) = 0, so z € ker(T™).
(2) Apply (1) to T*. We see (T*)* =T, so ker(T) = (Im(T*)*. Applying L to both sides gives

ker(T)* = ((Im(T*)+)* = Im(T™).

O

Problem 98. Show the following are equivalent:

(1) T is invertible.
(2) There is a constant « > 0 so that T*T > ol and TT* > «al.
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Proof. (1) = (2): Assume T is invertible. Then 7™ is also invertible. Define
177472 = a = I(T) 711>

Notice that
)| =TT @) < IT~H[[|Tx],

SO
ITz|| > 1T~ |zl
Now
(T"Tz,2) = (T, Tx) = |Tx|* > |T7Y7?||2]]* = afz, 2) = {0z, z).
So

(I'*T — al)x,x) > 0.
We have the result.
(2) = (1): Notice that

|ITx|* = (Tz, Tz) = (T*T,z) > afz,z) = al|z|?,
SO
| T2|| > Val|z|.
This shows that T is injective. This shows that Im(7') is closed, and we use the prior problem to
deduce that Im(T") = (ker(T™))*. Now from the exact same argument,

1T"2| > Vallz],
so T* is injective and ker(7T™) = {0}. Thus T is surjective. O
Problem 99. Show that if T" is a bounded operator, then TT* and T*T are both positive.
Proof. This follows from the following observations:
(TT*z,2) = (T*z, T*z) = || T*z||* > 0,
(T*Tx,x) = (Tx, Tz) = || Tz||> > 0.

Problem 100. Show that every Hermitian has real spectrum (i.e. o(T) C R).

Proof. Suppose T is normal. Let A € C\ R so A = a + bi with b # 0. Notice that if X =T — A,
we have

X*X = XX* = (T = MX)(T — XI) = A>T — 2(Re(\))T + T?
= (a* + b)) — 2aT + T% = VI + (al — T)>.
Now
(ol = T)* = (aI = T)(al —T)*
is a positive operator, so we have that X X* > b2I. Hence X is invertible. O
Problem 101. Show that if 7" is a Hermitian operator, then ||T|| = sup{|A| : A € o(T")}.

Proof. TODO (|
Let T be an operator, f a comple-valued function on o(7T"). We define
Nr(f) =sup{|f(A)]: A € o(T)}.
Problem 102. Show that if T is a Hermitian operator and p is a real polynomial, then
Ip(T)|| = Nz (p)-

Proof. TODO 0
83



Suppose M is a closed subspace of H. From Problem 38 we know we can decompose the space
H into a direct sum H = M @ M. We define a projection of M to be a mapping P : H — H where
it takes each vector v = v; + v2 € H and maps it to v;. Note that P is necessarily an operator.

Problem 103.

(1) Show that an operator P is a projection if and only if it is Hermitian and idempotent
(meaning P? = P).
(2) Show that for a projection operator we have

”PUH2 = (Pv,v).

Proof.

(1) (== ): If P is a projection, then P : H — H is defined by some closed subspace M. We
first note that it is idempotent, since P(v) = P(v1 + v2) = v1 and P(vy) = P(v1 +0) = vy,
so P%(v) = P(v) for allv € H.
Next, we claim that it is Hermitian. Let v = v1 + vo, w = w1 + wy € H. Then

(Pv,w) = (v1, w1 + wa) = (v, w1) + (v1,we) = (v1,w1) = (v1,w1) + (ve,w1) = (v, Pw).

( <) : We now show that if P is idempotent and Hermitian, then you are a projection
mapping for some closed subspace. Let

M ={weH:Pw)=w}.
We claim that H = M @& M~ (so that M is a closed subspace). Take v € H, then this is
equivalent to showing

(Pv,v — Pv) =0.
This is just a calcuation:
(Pv,v — Pv) = (Pv,v) — (Pv, Pv) = (Pv,v) — (Pv,v) = 0.
(2) Notice
|Poll2 = (Po, Pv) = (P,v).
O

Denote by P(H) the collection of all projection operators on H. We can give this a partial
ordering by P; < P; if M; C M; (where we note from this last problem that a projection operator
is uniquely characterized by it’s fixed points). We can define

Z P; € P(H) is the operator with fixed points U M;.
i€l i€l
Let X be a set and M a o-algebra on it. A spectral measure is a function £ : M — P(H)
satisfying the following properties:
(1) E(@) =0 and E(H) =Id (here, these are the 0 operator and the identity operator).
(2) If {U,} € M are disjoint, then

E (U Un> =3 EW).

Problem 104. Show that condition (1) is slightly superfluous in the sense that we only require
E(H) =1 and condition (2). That is, deduce E(2@) =0 from E(H) =1 and condition (2).

Proof. Notice that for any M C H we have E(H — M) = E(H) — E(M). This follows from the

fact that E(H — M)+ E(M) = E(H) = 1. Now if we take M = H, we have E(H — H) = E(9) =

E(H) - E(H)=1d —Id = 0. O
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Problem 105.

(1)

(2)

(3)

Proof.
(1)

Prove that E is modular, meaning
E(MUN)+ E(MNN)=E(M)+ E(N).

Prove that
E(MYE(MNN)=EMnNN) and E(M)E(MUN) = E(M).
Prove that E is multiplicative, meaning

E(M N N) = E(M)E(N).

We can write
MUN=(M-N)U(MNN)U (N —M).
So
E(MUN)=EM —-N)+E(MNN)+ E(N—M).
Now add E(M N N) to both sides.

E(MUN)+EMANON) = (E(M—N)+EMANN))+(E(N—-M)+EMAnNN))=EM)+E(N).

(2)

We have
E(MNN)<EM)<EMUN),

where this is with respect to the partial ordering on fixed spaces. The claim then follows
from observing that if Py < P, then PPy = Py. Examine the fixed space of P; Py. This is
going to be

M={veH: (PP)(v)=v}={veH:P(FP))=nuv}
Write v = vy + v9, where v1 € M7 which is the fixed space of P;. Then using the fact that
Py < P so MlL - MQL, where M is the fixed space of Py, we have
Pi(Po(v1 +v2)) = Pi(Po(v1) + Po(vz)) = Pi(Po(v1)) + Pi(Po(v2)) = Pi(Po(v1)) = v.
Now take v; = wy + we, w1 € Ms. Applying the same reasoning gives

Pl(Po(v)) =w; = 0.

So its the collection of all v contained in Mj;. This means that P} Py is the projection

operator with fixed space Ms. It is uniquely characterized by this, so Py Py = Py. The same
kind of argument also gives PyP; = Py. Using this, we have

E(M)E(MNN) =E(MANN) and E(M)E(M UN) = E(M).
Now multiply both sides of the modular equation by E(M) to get
E(M)+E(MNN)=E(M)+ E(M)E(N).

Note here we used the property that projection operators are idempotent. Subtract to get
the result.

O

Problem 106. Show the following are equivalent for £ : M — P(H).

(1)
(2)

F is a spectral measure.
E(H) =1 and for any pairs z,y € H the complex set-valued function p defined by

fay (M) = (E(M)z,y)

is countably additive.
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Proof. (1) = (2): The first part follows by definition of a spectral measure. Inner products with
an infinite sum can be formed term by term, so that gives us the second part.
(2) = (1): We see for arbitrary =,y € H we have

fray(MUN) = (E(MUN)2, y) = pray(M)+ iz (N) = (E(M)z, y)+(E(N)z, y) = (E(M)+E(N))z

This holds for arbitrary choice of x and y, so we get E(M UN) = E(M)+ E(N). Notice we also
get multiplicativity by the argument in the prior problem.

We now wish to extend this to countable unions. Here we need to be careful, as the sum doesn’t
quite make sense without some argument. Suppose {M,,} C M is a disjoint sequence of sets with

|_|Mn:M.

Then by the prior paragraph, {E(M,)} is a sequence of orthogonal projections. So {E(My)x) is a
sequence of orthogonal vectors for any choice of x € H. Now

Z 1E(My)z|? = Y (E(My)e, ) = (E(M)z,z) = | E(M)z]>.

n

The sequence {E(M,)z} is thus summable. If we set
Z E(M,)x = Az,

then A : H| — H is a bounded linear operator. Thus the sum makes sense, and we can make the

calculation
(E(M)z,y) = (E(My)a,y) = (> E(M,)x

O

We will use the symbol B to denote the class of complex-valued bounded measurable functions
on X. We will write

N(f) =sup{|f(N)]: X € X}
whenever f € B. Warning: do not confuse B with the Borel o-algebra!

Problem 107. Show that if E is a spectral measure and if f € B, then there exists a unique

operator A such that
(Az,y) = [ FNACEN,)

for every pair of vectors x,y. The dependence of A on f and E will be denoted by writing

A= / fdE.
o(,y) = / FOVA(EN)z,9))

makes sense for ever yx and y by the boundedness of f. We see that ¢ is a bilinear functional, and
furthermore it is bounded by

:vy|</|f d(IEW]) < N(f)|l=]2

This gives us a unique operator. O

Proof. The function

This gives us some nice properties.

Problem 108. Show the following properties for a spectral measure E, f,g € B, and a € C:
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(1) We have

/(af)dE _ a/de.

(2) We have
/(f+g)dE:/de+/ng.
(3) We have
/f*dE: (/de>*.
(4) We have

() (fs) - f

(5) If B is an operator that commutes with F, then B commutes with A on the level of
(ABz,y) = (BAz,y).

Proof. The proof of all of these is essentially the same. T'll prove (1), (3), and (4). We follow
Halmos.
(1) By the prior problem, we have operators A, A, such that

A:/de, Aa:/(af)dE

The goal is to show aA = A,. This is shown by taking arbitrary z,y, and noting that

«Mxy—a/f E(\), »zjaﬂ»awumwwzmww»

A:/de, B:/f*dE.

The goal is to show that A* = B. That is, for all x,y we have
(Az,y) = (z, By).

(. 3) = (B = [ FOEW) = [T EO)
:/ﬂMﬂwumw»=me.

Here we really use the fact that E()\) is a projective operator.

(4) Let
A= / fdE, B= / gdE.

Define the (complex) measure p in X by u(M) = (E(M)Buz,y), where x,y are any fixed vectors.
Since E(M) is a projective operator, we see

(M) = (E(M)Bux,y) = (Bz, E(M)y) = /Q(A)d((E(A)%E(M)y» = /Q(A)d«E(M)E(/\)fc’y))

= /g(A)d(<E(Mﬂ/\)z7y>) = /Mg(/\)d(<E(A)x,y>)-
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Now
<AB%y%=«AWzB@Y=:(/fWMdKEMMth»>==(/fWAM«yJNMBwW>
-—/ﬂ»mwuﬂmw»—/jumm»—/}@mummEnuw»

This gives the result. O

If F is a spectral measure, we say that F is regular if for every Borel set My we have

E(My) = sup E(M)
Misc_omf)act

Let E be a spectral measure. Define
v(E)={U C X : U is open and E(U) = 0}.
We can set
re)= |J v
Uevy(E)
We define the spectrum of a spectral measure E, denoted o(F), by
o(E)=X\T(E).

A spectral measure is compact if its spectrum is compact. Note this doesn’t even make sense if
X is not a topological space, so we assume that from now on. To make things doable, we assume
X is a locally compact Hausdorff space.

Problem 109. Show that if E is a regular spectral measure, then o(F) is a closed set such that
E(o(E))=1.

Proof. We note I'(E) is, by definition, a union of open sets, so open. Hence o(F) is closed. By
regularity, it suffices to prove that if M C X \ o(F) is a compact subset, then E(M) = 0. Since
M C X\ o(F) =T(F), we have that for all z € M there exists U, € y(F) so that U open and
E(U) = 0. Thus M C (J,cps Uz. Since M is compact, we can take a finite refinement so that
M C g Us, E(U;) = 0. Now by monotonicity, we get E(M) <> (' E(U;) = 0. O

Problem 110 (Spectral Theorem for Hermitian Operators). Show that if A is a Hermitian opera-
tor, then there exists a (necessarily real and necessarily unique) compact, complex spectral measure
E, called the spectral measure of A, such that A = [ Ad(E(N)).

