
James Marshall Reber, ID: 500409166 Math 7221, Homework 1

Remark. Thomas O’Hare, Nick Bolle, and Hao-Tong Yan were collaborators.

Problem 1. Let

T : [0, 1]→ [0, 1], Tx = 2x (mod 1)

Consider the interval

Enk =

[
k

2n
,
k + 1

2n

)
,

which has dyadic rational endpoints. Let λ be Lebesgue measure.

(1) Compute T−1(Enk ).
(2) Calculate the Lebesgue measures of Enk and T−1(Enk ). Show they are the same.
(3) Using properties of measure, show that

λ(T−1(I)) = λ(I)

for all open intervals I.
(4) Show the same holds for all open sets U .
(5) Conclude that the same holds for all Borel measurable E.

Proof.

(1) On [0, 1], we can rewrite T as

Tx =

{
2x if 0 ≤ x ≤ 1/2,

2x− 1 if 1/2 < x ≤ 1.

Using this alternative characterization, we see that

T−1(Enk ) =

[
k

2n+1
,
k + 1

2n+1

)
t
[
k + 2n

2n+1
,
k + 1 + 2n

2n+1

)
.

(2) Since this is a half-open interval, we see that

λ(Enk ) =
k + 1

2n
− k

2n
=

1

2n
.

Similarly, since we have the disjoint union of two half-open intervals, we see that

λ(T−1(Enk )) =

(
k + 2n + 1

2n+1
− k + 2n

2n+1

)
+

(
k + 1

2n+1
− k

2n+1

)
=

2

2n+1
=

1

2n
.

We see that for all k and n we have that

λ(T−1(Enk )) = λ(Enk ).

(3) Let I = (a, b) ⊆ [0, 1] be an open interval. The dyadic rational numbers are dense in [0, 1]
(see here), so we can create an increasing sequence of dyadic rational half-open intervals,
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say {Ej}∞j=1 with E1 ⊆ E2 ⊆ · · · , such that
⋃∞
j=1Ej = I. We now use (2) and continuity

from below to deduce that

λ(T−1(I)) = λ

T−1

 ∞⋃
j=1

Ej

 = λ

 ∞⋃
j=1

T−1(Ej)

 = lim
j→∞

λ(T−1(Ej))

= lim
j→∞

λ(Ej) = λ

 ∞⋃
j=1

Ej

 = λ(I).

(4) In R, an open subset U can be written as a countable union of disjoint open intervals, say
{Ij}∞j=1. Using this and (3), we have

λ(T−1(U)) = λ

T−1

 ∞⊔
j=1

Ij

 = λ

 ∞⊔
j=1

T−1(Ij)

 =
∞∑
j=1

λ(T−1(Ij)) =
∞∑
j=1

λ(Ij)

= λ

 ∞⊔
j=1

Ij

 = λ(U).

Remark. Note that if it holds for all open sets U , it holds for all closed sets C. If C is
closed, then Cc = U is open, so U c = C. Using the fact that this is a finite measure space,
we can then calculate the following:

λ(T−1(C)) = λ(T−1(U c)) = λ(T−1(U)c) = 1− λ(T−1(U)) = 1− λ(U) = λ(U c) = λ(C).

Remark. We use the fact that if N is a null-set, then

λ(F ∪N) = λ(F ).

This follows by subadditivity and monotonicity;

λ(F ) ≤ λ(F ∪N) ≤ λ(F ) + λ(N) = λ(F ) =⇒ λ(F ∪N) = λ(F ).

(5) A Lebesgue measurable set can be written as the union

E = F ∪N,

where F is a Fσ set and N is a set of measure zero with respect to Lebesgue measure. We
show it will hold for all Lebesgue measurable sets, and then in particular we get it holds
for all Borel measurable sets.

Since F is an Fσ set, we have F =
⋃∞
j=1Cj , where {Cj}∞j=1 is a sequence of closed sets.

Let Dj =
⋃j
i=1Cj . Note that Dj is a closed set, since it is a union of a finite number of

closed sets. Then D =
⋃∞
j=1Dj =

⋃∞
j=1Cj = F and we have

λ(T−1(F )) = λ(T−1(D)) = lim
j→∞

λ(T−1(Dj)) = lim
j→∞

λ(Dj) = λ(D) = λ(F )

by an argument similar to (3).
The goal now is to show that λ(T−1(N)) = 0. If we can do this, then we have that

λ(T−1(E)) = λ(T−1(F ) ∪ T−1(N)) = λ(T−1(F )) = λ(F ) = λ(F ∪N) = λ(E).

We now note that T is a continuous map on [0, 1]. Since N has measure zero, for every
ε > 0 we can find an open set U with the property that N ⊆ U and λ(U) = ε. Thus, we
have

λ(T−1(N)) ≤ λ(T−1(U)) = λ(U) = ε.
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Since we can do this for every ε > 0, this implies that λ(T−1(N)) = 0. This concludes the
proof.

Alternatively, invoke the next theorem or Caratheodory.

�

Problem 2. State Theorem 1.1 from Peter Walter’s book. Use it to prove the prior problem.

Proof. The theorem is as follows:

Theorem (Walters, Theorem 1.1). Suppose T : (X,M, µ) → (Y,N , ν) is a measurable transfor-
mation of probability spaces. Let C be a semi-algebra that generates N . If for each A ∈ C we have
T−1(A) ∈M and µ(T−1(A)) = ν(A), then T is measure-preserving.

The conditions for the prior problem are µ = ν = λ (Lebesgue measure) and the σ-algebras are
the Borel σ-algebras. The collection of all intervals form a semialgebra which generates the Borel
σ-algebra (see, for example, Folland Proposition 1.2), and as we’ve shown before the measures
agree on all intervals (we technically only showed open intervals, but to get a half open interval or
a closed interval involves adding points of measure zero, so it doesn’t change anything). Invoking
the theorem, we have that they agree on all Borel sets, telling us that our map is measurable. �

Problem 3. Prove that a proper subspace of Rn has zero Lebesgue measure.

Hint. You can use the fact that a proper subspace is the graph of a linear function from T : Rk →
Rn−k for k the dimension of the subspace and use Fubini’s theorem.

Remark. I originally said use Theorem 2.44 from Folland, which is still technically true but the
theorem says invertible matrix, so you have to modify the proof. This ended up being the same
thing as Nick Bolle’s proof, so credit to him for writing this up.

Proof. Let V = Rk ⊆ Rn be a proper subspace. Consider a map T : Rk → Rn−k where the graph
of T is V . Consider the set

Γ(T ) =
{

(x, y) ∈ Rk × Rn−k = Rn : Tx = y
}
.

Now use σ-finitness and Fubini;

λ(V ) =

∫
Rn

χΓ(T )dλ =

∫
Rk

(
χΓ(T )(x, y)dλ(y),

)
dλ(x) =

∫
Rk

λ({Tx})dλ(x) = 0.

Here, λ is understood to be the Lebesgue measure with respect to whatever Rn we’re integrating
over. �

Problem 4. Let G,H be locally compact Hausdorff groups which are also second countable. Let
T : G → H be a continuous surjective endomorphism. Let m be a left Haar measure on G. Let
mG,mH be Haar measures on G,H respectively. Define a measure µ on H by

µ(E) = mG(T−1(E)) for all Borel E ⊆ H.
Prove the following:

(1) µ is a left Haar measure on H;
(2) there is a c > 0 such that

µ = c ·mH ;

(3) if we suppose that G = H is compact, i.e. mG(G) < ∞, and mG = mH , then prove that
c = 1.

Note that we can conclude from (3) the following result.

Theorem. If T is an endomorphism of a compact group G, then T preserves the Haar measure on
G.
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Remark. If we have these properties, note that G and H are also σ-compact. Since it’s second
countable, we have a countable basis {Uα}. Since we are in LCH space, for each x ∈ G (or H) we
can find a neighborhood Kx compact. Taking the interior, we have a precompact neighborhood Ux
for every x ∈ G. Since {Uα} is a basis, we can find x ∈ Uαx ⊆ Ux. Closure of Uαx is contained in
Kx, and a closed subset of a compact set is compact, so Uαx is precompact. We then get {Uαx}x∈G
covers G (or H). Since the base was countable, we get a refinement of this to {Uαi}∞i=1. Taking
closures, we get a countable cover of X by compact sets, implying σ-compact.

Proof. We recall that left Haar measure on a topological group G is a nonzero left-invariant
Radon measure µ on G. In other words, µ satisfies the following.

(a) For all x ∈ G and E a Borel set, we have

µ(xE) = µ(E).

(b) For all compact subsets E, we have

µ(E) <∞.

(c) For all Borel subsets E, we have

µ(E) = inf{µ(U) : E ⊆ U,U open}.

(d) For all open subsets U , we have

µ(U) = sup{µ(K) : K ⊆ U,K compact}.

We now proceed to the problem.

(1) We have that µ is the pushforward measure, µ = T∗(mG). We show that this is indeed
a measure on the Borel σ-algebra.
(a) We see µ(∅) = mG(T−1(∅)) = mG(∅) = 0.
(b) For {Ej}∞j=1 a countable disjoint collection of Borel sets, we have

µ

 ∞⊔
j=1

Ej

 = mG

T−1

 ∞⊔
j=1

Ej

 = mG

 ∞⊔
j=1

T−1(Ej)

 =
∞∑
j=1

mG(T−1(Ej)) =
∞∑
j=1

µ(Ej).

So this is a measure. We next check that it is a left Haar measure.
(a) For x ∈ G and E a Borel set, we see that we have

µ(xE) = mG(T−1(xE)).

Since T a surjective endomorphism, there is some h ∈ G with T (h) = x. We now write

T−1(xE) = {g ∈ G : T (g) = xe for some e ∈ E}
= {g ∈ G : T (g) = T (h)e for some e ∈ E}

= {g ∈ G : T (h−1g) ∈ E}
= h{g ∈ G : T (g) ∈ E} = hT−1(E).

Using the fact that m is a left Haar measure, we can write the above as

µ(xE) = mG(T−1(xE)) = mG(hT−1(E)) = mG(T−1(E)) = µ(E).

Hence we have left invariance of µ.
(b) For this to be true, we need to assume the map is proper. If T is proper, it is clear

that we have this property, since for E compact we have

µ(E) = mG(T−1(E)) <∞.
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To get that T is proper from the results, we note that T is a surjective, continuous
endomorphism between LCH groups which are σ-compact. We can then use the Open
Mapping theorem for topological groups – see here (Theorem 2.6) or here. Thus T
is an open mapping. Now take E ⊆ H compact. The goal is to show that T−1(E) is
compact. Let {Uα} be an open cover of T−1(E); that is, suppose we have

T−1(E) ⊆
⋃
α

Uα.

Since we have G is a σ-compact LCH space, we can assume that the Uα are precompact;
that is, Uα is compact (use Folland Proposition 4.39, not obvious but follows). We
can apply T to get

E ⊆ T

(⋃
α

Uα

)
=
⋃
α

T (Uα).

Since T is an open map, T (Uα) is open. We now use the fact that E is compact to get
a finite refinement. We have

E ⊆
n⋃
i=1

T (Ui).

We now take preimages to get

T−1(E) ⊆
n⋃
i=1

T−1(T (Ui)) =

n⋃
i=1

ker(T )Ui ⊆
n⋃
i=1

ker(T )Ui.

Note that the product of compact sets is compact (by Tychonoff and continuity of the
product), so

⋃n
i=1 ker(T )Ui is compact. This gives us that T−1(E) is a closed subset

of a compact set, hence it is compact.
(c) Regularity follows by Folland Theorem 7.8, since G and H are second countable

LCH spaces and we’ve shown that µ is a Borel measure which is finite on compact sets.
(2) This follows by Folland Theorem 11.9. Since (1) shows that µ is a Haar measure, we

can use that in conjunction with the theorem to find such a constant.
(3) Since G compact, we have mG(G) <∞, so

µ(G) = mG(T−1(G)) = mG(G) <∞,
and we have

mG(G) = cµ(G).

Solving for c gives c = 1.

�
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James Marshall Reber, ID: 500409166 Math 7221, Homework 2

Remark. Everybody was a collaborator.

Remark. I was focused on attempting as many problems as possible as opposed to writing com-
pletely rigorous arguments. There are plenty of typos and incorrect solutions. Let me know if you
find any and I will update it.

Unless otherwise specified, T is invertible and measure preserving.

Problem 5 (Petersen 1.4.1). Show that T if T is a measure preserving transformation, then
U = UT defined on L2(X,M, µ) by

UT (f) := f(Tx)

is unitary. What if T is noninvertible?

Proof. Recall an operator UT : L2(µ)→ L2(µ) is unitary if it satisfies two conditions:

(1) UT is surjective.
(2) UT preserves the inner product.

We check these conditions now.
(1): For surjectivity, we need to show that for all g ∈ L2(µ), there is an f ∈ L2(µ) with UT (f) = g
(at least in L2 equivalence, so almost everywhere). Since T is invertible and measure preserving,
we have g ◦ T−1 : X → R is an L2 function, and UT (g ◦ T−1) = g ◦ T−1 ◦ T = g (at least almost
everywhere). This gives us surjectivity.
(2) : For preserving the inner product, we take f, g ∈ L2(µ) and notice

〈UT (f), UT (g)〉 =

∫
X
f(T (x))g(T (x))dµ(x).

We have T−1(X) = X, so preforming a change of variables y = T−1(x) and using measure preserving
we have

〈UT (f), UT (g)〉 =

∫
X
f(y)g(y)dµ(y) = 〈f, g〉.