Proof. Let p € R[z|, and recall that for a Hermitian operator A we can associate to it p(A) a
matrix. Define L, ,(p) = (p(A)z,y) for some vectors z,y. Notice that

[ Lay(P)| < Na(p) - |z - [yl

Thus L is a bounded linear functional, L., : Rlz] — R. Hence we can find a unique complex
measure /. in the compact set o(A) so that

Loo®) = [ pN)duO.
Moreover, we see that for every Borel set M we have

(M) < [l]| - [yl

We will denote this measure by ups(z,y) to indicate the dependence on x and y. Notice that
uy + Hx H — Ris a symmetric bilinear functional. Moreover, the bilinear functionals are bounded.
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For each M, there exists a unique Hermitian operator E(M) such that pps(z,y) = (E(M)zx,y). To
get that F is projection valued, we show it is multiplicative. Define

y(M) = /Mq<A>d<<E(A>x,y>>.

If p is any real polynomial, then we see that

/p(A)dV(/\) = /p(A)d(<E(/\)x,Q(A)y>),

y(M) = / dNA((ENE(M)z, 1))
Thus
(E(M N N)x,y) = (E(M)E(N)x,y).
This completes it. U]

A similar kind of trick gives us the Spectral Theorem for Normal Operators.

Theorem. If A is a normal operator, then there exists a (necessarily unique) compact, complex
spectral measure E, called the spectral measure of A, such that A = [ AdE()).

Recall that T is strongly mixing if
\u(T~*(A) N B) — u(A)u(B)| — 0 for all A, B € M.
Problem 111 (Petersen 2.5.2). Show that T is strongly mixing if and only if

(U™f.9) = (f.1){g. 1) for all f,g € L.

Proof. Notice that if we let f = x4 and g = xp for A, B € M then the result follows. Fix B € M
and suppose f is a simple function. That is, write

n
[= Z AiXA;-
i=1
Plugging things in, we see
n n
(U*f,xB) = /ZaiXTk(Ai)XB = a(T7*(4;) N B).
i=1 i=1
Taking the limit as k¥ — oo and using the result on measurable sets, we see that

O£ xm) — (1000 )] = |3 o (u(T™(4) 1 B) — w(A)u(B))

=1

< Jail 3 (T ™(A:) N B) — u(A)u(B)] 0.
=1

) ‘

This gives the result for simple functions. Now let f be in L?. Since simple functions are dense in
L?, we can find a sequence of simple function so that for all € > 0 there is an N so that for n > N
we have || f, — f|l2 < e. Still fixing g = xp, we see that for arbitrary n € N we get the estimate

|<kaa XB) - <f7 1><17XB>|
= [({U*f, xB) = (U fas xB) + (U fas xB) = (fas 1)(L,x8) + (fa, V(L xB) = (£, 1)(L, xB)]

< U foxs) = (U faxB)| + [{U" fus xB) — (Fn DL, xB) |+ [(fo (L, xB) — (f, 1)(L, xB)|-
89



Using a change of variables and the fact that T is measure preserving, we get
(U .x) = (O fuxsdl < [ 1F = Ful(@)du(o)

If we assume a probability measure space (which I don’t see why we’re not, see Walters, Theorem
1.23) we can use Folland, Proposition 6.12 to get

/ |f — fal(@)du(z) < ||f = full2C, C > 0 is some constant.
B

Note that the Folland proposition actually gives the constant.
For all € > 0, we can choose n independent of k so that this is less than e. A similar argument
applies for the last term in the sum, so we have

|<ka7 XB> - <f7 1><17XB>’ <2+ ’<kan7XB> - <f’m 1><17 XB>|
Since € is independent of k and we know the result for simple functions, we can take k — oo to get

Jim (U f,xs) = (f, 1) (1, xB)| < 2.

Now € > 0 was arbitrary, so take ¢ — 0 to get the result. This gives us that for all f € L?, g = xp
with B € M, we have the result. Now fix f € L? and do the same kind of argument for g, first
establishing it for simple functions then using density to establish it for all g € L?. g

Problem 112 (Petersen 2.5.3). Suppose J is a semialgebra generating M. Show that T is strongly
mixing iff
l(T~*(A) N B) — u(A)u(B)| — 0 for all A,B € J.
Proof. This follows Walters, Theorem 1.17. The implication is trivial, so we prove the converse.
The result holds trivially for the algebra A generated by J, so let’s assume that it holds for all
A, B € A which generates M. We use the fact that for ¢ > 0 and A, B € M there are A,, B, € A
so that u(AAA,,), u(BAB,) < e. Now note that
(T5(A) N B)A(T ™ (4,) 1 By) € (T(A)AT*(4,)) U (BAB,).
The argument from here is the usual one. Notice
(T~H(A4) N B) — w(A)u(B)|
< |u(THA) N B) = w(T7(An) 0 Bp)| + [w(T™*(An) N By) = 1(An)p(Bn))|
+u(An) 1(Bn) — p(A)p(Bn)| + [1(A)(Bn) — p(A)u(B)]-
Fix € > 0 small (the size will be chosen later). By the above estimate and the fact that 7" is measure
preserving, we get
(T (A4) 1 B) = u(T~(4,) 1 By)| < 2e.
For the others, note that

p(Bn)|p(An) — p(A)] < p(Bn)e,
w(A)|u(B) = p(Bp)| < p(A)e.
Since |u(B) — u(By)| < €, we have u(B,) < €+ u(B), so
u(Ba)li(An) — n(A)] < € + ep(B).

As long as € < 1, we have

1(Bn)|1(An) = p(A)] < €+ ep(B).
So for 0 < €’ < 1, choose




Then
(T~ (A) N B) = p(A)p(B)| < (T~ (A) N B) = p(An)(By)| + 5¢'.
Since ¢’ and k are independent, we can take k — oo to get
Jim [u(TH(A) N B) — p(A)u(B)| < 5¢’
—00
Now take ¢ — 0 to get the result. O
Recall a set £ C N has density zero if

|[EN[0,n—1

2 I :%ZXE(IC)—)O.
0

Problem 113 (Koopman-von Neumann, Petersen Lemma 6.2). Let f : N — R be a nonnegative
bounded function. Show that

n—1
.1
Jom 2 1) =0

iff there is a subset £ C N of density zero such that

li =0.
w1 ()
Proof. (= ): Assume that
n—1
1
a2 1) =0

Let E = {k € N: f(k) = 0}. We can rewrite this as

n—1 n—1 n—1
0= Tim =" F(k) = Tim S ((Fxe)(B) + (Fxee) (K) = Tim S (Fxue)(k)
k=0 0 0
n—1
> Tim 3 (xee)(B) > 0
0

Thus the set E° has density zero and we see that

lim f(n)=0.

n—oo,n¢ B¢

(<= ): Let E C N be the set of density zero such that we have the property. Then again we
examine

n—1 n—1
.1 .1
Jim kzo f(k) = lim — kZQ((fXE)(k) + (fxee) (k).
Examine the left part first. We have
1 n—1
Jim = (Fxe)(k)
k=0
Fixing n, we have by Cauchy Schwarz that
1 n—1 1 n—1 1 n—1
- > (fxe)(k) < - > F(k)? - > xe(k).
k=0 k=0 k=0



Taking the limit as n — oo of both sides and using the fact that F has density zero, this gives us
that

n—1
1
Jim = (fxE) (k) = 0.
k=0
Thus
1 n—1 1 n—1
Jim > fk) = Jim -~ > flk)xme (k).
k=0 k=0
Now

lim f(n)xe(n) = 0
n—o0
implies for all € > 0 there is an IN so that for n > N we have
f(n)xge(n) <e

Fix € > 0 and N. For n > N + 1 we can rewrite this sum as

n—1

N n
S Fxee () = S Fl)xee (k) + > Fkxee(h)
k=0

k=0 k=N+1

1
n
N

<=3 Fk)xe () +

n
k=0

e(an)‘

n

Taking n — oo of both sides gives us

' 1 n—1 . 1 n—1

0< lim — > fk) = Jim_ ~ > F(k)xEe(k) <
k=0 k=0

The choice of € > 0 was arbitrary, so we let ¢ — 0 and this gives us the result. ]

Problem 114. Assume (X, M,u,T) is a measure preserving system of a probability measure
space. Show that if T x T' is weakly mixing, then so is T'.

Proof. Let A, B € M. Examine A x X, Bx X € M ® M. Since T x T is weakly mixing, we have

n—oo n

n—1
tim — 3 (4® ) (TH(A x X) 1 (X x B)) — (u® ) (A x X) (@ ) (X x B)| = 0.
k=0

Using the fact that these are measurable cylinders, we can rewrite this as

n—1
Jim 3T (4) 0 Bu(TH(X) 0 X) — p(A)p(B)n(X)| = 0
k=0

Since we're assuming that (X, M, ) is a probability measure space, this is equivalent to

n—oo N

n—1
lim © 3" [u(T*(4) N B) — u(A)u(B)| = 0.
k=0

This implies T" is weakly mixing. ([l

Problem 115 (Petersen Theorem 2.6.1). Let (X, M, u,T) be a measure preserving system on a
probability measure space. Show the following are equivalent.
(1) T is weakly mixing.
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(2) For all f,g € L*(u), we have

n—1
Jim ST UFfg) - (1)L g)] =0
k=0

(3) Given A, B € M, there is a set J C N of density zero so that
lim  a(T"(4) N B) = u(A)u(B).
n—oo,n¢J
(4) T x T is weakly mixing.
(5) T x S is ergodic on X x Y for each ergodic system (Y, N, v, S).
(6) T x T is ergodic.

Proof. We note that (1) <= (2) is clear by an earlier problem. We note (5) = (6) is clear.
(1) < (3): Let
f(n) = (T (A) N B) = p(A)u(B)].

Assuming (1), we get
1 n—1
- 203 f(k) =
and by an earlier problem that implies the existence of J with density zero so that

1 = 1l T"(A) N B) — u(A)u(B)| = 0.
Mérgwf( n) WB%J'“( (A) N B) — p(A)u(B)|
Assuming (3), we do the prior argument backwards, again using the an earlier problem.
Note that we have (1) < (2) < (3).
(3) = (4): Consider X x X with measure space M ® M and measure p ® p. We can consider
the cylindrical sets. Take A, B,C, D € M. By (3), there exists a J; and J, of density zero so that
lim —pu(T"(A) N B) = p(A)u(B),

n—oo,n¢Jy
lm  u(T™(C) N D) = u(C)u(D).
n—oo,n¢Jo

Notice that Ji U Jy has density zero, since

|
—

n

0= 3" (k) < = S b () + X (k)] 0
= 0

B
Il

Now consider

Lol (a@ ) (T (A €)1 (B x D)) — (4@ p)(A x O)(u & )(B x D)
)

= lim (T (A) N B(T™(C) N D) — u(A)u(B)u(C)u(D)

n—oo,n¢ J1UJa

= lim - u(T(A) N B)p(T™(C) N D) — u(T"(A) N B)u(C)u(D)

n—oo,né¢ J1UJa
+u(T"(A) N B)u(C)p(D) — p(A)u(B)pu(C)p
<l [u(T(A) A B(T™(C) N D) w(TM(A) N B)u(Cp
(
B)

n—)OO,n¢J1UJ2

+  lim o p(T(A) N B)u(C)p(D) — p(A)p(B)p(C)p

n—oo,n¢J1UJs
—u(T"(A)NB)  lim [u(T™(C)N D) — u(C)u(D)
n—oo n¢J1UJ2
+u(C)u(D)  lim - |u(T™(A) N B) — p(A)u(B)| = 0.
n—oo,n¢ JiUJa
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We thus have (3) for T'x T on the semialgebra J = M x M which generates M ® M. By a density
argument, this tells us that it applies for M ® M.