Notice that in the proof of (2) we only used measure preserving. So we always get UT : L2(µ)→
L2(µ) is an isometry if T is measure preserving. If T is not invertible, the questions is whether UT
is surjective, and it’s not true (see the discussion on Carmen). �

Problem 6 (Petersen 1.4.2). Show the following:

(1) The one sided Bernoulli shift σ((xn)) = yn with yn = xn+1 on
∏∞

0 {0, 1}, where p0 = 1/2
and p1 = 1/2, is isomorphic to the doubling map on the circle. That is, it’s isomorphic to

T : [0, 1)→ [0, 1), T (x) = 2x (mod 1).

(2) The two sided Bernoulli shift σ((xn)) = yn with yn = xn+1 on {0, 1}Z, where p0 = 1/2 and
p1 = 1/2, is isomorphic to Baker’s map. That is, it’s isomorphic to

T (x, y) =

{
(2x (mod 1), y/2) if 0 ≤ x ≤ 1/2

(2x (mod 1), (y + 1)/2) if 1/2 ≤ x < 1
,

T : [0, 1)× [0, 1)→ [0, 1)× [0, 1).

Proof. We recall what an isomorphism of systems means. Two systems are isomorphic if there exists
a σ-algebra isomorphism γ : (X,M, p)→ ([0, 1),B, λ) for which the following diagram commutes:
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(X,M, µ) (X,M, µ)

(Y,N , ν) (Y,N , ν)

γ

T

γ

S

(1) Let X =
∏∞
i=0{0, 1}, M is the σ-algebra generated by cylinders, and µ = p where p is

induced on X by the property p({0}) = 1/2 and p({1}) = 1/2. Let Y = [0, 1), N = B([0, 1)),
and λ Lebesgue measure. We have a natural map γ : X → Y given by γ((xn)) = 0.x0x1 . . .;
i.e. a point is mapped to its binary sequence. A maybe more rigorous way to express γ is

γ : X → [0, 1), γ((xn)) =
∞∑
i=0

xi
2i+1

.

Every element in [0, 1) has a binary expansion, so it is surjective. Moreover,

γ(σ((xn))) = γ(yn) =
∞∑
i=0

yi
2i+1

=
∞∑
i=1

xi
2i
,

T (γ((xn)) = T

( ∞∑
i=0

xi
2i+1

)
=
∞∑
i=0

xi
2i

(mod 1) =
∞∑
i=1

xi
2i
.

So γ ◦σ = T ◦γ. We see γ is not necessarily injective, since a sequence ending in repeated 0s
or repeated 1s gives us issues (akin to base ten and ending in repeated 9s or 0s). However,
we note that the collection of points where it is not injective has zero measure (since it is
countable), so it is injective off of a set of measure zero. Notice that the set of measure zero
is T -invariant in [0, 1) and p invariant in X, so removing them doesn’t change the dynamics.

We next claim that γ is measure preserving. Take the dyadic rational interval

I =

[
0,

1

2n

)
.

The preimage γ−1(I) where

C0,n ∩ · · · ∩ C0,0 = {(xn) ∈ X : x0 = 0, x1 = 0, . . . , xn = 0}
is an intersection of cylinders. We see

p(γ−1(I)) = p(C0,0 ∩ · · · ∩ C0,n) =
1

2n
= λ([0, 1/2n)).

Now the same kind of argument applies to general dyadic rational intervals. Examine

I =

[
p

2n
,
p+ 1

2n

)
.

Let α = p (mod 2), then

γ−1(I) = Cα,n ∩ · · · ∩ C0,0.

The same argument now applies. So γ is measure preserving. Thus γ is an isomorphism of
dynamical systems.

(2) We claim the same kind of argument as above applies, except now we imagine the map
γ : X → [0, 1) × [0, 1) is going to send a sequence (xn) to two binary representations. Let
π1 : [0, 1)× [0, 1)→ [0, 1) be the projection onto the first coordinate and π2 the projection
onto the second. Then

π1(γ((xn))) =
∞∑
0

x−n
2n+1

,
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π2(γ((xn))) =

∞∑
1

xn
2n
.

It’s surjective onto each factor map, so surjective onto [0, 1)2. The issue now are sequences
which are constant in either direction, but those again have measure zero and are preserved
by both maps so we can neglect these. It is injective once we throw these out. We just
need to check measure preserving, but again this is just a matter of checking on the dyadic
intervals. To check that it is a conjugacy, we note

T (γ((xn))) = T

( ∞∑
0

x−n
2n+1

,
∞∑
1

xn
2n

)
=

( ∞∑
1

x−n
2n

,
∞∑
1

xn+1

2n

)
,

γ(σ((xn))) = γ(yn) =

( ∞∑
0

y−n
2n+1

,
∞∑
1

yn
2n

)
=

( ∞∑
1

x−n
2n

,
∞∑
1

xn+1

2n

)
.

So we get that it is an isomorphism of systems.

�

Problem 7 (Petersen 1.4.3 Modified). Let G,H be locally compact Hausdorff groups which are
also second countable. Let T : G → H be a continuous surjective endomorphism. Let m be a left
Haar measure on G. Let mG,mH be Haar measures on G,H respectively. Define a measure µ on
H by

µ(E) = mG(T−1(E)) for all Borel E ⊆ H.
Prove the following:

(1) µ is a left Haar measure on H;
(2) there is a c > 0 such that

µ = c ·mH ;

(3) if we suppose that G = H is compact, i.e. mG(G) < ∞, and mG = mH , then prove that
c = 1.

Note that we can conclude from (3) the following result.

Theorem. If T is an endomorphism of a compact group G, then T preserves the Haar measure on
G.

Remark. If we have these properties, note that G and H are also σ-compact. Since it’s second
countable, we have a countable basis {Uα}. Since we are in LCH space, for each x ∈ G (or H) we
can find a neighborhood Kx compact. Taking the interior, we have a precompact neighborhood Ux
for every x ∈ G. Since {Uα} is a basis, we can find x ∈ Uαx ⊆ Ux. Closure of Uαx is contained in
Kx, and a closed subset of a compact set is compact, so Uαx is precompact. We then get {Uαx}x∈G
covers G (or H). Since the base was countable, we get a refinement of this to {Uαi}∞i=1. Taking
closures, we get a countable cover of X by compact sets, implying σ-compact.

Proof. We recall that left Haar measure on a topological group G is a nonzero left-invariant
Radon measure µ on G. In other words, µ satisfies the following.

(a) For all x ∈ G and E a Borel set, we have

µ(xE) = µ(E).

(b) For all compact subsets E, we have

µ(E) <∞.
(c) For all Borel subsets E, we have

µ(E) = inf{µ(U) : E ⊆ U,U open}.
8



(d) For all open subsets U , we have

µ(U) = sup{µ(K) : K ⊆ U,K compact}.
We now proceed to the problem.

(1) We have that µ is the pushforward measure, µ = T∗(mG). We show that this is indeed
a measure on the Borel σ-algebra.
(a) We see µ(∅) = mG(T−1(∅)) = mG(∅) = 0.
(b) For {Ej}∞j=1 a countable disjoint collection of Borel sets, we have

µ

 ∞⊔
j=1

Ej

 = mG

T−1

 ∞⊔
j=1

Ej

 = mG

 ∞⊔
j=1

T−1(Ej)

 =
∞∑
j=1

mG(T−1(Ej)) =
∞∑
j=1

µ(Ej).

So this is a measure. We next check that it is a left Haar measure.
(a) For x ∈ G and E a Borel set, we see that we have

µ(xE) = mG(T−1(xE)).

Since T a surjective endomorphism, there is some h ∈ G with T (h) = x. We now write

T−1(xE) = {g ∈ G : T (g) = xe for some e ∈ E}
= {g ∈ G : T (g) = T (h)e for some e ∈ E}

= {g ∈ G : T (h−1g) ∈ E}
= h{g ∈ G : T (g) ∈ E} = hT−1(E).

Using the fact that m is a left Haar measure, we can write the above as

µ(xE) = mG(T−1(xE)) = mG(hT−1(E)) = mG(T−1(E)) = µ(E).

Hence we have left invariance of µ.
(b) For this to be true, we need to assume the map is proper. If T is proper, it is clear

that we have this property, since for E compact we have

µ(E) = mG(T−1(E)) <∞.
To get that T is proper from the results, we note that T is a surjective, continuous
endomorphism between LCH groups which are σ-compact. We can then use the Open
Mapping theorem for topological groups – see here (Theorem 2.6) or here. Thus T
is an open mapping. Now take E ⊆ H compact. The goal is to show that T−1(E) is
compact. Let {Uα} be an open cover of T−1(E); that is, suppose we have

T−1(E) ⊆
⋃
α

Uα.

Since we have G is a σ-compact LCH space, we can assume that the Uα are precompact;
that is, Uα is compact (use Folland Proposition 4.39, not obvious but follows). We
can apply T to get

E ⊆ T

(⋃
α

Uα

)
=
⋃
α

T (Uα).

Since T is an open map, T (Uα) is open. We now use the fact that E is compact to get
a finite refinement. We have

E ⊆
n⋃
i=1

T (Ui).
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We now take preimages to get

T−1(E) ⊆
n⋃
i=1

T−1(T (Ui)) =
n⋃
i=1

ker(T )Ui ⊆
n⋃
i=1

ker(T )Ui.

Note that the product of compact sets is compact (by Tychonoff and continuity of the
product), so

⋃n
i=1 ker(T )Ui is compact. This gives us that T−1(E) is a closed subset

of a compact set, hence it is compact.
(c) Regularity follows by Folland Theorem 7.8, since G and H are second countable

LCH spaces and we’ve shown that µ is a Borel measure which is finite on compact sets.
(2) This follows by Folland Theorem 11.9. Since (1) shows that µ is a Haar measure, we

can use that in conjunction with the theorem to find such a constant.
(3) Since G compact, we have mG(G) <∞, so

µ(G) = mG(T−1(G)) = mG(G) <∞,

and we have

mG(G) = cµ(G).

Solving for c gives c = 1.

�

Problem 8 (Petersen 1.4.4). Show that a homomorphism of measure-preserving systems is onto,
up to a set of measure 0.

Proof. Consider (X,M, µ, T ), (Y,N , ν, S) measure-preserving systems, γ : (X,M, µ) → (Y,N , ν).
We say γ is a homomorphism of these systems if:

(1) γ is measurable (meaning ϕ−1(N ) ⊆M);
(2) γ is measure preserving (meaining µ(ϕ−1(E)) = ν(E) for all E ∈ N );
(3) We have γ ◦ T = S ◦ γ almost everywhere.

The goal is to show that γ is essentially surjective, meaning surjective off of a set of measure zero.
Consider

Z = {y ∈ Y : there is no x ∈ X with ϕ(x) = y}.

We see

ϕ−1(Z) = ∅.

Since it is measure preserving, we see

µ(ϕ−1(Z)) = µ(∅) = 0 = ν(Z).

Off of Z, we see that ϕ is surjective. �

Let’s recall some of the terminology.
Let (X,M, µ, T ) be a measure-preserving system. For f : X → (0,∞), consider

Γf = {(x, t) : 0 ≤ t < f(x)}.

This is the collection of points “under f .” We identify (x, f(x)) and (Tx, 0). We have the following
picture:

10



For n ∈ Z, define

Sn(x) =


∑n−1

k=0 f(T k(x)) if n > 0

0 if n = 0

−
∑−n

k=1 f(T−k(x)) if n < 0.

Problem 9. Use Poincare recurrence to show that Sn(x) → ∞ as n → ∞. The same kind of
argument can be used to show Sn(x)→ −∞ as n→ −∞.

Proof. Notice that f−1((0,∞)) = X. By continuity of measures, there must be some a > 0 so
that µ(f−1((a,∞))) 6= 0. If we let Ea = f−1((a,∞)), then by Poincare recurrence almost every
x ∈ Ea returns to Ea infinitely often, so f(T k(x)) > a infinitely often for almost every x ∈ Ea.
Consequently, for almost every x ∈ Ea, we have Sn(x) → ∞ as n → ∞. Now this holds for each
Ea (technically, even if the set Ea has measure zero it will still hold), and we can write

X =
⋃
a>0

Ea.

The union of sets of measure zero will be measure zero, so it holds for almost every x ∈ X. �

For x ∈ X, 0 ≤ t < f(x), s ∈ R, define

n(x, t, s) := min {k ∈ Z≥0 : s+ t < Sk+1(x)} .
This is called the hitting number.

Problem 10. Show that n(x, t, s) is well-defined, and satisfies the property that

Sn(x,t,s) ≤ s+ t < Sn(x,t,s)+1.

Proof. The fact that n(x, t, s) is well-defined follows from the fact that Sn(x)→∞, so there must
be some n so that s + t < Sn(x), and the minimum will be unique. The fact that it’s a minimum
tells us that we have the above identity. �

For t ≥ 0, define

T fs (x, t) = T f (x, t, s) := (Tn(x,t,s)(x), s+ t− Sn(x,t,s)(x)).

Problem 11. Show that Sn satisfies the cocycle relation; i.e.,

Sn+m = Sn + Sm ◦ Tn.

Proof. We see that

Sm ◦ Tn(x) =
m−1∑
j=0

f(T j+n(x)) =
m+n−1∑
j=n

f(T j(x)) = Sm+n(x)− Sn(x).

�
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Problem 12. Show that ns = n(·, s) satisfies the coycle relation; i.e.,

n(x, t, s+ q) = n(x, t, s) + n(Tn(x,t,s)(x), s+ t− Sn(x,t,s)(x), q).

Proof. Notice that

n(Tn(x,t,s)(x), s+ t− Sn(x,t,s)(x), q) = min
{
k ∈ Z : s+ t+ q − Sn(x,t,s)(x) < Sk+1(Tn(x,t,s)(x))

}
.