(4) = (5): Notice that T x T weakly mixing implies T is weakly mixing by the last problem.
Consider an ergodic system (Y, N, v, S). We will show that 7" x S is weakly mixing, which implies
that it is ergodic. Take A, B € M, C, D € N, and consider

n—1

LS (0@ n)(T x (A x C) N (B x D)) — (1@ v)(A x C) (@ v)(B x D)' .

n
k=0

We may rewrite this as

ZM (T*(4) N B)u(S*(C) N D) — M(A)V(C)M(B)V(D)‘ .

We can now add and subtract

L3 U(SHO) N D)(Au(B)
k=0
on the inside to get
n—1
1y Zu (TH(4) A B(SHO) N D) — - 3" w(SH(C) N D)u(A)u(B)
k=0
n—1
% (S(C) N D)u(A)u(B) M(A)V(C)M(B)V(D)‘

We then get an upper bound

n—1 n—1
D)= ST ITHA) 0 B) — w(A(B) + w(Au(B) | S m(sHC —u<c>u<D>\.
k=0 k=0

Taking n — oo of both sides gives us that the first term tends to 0, since T is weakly mixing, and
the second term tends to 0 since S is ergodic. Thus we have it is weakly mixing on the cylinders,
so it is weakly mixing.

(5) = (6): Clear, since weakly mixing implies ergodic.

(6) = (3): Assume T x T is ergodic. Take A, B € M. We examine

LS [urt ) n B) - )
k=0

n—1

> [W(TH(A) 0 B)? = 20(TH(4) N B)u(A)u(B) + p(A)*u(B)?]
k=0

n—1

= LS W@ ) 1 BY? - 2u(A(B) L S w(THA) N B) + (u(A)(B))
- k=0

Now we rewrite this in terms of 7' x T'. We have

n—1 n—1
%Z(u@ﬂ)(Tk(AxA)ﬂ(B><B))—2u %Zu@,u (TF(A x X)N (B x X))
k=0 k=0

+(p @ p)(Ax A)(p® p)(B x B).
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Taking n — oo, we use ergodicity. The above is then equal to

(n@p)(AxA)(p@p) (B x B)=2u(A) u(B) (pep) (Ax X) (n@p) (B x X) +(p@p) (Ax A)(pop) (BX B).

These are cylinders, so we can evaluate this to get

(AP u(B)? = 2u(A)*(B)? + u(A)*u(B)? = 0.

Therefore
n—1
.1 k 2
lim = kz |1(T*(4) N B) = u(A)u(B)| =o.
Define

7(k) = [(T*(A) 1 B) — w(A)u(B)]

By an earlier problem, we get that there is a density zero subset J C N with

im0 = lim (a0 B) - p(Au®)| =0

This forces
lim |p(T"(A) 0 B) = pu(A)u(B)| =0,

n—oo,n¢J
which forces T to be weakly mixing.
Thus we’ve shown (1) <= (2) <= (3) = (4) = (5) = (6) = (3). This gives us all of
the equivalences. O

Recall that a unitary operator U : H — H is said to have continuous spectrum if 1 is the only
eigenvalue and the only eigenfunctions are the constants.

Problem 116. Let (X, M, u,T) be an invertible measure preserving system of a probability mea-
sure space. Let U : L?(u) — L?(u) be the corresponding unitary operator. Show that if A is a
non-trivial eigenvalue of U, then |A\| = 1. Thus all eigenvalues of the unitary operator lie on the
circle.

Proof. Let X\ be an eigenvalue, f an associated eigenfunction. We have

IFIPCF, 1) = UL UF) = U f, ) = N{F, f) = NP
Taking square roots, we have |[A\| = 1 or || f|| = 0. Since A was assumed to be non-trivial, f assumed
to be non-trivial, this gives us the result. O

We now include Walters version of the spectral theorem for unitary operators.

Theorem. Suppose U is a unitary operator on a Hilbert space H. Then for each f € H there
exists a unique finite Borel measure ;1y on K so that

U™, f) = /K Ndpig(A) for all n € Z.

If T is an invertible measure preserving transformation, then Urp is unitary. If T has continuous
spectrum and (f,1) = 0, then py has no atoms.

Let (X, M, u,T) be an ergodic measure-preserving system on a probability measure space. We
say that (X, M, u) has discrete spectrum if there exists an orthonormal basis for L?(;) which
consists of eigenfunctions of T'.

Problem 117. Show that if 7" has discrete spectrum and (X, M, u) is a Lebesgue space, then T
is (measure theoretically) invertible.
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Proof. Consider Ur : L?(u) — L?(u). This is going to be surjective, since every element can be
expressed as a linear combination of eigenfunctions. Since it’s an eigenfunction, we have that
T=1: (M,p) = (M, p) (modulo sets of measure zero) is an automorphism of measure spaces. If it
is a Lebesgue space, we recall this induces a point measure map. O

Problem 118. Let (X, M, u,T) be an ergodic system of a probability measure space. Prove the
following:

(1) X Urpf =MAf, f #0, then |A\| =1 and |f| is constant almost everywhere.

(2) Eigenfunctions corresponding to different eigenvalues are orthogonal.

(3) If f and g are both eigenfunctions corresponding to the eigenvalue A, then f = cg almost
everywhere for some c.

(4) The eigenvalues of T' form a subgroup of the unit circle.

Proof.
(1) Assume f # 0 and
Urf =M\f.
By definition,

\UrfI3 = / f o T|2dn.

Do the change of variables formula and use the fact that 7" is measure preserving to get

Unf1g = [ 1#Pdo ) = [ 15Pdu= 1515,
Thus we have ||f|l2 = [|Urf|l2 = [[Afll2 = |Al|| f|l2- Subtracting from both sides, we see

(L= [ADIFll2 = 0.
This implies either |A| =1 or || f|l2 = 0. By assumption f # 0, so this forces |\| = 1.
To see | f| is constant almost everywhere, notice
[floT =[foT|=[ANf]=Afl=Ifl
Thus | f| is T-invariant. Since T is ergodic, this forces |f| to be constant almost everywhere.
(2) Suppose Urf = A1 f, Urg = A2g, A1 # 2. Recalling that Ur is an isometry, we have

<f)g> = <UTf7 UTg> = >‘1)\72<f7 g>

Notice this forces either (f,g) = 0 or Ay = 1. Since |A\z| = 1, notice that AgAs = 1 so
that Ao = Ay 1 Thus the second condition can be rewritten as A1 = Ag. Since we assumed
A1 # Mg, this forces (f, g) = 0. This gives us orthogonality.

(3) Without loss of generality, g # 0. Notice f/g is T-invariant, since

Ur(f/g9) = Ur(f)/Ur(g) = Af/(Ag) = f/g.

Thus f/g is constant almost everywhere.
(4) Let o(T) denote the eigenvalues. We've seen that if A € o(T), then A~! € o(T). If f, g are
eigenfunctions for A1, Ao, then

Ur(fg) = Ur(f)Ur(g) = MA2fg.
So A1A2 € o(T). This concludes that it’s a subgroup.
O

Let (X1, My, u1,Th), (Xa, Mo, p2,T2) be two systems. We say T and T, are spectrally iso-
morphic if there exists a W : L2(ug) — L?(u1) so that
(1) W is invertible,
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(2) (Wf,Wg) = (f,g) for all f,g € L*(ua),
(3) UpW = WUp,.

Problem 119. Show that if o(7}) and o(7%) denote the set of eigenvalues for 77 and T, and T}
and Ty are spectrally isomorphic, then o(T7) = o(1%).

Proof. Let A € o(Ty). There is some f € L?(u1) so that Up, (f) = Af, f # 0. Since W invertible,
there is some f € L?(uz) so that W(f) = f (in L?). Notice that

o~ ~

Af = UT1(f) = UT1W(f) = WUT2(f>'
Applying W~ to both sides yields

AW L) = Af = Ur,().

Notice as well

IF13 = (F, ) = WD), W() =, 1) = I/1I5,
so f # 0 almost everywhere. Thus A\ € o(T). If A € o(T3), there is some g non-zero so that
Ur,(9) = A\g. Consider g = W(g). This is non-zero (again using the isometry condition) and we
see that

Ur, (9)Un, W (g) = WUr,(9) = AW (g9) = Ag.
Thus A € o(T7). This gives equality. O
Problem 120. Let (X, M, i) be a probability space, h € L?(u). Show the following are equivalent.

(1) We have h is bounded.
(2) We have h - f € L?(u) for all f € L?(u).

Proof. (1) = (2): If h is bounded, then h € L>(u) N L?(u1) so that
Ihf13 = / [hfPdp < / IhlloolfPdp = IRl £ll2 < 0.

(2) = (1): Consider
Xp={reX:n—1<|h| <n} n > 1.

Then
X=||x.
n=1
Write
M
F= i (X)) xx, (2)
=1

Notice that we have

18 = [ 1P <y i < o
=1

Let F' = {i: pu(X;) # 0}. Then

N
sl = [nstan= 30 ()

1EF
Thus F' must be finite, so h is bounded. [l

Recall this fact from algebra (a sort of Baer’s criterion argument, see Problem 26 in my notes).
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Theorem (Walters, Lemma 3.3). Let H be a discrete abelian group and K a divisible subgroup
of H. Then there exists a homomorphism ¢ : H — K such that ¢|x = Idg.

Theorem. Let T} be an ergodic measure preserving transformation of a probability space (X;, B;, m;)
and suppose T; has discrete spectrum for ¢ = 1,2. Then the following are equivalent:

(1) Ty and T3 are spectrally isomorphic.

(2) Ty and T3 have the same eigenvalues.

(3) Ty and T; are conjugate.

Let (X, M,pu,T) and (Y, N,v,S) be measure preserving transformations of probability measure
spaces. We say that T' is isomorphic to S if there exists M € M and N € N with u(M) =1 and
v(N) =1 so that

(1) T(M) C M, S(N) C N (in other words M is T-invariant and N is S-invariant),
(2) there is an invertible measure-preserving transformation
¢ : M — N with ¢T'(z) = Se(x) for all z € M.
Write this as T' = S.

Problem 121. Prove that isomorphism is an equivalence relation.

Proof. There are three properties to check.
(1) We see that 7' = T by just taking M = X, N = X, and ¢ the identity.
(2) f T =S, then S =T by taking ¢ = 1.
(3) This is the more interesting thing to check. Suppose T'> S and S = (). Write the systems
as (X, M, u, T), (Y,N,v,S), and (Z,B,p,Q). Since T = S, we have that there exists a T-
invariant set M and an S-invariant set IV, both of full measure, so that there is an invertible
measure-preserving transformation

@: M — N with ¢T = Sy on M.

Since S = @), we have that there is an S-invariant set of full measure K and a @)-invariant
set of full measure O so that there is an invertible measure-preserving transformation

¥ K — O with ¢S = Q¢ on K.
Consider K N N. Notice that
V(KNN)=1-v(K°UN) >1— (v(K°)+v(N°)) =1,

so this is still a set of full measure. If we take M N 1(K N N), this is still a set of full
measure by the same argument, and ¢ restricted to this set is going to be an invertible
measure-preserving transformation. Consider O N (K N N). The same argument says this
is a set of full measure. Thus if we relabel K N N as N, relabel M N~} (K N N) as M,
and relabel ONyY(K N N) as O, and relabel the transformations restricted to these sets, we
have ¢ : M — N is an invertible measure preserving transformation so that ¢T° = Sp on M
and ¥ : N — O is an invertible measure preserving transformation so that ¥.S = Qv on N.
Thus kK =¥ o : M — O is measure preserving (as the composition of measure preserving
transformations is measure preserving) and invertible, and moreover on M we have

KT = (o)l =1oSop=0Q(oyp)=Qk.
This gives an isomorphism. Thus T' = Q).
O

Problem 122. Show that if 7" and S in the above definition are invertible, then we can take M
and N so that TM = M and SN = N.
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Proof. If T is invertible, then u(T(M)) = (M) = 1 and u(T~1(M)) = u(M) = 1. The intersection
of countably many sets of full measure has full measure, so consider

[e.e]

M = ﬂ T"M.