By the cocyle relation for Sn, this is the same as

n(Tn(x,t,s)(x), s+ t− Sn(x,t,s)(x), q) = min
{
k ∈ Z : s+ t+ q < Sn(x,t,q)+k+1(x)

}
.

After changing variables appropriately, we see

n(Tn(x,t,s)(x), s+t−Sn(x,t,s)(x), q) = min {α ∈ Z : s+ t+ q < Sα+1(x)}−n(x, t, q) = n(x, t, s+q)−n(x, t, q).

This gives us the cocycle property. �

Problem 13. Show that T fs is a flow.

Proof. There are two things we need to show.

(1) We see that

n(x, t, 0) = min{k ∈ Z : t ≤ Sk+1(x)} = min

k ∈ Z : t ≤
k∑
j=0

f(T j(x))

 .

Since 0 ≤ t < f(x), this implies that

t ≤ S1(x) = f(x),

so n(x, t, 0) = 0. Therefore

T f0 (x, t) = (T 0(x), t− S0(x)) = (x, t).

So T f0 is the identity.
(2) We next need to check that the R action is satisfied, meaning

T fs+q(x, t) = T fs ◦ T fq (x, t).

Notice

T fs

(
T fq (x, t)

)
= T fs (Tn(x,t,q)(x), q + t− Sn(x,t,q)(x))

=

(
Tn(Tn(x,t,q)(x),s+t−Sn(x,t,q)(x),s)(Tn(x,t,q)(x)),

s+ q + t− Sn(x,t,q)(x)− Sn(Tn(x,t,q)(x),s+t−Sn(x,t,q)(x),s)(T
n(x,t,q)(x))

)
.

Use the cocycle property for n to get

n(Tn(x,t,q)(x), s+ t− Sn(x,t,q)(x), s) = n(x, t, s+ q)− n(x, t, q),

so

Tn(Tn(x,t,q)(x),s+t−Sn(x,t,q)(x),s)(Tn(x,t,q)(x)) = Tn(x,t,s+q)(x).

Now

Sn(Tn(x,t,q)(x),s+t−Sn(x,t,q)(x),s)(T
n(x,t,q)(x)) = Sn(x,t,s+q)−n(x,t,q)(T

n(x,t,q)(x)).

12



Plugging in the definition, we get

Sn(x,t,s+q)−n(x,t,q)(T
n(x,t,q)(x)) =

n(x,t,s+q)−n(x,t,q)−1∑
j=0

f(T j+n(x,t,q)(x)) =

n(x,t,s+q)−1∑
j=n(x,t,q)

f(T j(x))

= Sn(x,t,s+q)(x)− Sn(x,t,q).

Substituting this in, we have

Sn(x,t,q)(x) + Sn(Tn(x,t,q)(x),s+t−Sn(x,t,q)(x),s)(T
n(x,t,q)(x)) = Sn(x,t,s+q)(x).

So

T fs

(
T fq (x, t)

)
=
(
Tn(x,t,s+q)(x), s+ q + t− Sn(x,t,s+q)(x)

)
= T fs+q(x, t).

Thus this is actually a flow.

�

We call {T fs }s∈R the induced flow (or flow built under a function). Note this is the flow going
upward with unit speed.

Problem 14 (Petersen 1.4.7). Verify that the flow built under a function is measure preserving.

Proof. The goal is to show that for fixed s ∈ R that T fs is a measure preserving system. The rest
can be deduced from 1.4.C. Thus fix some s ∈ R, and examine

T fs : Γf → Γf ,

T fs (x, t) =
(
Tn(x,t,s)(x), s+ t− Sn(x,t,s)(x)

)
.

Consider E ⊆ Γf measurable (under the appropriate product measure). We need to show that

µf

(
(T fs )−1(E)

)
= µf (E),

where µf denotes the appropriate product measure. Let’s examine

(T fs )−1(E) = {(x, t) ∈ Γf : (Tn(x,t,s)(x), s+ t− Sn(x,t,s)(x)) ∈ E}.
Consider

En = {(x, t) ∈ Γf : (Tn(x), s+ t− Sn(x)) ∈ E}.
This is a disjoint collection for n ≥ 0, and so we can decompose

(T fs )−1(E) =
⊔
n≥0

En.

So it suffices to show that
µf (En) = µf (T fs (En)).

Now we can realize En as

En = {(x, t) ∈ Γf : n(x, t, s) = n and (Tn(x), s+ t− Sn(x)) ∈ E}.
Now we can write (abusing Fubini-Tonelli)

µf (En) =

∫
x∈X

(∫ f(x)

0
χEn(x, t)dt

)
dµ(x).

Notice

µf (T fs (En)) =

∫
x∈X

(∫ f(x)

0
χ
T f
s (En)

(x, t)dt

)
dµ.

13



Since it is a measure preserving transformation with respect to the first variable, we see that this
doesn’t change. The question remains about whether it is a measure preserving transformation
with respect to the second variable. However, for fixed x ∈ X and s ∈ R we see that this is just
a translation, which is going to be measure preserving. So for fixed x the integral on the inside
remains the same, i.e. ∫ f(x)

0
χ
T f
s (En)

(x, t)dt =

∫ f(x)

0
χEn(T−n(x), t)dt,

and then we can use the measure preserving property to get that after a change of variables this
will be the same for all x, so

µf (T fs (En)) = µf (En).

Now

µf ((T fs )−1(E)) =
∑
n≥0

µf (En) =
∑
n≥0

µf (T fs (En)) = µf (E).

So it’s indeed measure preserving. �

Problem 15 (Petersen 1.4.10). Let (X,M, µ) and (Y,N , ν) be Lebesgue spaces. Let T : L2(ν)→
L2(µ) be an isometry which is multiplicative, meaning

T (fg) = T (f) · T (g)

whenever f, g and fg ∈ L2(ν). Show that there is a homomorphism ϕ : X → Y such that
Tf(x) = f(ϕx) almost everywhere.

Proof. The claim is that T (χE) is a characteristic function for every E ⊆ Y with µ(E) <∞. This
is where the multiplicative property comes in. Notice that

T (χE)2 = T (χE)T (χE) = T (χ2
E) = T (χE).

So almost everywhere we have that T (χE) is either 0 or 1, which means it is a characteristic function
for some set F ⊆ X. Furthermore, since we have an isometry we have

‖χF ‖2 = ‖χE‖2 =⇒ µ(F ) = ν(E).

Define ϕ̂ : N →M on the sets of finite measure by ϕ̂(E) = F . Then

T (χE) = χϕ̂(F ).

This is defined on every measurable set with finite measure, and since we are in a Lebesgue space
we can get it for all measurable sets by taking limits. So actually ϕ̂ : N →M is uniquely defined
on all measurable sets. One can check that it’s a homomorphism. If we take Lebesgue spaces to be
probability measure spaces, then T (1) = 1. If we check complements, we have

χE + χEc = 1 =⇒ X \ ϕ̂(E) = ϕ̂(Ec).

For finite unions we use the modular equation

χE∪F = χE + χF − χEχF ,

so applying T to both sides we have

ϕ̂(E ∪ F ) = ϕ̂(E) ∪ ϕ̂(F ).

Induction then gives the result. For infinite unions, let Bn = ∪ni=1Ei, Bn ↗ B, then

χBn → χB
14



and we can apply dominated convergence to get χB ∈ L2(ν). T is an isometry, so T (χB)→ T (χB),
and that implies

ϕ̂

(∞⋃
1

Ei

)
=
∞⋃
1

ϕ̂(Ei).

This is then a homomorphism of σ-algebras. We can find ϕ which will induce ϕ̂. This will satisfy
the problem. �

We recall some definitions first. A σ-ring on a set X is a subset of P(X) satisfying the following
properties:

(1) ∅ ∈ R.
(2) For all A,B ∈ R, we have A ∪B ∈ R.
(3) For all A,B ∈ R, we have A \B ∈ R.

A function µ : R→ [0,∞] is a premeasure if it satisfies the following properties:

(1) µ(∅) = 0.
(2) We have

µ

(∞⊔
1

An

)
=
∞∑
1

µ(An).

We recall the Caratheodory-Hopf Extension theorem.

Theorem (Caratheodory-Hopf Extension). Let X be a set, R a σ-ring on X, and µ : R→ [0,∞] a
pre-measure on R. Then there is a measure µ′ on σ(R) which extends µ. Moreover, if µ is σ-finite,
then µ’ is unique.

The following problems are credited to Fabrice Baudoin (see here).

Problem 16. Let Bn ⊆ Rn be a sequence of Borel sets that satisfy Bn+1 ⊆ Bn×R. Let us assume
that for every n a probability measure µn is given on (Rn,B(Rn)) and that these probability
measures are compatible in the sense that

µn(A1 × · · · ×An−1 × R) = µn−1(A1 × · · · ×An−1).

Suppose they also satisfy

µn(Bn) > ε

where 0 < ε < 1. Show that there exists a sequence of compact sets Kn ⊆ Rn such that we have
the following.

(1) Kn ⊆ Bn.
(2) Kn+1 ⊆ Kn × R.
(3) µn(Kn) ≥ ε/2.

Proof. We can use the regularity of Lebesgue measure. For every n, there is a compact K∗n ⊆ Bn
satisfying

µn(Bn \K∗n) ≤ ε

2n+1
.

Define

Kn = (K∗1 × Rn−1) ∩ · · · ∩ (K∗n−1 × R) ∩K∗n.
We see that Kn ⊆ Bn by construction. We also see that

Kn+1 = (K∗1 × Rn) ∩ · · · ∩ (K∗n × R) ∩K∗n+1 ⊆
(
(K∗1 × Rn−1) ∩ · · · ∩ (K∗n−1 × R) ∩K∗n

)
× R

= Kn × R.
15
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Finally, we can use the fact that the measure is finite to get

µn(Kn) = µn(Bn)− µn(Bn \Kn) = µn(Bn)− µn
(
Bn \

(
(K∗1 × Rn−1) ∩ · · · ∩ (K∗n−1 × R) ∩K∗n

))
≥ µn(Bn)− µn(Bn \ (K∗1 × Rn−1))− · · · − µn(Bn \ (K∗n−1 × R))− µn(Bn \K∗n)

≥ µn(Bn)− µ1(B1 \K∗1 )− µ2(B2 \K∗2 )− · · · − µn(Bn \K∗n) ≥ ε/2.
�

Problem 17 (Petersen 1.4.12). Use the Caratheodory-Hopf Extension theorem to prove Kol-
mogorov’s Consistency Theorem: Let A be an index set and for each n = 1, 2, . . . and each n-tuple
(α1, . . . , αn) of elements of A, let µ(α1,...,αn) be a Borel probability measure on Rn. Assume that

(1) If τ ∈ Sym(n) and Tτ is the corresponding transformation of Rn (i.e. sends the basis elements
to their shuffled basis elements), then

µτ(α1,...,αn)(E) = µ(α1,...,αn)(T
−1
τ (E)) for all Borel E ⊆ Rn.

(2) If Πn+k,n : Rn+k → Rn is the projection map defined by

Πn+k,n(x1, . . . , xn+k) = (x1, . . . , xn),

then

µ(α1,...,αn)(E) = µ(α1,...,αn+k)(Π
−1
n+k,n(E)) for all n, k = 1, 2, . . . , and all Borel E ⊆ Rn.

Then there is a probability space (Ω,F , P ) and a family {fα : α ∈ A} of measurable functions
on Ω such that we always have

µ(α1,...,αn)(E) = P{ω : (fα1(ω), . . . , fαn(ω)) ∈ E}.

Proof. Let’s see what our second condition is saying. It is saying that

µ(α1,...,αn+k)(E × Rk) = µ(α1,...,αn)(E).

This is what it means for the measure to be consistent.
Consider the measure space (Fun(Ω,R), σ(Ω,R)) where σ(Ω,R) is the σ-algebra generated by

the cylindrical sets

{f ∈ Fun(Ω,R) : f(t1) ∈ I1, . . . , f(tn) ∈ In},
where I1, . . . , In are intervals and t1, . . . , tn ∈ Ω.

Consider the cylinders

C(α1,...,αn)(E) = {f ∈ Fun(Ω,R) : (f(α1), . . . , f(αn)) ∈ E}.
Define

µ(C(α1,...,αn)(E)) = µ(α1,...,αn)(E).

The consistency assumptions show that µ is well-defined. We also get µ(∅) = 0. We need to
establish σ-additivity to win. To do so, let (Cn) be a sequence of pairwise disjoint cylinder with
their union C a cylinder as well. Let

FN =

N⋃
0

Cn,

DN = C \ FN .
We can write

µ(C) = µ(DN ) + µ (FN ) .

The goal is to show

lim
N→∞

µ(DN ) = 0.
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The fact that DN is a cylinder implies it only uses a finite sequence of times (tn)Nn=1. We may
assume that every DN can be described as

DN = {f ∈ Fun(Ω,R) : (f(α1), . . . , f(αN )) ∈ BN},
where BN a Borel set. Notice that BN is a sequence which satisfies

BN+1 ⊆ BN × R.
Now suppose the limit converges to some ε > 0 for contradiction. Then µ(DN ) ≥ ε for all N .
We can use the above problem to get some compact sets (KN ). This is nonempty by assumption,
pick (x1, . . . , x

n
n) ∈ Kn. Using a diagonal argument, we get a sequence (xn) such that for every n,

(x1, . . . , xn) ∈ Kn. So the sequence

{f ∈ Fun(Ω,R) : (f(α1), . . . , f(αn)) = (x1, . . . , xn)} ∈ Dn.

This implies ⋂
n

Dn 6= ∅,

but this is a contradiction. So we must have the limit is 0. Thus we can invoke Caratheodory to
get a probability measure P so that (Fun(Ω,R), σ(Ω,R), P ) is a probability measure space. Choose
family {πα : α ∈ A} with πα(f) = f(α). �

Problem 18 (Petersen 2.3.1). State and prove versions of the Maximal Ergodic Theorem and
Pointwise Ergodic Theorem for one-parameter measure preserving flows.

Let’s recall the two theorems first.

Theorem (Maximal Ergodic Theorem). If f ∈ L1(X,M, µ) and (X,M, µ, T ) is a measure pre-
serving system, then ∫

{f∗>0}
fdµ ≥ 0, where f∗(x) = sup

n≥1

1

n

n−1∑
0

f(T k(x)).

Theorem (Pointwise Ergodic Theorem). Let (X,M, µ) be a probability space, T : X → X an
invertible measure preserving transformation, and f ∈ L1(X,M, µ), then

(1) we have

lim
n→∞

1

n

n−1∑
0

f(T k(x)) = f(x) exists a.e.,

(2) we have f is T -invariant almost everywhere,
(3) we have that if A ∈M with T−1(A) = A, then∫

A
fdµ =

∫
A
fdµ,

(4) we have

1

n

n−1∑
0

f ◦ T k → f in L1.

Proof. Let’s consider a one-parameter measure preserving flow on (X,M, µ). This is a family of
maps {T (t, x) : t ∈ R} which satisfies for all t ∈ R T (t, x) : X → X is an invertible measure
preserving map, T (t+ s, x) = T (t, T (s, x)), T (0, x) = x, and T (−1, x) = T−1(x).

Examine the operator

Ar(f)(x) =
1

|B(r, 0)|

∫
B(r,0)

f(T (t, x))dλ(t)
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for r > 0. This will be our averaging operator here. Now the goal is to examine

f∗(x) = sup
r>0

Ar(f)(x).

This will play the role of our maximal function. Ideally, we’d like to show that∫
{f∗(x)>0}

f(x)dµ ≥ 0.

Let ε > 0 be fixed and examine

Eε = {x : f∗(x) > ε}.
If x ∈ Eε, then this means there is some rx > 0 so that

Arx(f)(x) > ε.

Now since x is fixed, let Tx : R→ X be defined by Tx(t) = T (t, x). We have

Arx(f)(x) =
1

|B(rx, 0)|

∫
B(rx,0)

f(Tx(t))dt > ε.

In other words, there is some rx > 0 so that∫
B(rx,0)

f(Tx(t))dt =

∫
Tx(B(rx,0))

f(z)dµ(z) > ε.

The claim now is that the set {Tx(B(rx, 0))}x∈X covers Eε, but this is clear since x ∈ Tx(B(rx, 0)).
Now take Fε = T−1

x (Eε) ⊆ R. Since Tx is measure preserving and invertible, we have that the balls
B(rx, 0) cover Fε up to a null set (which we exclude anyways). We can then apply a Vitali lemma
and use {Tx} so that for all c < λ(Fε) = µ(Eε) there is a k so that x1, . . . , xk ∈ Eα and the balls

Bj = B(rx, xj) are disjoint and
∑k

1 µ(Txj (Bj)) > 3−1c. The rest of the argument now applies like
the Hardy-Littlewood maximal theorem to give us

0 ≤
∫
{f∗(x)>ε}

f(x)dµ(x).

This applies for all ε > 0, so take a limit to get the result.
Being T -invariant is the same thing as saying f∗(T (1, x)) = f∗(x). Notice

f∗(T (1, x)) = sup
r>0

1

|B(r, 0)|

∫
B(r,0)

f(T (t, T (1, x)))dλ(t) = sup
r>0

1

|B(r, 0)|

∫
B(r,0)

f(T (t+ 1, x))dλ(t)

= sup
r>0

1

|B(r, 0)|

∫
B(r,1)

f(T (t, x))dλ(t) = f∗(x)

by the supremum property. The Lebesgue differentiation theorem now kicks in to give us f = f in
this case. We get all properties except the T -invariance of f (of which I’m not sure is going to hold
in the flow case?) �

Problem 19 (Petersen 2.2.5). Identify

f(x) = lim
n→∞

An(f)(x) almost everywhere

in each case.

(1) Consider (X,M, µ, T ) where X = {0, . . . , n−1}Z,M the σ-algebra generated by cylinders,

µ is given by µ(j) = pj where
∑n−1

0 pj = 1, T is the left shift map, and

f((xn)) = χ{i}(x0).

In other words, f is the function which tells you whether a sequence has i at the 0 index.
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(2) Consider (S1,B, λ,Rα) where Rα : S1 → S1 is given by Rα(x) = x+α (mod 1) and f = χI
for some interval I.

(3) Consider (R,B, λ, T ) where f ∈ L1 and T (x) = x+ 1.

Proof.

(1) We calculate

An(f)((xn)) =
1

n

n−1∑
0

f(T j(xn)) =
1

n

n−1∑
0

χ{i}(xj).

This is the function which measures the frequency of {i} in the first n entries of the sequence
(xn). So

f(xn) =

{
1 if there are infinitely many occurrences of i in (xn)n≥0

0 otherwise.

(2) Since rotations by α are dense, regardless of where we start, we have that

f(x) = χI(x).

(3) We again examine

An(f)(x) =
1

n

n−1∑
0

f(x+ j).

Let f = χI for an interval. Then

An(f)(x) =
1

n

n−1∑
0

χI(x+ j),

and we see
f∗(x) = lim

n→∞
An(f)(x) = 0.

We see that this holds for characteristic functions of compact sets. Let P : L1 → L1 be the
function P (f) = f∗ (we know this works by the pointwise Ergodic theorem). It is linear by
the linearity of An and the limit. Note that ‖P‖ ≤ 1, so it is continuous. We know on all
characteristic functions it will be zero, so we can do the usual argument to get that for all
L1 functions it will be zero.

�

Problem 20 (Petersen 2.2.6). Show that if

n−1∑
0

f(T k(x))→∞ almost everywhere,

then ∫
x
fdµ > 0.

Proof. Notice that this is saying for almost every x ∈ X there is an n so that fn(x) > 0. Following
the argument for the Maximal Ergodic Theorem, we get∫

{f∗>0}
fdµ =

∫
X
fdµ ≥ 0.

If ∫
X
fdµ = 0,
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then f = 0 almost everywhere, which contradicts the property of limn→∞ fn going to infinity almost
everywhere. Thus we have ∫

X
fdµ > 0.

�

Problem 21 (Petersen 2.3.1). Let T : X → X be an invertible, measurable, nonsingular trans-
formation on a σ-finite measure space (X,M, µ) in that T preserves the σ-ideal of null sets of µ.
Recall T is nonsingular if µ(T (E)) = µ(T−1(E)) = 0 for any measurable set E with µ(E) = 0 (a
weaker notion of measure preserving).

A set W ∈ M of positive measure is called weakly wandering if there is a sequence nk → ∞
such that the sets TnkW are all pairwise disjoint. Show that if T has a weakly wandering set, then
there does not exist a finite invariant measure equivalent to µ.

Recall that two measures m and µ are said to be equivalent if for all E measurable with
m(E) = 0 we have µ(E) = 0, and if E is measurable with µ(E) = 0 then m(E) = 0. We write
m ∼ µ.

Proof. Recall a measure m will be invariant under T if m(T−1(E)) = m(E) for all E measurable.
Let W ∈ M be a set with µ(W ) > 0, m a finite T -invariant measure. Suppose m ∼ µ for
contradiction. Notice that if {TnkW} are all pairwise disjoint, m(TnkW ) = m(W ) for all k (by
T -invariance), and we have

∞∑
k=0

m(TnkW ) ≤ m(X)

by monotonicity and disjointness. This can only happen if m(W ) = 0, but we assumed that µ(W ) >
0 and m ∼ µ, a contradiction. Since µ(W ) > 0, this forces m and µ to not be equivalent. �

We recall a few definition. We work over (X,M, µ) a measure space. A collection J ⊆ M is a
σ-ideal if the following are satisfied:

(1) ∅ ∈ J ,
(2) when A ∈ J and B ∈M with B ⊆ A, then B ∈ J ,
(3) if {An} ⊆ J then

⋃
An ∈ J .

Problem 22. Show that if J is the collection of all sets of measure zero, then J is a σ-ideal.

Proof. We see (1) is satisfied, since µ(∅) = 0. Monotonicity gives us (2), and σ-additivity gives us
(3). �

A set W ∈M is wandering if the collection {T−nW} is pairwise disjoint. A map T is conser-
vative if every wandering set is in J , the σ-ideal of sets of measure zero.

Problem 23 (Petersen 2.3.2). Let T be as in Petersen 2.3.1. Show that X has a decomposition
into disjoint, measurable, invariant conservative and dissipative parts, X = C tD, in the following
sense:

(1) T |C is conservative.
(2) D = {TnW : n ∈ Z} for some wandering set W .

Proof. Notice that a measurable subset of any wandering set is a wandering set. Let B ⊆ W , W
wandering, and take Tn(B), Tm(B) for some n,m ∈ Z. Then Tn(B) ⊆ Tn(W ), Tm(B) ⊆ Tm(W ),
and

Tn(B) ∩ Tm(B) ⊆ Tn(W ) ∩ Tm(W ) = ∅.
The choices of n and m were arbitrary, so B is wandering.
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Notice unions of wandering sets from disjoint T invariant sets X and Y will be wandering.
Suppose A and B are wandering sets with A ⊂ X, B ⊆ Y , X and Y T -invariant and X ∩ Y = ∅.
Take n,m ∈ Z. Then

Tn(A tB) ∩ Tm(A tB) = (Tn(A) t Tn(B)) ∩ (Tm(A) t Tm(B))

= (Tn(A) ∩ Tm(A)) ∪ (Tn(A) ∩ Tm(B)) ∪ (Tn(B) ∩ Tm(B)) ∪ (Tn(B) ∩ Tm(B)) = ∅.
Consider now a sequence of increasing wandering sets with respect to ⊆, {Bα}. The claim is

that B =
⋃
αBα is a wandering set as well. Take n,m ∈ Z, then

Tn

(⋃
α

Bα

)
=
⋃
α

Tn(Bα), Tm

(⋃
α

Bα

)
=
⋃
α

Tm(Bα).

We see that
Tn(B) ∩ Tm(B) =

⋃
α,β

(Tn(Bα) ∩ Tm(Bβ)).

For any α, β, there is a γ so that Bα, Bβ ⊆ Bγ with Bγ a wandering set, so we have

Tn(Bα) ∩ Tm(Bβ) ⊆ Tn(Bγ) ∩ Tm(Bγ) = ∅.
This holds for all n,m,α, β, so in particular B is a wandering set.

We can then consider the collection

Γ = {W ∈M : W is a wandering set}.
We’ve just shown that, under the partial ordering ⊆, chains have upper bounds. We invoke Zorn’s
Lemma to find a maximal W ∈ Γ. Consider the set D = {TnW : n ∈ Z}. This is T invariant, since

T−1(D) = {Tn−1W : n ∈ Z} = {TnW : n ∈ Z} = D.

Let C = Dc. This will also be invariant, since

T−1(C) = T−1(Dc) = T−1(D)c = Dc = C.

Take B ⊆ C measurable and wandering. Suppose µ(B) > 0, so that B is non-empty. Then B ⊆ C,
W ⊆ D, C and D are T -invariant subsets which are disjoint. By the above, we get that B tW is
going to be a wandering set which contains W , contradicting maximality. We must have µ(B) = 0,
so that B ∈ J . This tells us that T |C is conservative. �

Problem 24 (Petersen 2.3.3). Let T be as in Petersen 2.3.1. Show that T is conservative if and
only if

P (u) =

∞∑
0

u ◦ T k

takes only the two values 0 and ∞ almost everywhere for each non-negative u ∈ L∞(X,M, µ).

Proof. Assume a probability measure space.
( =⇒ ): If T is conservative, then if E is wandering we have that µ(E) = 0. So taking E ∈ M,
µ(E) > 0, we have that almost every point x ∈ E goes to E. So P (u)(x) =∞ almost everywhere,
where U = χE . A linearity argument now applies to get that this holds for all u ∈ L∞.
(⇐= ): Let E ⊆ X be a measurable set which is wandering, and consider χE ∈ L∞ positive. Then
we see that P (χE) takes either the value 0 or ∞ almost everywhere. If P (χE)(x) =∞, this means
that T k(x) ∈ E infinitely often. Since E is wandering, this is impossible (off of a set of measure
zero, maybe) so P (χE)(x) = 0 almost everywhere. Consequently χ∗E = 0 almost everywhere, and

0 =

∫
X
χ∗Edµ =

∫
X
χEdµ = µ(E).

�
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Problem 25 (Petersen 2.3.4). Verify that the induced transformations TA and T̃ really are measure
preserving transformations when T is.

Proof. We break it up into parts.

(1) We show TA is measure preserving. We define a bunch of sets which have convenient
properties and hope things work out. Let E ⊆ A be measurable.

First, notice that

T−1
A (E) =

⊔
n≥1

(An ∩ T−n(E)),

so

µA(T−1
A (E)) =

1

µ(A)

∑
n≥1

µ(An ∩ T−n(E)).

Next, let

F0 = A, Fk = {x ∈ X : T kx ∈ A, T jx /∈ A for 0 ≤ j < k} for k ≥ 1.

Notice that

T−1(Fk) = {x ∈ X : T k+1x ∈ A, T j /∈ A for 1 ≤ j < k + 1}
= Ak+1 t Fk+1.