Since T invertible, T'(M') = M’. Notice the same trick applies for S. Moreover, these sets work
for isomorphisms. 0

A partition of a space (X, M,pu) is a disjoint collection of elements in M whose union is
X. We will mostly be focused on finite partitions, denoted with a Greek letter (for example,

£=1{Ar,... A}

Problem 123. Let (X, M, i) be a measure space and let £ = {A1,..., A, } be a partition. Consider
the collection A(§) which consists of all unions of elements of £. Show this is a sub-o-algebra.

Proof. We need to show three things.
(1) We see that X € A(E), since J; A, = X € A(¢).
(2) Let {C;} € A(§). Then |, C; € A(), since a union of Cj is just a union of A;.
(3) Let C € A(). Then by definition C' is a union of A;. After relabeling, we can assume that
C is a union of the first k. That is,

Now

k n
Cc=X\C=X\ (UA,) = 4.
i=1 i=k+1
To see this last equality, let z € X \ (Uil-“:1 Ai). Since X = [JI"; A;, we see that this
forces = € (JiL;, | Ai, so it is a subset. The other direction is clear; € J;_;,; A; implies
x ¢ UleAi and z € X.
]

Problem 124. Assume that C is a finite sub-o-algebra of M. Then C = {C; : i =1,...,n}. Let
B; be of the form C; or C{. Then show that the non-empty sets of the form By N---N B,, form a
finite partition of (X, M, u). Denote this partition by £(C).

Proof. We need to show that they are disjoint and that they union to the whole set. One can write
Bin---NB, = Bi1'-~in7

where i; € {0,1} is 1 if B; = C; and is 0 if B; = Cf. Then if iy ---i, # ji -+ jn, there is some
ke {1,...,n} so that iy # ji. Without loss of generality, assume that i = 1 and jr = 0. Then we
see that
Bi, .., N le“'jn cCCpnN C;g =,
so these sets are disjoint.
We have that | J;; C; = X, since C is a sub-o-algebra. So z € X implies « € C; for some 4. But
unioning over B;,...;,,, we get C; C Bi, ...i, , so we must have X = Bi, .., O

Problem 125. Deduce there is a one-to-one correspondence between finite sub-o-algebras and
finite partitions.
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Proof. Let C ={C;:i=1,...,n}. We see that {(C) is going to be
g(C) = {Bhln Ty, ln € {0, 1}} .
Now we see that we can get C} by fixing i, = 1 and union over all of the other elements varying.

Thus C € A(&(C)) for k=1,...,n, and we see that C = {C1,...,C,} C A(&(C)). Since £(C) CC,
we get equality here by minimality. So A({(C)) = C. The other direction is similar. O

Consider the space of finite partitions, call it I'.” We can introduce a partial ordering on I,
denoted <, by saying & < 5 if each element if € is a union of elements of . We call n a refinement
of €.

Problem 126. Show
§<n = A(§) € An)
Proof. ( = ): Notice & < n if every element of £ is a union of elements from 7. Since A(¢) is a

union of elements from ¢, this implies that A(£) C A(n).
( <= ): Same kind of idea. O

The same kind of idea shows that A C C iff {(A) < n(C). Essentially what we’ve done is induced
a partial ordering via the one-to-one correspondence.
Let £ = {A;,...,A,} and n = {C1,...,Ck} be two finite partitions of (X, M, ). Their join is
the partition
Evn={A4,NC;:1<i<n,1<j<k}
Similarly the join of A and C, which are two finite sub-o-algebras, is the smallest sub-o-algebra of
M containing A and C.

Problem 127.

(1) Show that AV C is a finite sub-o-algebra. Deduce that the space of finite sub-o-algebras
are closed under the join operation.
(2) Show that

A€V ) = A©) V A(1).
(3) Show that
§(AVC) =¢(A) VECQ).
Proof.
(1) Let = AV C. This is the smallest sub-c-algebra containing A and C. Let
B={ANnC:AcACeC(},
then o(B), which is the union of all elements in B, is a finite sub-c-algebra. Notice that
A C o(B), C C o(B), so N C o(B) by minimality. Finally if K € o(B), then it can be
written as
K=|JAanc;
]
If 7 is any o algebra containing A and C, then we see that we must have K € 7 (since 7
contains {4;} and {C};}) implying that K € N. Thus N' = ¢(B), and AV C is a finite
sub-c-algebra.
(2) We can view A(§) =o({A;:1<i<n}), A(n) =c({C;:1<j<k}) by (1). By definition
f\/T]:{AiﬁCjilﬁiSn,l S]Sk}
Thus
A(f\/’n) :a({AiﬂC’j 1 <i<n, 1<y Sk})



So this is unions of elements of this form. Meanwhile A(§) V A(n) is the smallest sub-
o-algebra containing A(§) and A(n). Again by (1) this is a finite sub-o-algebra, and we
explicitly calculated in (1) that it will be A(E V 7).
(3) Write A = {A4,...,A,}, C = {C1,...,Ck}, where elements in A are really unions of A;
and same for C. We can write
E(A) ={Bij,..i,, 115 € {0,1} for 1 < j < n}.
Similarly
E(C) ={Kj .., : js €{0,1} for 1 < s < k}.
We have an explicit calculation for AV C from (1) which says it looks like unions of elements
of the form A; N C;. Notice that
E(AVC) ={T}, injrjy  Bs,Jr € {0,1} for 1 < s <mn,1 <r <k},
where nl"'injl“'jk = Bllln N Kjl'“jk‘ Notice that

E(A) VE(C) ={Biy i, N Kjyji } = {Ti1 s }-
Thus these sets are the same.
O

Problem 128. Let £ = {A;,...,A,,} be a partition of (X, M, u,T) a (invertible) measure pre-
serving system of a probability measure space (so the partition is of the space). Show that T—1(¢)
is a partition of X.

Proof. We note T~*(X) = X, so

O T1A) =171 (Lnj Ai> = X.
=1 =1

Moreover these {T~1(A;)} are disjoint. Thus it is a partition. O

If C and D are sub-c-algebras of M, we write C ¢ D if for every C € C there is a D € D with
w(DAC) = 0. If € and 5 are finite partitions, then ¢ = 5 means A(£) = A(7).

Suppose C and D are finite and C = D. Then if we can write £(C) = {C1,...,Cp, Cpr1,-..,Cy}
where p(C;) > 0 for 1 < ¢ < p and u(C;) = 0 for p < ¢ < ¢, we are then able to write {(D) =
{D1,...,Dp,Dp41,...,Ds} with p(C;AD;) =0for 1 <i<pand pu(D;) =0forp+1<i<s.

Recall the Radon-Nikodym theorem. If y and v are two measures on the same space (X, M),
we say pu < v if for every E € M with v(E) = 0 we have p(E) = 0. We say p L v if there exists
E € M with p(F) =0 and v(E€) = 0.

Theorem (Radon-Nikodym Theorem). Let u, v be two probability measures on the space (X, M).
Then p < v iff there exists f € L'(v) with f > 0 and [ fdv = 1 so that u(B) = [ fdv for all
B € M. The function f is unique almost everywhere.

Theorem (Lebesgue Decomposition Theorem). Let p and v be two probability measures on
(X, M). There exists p € [0,1] and probability measures 1,2 so that u = pui + (1 — p)us
and pu; < v, po L v. The number p and the measures u1, po are uniquely determined.

We use these theorems to define conditional expectation. Let (X, M, 1) be a measure space and
C a sub-o-algebra of M. The goal is to define the operator E(:|C) : L*(X, M, u) — LY(X,C, pn). If
fe LM (X, M,p)NLH(X, M, ), then pus(E) =a™! [, fdu (where a = [ fdu) defines a probability
measure ¢ on (X,C, ) with pp < p.

Problem 129. Prove this fact. That is, prove that u; defines a probability measure so that

pf <K e
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Proof. To be a measure it needs to satisfy two conditions. These conditions are satisfied trivially by
the definition of integrals, though. To see it’s a probability measure, we have p(X) = a ! | < fdp =
aa~! = 1. The second condition also follows trivially by how we define integration; u(FE) = 0 implies

J5 fdu=0. O

So by Radon-Nikodym there is a function g € L' (X,C, ut) so that us(E) = J5 gdp. Thus define
E(f|C) = g. By uniqueness, this operator is well-defined. Note that

/Efduz /Egdu: /EE(f|C)dM for C € C.

Problem 130. Show that E(-|C) is additive on the positive function and E(cf|C) = cE(f|C) for
c>0.

Proof. Notice that
preol ) = [ (7 +9)d = s () + g ()

for all E. Thus jiyy4 = jiy + pig. By this relation, we have

/ (B(fIC) + E(g[C))dp = / E(f + gIC)dp.
E E

Since these are positive functions and this equality holds for all E € C, we get that they are almost
everywhere the same. Thus E(f|C) + E(g|C) = E(f + g|C). The scaling property follows by the
same argument. [l

For arbitrary f, write f = f* — f~ and define E(f|C) = E(f"|C) — E(f~|C). Similarly works
for complex valued functions. This gives us that E(:|C) is an operator.

Problem 131. Prove the remaining properties.
(1) If f € LY(X, M, n) and g is C-measurable and bounded, then

E(fg]C) = gE(fIC).
(2) Show
[E(fIC)] < E(|£1C).
(3) Show that if Co C Cy, then
E(E(f|C1)|C2) = E(f|C2)
for f € LY (X, M, ).

Proof.
(1) Notice that for all K € C we have

| Btsic = [ san

Fixing K € C and taking £ € M arbitrary we get that

/EE(fC)XKdMZ/EfXKdu-

Thus we have E(f|C)xx = fxx almost everywhere for every K € C. Thus

[ BtgiCdn= [ sodn= [ fxwadn= [ E(rirdn
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This holds for every K € C. Finally notice that since g is C measurable we have that the
support of g is in C, so taking arbitrary K € M we can use the above equality to get

| Baicn= [ E(riegdn
K K
Thus E(fg|C) = E(f|C)g almost everywhere.
(2) Taking f = fT — f~, we see that E(f|C) = E(f*|C) — E(f~|C), so
[E(fIO)l = |E(fTIC) = E(f[0)] < BE(fT|C) + E(f~|C) = E(|f]IC)-
(3) We see that E(E(f|C1)|C2) is the unique function in Cs so that for every K € Ca we have

[ Beeieydn = [ Buievd= [ fin= [ Eicoin

Since the support of E(f|C2) and E(E(f|C1)|C2) lies in Ca, we get that this holds for all K
measurable, so these things are equal almost everywhere (and thus equal). The choice of
f € LY(X, M, 1) was arbitrary.

O

The goal is to capture the amount of randomness or uncertainty a transformation 7' generates on
a probability measure space (X, M, ). This will be some quantitative value h(7") which represents
the entropy of the transformation. We want h(7") to have two properties:

(1) The amount of information gained by an application of 7" is proportional to the amount of
uncertainty removed.
(2) We have h(T') is an isomorphism invariant.

Let a be a partition of our space X. We define the entropy of the partition by

H(a) == p(As) log(u(A)).
=1

Problem 132. Let
—tlog(t) if 0 <t <1
t p—
1) {0 ift =0.