Now we see that
µ(E) = µ(E ∩A) = µ(E ∩ F0).

Since T is measure preserving, we have

µ(E ∩ F0) = µ(T−1(E ∩ F0)) = µ(T−1(E) ∩ T−1(F0)) = µ(T−1(E) ∩A1) + µ(T−1(E) ∩ F1).

We can continue this inductively; that is, we have

µ(T−n(E) ∩ Fn) = µ(T−n−1(E) ∩ T−1(Fn)) = µ(T−(n+1)(E) ∩ Fn+1) + µ(T−(n+1)(E) ∩ En+1).

Letting this go to infinity gives

µ(E) =
∑
n≥1

µ(T−n(E) ∩An).

Thus

µA(T−1
A (E)) =

1

µ(A)

∑
n≥1

µ(An ∩ T−n(E))

=
1

µ(A)
µ(E) = µA(E).

So TA is measure preserving.

(2) We show T̃ is measure preserving. If the set is in A′, then the preimage will just be the set
again, so the measures are the same. If the set is in A, then the preimage is divided evenly
into the complement and A′. If the set is in X \A, then the preimage lies evenly in X \A
and A′ (evenly here doesn’t mean actually evenly, just means that the sum of the measures
will be equal to the measure).

�

Problem 26 (Petersen 2.3.5). Describe the action of TA in these cases.

(1) X = [0, 1), Rα = x+ α (mod 1), and A = [0, 1/2).
(2) X = {0, 1}Z, σ is the shift, and A = {x : x0 = 0}.

Proof.

(1) Will just end up being Rα = x+ α (mod 1/2).
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(2) Shift a bunch? Unsure.

�

Problem 27 (Petersen 2.3.6). Prove directly that if T is a measure preserving transformation on
a finite measure space and µ(A) > 0 then E = {n ≥ 1 : µ(T−nA ∩A) > 0} has bounded gaps.

Proof. Proceed by contrapositive. We can enumerate E = {nk} in increasing order. No bounded
gaps implies that for all i ≥ 1 there is a k so that nk+1 − nk > i. Moreover, for each i there is a ji
so that µ(T−njiA ∩ A) = 0. So we’ve found an infinite collection {T−nji (A)}i≥1 of almost disjoint
sets, and by the usual recurrence argument this forces µ(A) = 0. This establishes if E does not
have bounded gaps, then µ(A) = 0. �

Problem 28 (Petersen 2.4.1). Prove that if T is ergodic, then so are the induced transformations

TA and T̃ .

See here.

Proof. Let’s first show TA is ergodic if T is ergodic. Recall that if T is ergodic, then T−1(E) = E
if and only if E is either null or conull. Let’s try the usual trick of decomposing our space into nice
sets. As usual, let

An = {x ∈ A : nA(x) = n}.
Recall we can write

T−1
A (E) =

⊔
n≥1

(An ∩ T−n(E)).

Suppose F ⊆ A is such that T−1
A (F ) = F . Then we have

F =
⊔
n≥1

(An ∩ T−n(F )).

Let {Fk} be as last time –

Fk = {x ∈ X : T k(x) ∈ A, T j(x) /∈ A for 0 ≤ j < k}.
Let

E =
⊔
n≥1

(Fn ∩ T−n(F )).

Let
K = E t F.

Recall that we had
T−1(A) = E1 t F1, T−1(Fk) = Ak+1 t Fk+1.

So

T−1(K) = T−1(E) t T−1(F )

=
⊔
n≥1

[(Fn+1 t En+1) ∩ T−(n+1)(F )] ∪ [(E1 ∪ F1) ∩ T−1(F )]

=
⋃
n≥1

(Fn ∩ T−n(F )) ∪
⋃
n≥1

(En ∩ T−n(F )) = E ∪ F = K.

Thus K is T -invariant, so K is null or conull. If it is null, then µA(F ) = 0. If it is conull, then

Kc = (A \ F ) ∪ ((X \A) \ E),

so
A \ F ⊆ Kc.

Then µA(F c) = 0 so that it is conull.
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The other part is similar. �

Problem 29 (Petersen 2.4.2). Prove that if T is ergodic (on a space of finite measure), f ≥ 0, and

lim sup
n→∞

1

n

n−1∑
0

f(T j(x)) <∞ almost everywhere

then f ∈ L1.

Proof. Notice that

f∗(x) := lim sup
n→∞

1

n

n−1∑
0

f(T j(x))

is a function so that f∗ ◦ T = f∗ almost everywhere. Since T is ergodic, the only T -invariant
functions are the constant functions (almost everywhere), so f∗ is constant. That is, f∗ = C <∞
almost everywhere for some C ∈ R>0.

Now let
fk = fχ{f≤k} + kχ{f>k}.

Then this is a bounded function, so fk ∈ L1(µ), and moreover we see that

1

n

n−1∑
0

fk(T
j(x)) ≤ 1

n

n−1∑
0

f(T j(x)).

Thus we have f∗k ≤ C, and the Birkhoff Ergodic Theorem tells us that∫
fkdµ =

∫
f∗kdµ ≤ Cµ(X) for all k.

Now we can apply the monotone convergence theorem (since fk ↗ f) to get

lim
k→∞

∫
fkdµ =

∫
fdµ ≤ Cµ(X) <∞.

Thus f ∈ L1(µ). �

Problem 30 (Petersen 2.4.3). Which of the equivalent characterizations of ergodicity fail when X
has infinite measure?

Proof. Let’s recall the equivalent characterizations. Throughout, (X,M, µ, T ) is a measure preserv-
ing system of a probability measure space. The following are equivalent (all results from Petersen):

(1) T is ergodic.
(2) For all measurable f we have f ◦ T = f implies f is constant. [Proposition 2.4.1]
(3) 1 is a simple eigenvalue of the transformation U induced on L2(X,M, µ) by T . [Theorem

2.4.2]
(4) For every f ∈ L1(X,M, µ), we have

f(x) = lim
n→∞

1

n

n−1∑
0

f(T j(x)) =

∫
X
fdµ almost everywhere.

[Theorem 2.4.4]
(5) For every f, g ∈ L2(X,M, µ) we have

lim
n→∞

1

n

n−1∑
0

(U jf, g) = (f, 1)(g, 1).

[Proposition 2.4.5]
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Let’s recall what ergodic means when X has infinite measure. A measure preserving system
(X,M, µ, T ) is ergodic if T−1(E) = E implies µ(E) = 0 or µ(X \ E) = 0.

The goal now is to examine (X,M, µ, T ) a measure preserving system which is σ-finite and figure
out which of the following are still true.

(1) =⇒ (2): Assume T is ergodic. Let f be a measurable function which is T -invariant.
Consider the set

Efr = Er := {x ∈ X : f(x) > r}.
We claim this set is invariant under T . Notice that since f ◦ T = f , we have

T−1(Er) = {x ∈ X : f(T (x)) > r} = {x ∈ X : f(x) > r} = Er.

Since T is ergodic, this forces µ(Er) = 0 or µ(X \Er) = 0. If f is not constant, there is an r so that
0 < µ(Er) <∞. Notice this means that µ(X \ Er) 6= 0 as well, and thus we have a contradiction.
(2) =⇒ (1): Let E ∈M be a T -invariant set and consider f = χE . This is a measurable function,
and we see that

χE ◦ T = χT−1(E) = χE .

This implies χE is constant almost everywhere, so χE = 0 or 1 almost everywhere. If χE = 0
almost everywhere, we have

µ(E) =

∫
χEdµ = 0.

If χE = 1 almost everywhere, then χX\E = 0 almost everywhere, so

µ(X \ E) =

∫
χX\Edµ = 0.

This holds for every T -invariant set, so T is ergodic.
(1) =⇒ (3): Notice that 1 is always an eigenvalue. We need to show that it is a simple

eigenvalue, meaning Uf = f implies f is constant almost everywhere. But f being T -invariant
implies that it is constant almost everywhere by the equivalence of (1) ⇐⇒ (2).
(3) =⇒ (1): Notice 1 is always an eigenvalue, since constant functions are invariant. For it
to be a simple eigenvalue means that Uf = f implies f is constant almost everywhere. So all
f ∈ L2(X,M, µ) which are T -invariant are constant almost everywhere. Does this imply that
every measurable function which is T -invariant is constant almost everywhere? Doesn’t seem to be
necessarily true.

(1) ⇐⇒ (4): The Birkhoff ergodic theorem doesn’t necessarily say what we want for this to
work.

(1) ⇐⇒ (5): The implication still works in infinite measure spaces. The converse doesn’t
necessarily hold (the containment doesn’t hold true).

�

Problem 31 (Petersen 2.4.4). Consider (X,M, µ, T ) a measure preserving system of a probability
measure space.

(1) Prove that T is ergodic if and only if

1

n

n−1∑
0

µ(T k(A) ∩B)→ µ(A)µ(B) for all A,B ∈M.

(2) Prove that T is ergodic if and only if (1) holds on a semialgebra which generates the σ-
algebra.

Proof.
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(1) ( =⇒ ): Assume that T is ergodic. We can write the condition as

lim
n→∞

1

n

n−1∑
0

µ(T k(A) ∩B) = lim
n→∞

1

n

n−1∑
0

∫
χA(T−k(x))χB(x)dµ.

Now using the fact that T is ergodic and the Birkhoff Ergodic Theorem, we have

lim
n→∞

1

n

n−1∑
0

χA(T−k(x)) = χ∗A(x).

Notice we have∫
χ∗A(x)dµ = χ∗A(x)µ(X) = µ(A) =⇒ χ∗A(x) =

µ(A)

µ(X)
= µ(A),

since χ∗A is constant almost everywhere and since µ(X) = 1. Multiplying this by χB gives

lim
n→∞

1

n

n−1∑
0

χA(T−k(x))χB(x) = µ(A)χB(x).

Now use the dominated convergence theorem to get∫ (
lim
n→∞

1

n

n−1∑
0

χA(T−k(x))

)
dµ = lim

n→∞

1

n

n−1∑
0

µ(T k(A) ∩B) = µ(A)µ(B).

(⇐= ): Let A = B = E, where E is a T -invariant set. Then

1

n

n−1∑
0

µ(E)→ µ(E) = µ(E)2.

This means µ(E) = 0 or µ(E) = 1.
(2) ( =⇒ ): Clear, it holds on the entire algebra.

(⇐= ): We just need to show that the property on the semialgebra implies the property on
the σ-algebra. See Theorem 1.17 [4]. Elements in the algebra can be written as disjoint
unions of elements in the semialgebra, so it’s clear that it will hold on the algebra. Now
assume that A,B are in the σ-algebra. Fix ε > 0 small (where the smallness will be chosen
in the future). We can find A0, B0 in the algebra so that µ(A4A0), µ(B4B0) < ε. Notice
that

(T−k(A) ∩B)4(T−k(A0) ∩B) ⊆ (T−k(A)4T−k(A0)) ∪ (B4B0).

Taking the measure and using measure preserving, we have

µ
(

(T−k(A) ∩B)4(T−k(A0) ∩B)
)
< 2ε.

Thus

|µ(T−k(A) ∩B)− µ(T−k(A0) ∩B0)| < 2ε.

Now, notice

|µ(T−k(A) ∩B)− µ(A)µ(B)| ≤ |µ(T−k(A) ∩B)− µ(T−k(A0) ∩B0)|+ |µ(T−k(A0) ∩B0)− µ(A0)µ(B0)|
+|µ(A0)µ(B0)− µ(A)µ(B0)|+ |µ(A)µ(B0)− µ(A)µ(B)|

< 4ε+ |µ(T−k(A0) ∩B0)− µ(A0)µ(B0)|.
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Now∣∣∣∣∣ 1n
n−1∑

0

µ(T−k(A) ∩B)− µ(A)µ(B)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n−1∑
0

µ(T−k(A) ∩B)− 1

n

n−1∑
0

µ(T−k(A0) ∩B0)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n−1∑

0

µ(T−k(A0) ∩B0)− µ(A0)µ(B0)

∣∣∣∣∣+ |µ(A0)µ(B0)− µ(A)µ(B0)|

+|µ(A)µ(B0)− µ(A)µ(B)|

<
ε

n
+

∣∣∣∣∣ 1n
n−1∑

0

µ(T−k(A0) ∩B0)− µ(A0)µ(B0)

∣∣∣∣∣+ µ(A0)ε+ µ(A)ε.

We can choose ε > 0 small enough so that ε < 1/µ(A) and smaller than 1. Notice that
|µ(A)− µ(A0)| < ε so that µ(A0) < ε+ µ(A). Putting this all together, we get∣∣∣∣∣ 1n

n−1∑
0

µ(T−k(A) ∩B)− µ(A)µ(B)

∣∣∣∣∣ < 4ε+

∣∣∣∣∣ 1n
n−1∑

0

µ(T−k(A0) ∩B0)− µ(A0)µ(B0)

∣∣∣∣∣ .
Now taking the limit as n→∞ of both sides to get

lim
n→∞

∣∣∣∣∣ 1n
n−1∑

0

µ(T−k(A) ∩B)− µ(A)µ(B)

∣∣∣∣∣ < 4ε.

We have ε > 0 small arbitrary, so taking ε→ 0 gives us the desired result. So this holds on
the σ-algebra.

�

Problem 32 (Petersen 2.4.5). Let T be ergodic and ν � µ a measure on (X,M) such that
ν(T−1) ≤ ν. Show that ν(T−1) = ν and ν is a constant multiple of µ. Note: (X,M, µ) is a
probability measure space.

Remark. I followed this, but I don’t actually think it is right as is. I hopefully cleaned it up.