Show that f is continuous, nonnegative, and concave downward. Moreover, show that for A1, ..., Ay,

we have
1 Z” 1 Z”
n i=1 =1 (n i=1 Ai) ‘

Proof. Continuity follows if we can show that lim; .o+ f(¢) = 0. Notice that
. . . log(t)
1 t) = lim —tlog(t) = lim — .
Jim f() = Jim —tlog(t) = lim ==

We apply L’Hospital to get that this is 0, as desired. For nonnegative, we have that log(¢) < 0 for
0<t<1,s0—tlog(t) >0 for 0 <t <1. Concave downward follows from taking derivatives. Use
definitions for the moreover part (see here). O

Problem 133.
(1) Show that
0 < H(a) < .
(2) Establish H(«) < log(n), where o = {Aj, ..., A, }. Thus we really have 0 < H(a) < log(n).

Proof.
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(1) Notice that 0 < u(A;) < 1, so log(u(A;)) < 0 (modulo the case p(A;) = 0, to be addressed),
hence —log(u(A;)) > 0, and —pu(A4;)log(uu(A;)) > 0. In the case u(A;) = 0, we have by
convention —u(A;)log(u(A;)) = 0. This shows that H(a) > 0. Wlog, assume pu(4;) > 0
(just throw out the 0 ones since they won’t help with an upper bound). Let A; be such
that p(A;) < p(A;) for all i. Then

H(a) < —nlog(u(4;)) < .

(2) We can improve the bound in (1). Let A\; = pu(A;). Let f(t) = —tlog(t). Then

IR (ZA) F(1/m) =~ log(n).
=1
]

We define the information content of a set to be I(A) = —log(u(A)). The information function
of a (countable even) measurable partition « is given by

I{a)(z) = > I(A)xal(x).
Aca
Problem 134. Show that

/I(a)du = H(a).
Proof. We see

n

E(I(a)) = / a)dp =Y —log(u /XA dp =" —log(p(A:))u(Ai) = H(a).

=1 =1

Let a, 8 be two partitions of (X, u). Define the conditional entropy of « given j by

H(alf) = ZZI< ))>M(AHB)

Aca Bep

using the convention 0log(0) = 0. This is interpreted as the average uncertainty about which
element of the partition a the point x will enter if we already know which element of 5 the point
will enter.

A useful trick will be Jensen’s inequality.

Problem 135 (Jensen’s Inequality). Suppose ¢ : (X, M, u) — R is integrable, (X, M, u) a proba-
bility measure space, and ¢ is a convex function on the real line. Show

©(E(g|lF)) < E(p(g9)|F).

Deduce from this the usual Jensen’s inequality

w(/ gdu)é/@ogdu-
X X

Proof. Since ¢ is convex, we get that

p(x) = sup h().
h<e
h is linear
Notice that if E(p(g)|F) = oo, then the result clearly follows, so assume it is finite. Then for h < ¢
linear we have
E(e(9)|F) =z E(h(g)|F) = h(E(g|F)).
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Notice this was arbitrary, so

E(p(9)|F) = sup h(E(g|F)) = ¢(E(g|F)).
h is linear

Now let F = {&, X} be the trivial o-algebra. Then F(g|F) defined on this must be a constant

function (say C), and we have
/ E(g|F)(x)du(z) = C = / gdp.

So E(g|F)(x) = [y gdu. Applying what we have, this tells us that
E(p(9)lF) = /X p(g)dp = o(E(glF)) = ¢ </X gdu) :

Problem 136. Prove the following for «, 3, ~ partitions of X.

(1) H(T™Y(a)) = H(a).

H(
(2) H(aV p) = H(a)+ H(S|a).
(3) H(Bla) < H(f).
(4) H(aV p) < H(a) + H().
(5) If a < B (i.e. a refinement) then H(a) < H(f).

Proof.
(1) We see that

H(T ZM ) log(u(T~(A:)) = = > p(Ai) log(u(As)) = H(a)
since T is measure preserving.
(2) Let a« = {Ay,...,An}, B={DBi1,...,Br}. Then
aVp={ANB;j:1<i<n,1<j<k}.
Notice

i=n,j=k n k
H(aVp)=— Y (AN B))log(u(AiNB))=> ( > (A N B;)log(u(Ai N B;))

i,j=1 i=1 J=1

n k
- Z ( Z“(Ai N Bj)[log(p(Ai N By)) — log(u(A;)) + log(u(Ai))]
i=1

=1

_ §:; (jfjlumi 85 [tog (M) o)

n k n k
:—ZZM(AiﬂBj)log< (AﬂB > D " u(Ai N Bj) log(u(A;))
i=1 j=1 i=1 j=1
n k
——ZZM(AimBj)IOg< (Aﬁ)B])> ZM ) log(A
i=1 j=1 Ai

= H(alﬁ) + H(a).
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(3) Define f(t) = —tlog(t). We see that

H(Bla) = =3 > n(Ain B;)log

(4) Combine (2) and (3) to get
H(aVv p) = H(a) + H(B|a) < H(o) + H(B).
(5) If a is a refinement, then elements of o are unions of elements in g, so a vV § = . Thus
H(aV )= H(B) = H(a)+ H(B|a).
Thus
H(a) < H(B).
O

We define the conditional information function of a countable partition « given a sub-o-
algebra F C M to be
I(a]F)(x) = = ) log(p(A|F)(x))xa(2),
Aca
where
u(A[F) = E(xalF)

is a function.
Note that if a a partition and F a o-algebra, we write a V F to mean o(«) V F; i.e. it is the join
of the o-algebra generated by « and the o-algebra F.

Problem 137. Show that

(AN B|F)
p(BlaVv F) = E il A\]—"’ XA-
Aca

Of course this is almost everywhere.

Proof. Take AN F, A’ € o(a) and F € F. Notice that

/ M(B\a\/f)duz/ E(XBlan)dﬂz/ XBdM:/XA’deH-
A'NF A'NF A'NF F

Notice that this is equivalent to

A'NB|F
[ xaewin= [ BocunslFyin = [ w0 BEm = [ Bl P ELE g,
F F F F 1(A’|F)
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This last equality comes from simply multiplying and dividing (note that E(xa/|F) = u(A’|F)).
We now wish to claim that

u(A' 0 BIF) u(A' N BIF)
E(xa|lF)————=—du= | E|xa——————|F ) dpu.
J oo . W(ATF)
This, however, follows by one of the earlier problems involving conditional expectation. Thus
w(A"' N B|F) ( w(A" N B|F) w(A" N B|F)
E(x dMZ/E XA ——— = | F dMZ/XA'dM-
/ n(A'F) F n(A'F) F u(A'F)
Now recall that all of the A € « are disjoint, so
,u(A’ﬂB|.7-" / w(AN B|F)
XA — 7 xAdp.
/F u(A’|F) A'NF Z 1(A[F)
Since this holds for all A’ N F € a vV F we have the result. O
Problem 138. Prove the following.
(1) IV p) = I(a) + I(alf).
(2) I(aV B|F) =I1I(c|F) + I(Bla vV F).
Proof.
(1) This will follow from (2) using F = {&, X}. To see this, notice that
IaVvplF)=— > log(u(Ain Bj|F)(@)) xans,(@).

AimBjeaVﬁ
Recall that for the trivial o-algebra we have
n(Ai 0 Bj|F) () = n(Ai N By),

SO

IaVvplF)=— >  log(u(AinB;j)xans,(z) =I(aVp).

A;NBj€avp
The same kind of argument applies to the other two functions. Thus, assuming (2) we have

(1).

(2) Note that since the A are disjoint in @ we can move the sum in and out of the log. Thus

I(Blav F) == log(u(BlaV F))xs(z)

Beg
pu( A N B|]:
Bepg
ZZI < AQB’]:))XX
== T AXB
Bep Aca A|f)
=" 3 llog (u(A N BIF)) — log(u(A|F))xaxE
Bep Aca
= — > log (u(AN BIF)) xans + Y log(u(AlF))xa
A€o A€o
Bep

=I(aV B|F) - I(a|F).
This gives the result.
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The conditional entropy of a given F is defined by
H(olF) = [ HalF)@)du(o).

Problem 139. Prove the following.
(1) HaV p|F)=H(a)+ H(BlaV F).
(2) If 5 C Fi, then H(a|F1) < H(a|F2).
Hint: Jensen’s inequality.
(3) p(T~H (AT~ (F))(x) = u(AlF)(Tx).
(4) H(T™H(a)|TH(F)) = H(a|F).

Proof.

(1) Integrate (2) from the last problem.
(2) Let f = —tlog(t). Then

E(f o p(A|F1)|F2) < f o E(u(A|F1)|F2) = f o E(A|F2) = f o u(A|lF).
Integrate both sides of the inequality to get
[ B¢ onaim)F)dn < [ 1o p(AIF)dn
Notice that over all F' € F», we have that the left hand side is such that

[ B o wAFF = [ o utaim)dn
F F

Thus integrating over F' € F, we have

/ f o w(A|Fr)dp < / f o p(A|F2)dp.
F F

Writing out the definition grants us

/ —log(u(AlF))u(AF)dp < / ~log(u(AF2)) (Al Fa)dp.
a '

Since F» a g-algebra, we have in particular

/ —log(u(AlF ) (Al Fr)dp < / — log(u(A|F2)) (Al F2)dp.
X X

Now sum over all A € « to get
H(Oé|]:1) < H(Oz|.7'—2)
(3) Notice
(T HA)THF) (@) = Blxr—1(a) [T~ H(F)) ().
Integrate over F' € T—1(F) to get

/F Bz | T (F)) @) du(x) = /F xr-1()(@)dp(x) = /F xA(Tz)du(z).

Notice that for K € F we have (using the fact 7' measure preserving)

[ BealP@duta) = [ xa@ine) = [ xa(Ta)duta).

“HK)

Choosing T~1(K) = F gives us the desired result.
(4) Use (3).
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Two partitions o and 3 are independent if (AN B) = u(A)u(B) for all A € a, B € 5. We
denote it by o L 3.
For a measure v on (X, M) and a partition « define

H(v,a) = =) log(v(A))v(A).
Aca
Problem 140.

(1) Show that H (-, «) is concave.
(2) Show that it is strictly concave.

Proof. We need to show that for 0 < v < 1 and u, v probability measures we have
H(yp+ (1 =7v,a) =2 vH(p, o) + (1 = 7)H(v, ).

This, however, follows from a simple calculation:

H(yp+ (1 =y)v,a) =Y f(yp(A) + (1 - y)r(A))

A€o
> (1 ((A) + (1 =) f(v(A) = vH (i, @) + (1 = 7)H (v, ).
Aca
Since f is strictly concave, we have equality iff 4 = v on «. O

Problem 141. Show that H(«|F) = 0 iff a C F (up to sets of measure 0). Conclude H(«|5) =0
iff a <p.

Proof. (= ): Assume H(«|F) = 0. This is saying
S [~ tog(u(A1F) xadn =0,

Aca

Since this is a sum of positive things, each component must be 0. Since they are disjoint, we have

- [ oA ) xadu = 0.
Again, the integral of a positive function is 0, so this implies (almost everywhere) that
—log(u(A[F))u(AlF) = 0.

This implies either u(A|F) = 0 or 1 for all z € X, so it is a characteristic function. Since
w(A|F) = E(xa|F), this implies that for some F' € F we have u(A|F) = xr. Finally, integrating
over this characteristic function, we have

W(F) = /F WAIF)dp = (AN F),

so A C F. On the other hand,

u(F) = [ n(AIF)dn = u(A),

so A= F (up to a set of measure zero). This holds for all A € a, so a C F.

(<): If a C F, then pu(A|F) = xa almost everywhere (by almost the same argument as above),
which gives the result.