Proof. Assume without loss of generality ν is a probability measure as well, so ν(X) = 1. Let
g = ∂ν

∂µ be the Radon-Nikodym derivative, so that for all E ∈M we have

ν(E) =

∫
E
gdµ.

Consider A = {g > 1}. Notice that

µ(A) =

∫
A
dµ <

∫
A
gdµ = ν(A) ≤ 1,

so we have µ(A) < 1.
Notice as well that

T−1(A) = (T−1(A) \A) t (T−1(A) ∩A),

so

ν(T−1(A)) = ν(T−1(A) \A) + ν(T−1(A) ∩A).

We now use the fact that ν(T−1) ≤ ν to get

ν(T−1(A) \A) + ν(T−1(A) ∩A) ≤ ν(A).

Use the fact that

A = (A \ T−1(A)) t (A ∩ T−1(A))
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to get
ν(T−1(A) \A) + ν(T−1(A) ∩A) ≤ ν(A \ T−1(A)) + ν(A ∩ T−1(A)).

Simplifying, we have
ν(T−1(A) \A) ≤ ν(A \ T−1(A)).

Now assume that µ(A) > 0. Since T is ergodic, we have

µ(A \ T−1(A)) ≥ µ(A4T−1(A)) > 0.

The first observation we have is

µ(T−1(A) \A) =

∫
T−1(A)\A

dµ.

Now
T−1(A) \A = {x ∈ X : g(T (x)) > 1, g(x) ≤ 1}.

Substitute this in and use the fact that ν(T−1(E)) ≤ ν(E) as well as the earlier inequality we
derived to get

µ(T−1(A)\A) <

∫
T−1(A)\A

g(T (x))dµ(x) = ν(T−1(T−1(A)\A)) ≤ ν(T−1(A)\A) ≤ ν(A\T−1(A)).

Now again use the inequality ν(T−1(E)) ≤ ν(E) as well as the fact that T is measure preserving
and invertible to get

ν(A \ T−1(A)) = ν(T−1(T (A) \A)) ≤ ν(T (A) \A) =

∫
T (A)\A

gdµ ≤ µ(T (A) \A) = µ(A \ T−1(A)).

But we have

µ(A \ T−1(A)) + µ(A ∩ T−1(A)) = µ(A) = µ(T−1(A)) = µ(T−1(A) \A) + µ(T−1(A) ∩A),

which implies
µ(A \ T−1(A)) = µ(T−1(A) \A).

Thus we have
µ(T−1(A) \A) < µ(T−1(A) \A),

which is a contradiction. Thus µ(A) = 0. Thus g ≤ 1 almost everywhere. Notice that if g < 1
strictly almost everywhere, then

ν(X) =

∫
X
gdµ <

∫
X
dµ = µ(X) = 1,

which contradicts the fact that ν is a probability measure. This implies that g = 1 almost every-
where, but this means that µ = ν.

Now if we had normalized ν above, so that ν(E) = κ(E)/κ(X) for some finite measure κ, then
we see that this adjusts g by a constant. However if g is a constant almost everywhere, then κ is a
constant multiple of µ. �

Problem 33 (Petersen 2.4.6). Let X = [0, 1] with Lebesgue measure m. Then T (preserving m)
is ergodic on X if and only if for every continuous f

1

n

n−1∑
0

f(T k(x))→
∫
fdm almost everywhere.

Proof. The forward direction is clear, since continuous functions are measurable. The backward
direction is more interesting. By an earlier equivalence, we just need to show that this property
holding for continuous functions, then it holds for all L1 functions. Use Lusin’s theorem for density
of continuous functions in L1. �
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Problem 34 (Petersen 2.4.7). Let T be an ergodic measure preserving transformation on a
nonatomic probability space (X,M, µ). Let U : L2(X,M, µ) → L2(X,M, µ) be the unitary
operator associated to T .

(1) Show that every point of the unit circle is an approximate eigenvalue of U in the following
sense: Given λ with |λ| = 1 there are fn ∈ L2 with ‖fn‖2 = 1 for all n and ‖Ufn−λfn‖2 → 0.

(2) Deduce the spectrum of U is the entire unit circle.

We recall Rokhlin Lemma (see here).

Theorem (Rokhlin Lemma). Let T : X → X be an invertible measure-preserving transformation
on a probability measure space. If the collection of periodic points has measure zero, then for every
ε > 0 and n fixed there is a measurable set E such that the sets {T j(E)}n−1

j=0 are pairwise disjoint
and such that

µ(E ∪ · · · ∪ Tn−1(E)) > 1− ε.
Remark. See here.

Proof.

(1) Take λ ∈ C with |λ| = 1 (so that it lies on the unit circle). Fix ε > 0. Take the set in
Rokhlin’s lemma, En,ε so that {T j(En,ε)}nj=0 almost covers X and they are pairwise disjoint.
Define fn,ε by

fn,ε(T
i(x)) = λi for x ∈ En,ε,

and 1 everywhere else. Then

‖fn,ε‖2 = ε+ (1− ε)|λ| = 1.

Notice that if x ∈ En,ε and 0 ≤ j ≤ n− 1 we have

U(fn,ε)(T
j(x)) = fn,ε(T

j+1(x)) = λj+1 = λfn,ε(T
j(x)).

Notice as well that

µ(En,ε) ≤
1

n+ 1
.

Now on F =
⋃n−1

0 T j(En,ε) we have Ufn,ε = λfn,ε. So they are equal on a set of measure
greater than or equal to 1− ε− 1/(n+ 1). Now

‖Ufn,ε − λfn,ε‖2 ≤
(∫

F c

|Ufn,ε − λfn,ε|dµ
)1/2

≤ (2µ(F c))1/2 ≤
√

2

(
ε+

1

n+ 1

)1/2

.

We can set ε = n−1 and take n→∞ to get the result.
(2) Notice the choice of λ ∈ C with |λ| = 1 didn’t matter.

�

Problem 35 (Petersen 2.4.8). Suppose that (Ω,M, µ, σ) is a Markov shift determined by a given
stochastic matrix A and fixed probability vector p with all pi > 0. Prove that if (Ω,M, µ, σ) is
ergodic, then A is irreducible.

Proof. The goal is to show that for any i, j we have there is a k so that aki,j > 0, where aki,j = (Ak)i,j .

In other words, aki,j is the probability that ω0 = i and the probability that ωk = j, where ω ∈ Ω.
We define this as

aki,j =
µ(σ−k(Cj) ∩ Ci)

µ(Ci)
, Ck = {ω ∈ Ω : ω0 = k}.

Notice that
1

n

n−1∑
0

µ(σ−k(Cj) ∩ Ci)→ µ(Cj)µ(Ci) > 0,
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so there must be some n so that the term on the left hand side is positive, and for this n there
must be some k ∈ {0, . . . , n− 1} so that µ(σ−k(Cj) ∩ Ci) > 0. Since µ(Ci) > 0, we are done. �

Problem 36 (Petersen 2.4.9). Prove that for any ergodic measure preserving transformation on a
nonatomic space there is a set A of positive measure so that the return time nA is unbounded.

Remark. See here.

Proof. We invoke Rokhlin’s lemma again. Fix ε > 0 arbitrary. We see that for every n we can find
an n so that

µ(En ∪ T (En) ∪ · · · ∪ Tn(En)) > 1− ε
and so that these sets are disjoint. Notice that by disjointness and measure preserving, we have

1 ≥ nµ(En) > 1− ε =⇒ 1

n+ 1
≥ µ(En) >

1− ε
n+ 1

.

So take x ∈ En, then nEn(x) ≥ n. Consider E =
⋂∞
n=1En. If there is an x ∈ E, Then x ∈ En for

all n, so nEn(x) ≥ n for each n and hence nE(x) is unbounded. It might be, however, that E is
empty. We see from here we need to be careful about our choices of En.

How do we fix this? We can first find E1 so that E1, T (E1) are pairwise disjoint and µ(E1) < 1/2.
Set X1 = X \ T (E1). Then for x ∈ E1, nX1(x) ≥ 2 and µ(X1) > 1/2. Now using the proof of
Rokhlin, we can find E2 ⊆ E1 so that T 2(E2) ⊆ E1, T (E2), T 3(E2) ⊆ T (E1) and µ(E2) < 1/4. Set
X2 = X1 \ T 2(E2). Then µ(X2) > 1/4 and nX2(x) ≥ 4 for x ∈ E2. Continue in this fashion. Then
µ(Xn) > 1/2n and nXn(x) ≥ 2n for x ∈ En, where En is chosen appropriately. Set X∞ =

⋂
Xn.

Then µ(X∞) > 0 and nX∞(x) is unbounded. �

Problem 37. Let G be a (first countable) compact topological group, and let g ∈ G. Show that
there exists a sequence nk ↗∞ so that gnk → e as k →∞.

Proof. Notice that the map Lg : G→ G defined by Lg(h) = gh is a measure preserving homeomor-
phism. Fix y ∈ G. Take a neighborhood basis {Un} for y. Without loss of generality, assume that
this is a decreasing sequence of sets, i.e. Un+1 ⊆ Un. By Poincare recurrence, we know that

Γn = {x ∈ Un : x is infinitely recurrent}
is such that µ(Γn) = µ(Un) > 0, so Γn 6= ∅. For each n, let yn ∈ Γn. Then we have that there is a
sequence (mn

k) so that gm
n
k yn ∈ Un for all k (note here that we need to choose these sequences so

that mk
k ≤ mn

n for k ≤ n, but doing so isn’t hard and it’s just a matter of refining the sequences if
needed). Taking mn = mn

n, we note that gmnyn ∈ Un and we claim that this shows gmnyn → y. To
see this, take any neighborhood U of y. Since {Un} is a decreasing basis, we have that there exists
a N so that for all n ≥ N Un ⊆ U . Now for all n ≥ N , we have that gmnyn ∈ Un ⊆ U . This holds
for all neighborhoods U , so this implies convergence.

Now we have yn → y, gmnyn → y, and we wish to show gmn → e. To get this, we claim that
(gmnyn)y−1

n = gmn → e. Since multiplication is continuous, we have

lim
n→∞

(gmnyn)y−1
n =

(
lim
n→∞

gmnyn

)(
lim
n→∞

y−1
n

)
.

By continuity of inversion, y−1
n → y−1, so using this and the above we have

lim
n→∞

gmn = lim
n→∞

(gmnyn)y−1
n =

(
lim
n→∞

gmnyn

)(
lim
n→∞

y−1
n

)
= (y)(y−1) = e.

�

Problem 38 (Petersen 2.4.10). Show that if T has discrete spectrum, then there is a sequence of
integers nk ↗∞ with Tnk → I in the strong operator topology on L2. In other words,

‖Tnk(f)− f‖2 → 0 for all f ∈ L2.
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Remark. See here.
As Thomas pointed out, I’m implicitly assuming the space is “nice” enough for things to work

(i.e. L2 is a separable Hilbert space).

Proof. Let {fk} be a sequence of orthonormal eigenfunctions for U on L2. Then U(fi) = fi(T ) =
λifi with |λi| = 1. For each i, we can find a sequence {ni} so that λni → 1 (follows by the last
problem). Now take any f ∈ L2. We can approximate it with the span {fk}, so there is some
g ∈ span{fk} so that ‖f − g‖2 < ε, ε > 0 fixed. Notice that

‖Tnkf − f‖2 ≤ ‖Tnkg − g‖2 + ‖Tnkg − Tnkf‖2 + ‖f − g‖2 < 2ε.

This holds for all ε > 0, so we get the result.
�

Recall that a measure preserving transformation has Lebesgue spectrum of multiplicity N
(where N is a finite or infinite cardinal number) in the case that there is a set Λ of cardinality N
and a set of functions

{fλ,j : λ ∈ Λ, j ∈ Z}
which together with 1 form an orthonormal basis for L2(X,M, µ) and such that

UT fλ,j = fλ,j+1 for all λ ∈ Λ, j ∈ Z.
A measure preserving transformation T on (X,M, µ) is aK-automorphism if there is a subσ-algebra
A ⊆M such that

(1) T−1(A) ⊆ A.
(2)

⋃∞
n=−∞ T

n(A) generates M.

(3)
⋂0
n=−∞ T

n(A) is trivial.

Recall Petersen Proposition 2.5.11.

Proposition (Petersen Proposition 2.5.11). Every K-automorphism has countable Lebesgue spec-
trum.

Problem 39. Show that for every N there exists A1, . . . , An ∈ A pairwise disjoint sets with positive
measure.

Proof. We can use Rokhlin’s lemma to find B1, . . . , Bn ∈M pairwise disjoint with positive measure.
By property (2) of K-automorphisms, we have that we canapproximate the Bi arbitrarily well with
Ai ∈ A. By (1), we can choose Ai ∈ Tn(A) by choosing n large enough, so L2(X,Tn(A), µ) has
dimension at least N , forcing Tn(A) to contain at least N pairwise disjoint sets of positive measure.
We can then take preimages to get them in A. �

Problem 40 (Petersen 2.5.1). Finish the proof of 2.5.11 by showing that the orthogonal comple-
ment of UM is countable.

Proof. Fix n. Use the last problem to find A1, . . . , An ∈ A with positive measure which are pairwise
disjoint. Pick f ∈W \ {0}. Note that such an f exists because otherwise (X,M, µ) is atomic. Set
wi = fχAi ◦ T . Note three things:

(1) The wi are linearly independent (disjoint support).
(2) The wi ∈ V .
(3) The wi ∈ (UM)⊥.

To check this last fact, take E ∈ A and examine χE ◦ T ∈ UM . Taking arbitrary wi, we see that

(wi, χE ◦ T ) =

∫
wiχT−1(E) =

∫
f(T (x))χT−1(Ai)χT−1(E) =

∫
f(T (x))χT−1(Ai∩E) = 0.

So dim(W ) ≥ N for all N , and we get it’s infinite. �
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A map is weakly mixing if

1

n

n−1∑
0

|µ(T−k(A) ∩B)− µ(A)µ(B)| → 0 for all A,B ∈M.

A map is strongly mixing if

|µ(T−k(A) ∩B)− µ(A)µ(B)| → 0 for all A,B ∈M.

Problem 41 (Petersen 2.5.4, Ornsteins Criterion). Prove that a weakly mixing Markov shift is
strongly mixing.

Proof. We follow Theorem 1.31 [4]. We will show that weak mixing implies the matrix A is
irreducible and aperiodic (in this context, there exists some N so that AN > 0). Then we will use
that to establish strong mixing.

Let Cj = {ω ∈ Ω : ω0 = j} be the cylinders. Weak mixing here says that

1

n

n−1∑
0

|µ(T−l(Ci) ∩ Cj)− µ(Ci)µ(Cj)| → 0 for all i, j.

Notice

aki,j =
µ(T−k(Ci) ∩ Cj)

µ(Ci)
,

so substituting this in we get

µ(Ci)

n

n−1∑
0

|ali,j − pj | → 0 for all i, j,

or

1

n

n−1∑
0

|ali,j − pj | → 0 for all i, j.

Using a real analysis exercise Theorem 1.20 [4] we get that there is some subsequence (nk) so
that

ank
i,j → pj .

This gives us irreducible and aperiodic. The renewal theroem tells us that

ani,j → pj .

Notice that for any two cylinders now,

µ(T−k(Ci) ∩ Cj) = aki,jµ(Ci)→ pjµ(Ci) = µ(Cj)µ(Ci).

Since the cylinders generate things, this is sufficient. �

Problem 42 (Petersen 2.5.5). Prove that T is weakly mixing if and only if

lim
n→∞

1

n

n−1∑
0

|µ(T−k(A) ∩A)− µ(A)2| = 0 for all A ∈M.

Proof. The forward direction is clear, so let’s assume this condition and show that T is weakly
mixing. We follow the proof of Theorem 5.5 [3] (for a similar result on strong mixing). Fix
A ∈ M. Consider the subspace H ⊆ L2(X,M, µ) generated by the constant functions along with
{UkχA : k ∈ Z}. Notice that

〈UkχA, 1〉 =

∫
χT−k(A)dµ = µ(T−k(A)) = µ(A),
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so

1

n

n−1∑
0

∣∣∣〈UkχA, 1〉 − 〈χA, 1〉〈1, 1, 〉∣∣∣ =
1

n

n−1∑
0

|µ(A)− µ(A)| = 0.

Notice as well that

〈UkχA, U jχA〉 = 〈Uk−jχA, χA〉 = µ(T k−j(A) ∩A)

so for fixed j and varying k we have

1

n

n−1∑
k=0

∣∣∣〈UkχA, U jχA〉 − 〈UkχA, 1〉〈1, U jχA〉∣∣∣ =
1

n

n−1∑
0

∣∣∣µ(T k−j(A) ∩A)− µ(A)2
∣∣∣ = 0.

Thus for all f ∈ H we have

lim
n→∞

1

n

n−1∑
k=0

∣∣∣〈UkχA, f〉 − 〈χA, 1〉〈1, f〉∣∣∣ = 0.

Notice this is a closed subspace. Decompose L2(X,M, µ) = H ⊕H⊥, so for all f ∈ L2(µ) we can
write f = f1 + f2, f ∈ H and f2 ∈ H⊥. Then

lim
n→∞

1

n

n−1∑
k=0

∣∣∣〈UkχA, f〉 − 〈χA, 1〉〈1, f〉∣∣∣ = lim
n→∞

1

n

n−1∑
k=0

∣∣∣〈UkχA, f1〉 − 〈χA, 1〉〈1, f1〉
∣∣∣ = 0.

Note here we utilized the fact that the constant functions are in H so that 〈1, f2〉 = 0, and then we
used linearity. Consequently we have the result holds for all f ∈ L2(µ). Now for B ∈ M, we have
χB ∈ L2(µ), so

lim
n→∞

1

n

n−1∑
k=0

∣∣∣〈UkχA, χB〉 − 〈χA, 1〉〈1, χB〉∣∣∣ = lim
n→∞

1

n

n−1∑
k=0

∣∣∣µ(T−k(A) ∩B)− µ(A)µ(B)
∣∣∣ = 0.

Thus T is weak mixing. �

Recall that a system is n-mixing if for all choices of n sets A1, . . . , An ∈M we have

lim
infimi→∞

infi6=j |mi−mj |→∞

µ(Tm1A1 ∩ · · · ∩ TmnAn) = µ(A1) · · ·µ(An).

Problem 43 (Petersen 2.5.6). Prove that Bernoulli shifts, mixing Markov shifts, and ergodic
automorphisms of a compact abelian group are n-mixing for all n.

Proof. Let’s show Bernoulli shifts are n-mixing for all n.
Consider (Ω,B, p, σ) where Ω = {0, 1}Z, σ(ω) = ω′, where ω′(n) = ω(n+ 1) and p and B are the

usual things (p is generated by vector p0 = 1/2 and p1 = 1/2). If we show it on cylinders, we win.
Consider the cylinders

Cnj = {ω ∈ Ω : ω(n) = j}.
We examine

lim
infimi→∞

infi6=j |mi−mj |→∞

p(σm1(Ct1j1 ) ∩ · · · ∩ σmn(Ctnjn )).

Notice

σm1(Ct1j1 ) = {ω ∈ Ω : ω(t1 +m1) = j1}.
Thus fixing m1, . . . ,mn distinct and far enough apart (which we can by construction of the limit)
we have

σm1(Ct1j1 ) ∩ · · · ∩ σmn(Ctnjn ) = {ω ∈ Ω : ω(t1 +m1) = j1, . . . , ω(tn +mn) = jn}.
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Since we assume things are far enough apart and distinct, we can use the definition of p to calculate

p(σm1(Ct1j1 ) ∩ · · · ∩ σmn(Ctnjn )) = p(Ct1j1 ) · · · p(Ctnjn ).

As we take things further and further apart, this doesn’t change, so we get n-mixing.
Mixing Markov shifts are isomorphic to a Bernoulli shift, so I don’t think we need to do any kind

of argument there. I believe ergodic automorphisms of a compact abelian group also have this nice
property, so I think this suffices. �

Problem 44 (Petersen 2.5.7). Show that there is no concept of “uniform mixing” for measure
preserving transformations. That is, if

µ(T−n(A) ∩B)→ µ(A)µ(B)

uniformly for all A,B ∈ B with A ⊆ B, then every set in M has measure 0 and 1, so (X,M, µ) is
isomorphic with the space consisting of a single point.

Remark. There is a paper by Halmos (see here) which discusses this problem. The hint Petersen
gives is essentially the gist of Halmos’ argument.

Proof. Let’s first just assume that it converges uniformly for all A,B ∈ M. That is, for all
A,B ∈M and ε > 0, there exists an N so that for all n ≥ N we have

|µ(T−nA ∩B)− µ(A)µ(B)| < ε.

If we let B = T−n(A), then this says that

|µ(A)− µ(A)2| < ε.

We can do this for all ε > 0, so this forces µ(A) to be 0 or 1. The choice of A was arbitrary, so the
measure of all sets must be either 0 or 1.

Now we go back to the original condition. The goal is to show that with the condition of uniform
convergence for all A,B ∈M with A ⊆ B, we have uniform convergence for all A,B ∈M. So take
A,B ∈ M arbitrary. The goal is to show that for all ε > 0, there is an N so that for n ≥ N we
have

|µ(T−nA ∩B)− µ(A)µ(B)| < ε.

Fix ε > 0. Notice that A ∩B ⊆ B, so there is an N such that for n ≥ N we have

|µ(T−n(A ∩B) ∩B)− µ(A ∩B)µ(B)| < ε/2.

Simultaneously, we have A ∩Bc ⊆ Bc, so for all ε > 0 there is an N such that for n ≥ N we have

|µ(T−n(A ∩Bc) ∩Bc)− µ(A ∩Bc)µ(Bc)| < ε/2.

Now, notice that

µ(A ∩Bc)− µ(A ∩Bc)µ(Bc) = µ(A ∩Bc)(µ(X)− µ(Bc)) = µ(A ∩Bc)µ(B).

So we may rewrite the above as

|µ(T−n(A ∩Bc) ∩Bc)− µ(A ∩Bc) + µ(A ∩Bc)µ(B)| < ε/2.

Notice
A ∩Bc = (A ∩Bc ∩ TnB) t (A ∩Bc ∩ TnBc),

so that
T−n(A ∩Bc) = (T−n(A ∩Bc) ∩B) t (T−n(A ∩Bc) ∩Bc),

µ(A ∩Bc) = µ(T−n(A ∩Bc)) = µ(T−n(A ∩Bc) ∩B) + µ(T−n(A ∩Bc) ∩Bc),

µ(T−n(A ∩Bc) ∩Bc) = µ(A ∩Bc)− µ(T−n(A ∩Bc) ∩B).

Use this to rewrite the above again as

|µ(A ∩Bc)µ(B)− µ(T−n(A ∩Bc) ∩B)| = |µ(T−n(A ∩Bc) ∩B)− µ(A ∩Bc)µ(B)| < ε/2.
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Now note
T−n(A) = T−n(A ∩B) t T−n(A ∩Bc),

A = (A ∩B) t (A ∩Bc),

hence

|µ(T−n(A) ∩B)− µ(A)µ(B)|
= |µ(T−n(A ∩B) ∩B) + µ(T−n(A ∩Bc) ∩B)− µ(A ∩B)µ(B)− µ(A ∩Bc)µ(B)|

≤ |µ(T−n(A ∩B) ∩B)− µ(A ∩B)µ(B)|+ |µ(T−n(A ∩Bc) ∩B)− µ(A ∩Bc)µ(B)| < ε.

�
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James Marshall Reber, ID: 500409166 Math 7221, Homework 3

Remark. Thomas O’Hare was a collaborator.

Problem 45. Suppose T acts ergodically on a probability measure space (X,M, µ). Let λ be a
T -invariant probablility measure on X. Prove the following.

(1) If λ� µ, then λ = µ.
(2) If λ is T -ergodic and λ 6= µ, then λ ⊥ µ.

Proof.

(1) Let g = dλ
dµ be the Radon-Nikdoym derivative. The first step is to show that this is T -

invariant, using the fact that µ and ν are T -invariant. So we need to show that

g ◦ T = g.

Since µ is T -invariant, we have

λ(T−1(A)) =

∫
T−1(A)

gdµ(x) =

∫
A

(g ◦ T )(x)d(µ ◦ T−1)(x) =

∫
A

(g ◦ T )(x)dµ(x).

Since λ is T -invariant, we have

λ(T−1(A)) = λ(A) =

∫
A
g(x)dµ(x).

Putting these together, we see that for all A ∈M we have∫
A
gdµ =

∫
A
g ◦ Tdµ.

By Folland Proposition 2.23, we see that this implies g = g ◦ T almost everywhere, so
that g is T -invariant µ almost everywhere. This means that g is constant, so that λ = cµ
for some constant c ≥ 0. Notice that λ(X) = 1 = cµ(X) = c, so c = 1. Thus λ = µ.

(2) Now use the Lebesgue-Radon-Nikdoym theorem to write

λ = λ1 + λ2, λ1 � µ and λ2 ⊥ µ.
We can also decompose X = E1 t E2 with λ2(E1) = 0 and λ1(E2) = 0. The next claim is
that λ1 and λ2 are T -invariant. This follows, since

λ1 + λ2 = λ = λ ◦ T−1 = λ1 ◦ T−1 + λ2 ◦ T−1.

Notice that
λ1 ◦ T−1 � µ ◦ T−1 = µ,

λ2 ◦ T−1 ⊥ µ ◦ T−1 =⇒ λ2 ◦ T−1 ⊥ µ.
By the uniqueness of Lebesgue-Radon-Nikdoym, we have

λ1 = λ1 ◦ T−1, λ2 = λ2 ◦ T−1.

Thus λ1 and λ2 are T -invariant. Notice that

E1 t E2 = X = T−1(X) = T−1(E1) t T−1(E2).

By the T -invariance of λ1 and λ2, we see that

λ2(T−1(E1)) = λ2(E1) = 0, λ1(T−1(E2)) = λ1(E2) = 0.

By the uniqueness of Lebesgue-Radon-Nikodym, we have that E1 = T−1(E1) and E2 =
T−1(E2). Since T is ergodic, one of these must have measure zero and the other must have
full measure with respect to λ. If λ(E1) = 1 we have a contradiction, since this would imply
λ = λ1 � µ and (1) tells us that λ = µ. Thus we must have λ(E2) = 1 so that λ = λ2 ⊥ µ.
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Recall that a map T is weakly mixing if, for all A,B ∈M, we have

1

n

n−1∑
j=0

|µ(T−j(A) ∩B)− µ(A)µ(B)| → 0.

Problem 46 (Petersen 2.6.2). Suppose T is weakly mixing.

(1) Show that S = Tm, m ≥ 1, is weakly mixing.
(2) Show that S defined so that Sm = T , m ≥ 1, is weakly mixing.

Proof. Recall one of the equivalences for weakly mixing. That is, T is weakly mixing iff there exists
J ⊆ Z≥0 of density zero so that

lim
n→∞
n/∈J

µ(T−n(A) ∩B) = µ(A)µ(B).