If H(a|8) =0, then oo C o(8) by the above, but this then forces av < 3, since elements in «a can be
written as unions of elements in 3. Vice versa is the same. ]

Problem 142. Show that H(a|8) = H(a) iff o L .
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Throughout, define

This is the conditional probability measure.
Proof. (= ): We see

H(al8) = H(u,al8) = 3~ u(B)H (g, )

Bep
<H| Y wBus | =H(pa)=H).
Bep

By strict concavity, equality only occurs when we have

p(ANB;)  p(AN By)

wBi)  (Br)
for all B;, By, € 8. Thus
= > uwANB).
Bep
Fix B; wlog. Notice u(ANB) = % for all B € 3, so
Zu AﬂBl)_u(AﬂBﬁ
2 By H(BY)

Thus p(A)pu(B1) = p(ANBy). Notice that the choices By and A were arbitrary, so in fact p(ANB) =
uw(A)u(B) for all B € f and A € o. This give a L .
(<= ): Take F = {@, X }. By an earlier problem, we see that

1(AlB) = p(A[BV F) = p(A|lF) = p(A).
Thus

H(alg) =~ 3 [ tosu(Alm)adi = = 3 [ log(u(a)xadu = H(e).

Aca A€a

For a measure preserving transformation 7" and a partition « define

ha,T) = Tim ~H(a VT a)V---vT " (a)).

n—oo n

The heuristic for this is that it measures the entropy of the transformation 7" with respect to the
partition «. In other words, it measures the average uncertainty per time on which element of «
the point z will enter under 1" given it’s history. An important question is whether this exists.

Problem 143. For each countable partition o, h(a,T') exists (it may be 00).
Proof. The gist is to apply [Problem 15. To do so, we define

H,=H@aVT Y a)V---vI " (a)).
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The claim is that this is an increasing, subadditive sequence of non-negative real numbers. By
earlier problems, we get H,, is increasing and non-negative. Thus we just need to show subadditivity.
However, we see

Hpypm=H@VT Y a) V- VT " Ha) VT (@) V--- VT ™ ()
<H@VT YHa)V---vT" () + HT ™)V - VT " (q))
=HaVvT Y a)V---vT " o))+ H(aV---vVT ™ () = H, + Hp,.
Thus we have subadditivity. We can then apply the result O

Let (X, M, ) be a probability measure space. Let F; C Fy C --- be an increasing sequence
of sub-o-algebras of F. A sequence X1, ... of functions in L'(u) such that X,, is measurable with
respect to F,, for n =1,2,... is called

(1) a submartingale if F(X,,11|F,) > X, a..,
(2) a martingale if E(X,+1|F,) = X, a.e.,
(3) a supermartingale if E(X,;1|F,) < X, a.e.

Theorem (Doob’s Martingale Convergence Theorem). If {X,,} is an L' submartingale which is
bounded in the sense of sup,, E(|X,|) < oo, then it converges a.e.

Problem 144. Let M; C My C --- be a sequence of sub-o-algebras on M, and let \/;2, M; =
M. If a is a finite partition, then

nl;rgo H(a|M,;,) = H(a|M).
Proof. Fix A € « arbitrary. Our submartingale will be the family {X,, = u(A|M,)}. Notice
E(Xn+1lMn) = E(u(A|Mp11)[Mn) = E(E(xa|Mnt1)|My) = E(xa|My) = p(AIM,) = X,

So this is actually a submartingale (in fact, a martingale). We see that
E(X) = EGAIM) = [ w(AM) @) = [ xadi = ()
Thus it is bounded. By Doob, it converges almost everywhere. Moreover we see
p(AIM,) = u(AlMoo) ae.

Now f(t) = —tlog(t) is a bounded continuous function, so

f(u(AIMy)) = f(u(AlMoo)).
Use the bounded convergence theorem to get
[ Hoaimadn = [ AiM)dn.

Sum over all A € «a to get the result. O

Problem 145. Assume « is a finite partition. Show that
1 n—1 n
= 1 — —k e 1 —k frmd
ha,T) := nh_{glo nH (;/_()T (a)) nh_)rroloH (a \/ T (a)) H (a

k=1
Proof. Let 8 =\/}_; T *(a). Recall that
H(a|f) = H(aV ) — H(B).
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Using the definition of 3, we have

H <a \"/ Tk(a)> =H <\"/ Tk(a)> - H <\"/ Tk(a)> .
k=1 k=0 k=1

If we sum over n we have a telescoping series. Thus

HZ: ( Y ) =i <iT‘k(a)> — H(a).

From earlier problems, we know that H (a‘ Vi, T _k(a)) is nonnegative and decreasing, so its

limit exists as n — oo. Thus the Cesaro averages converge to the same point. This gives us

}LI&HZH< <>):j£%oﬂ<a\/T’“<a>)-

k=1
1
im H —k = lim ——H Tk = h(a,T).
L (a a>> fm (V ) (1)

Finally the last equality follows from the previous problem. ]
Problem 146 (Petersen 5.2.1). Show that oo < 8 implies I(«|F) < I(B|F).

Moreover,

Proof. Like before, notice o < 8 implies a V 8 = 3, so
I(B|F) = I(a|F) + I(Bla V F).
Since I > 0, this gives us the result. O
Problem 147. For any countable measurable partitions o and 3, show
h(B,T) < h(a,T) + H(B|c).
Proof. Write

m—1 n—1
T=VIE),  eagt= Tt
k=0 k=0

Notice
HBVTH(B)|ag™) = HB) + HT ' (B)BVag ™).
We have
H(B) < H(Blag™"),
and
H(T' BBV ag™) < HTH(B)|ag ™),

H(B3lag ™) < H(Blag™) + H(TH(B)lag ™).
An induction argument establishes

n—1
H(By og™) <Y HT*(B)ag™).
k=0

Since T %(a) < 048_1 for 0 <k <n—1, we have

n—1
H(By g™ <Y HTHB)T () = nH(B|o).
k=0
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Finally 53—1 < ag_l, SO
H(By™) < H(By™ ' Vag™) = H(ag™) + H(B g ™) < H(ag ™) +nH(Bla).
Dividing by n and taking the limit gives the result. O

We call a finite partition o a generator with respect to 7" in the case that %, = M (i.e. the
countable join generates the o-algebra.

Problem 148 (Kolmogorov-Sinai). Show that if « is a generator with respect to 7', then
h(T) = h(a,T).

Proof. Let 8 be a finite partition. It suffices (by earlier arguments) to show that h(5,7T) < h(a,T)
for all possible 5. Notice that

hB,T) < h(a”,,T) + H(Bla”,) < h(e,T) + H(Bla™,).

Notice g < a®, so
lim H(Gla™,) = H(BlaZ) = 0.
n—oo

Taking the limit as » — oo in the first inequality gives the result. ([l

Problem 149. Consider the Bernoulli scheme B(pi,...,p,) on the alphabet A = {ai,...,a,}.
Let

Ai={z=(...,2_1,20,21,...) : To = a; }, i=1,....n
be the time-zero cylinder sets.

(1) Show that o = {4;}_; forms a measurable partition.
(2) Show that « is a generator.
(3) Calculate the entropy.

Proof.

(1) These sets are measurable by construction. Take z € A%. Define []p : A — A by
[z]; = xj, where x = (...,2_1,%0,21,...). Then [z]p = a; for some i, so x € A;. Now
AiNA; ={z: [z]o = ai,[z]o = aj}. Fori # j, we have that this must be empty, so a
indeed partitions the space.

(2) Define o : AZ — A” by o(x) = y, with y; = ;11 (i.e. the right shift). Examine
V>, M(c7™(a)). Notice that this is a o-algebra containing every measurable cylinder,
so this is the entire o-algebra. Therefore « is a generator.

(3) By Kolmogorov-Sinai, it suffices to examine the entropy of a generator. Thus we need to
calculate

1 n—1 .
h(a,0) = lim —H \/ o7 (a)

n—oo M .
Jj=0

Notice elements in \/?:_& oI (a) are of the form

A, No YA, NN YA ={zc AL : [z]o = aiy, ..., [z]n = ai, }.

We claim oV o~1(a) are independent. This is clear by the observation above and the fact
that the measure is the product measure. Hence by an induction argument we see that
\/;L;O1 o077 () are independent. By Petersen 5.2.9 and Petersen 5.2.3’ this implies that

n—1 n—1 n—1
H(\ o) |=> H(o7(a) =) H(a)=nH().
j=0 =0 7=0



Therefore
h(o) = h(a,0) = H(a) = = > pilogy(p:).
i=1
O

Problem 150 (Petersen 5.3.4). Show that for any = > 0 there is a Bernoulli shift of entropy r.

Proof. Fix r > 0. The goal is to find a vector (p1,...,p,) and n so that

n

n
Z —pilog(pi) =1, sz‘ =1.
=1

i=1
Notice

n

Y —pilog(p) =r &Y log(p, ™) =7 < exp (Z log(pip")> = exp(r)

i=1 =1

Without loss of generality just assume that we have

n n
sz_pl =T, szzl
=1 =1

Replace p, = 1 — Z?;ll p;, then

n—1 n—1 71+Z?;11 Di
prpi(l—z:pi) =r.
i=1 i=1

Consider p; = -+ = pp,—1 = p. Then rewrite the left hand side of the above as
F(@) = (@)1~ (n — L)) O

Notice f(z) is continuous on the interval 0 < z < -1+ (assuming n > 1). Moreover, it is differen-
tiable on this interval, with derivative

() = (1 = (n—1)z) " D217 (_plog(z) + (n — 1) log(—na + z + 1) — 1).

We see this is well-defined and continuous on the interval 0 < z < —1-. Noting that f(0) = 1

always and it increases until it hits a maximum (by looking at f/(z)), we just need to determine
what the maximum is with respect to n. Noting

n—1 -1

faﬁn_n<1_”_1>”

n

and 1/n < 1/n — 1, we see that for r > 1 we can find an n so that f(x) = r. Recall we replaced r
with exp(r), so translating we can find an n and « so that f(z) = exp(r). But by taking logarithms,
we have log(f(z)) = >, —pilog(p;) = r, as desired. O

We say that 17" has a one-sided generator if there is a finite partition « so that af® = M up
to sets of measure 0. The existence of this partition means that, in some sense, the present and
future of the system (X, M, u,T) are completely determined by its past.

Problem 151. Show that if T has a one-sided generator then the entropy is 0.
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Proof. We have
hMT) = h(a,T) = h(a|a5®) = h(a|M) = 0.

Problem 152. Show that every discrete spectrum system has entropy zero.

Proof. We use Petersen 2.4.10. There exists a sequence of integers {nx} so that T" f — f in
L? for each f € L?. Let a = {Ay,...,A,} and define f(z) =i if z € A;. We see that T f — f
implies that a C a$° = \/;2, o(T7%(a)), at least up to sets of measure 0. Thus

h(a,T) = H(a|a§®) = 0.
This holds for all finite partitions. ]

Problem 153. Let G be a compact abelian group. Show that 7" : G — G defined by Ty(h) = gh
has zero entropy (i.e. show h(7T,) = 0).

Proof. We note that T} has discrete spectrum since L?(m) is spanned by G (this follows by Stone-
Weierstrass). O

Problem 154. Let T be the left shift on the set X = {1,2,...,n}? endowed with the o-algebra
M generated by the cylinder sets (i.e. the usual Borel one) and the Markov measure p given by
the stochastic matrix P = (p;;) and the probability vector m = (m1,...,m,) so that 7P = m. Show

that
n n
— Z Z ﬂipij log(mj).
j=1i=1
Proof. Let’s recall how the stochastic matrix works in this context. We define the cylinders by
Cjcll ’f;n ={r e X ay = x;}.

We then have the measure is defined by

p(CRr) = TiDivia +* Din-sin-
For notational simplicity, denote by C, := C? a time-zero cylinder. We follow the Bernoulli scheme
argument now. A generator for our o-algebra is the time-zero partition,

o = {C’l,...,Cn}.

We now observe
m .
VT a={Ci,nT Y (Ci,)N---NT"™(Cy,) :ix € X,1 < k <m}
=0
={Clm iy e X,1< k< n}.
Notice that o(\/i2y T "(a)) = M, so « is indeed a generator. Next, we notice that

H (\/()T"d) = Z;H(T—i(a))

We calculate H (\/[", T *(ct)). Notice

Zu ) log(14(Cy))
= - Zm log(m;),
=1
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n

H(T () ==Y u(C?)log(u(C?))

=1
n
= - Z T log(ﬂ—i%
=1
n
H(avV Tﬁl(a)) = - Z iy Diviy 10Ty Diyiy)-
i1,ia=1

We try to continue this idea. Let f(t) = —tlog(¢). Then

m n
H( Tl(a)> = Y f(TigPigir  Pionrin)
=0 i0yerrim=1
n
= - Z TioPigi1 *** Dip1im 10&(TioDigin * * * Piv—rim )
i0seyim=1
n

= - Z TioPigi1 ** * Pipgp—2im—1 [pz‘m,lim log(mopioil “'pim—Qimfl) + Pipy_vim log(pimlim)}

05 yim=1

n n
= D Pinrin FioPiois ** Dinysi ) ¥ D TigPigiy ** Pisnsimes f iy 1)
10yeyim=1 i0y0rim=1

n

n
- Y (Z Pim_lim> f(TioPigis ** Pim—im—1)
im=1

10, stm—1=1

n

n
+ Z Z 7-[-1;(),p7;()i1 o 'pim—Qim—l f(plm—l'lm)

7»"rnflfimzl iOu"'viM72:1

n n
= > [®ibigis Pimsim )+ D T i P i)
10y stm—1=1 Im—1,im=1
So to conclude, we have
n n n
> Figbiois Pimvim) = Y S (TigPioin  Pimzim )+ D Tig P i)
i0yeensim=1 i0yeim—1=1 im—1,im=1

By a recursion argument, we get

m n n n

H (\/ T_Z(Oé)> = > FFioPigin - Pimrim) = D F(m) +m D> mif (pij).
i=0 | i=1 ij=1

In other words,

m n n
H (\/ T_i(a)> =— Zm log(m;) —m Z mipij 1og(pij)-
=0 i=1 ij=1
Using this identity, we have

WT)= lim —H (\/ T‘%a)) =— > mpij log(pij)-

1,j=1
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Problem 155. Suppose (X1, My, p1,T1) and (Xo, Mo, po, To) are two dynamical systems. Show
that
h(Tl X Tl) = h(Tl) + h(TQ)

Proof. We first show h(T1) < h(T1 x Tz). Let a; be a partition for X1, and let a7 = {Ax Xy: A €
a1}. Then this is a partition for X; x Xs. Moreover,

h(al,Tl) = h(a71, Ty % Tg).

This gives us the inequality, since these are defined as supremums. The same inequality applies for
Ts. Therefore if at least one of 17,715 are infinite the equality above holds. Assume now that both
are finite. Let 1 be a partition for X; and ag a partition for Xo. Define 81 = a7 and feas as
before. Note these are independent of each other. Let 8 = 81 V 82. Then

H (\/ T"(ﬂ)) =H (\/ Ti(m)) +H (\/ T%)) :
=0 1=0

=0
Taking 1/n and the limit gives
h(B,T1 x To) = h(Br, T1) + h(B2, T2).

Now take increasing partitions o for X and o for X5 so that \/o2; of = M; and \/;2; aff = Ma.
Then \/77; af V o = M; x Ms, and invoking Petersen Proposition 3.6 and the last remark
we get the desired result. O

We now consider topological entropy. Throughout this next part, consider X a compact topo-
logical space.
An open cover « is a collection of open subsets U C X so that

xcuw
Uca
Problem 156 (Lebesgue Number Lemma). Let X be a compact metric space. Let o be an open

cover. Show that there exists an € so that for all z € X, we have B(z,¢) C U for some U € a.
Such an € is called the Lebesgue number.

Remark. The following proof is from Munkres.

Proof. Since o an open cover and X compact, we have that there exists {Aj,..., A,} C « so that

n
XQU&.
i=1
Notice redundant information doesn’t help, so suppose all of the A; are distinct. If n = 1 in this
case, we can just take ¢ to be anything, so suppose n > 1 so that we have at least 2 distinct sets.
Let C; = AS. Define a function

f: X >R, f(a:):%Zd(x,Ci).
i=1

Recall

d(z,C;) = inf{d(z,y) : y € C;}.
We claim this is a continuous function. Since we are in a metric space, the function d(z,) : X — R
is continuous. The infimum of continuous functions is continuous, so d(z,C;) is continuous. The
sum of continuous functions is continuous, so f is continuous. Since {Aj,..., 4,} is an open cover,

we have that z € A; for some ¢, so f(z) > 0 for all . Since X a compact metric space, we have
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that f achieves it’s minimum, call it € > 0. The goal now is to show that e satisfies the desired
criteria. Examine

B(z,e) ={y € X : d(x,y) < €}.
Since € is a minimum for f, we get that f(z) > €, meaning that d(z, C;) > € for some i. Therefore
for each y € B(z,€), we have y € Cf = A;, hence B(x,e) C A;. This finishes the proof. O

If a, 8 are two open covers of X, their join, denoted « V 3, is the collection of all sets of the
form AN B for all A € a, B € 3.
An open cover 3 is said to be an refinement of «, written a < 3, if every member of 3 is a
subset of a member of a. In other words, for all B € 3, there is an A € « so that B C A.
Recall that a cover § is a subcover of « if for all B € g we have that B € a.
Problem 157.
(1) Show that a < vV 3 for any open covers «, f3.
(2) Show that if 5 is a subcover of a then a < .
Proof.
(1) We have
aVB={ANnB:Aca,BEecp}
The goal is to show that every member C' € oV 3 is a subset of a member A € «. But this

follows, since every member C' = AN B € oV § is naturally a subset of A € a.
(2) This is also easy. Let B € B. Then B C B € a.

Problem 158.
(1) Suppose « is an open cover of X and T': X — X is continuous. Show that
T Ha)={T"1(A): Aca)
is also an open cover.
(2) Show that T~! behaves well with our operations. That is, show
T Havp) =T a)vI'(B), a<pf = T 'a)<T YB).
Proof.

(1) Since T is continuous, T~1(A) is open for all A € a. Hence T~!(a) is a collection of open
sets. Next we note it is a cover, since

X=T'XxX)cT! (U A> =yJr'w= J A
Aca Aca AeT ()
(2) Let ANB € aVB. Then T~Y(ANB) = T~Y(A)NTY(B),so T (aVB) C T (a)VTL(B).
The same idea goes the other way. The same idea also applies to refinements.
O

If @ is an open cover of X, let N(a) denote the minimum number of sets so that there exists
Al AN(a) € @ with X C Ui]i(la) A;. We define the entropy of the open cover « to be

H(a) :=log(N(a)).

Problem 159. Show the following properties for entropy.
(1) H(a) > 0.
(2) Ha)=0 <= N(a)=1 <= X eca.
(3) a< p < H(a) < H(pP).
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(5
(6
(7

Proof.
(1)

)
)
)
)

(5)
(6)

(7)

N(aV B) < N(a) - N(B).
H{aV B) < H(a) + H(B).

If T: X — X is continuous, then H(T 1(a)) < H(«).

If T: X — X is continuous and surjective, then H(T~!(a)) = H(«).

Consider 6 C P(«), where for all v € § we have

XQLJA
Aery

Define an equivalence relation ~ on 6 so that v; ~ 2 iff |y1| = |y2|. This is easily checked to
be an equivalence relation since this is just cardinality. Now quotient 6 by this equivalence
relation, and look at only the finite sets. This will be in bijection with N, since it is
impossible for an empty set to be an open cover for X (so there must be at least one set).
Taking the image under the bijection with N, we can find a minimum and label that N («).
This satisfies the condition N(«) > 1, and so we have H(«) > 0.

Now N(a) =1 < X € q, since if v C P(«) satisfies |y| = 1 and

Acxc|JAa=4
Aey

then A = X, and if X € « then we have that N(«) = 1, the smallest possible value. It’s

clear N(a) =1 <= H(a)=0.

Let n = N(B), take {Bi,...,B,} C 3 so that X C (J;", B;. Since a < 3, we have that

we can find A; € « so that B; C A;. Therefore X C |J;; A;, and hence N(a) < N(B) by

definition of minimality. Taking logs, we get H(«) < H(p).

This argument is the same as in the last one. Let n = N(a), m = N(f), take {A;,..., A} C

a so that X CJ; A, {Bi1,...,Bn} C B so that X C |J~,. Then taking
VZ{AzﬂBJIS’LSn,lngm},

we have X C Uege, Cs 7| = N(a) - N(B), and v C a V 3, so by minimality we get

N(aV 8) < N(a) - N(8).

Taking logs from the last part gives us the result.

Let n = N(a), {A1,...,A,} as before. Then {T~!(Ay),...,T71(A,)} covers X, and so by

definition of minimality we get N(7~!(a)) < N(a). Taking logs gives the result.

Let n = N(T~%(«)), {Bi,..., By} such that it covers and B; = T~1(A;) for some i. We

claim that {4y, ..., A, } also covers X. This follows from the fact that 7" has a right inverse,

SO
n

X:ﬂﬂgT(O&):OT@Q:U&.
i=1 i=1

=1

We define the topological entropy of o with respect to 7', denoted h(T, ), to be

1 n—1
WT,a) = lim —H (\/ Ti(a)> :

n—00 N )
=0

We need to check that this exists first.
Problem 160. Define

n—1
ag = \/ T a), an = H(ag).
=0
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Show that the above exists by showing a,+m < an + a,, and then invoking Fekete’s lemma.

Proof. We see
n+m—1 ) n—1 . n+m—1
anpm = H ( \/ T—Z(a)> —H (\/ T a)v \/ T_Z(oz)>
i=0 i=0 i=n
n—1 m—1
=H <\/ T "a)vT™™ ( \ T%a)))
i=0 i=0

o) on( ()

n—1 m—1

<H (\/ T"(a)) +H ( \ T—i(a)>
i=0 i=0

= Apn + Q-

Problem 161. Prove the following properties.
(1) We have h(T,a) > 0.
(2) If a < B, then h(T, o) < h(T, B).
(3) We have h(T,a) < H(«).
(4) We have h(Id,a) = 0 for all o open covers.
Proof.

(1) This follows since H(a)) > 0 for all open covers a.
(2) This follows since a < 3 implies H (o) < H(B), and o < B implies T~} (a)) < T71(B).
(3) This is the trickier calculation. Here use the fact that H(aV ) < H(«) + H(B). Then

n—1 n—1
H (\/ Tia> <> H(T ' (a)).
1=0 =0
Now use the fact that H(T % («)) < H(a) to get

n—1 n—1
H (\/ T‘ia> <Y H(T7'(a)) < nH(a).
i=0 ;
Hence
1 n—1 ' 1
= 1 — - < 1 — = .
MT, @) nh—%lo nH <\/()T (oa)) < nh_)nrolon(nH(a) H(x)
1=
(4) This is a matter of showing that o < aV o < a. We know from prior that for any open
cover 3 (and therefore for 8 = a) we have a < a VvV 5. Now to show that a V a < «a, we

need to show that for all A € « is a subset of a member of oV . But this follows, since
A€ aisasubset of ANA = A€ aVa. Therefore H(aV a) = H(aVId ! (a)) = H(a).

By induction, we have
n—1
H (\/ Id"(a)) = H(w),

1=0
SO



If T: X — X is continuous, we define the topological entropy of T' to be
hT) = sup (T, cv),
(6%

where a ranges over all open covers of X.

Problem 162. Prove the following properties.
(1) K(T) > 0.
(2) We have
h(T') = sup (T, B),
B

where (3 rangers over all finite open covers of X.

(3) h(Id) = 0.
(4) If Y is a closed subset of X and TY =Y, then h(T|y) < h(T).
Proof.

(1) This follows since (T, ) > 0 for all a.
(2) Apriori we have
sup h(T, B) < h(T).
B

We need to show the other direction. But this follows since for all open covers « there
always exists an open subcover 3, so that a < (. Therefore h(T,«) < h(T, ), and this

holds for all open covers «, so
MT) < sup (T, B).
B
(3) This follows since h(Id,«) = 0 for all a.

(4) Consider all open covers of Y in the subspace topology, call this space ). Consider all
open covers of X with respect to its topology, call this space X'. We see there is a natural
embedding Y — X via a € ) gets mapped to @ = a U {Y}. We can then view ) C X,
and therefore h(T'|y) is defined via a supremum over a subset, hence h(T|y) < h(T).

and for each

Let {a;,,} be a sequence of covers. We call this sequence refining if a; < ag < ---

open cover 3 of X we have § < a,, for some n.

Problem 163. Show that if {«,} is a refining sequence of covers then

h(T) = nlgl;o h(ap,T).

Proof. Let 8 be any cover. Since it is refining, we know that there exists an n so that 8 < «.

Hence
h(T, ) <sup h(T,a,) = h_>m h(T, o).

This holds for all possible covers (3, so
sup h(T,B) = h(T) < lim h(T,ay).
/3 n—0o0

Since «, is a collection of covers, we note that
sup h(T, o) = lim h(T, ) < h(T).
n

n—o0

Hence we have equality.
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Problem 164. Let o be the shift transformation on {0, 1}Z. Use the prior problem to prove the
following:

(1) h(o) =1.
(2) If X C {0,1}* consists of a single periodic orbit, then h(c|x) = 0.
(3) If X C {0,1}% consists of all sequences containing only even length maximal strings of 0’s
and 1’s, then h(o|x) =1/2.
Proof.
(1) From the prior problem, we know that

1
h(o) = lim —H(af™),

n—oo N

where here a = {Cp, C1} and
C; = {(xn) € {0,1}2 : 29 = i}.
So in other words, agfl is going to be the collection of all cylinders of length n of the form
C={(zn) €{0,1}2 2 i1 =i pi1,..., 20 =40}, i;€{0,1},—n+1<;5<0.

Now for the set {0, 1}, all of these are needed to cover the entire set, and there are 2" of
them. Hence

1
h(o) = nhﬂn;() - logy(2") = 1.

(2) Consider (x,) € {0, 1}% periodic, say of period m. Then there are exactly m-distinct words
of length m in X. So again using the prior problem, we have

: 1 n—1
h(o]x) = lim ~H(ag™"),
where here 048_1 consists of the cylinders

C= {(.%'n) < {O,I}Z P Xpgl = bt ly ..., LY = io} nx, ij S {0,1},—n+ 1<5<0.

Taking n > m, we see that only 2" of these are needed to cover the entire set, so we have

1
h(olx) = lim —logy(2™) = lim = = 0.

n—oo n n—oo n

(3) In essence, we have that X represents all possible orbits with an even number of Os and 1s
occurring. We consider then the total number of words of length n. Building such a word,
we fix the first letter, and we know that the next letter must be the same one. So we have
2 options for the first letter, and then only one option for the next letter, 2 options for the
following letter, and so on. This gives us a total of 27/2 possible words if the length was
even and 2("t1)/2 possible words if the length was odd. Since this encompasses the total
number of words, we take log and then the limit. Both of these limits agree, so we get

h(olx) =1/2.
O
Problem 165 (Petersen 6.4.3). Consider the Thue-Morse sequence. Let
Ao ={0},
For a sequence A = {zg,...,z,_1} write
A={1—-xz9,...,1 — 21},
and for two sequences A = {xg,...,zp—1}, B={zy,..., Ty}, we write

AB = {zg,...,m}.
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Then the Thue-Morse sequence is generated by the recursion
A, =A,_1A,_1.
Let Ay be the forward orbit. Then the full orbit is generated by setting
r=(1,)=A=A Ax.

Consider X = O,(z). This is a closed o-invariant set. Calculate h(o|x).

Proof. Credit to Dr. Nimish Shah. As before, we wish to calculate the number of words of length
n=2k (we choose powers of 2 since that’s how the sequence is generated). Notice that the set up
for our shifts are

S AAAAAAAA - -

where here A represents blocks of length n. We claim that the only options for occurrences will be
AA, AA, AA, or AA. This follow since we are enumerating all possible options without caring about
order. Now, if we shift n times we see we are getting at most n new words in each combination,
and this enumerates all possible words of length n. This gives us an upper bound of 4n total words
of length n. Calculating topological entropy with this, we have
holx) < lim ~H(af) = lim — logy(4-2") = 0.
k—o00 2k

n—oo n

Therefore the topological entropy is 0. (|

We recall a few definitions.

Recall that a map 7' : X — X is ergodic if there exists a measure p so that if B measurable
satisfies u(T~Y(B)AB) = 0, then u(B) = 0 or 1. It is called uniquely ergodic if there is a
unique such measure. For X a compact metric space, T': X — X a homeomorphism, we have a
dynamical system (X,7T'). The orbit for a point is the set

Or(z) ={T"(z) : n € Z}.
We say that (X,7) is minimal if for all z € X we have Or(z) is dense.
Problem 166. Suppose Y C X is a T-invariant subset. Show that Y is also a T-invariant subset.

Proof. Let y € Y, then we have (x,) C Y so that x,, — y. Since Y is T-invariant, we have that
(T(x,)) €Y, and by continuity T'(x,) — T(y), so T(y) € Y. Therefore T(Y) C Y, giving us that
Y is T-invariant. 0

Problem 167. Show that this is equivalent to X having no proper closed T-invariant subsets.

Proof. ( = ): Assume that (X,T') is minimal. Suppose Y C X is a closed T-invariant subset.
Then we have y € Y, and we see Op(y) C Y. Taking the closure, we have X = Op(y) CY C X.
Hence X =Y, and so we see that it is impossible for Y to be proper.

( <=): Assume that X has no proper closed T-invariant subsets. First we note that for all z € X,
Or(x) is a closed T-invariant subset. Since it is non-empty, it cannot be proper, so we must have

Or(z) = X. This shows that the orbit of every point is dense; i.e. the system is minimal. O

We say that a system (X, T) is strictly ergodic if it is minimal and uniquely ergodic.
We now discuss the Bowen definition for entropy. Let X be a compact metric space, T : X — X
a homeomorphism. The goal is to count the number of different orbit-blocks of length n that can
be observed, where we fail to distinguish points closer together than some positive error term, e (in
other words, our measurement system fails at this point).
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We say that x and y are (n, €)-separated if their initial blocks of length n can be distinguished
by our measurement system. In other words, if

d(T*z, T*y) > € for some 0,1,...,n — 1.

A set E C X is said to be (n, €)-separated if x and y are (n, €)-separated for all x,y € E, z # y.
The maximum number of distinguishable orbit n-blocks will be

s(n,e) = max{|E| : E C X is (n,€)-separated}.
Define
1
h(T,€) = limsup - logs(s(n,€)).

n—oo

Set
hrop(T) = lim h(T,e€).

e—0t

Problem 168. Determine why should a limit should exist.

Proof. We need to show that h(T, €) decreases as € decreases. This will follow if we can show s(n, €)
decreases with e. But this follows since we're taking a max over a smaller and smaller set. O

We now wish to generalize this for arbitrary metric spaces. Assume that X is not compact. For
each compact K C X, let

sk(n,e) =max{|E|: E C K is (n,€)-separated}.

In other words, we view K C X as a compact metric space. Define all of the other terms analogously;

1
hi (T’ €) = limsup — logy (s (1, €)),
n

n—oo

hg(T) = lim hg(T,e).

e—0t
We can then define

hTop(T) = Sl}l{p hK (T)

We can go the opposite direction as well. For e > 0, n = 1,2,..., call a set F C X (n,e)-
spanning if for each z € X there is a y € F so that

d(TFz, TFy) < eforall k=0,1,...,n— 1.
Problem 169. Show that a maximal (n, €)-separated set is (n, €)-spanning. If we set
r(n,e) = min{|F|: F C X is (n, €)-spanning},
deduce that r(n,€) < s(n,€).

Proof. The idea here is to note that if we add on a point, it will no longer be (n, e-separated by
maximality. Hence by the above definition and minimality, we get r(n,€) < s(n,€). O

One can also show s(n,€) < r(n,¢/2) (see K&H), and this will give us the following proposition.
Proposition. We have

1
hrop(T) = lim limsup — logy(r(n, €)).
n

e—0T n—ooo

Recall Karamata’s inequality.
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Theorem (Karamata’s Inequality). Let I = [0,1], and suppose we have to sets of numbers
{ai} 1, {yi}i—; C I such that
Ty 2 2 T, Y12 2 Yn,
and for each 1 < k <n — 1 we have
Tyt xp Syt Yk

with equality in the case that k = n. If f is a real-valued convex function on I, then we have

f@) + -4 flan) < f(y) + -+ Flyn)-

Proof. If x; = y; for all 7, then the inequality holds clearly. Suppose then x; # y; for some 1 < i < n.
If z; = y; for some 1 < i <n — 1, then removing z; and y; from their sequences does not affect the
assumptions nor conclusion, so iterating we may assume x; # y; forall 1 <i<n—1. For1 <i<n
let

Ap=0, A=z + -+

By=0, Bi=y1+-+u.
By assumption, A; < B; for 1 <i <n—1 and A, = B,,. Observe as well that

Ai—Aia=(@++z) — (v 4+ +21) = 24,

and similarly B; — B;_1 = ;. Now for 1 <i<n —1 let

o = S ) = flai)
‘ Yi — I
(Note here that we are using the fact that x; # y; for all 7). Observe that ¢;11 < ¢; since it is a

convex function. Hence we have

D (i) = f@)) = 3 eilys —@i) = 3 eilBi = Bim = (Ai = Aic)
=1 i=1 i=1
=> c(Bi—A) =Y ci(Bi — Aia)
=1 i=1

n—1
= (B — An) + Y (i — cit1)(Bi — A;) — c1(By — Ap) > 0.
i=1

This gives the result. U
Remark. We get the reverse equality for f concave. Simply use the fact that —f is convex.

Problem 170. Show that if p; < g; for all ¢ and j, then the entropy of B(p1,...,pn) is no less
than that of B(qi,...,qm).

Proof. Assume n = m. Then we are in a position to apply Karamata’s inequality. After rearranging
the p; and g;, we may assume that py < ps <--- < p,, 1 < g2 < -+ < gy, and we have the property
that for each 1 < k <n
prt+- e <@+t gk
This follows since p1 < q1,p2 < g2, etc. Since it is a probability vector, we also have
pt-d=ato =1

Hence by Karamata we get that for f(t) = —tlog(t) we have
n

> fo) =D fay).
3 1

=1 j=
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Now suppose n # m. Consider m < n. Appending 0s at the end of the vector g to get
(q1y---5qm,0,...,0) so that there are n terms, we have that the assumptions for Karamata still
hold and so the inequality still holds. Assuming p;,q; # 0 for all ¢ and j, we claim that it is
impossible for m > n. If this were the case, then we have

l=pi+t-t+tpp<q+-+q@<qa+ - +gm=1

a contradiction. I

We do some Einsiedler and Ward exercises here (separated since I don’t want to try to organize
these in with the other solutions).

Problem 171 (2.1.7). Let (X, M, u,T) be any measure-preserving system. A sub-o-algebra 4 C
M with T71(A) = A modulo p is called a T-invariant sub-o-algebra. Show that the system
(X, B,71,T) defined by

o X ={zeX%: a1 =T(x) for all k € Z};

. (T\(x))k. — 2y forall k € Z and z € X;

o i({xe X :xp€ A}) = pu(A) for any A € M and p is invariant under T,

~ A~

e B is the smallest T-invariant o-algebra for which the map 7 : z — zg from X to X is
measurable;

is an invertible measure-preserving system, and that the map 7 : z — x¢ is a factor map. The
system X is called the invertible extension of X.

Proof. Let’s first check measure-preserving. O
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