Recall as well that T is weak mixing iff T has no measurable eigenfunctions other than the constants.

(1) Fix m. We claim that J1 = {n ∈ N : mn ∈ J} has density zero. To see this, notice that for
fixed n we have

|J1 ∩ {0, . . . , n− 1}|
n

=
|J ∩ {0, . . . ,m(n− 1)}|

n
|J ∩ {0, . . . ,m(n− 1)}|

n
· mn
mn

=
|J ∩ {0, . . . ,m(n− 1)}|

mn
· mn
n

= m · |J ∩ {0, . . . ,m(n− 1)}|
mn

.

Take the limit as n→∞ to get

d(J1) = m · d(J).

Since d(J) = 0, this tells us that d(J1) = 0. Moreover,

lim
n→∞
n/∈J1

µ(T−mn(A) ∩B) = lim
n→∞
n/∈J1

µ(S−n(A) ∩B) = µ(A)µ(B).

This gives us that S = Tm is weak mixing for all m ≥ 1.
(2) Now suppose that Sm = T , where m ≥ 1 is fixed. Suppose that S had a measurable

eigenfunction which is not constant, say f . Then Sf = λf for some |λ| = 1, λ 6= 1. Notice
that Smf = Tf = λmf , with |λm| = 1, λ 6= 1. Therefore we have that T is not weak
mixing. The contrapositive gives us the result.

�

Problem 47 (Petersen 2.6.4). There are examples of weakly mixing measure preserving transfor-
mations that are not strongly mixing. For now, consider some easier counterexamples.

(1) Find an example of a sequence {an} so that

lim
n→∞

1

n

n−1∑
k=0

|ak| = 0, lim
n→∞

an 6= 0.

(2) A sequence {Aj} of measurable sets, each having measure α, is called strongly mixing if

lim
n→∞

µ(An ∩B) = αµ(B) for all B ∈M.

It is called weakly mixing if

lim
n→∞

1

n

n−1∑
j=0

|µ(Aj ∩B)− αµ(B)| = 0.
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Find an example which is weakly mixing but not strongly mixing.
(3) A sequence {Aj} as above is called mixing of order k if

lim
infi ni→∞

infi 6=j |ni−nj |→∞

µ(An1 ∩ · · · ∩Ank
∩B) = αkµ(B) for all B ∈M.

Give an example of a sequence that is mixing of order 1 but not of order 2.

Proof.

(1) Let J ⊆ Z≥0 be an infinite set of density zero (for example, we could say J is the set of
primes, see here). Define a sequence {ak} where

ak =

{
1 if k ∈ J
0 otherwise.

Then we see that the limit of ak does not exist, but the limit of the series tends to 0.
(2) Presumably the idea is to use the last part to prove this part. The idea (maybe) is to take

Aj distributed around your space so that

µ(Ak ∩B) =

{
Something not αµ(B) if k ∈ J
αµ(B) otherwise.

Then by the same argument as the last part, we get that this will come out to give us weak
mixing but not strong mixing. The question is whether we can place these sets so that this
is true.

(3) TODO

�
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Remark. Thomas O’Hare was a collaborator.

Problem 48 (Petersen 5.2.4). Show the following.

(1) We have

h(α, T ) = lim
n→∞

H

(
T−n(α)

∣∣∣∣ n−1∨
k=0

T−k(α)

)
.

(2) We have

h(α, T ) = lim
n→∞

H

(
α

∣∣∣∣ n−1∨
k=1

T k(α)

)
= H

(
α

∣∣∣∣ ∞∨
k=1

T k(α)

)
.

(3) We have

h(α, T ) = h(α, T−1)

Proof by Suxuan.

(1) This is the same kind of trick. Notice that

H

(
T−n(α)

∣∣∣∣ n−1∨
k=0

T−k(α)

)
= H

(
n∨
k=0

T−k(α)

)
−H

(
n−1∨
k=0

T−k(α)

)
.

Now H(T−1(α)) = H(α) for any α, so we have

H

(
n−1∨
k=0

T−k(α)

)
= H

(
n∨
k=1

T−k(α)

)
,

thus

H

(
T−n(α)

∣∣∣∣ n−1∨
k=0

T−k(α)

)
= H

(
α

∣∣∣∣ n∨
k=1

T−k(α)

)
.

Take the limit.
(2) Same kind of trick as in (1). Notice

H

(
α

∣∣∣∣ n−1∨
k=1

T−k(α)

)
= H

(
T−(n−1)(α)

∣∣∣∣ n−2∨
k=0

T−k(α)

)
.

Take the limit.
(3) Notice by (2) we have

h(α, T ) = lim
n→∞

H

(
α

∣∣∣∣ n∨
k=1

T−k(α)

)
= lim

n→∞
H

(
α

∣∣∣∣ n∨
k=1

T k(α)

)
= h(α, T−1).

�

Problem 49 (Petersen 5.2.6). Show that α ≤ β implies h(α, T ) ≤ h(β, T ).

Proof. Examine Petersen Proposition 5.2.13. This says that for any countable partitions, we
have

h(α, T ) ≤ h(β, T ) +H(α|β).

Since α ≤ β, we can use Petersen Proposition 5.2.7 to get H(α|β) = 0.
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Alternatively it follows by definition. Since α ≤ β, we know that H(α) ≤ H(β). Notice that
T−1(α) ≤ T−1(β) since the preimage plays nicely with unions, and by induction this keeps holding.

Thus
∨n−1
k=0 T

−k(α) ≤
∨n−1
k=0 T

−k(β). Finally we see that

H

(
n−1∨
k=0

T−k(α)

)
≤ H

(
n−1∨
k=0

T−k(β)

)
.

This holds for all n, so dividing by n and taking limits gives the result. �

Problem 50 (Petersen 5.2.7). Show that

h

(
m∨
k=n

T−kα, T

)
= h(α, T ).

Proof. We follow Walters Theorem 4.12. Note

h

(
m∨
k=n

T−kα, T

)
= lim

r→∞

1

r
H

(
r−1∨
k=0

T−k

(
m∨
i=n

T−i(α)

))

= lim
r→∞

1

r
H

(
m+r−1∨
i=n

T−i(α)

)
= lim

r→∞

(
m+ r − 1

r

)
1

m+ r − 1
H

(
m+r−1∨
i=n

T−i(α)

)
= h(T−n(α), T ).

So this boils down to showing that h(T−n(α), T ) = h(α, T ). By an induction argument, it suffices
to show that h(T−1(α), T ) = h(α, T ). This follows, since

h(T−1(α), T ) = lim
n→∞

1

n
H

(
n∨
k=1

T−k(α)

)
= lim

n→∞

1

n
H

(
T−1

(
n−1∨
k=0

T−k(α)

))

= lim
n→∞

1

n
H

(
n−1∨
k=0

T−k(α)

)
= h(α, T ).

�

The entropy of the transformation T is defined as

h(T ) = sup
α
h(α, T ).

This gives a numeric value to the average uncertainty of where T moves points with respect to a
partition α.

Problem 51 (Petersen 5.2.8). Show that

h(T k) = |k|h(T ).

Proof. Assume k > 0. Let α denote finite partitions. We see that

h(T k) ≥ sup
α
h(α, T k).

In particular, by the last problem we see that

h(α, T k) = h

(
k−1∨
m=0

T−m(α), T k

)
= lim

n→∞

1

n
H

n−1∨
i=0

T−ik

k−1∨
j=0

T−j(α)


= lim

n→∞

1

n
H

kn−1∨
j=0

T−j(α)

 = lim
n→∞

k

kn
H

kn−1∨
j=0

T−j(α)

 = kh(α, T ).
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So for every finite partition we have the result, and thus

sup
α
kh(α, T ) ≤ h(T k).

Now for any partition α we see that

h(α, T k) ≤ h

k−1∨
j=0

T−j(α), T k

 = kh(α, T k),

since α ≤
∨k−1
j=0 T

−j(α). For negative k, we simply use h(T−1) = h(T ). We know this holds since

h(α, T−1) = h(α, T ) for all α. �

Problem 52 (Petersen 5.2.9). Show that I(T−1α) = I(α) ◦ T .

Proof. We recall

I(α) = −
∑
A∈α

log(µ(A))χA(x).

Notice that

I(α) ◦ T = −
∑
A∈α

log(µ(A))χA(T (x)) = −
∑
A∈α

log(µ(A))χT−1(A)(x).

Assuming the transformation is measure preserving, we have

log(µ(T−1(A))) = log(µ(A)),

so
I(α) ◦ T = −

∑
A∈T−1(α)

log(µ(A))χA(x).

�
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Whenever not specified, assume that T : X → X is a measure preserving transformation of a
Borel probability measure space (X,B, µ).

Problem 53. Consider the two-to-one map

T (x) =
1

2
(x− 1/x), T (0) = 0

on R.

(1) Show that T preserves the measure dx/(1 + x2).
(2) Show that the change of variables x = tan(t) carries T to a Lebesgue measure preserving

map S of (−π/2, π/2).
(3) Show that S is isomorphic to the one-sided Bernoulli shift B(1/2, 1/2); here we normalize

the Lebesgue measure on (−π/2, π/2).

Proof.

(1) The half-open intervals generate the Borel σ-algebra, so by Walters Theorem 1.1 it
suffices to check that T is measure preserving on them. Let I := [a, b) be an interval. Let
µ be the measure generated by dx/(1 + x2); i.e.

µ(E) =

∫
R
χE(x)

dx

1 + x2
.

The goal is to show

arctan(b)− arctan(a) =

∫ b

a

dx

1 + x2
= µ(I) = µ(T−1(I)).

Fix z 6= 0 in R. We solve the equation

T (x) = z =⇒ x− 1

x
= 2z =⇒ x2 − 2xz − 1 = 0.

Solving, we have solutions given by

x = z ±
√
z2 + 1.

Assume for now we have an interval I such that 0 /∈ I and b 6= 0; we eliminate these cases
since we need to deal with the fact that the preimage has three values at zero. For such an
interval I, we have

µ(T−1(I)) =

∫
χT−1(I)(x)

dx

1 + x2
.

Using the above analysis, we see that T−1(I) = [a1, b1) t [a2, b2), where [a1, b1) ⊆ (−∞, 0)

and [a2, b2) ⊆ (0,∞). Explicitly, we have a1 = a −
√
a2 + 1, b1 = b −

√
b2 + 1, a2 =

a+
√
a2 + 1, b2 = b+

√
b2 + 1. We can rewrite the above integral as

µ(T−1(I)) =

∫ b−
√
b2+1

a−
√
a2+1

dx

1 + x2
+

∫ b+
√
b2+1

a+
√
a2+1

dx

1 + x2

= arctan(b−
√
b2 + 1)− arctan(a−

√
a2 + 1) + arctan(b+

√
b2 + 1)− arctan(a+

√
a2 + 1).

Recall the following trig identity:

arctan(x) + arctan(y) = arctan

(
x+ y

1− xy

)
if xy < 1.
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Notice that for all z ∈ R we have

(z −
√
z2 + 1)(z +

√
z2 + 1) = z2 − z2 − 1 = −1 < 1.

Hence we can apply the identity for all z ∈ R. Doing so, we see

arctan(z −
√
z2 + 1) + arctan(z +

√
z2 + 1) = arctan

(
z −
√
z2 + 1 + z +

√
z2 + 1

1− (z −
√
z2 + 1)(z +

√
z2 + 1)

)

= arctan

(
2z

2

)
= arctan(z).

Thus substituting in a and b above for z, we get that

µ(T−1(I)) = arctan(b)− arctan(a) = µ(I).

We now deal with the cases involving zero. Suppose a = 0. Then T−1(I) = [a1, b1)t[a2, b2)t
{0}, where ai and bi defined as before. We notice that 0 doesn’t contribute anything, so the
argument still works the same. The same kind of argument applies if b = 0, and if 0 ∈ I we
can break up I = [a, 0) t [0, b) and apply the prior arguments to each case there. Thus T
is measure preserving on all half-open intervals and the result follows.

(2) Define S : (−π/2, π/2)→ (−π/2, π/2) by

S(t) := arctan

(
1

2

(
tan(t)− 1

tan(t)

))
.

The goal is to show that this is a Lebesgue measure preserving transformation. If we
can show that tan(x) : (−π/2, π/2) → R is measure preserving with respect the Lebesgue
measure on (−π/2, π/2) and the measure µ defined above on R, and if we can show that
arctan(x) : R→ (−π/2, π/2) is measure preserving with respect to Lebesgue measure, then
we get that S is measure preserving (see Walters Remark (2) on Page 19, though the
result is an easy calculation). Take an interval I := [a, b) ⊆ R. Then the first step is to
show that

λ(tan−1(I)) = µ(I).

In other words, ∫
(−π/2,π/2)

χI(tan(x))dx =

∫
R
χI(y)

dy

1 + y2
.

This is just a substitution though – let y = tan(x), dy = dx(1 + y2). Then∫
χI(tan(x))dx =

∫
χI(y)

dy

1 + y2

as desired.
To see that arctan : R→ (−π/2, π/2) is measure preserving, let I := [a, b) ⊆ (−π/2, π/2).

Again, we just need to check∫
χI(arctan(x))

dx

1 + x2
=

∫
χI(y)dy.

If we let y = arctan(x) then dy = dx/(1 +x2) and we get the above result. This shows that
S is a composition of measure preserving transformations, hence measure preserving.

(3) We consider normalized Lebesgue measure on S (that is, if λ denotes Lebesgue measure,
we take the measure ν defined by ν(E) := λ(E)/π). Consider X = (0, 1) ⊆ [0, 1) – this set
has full measure since we’ve just removed a point. Take

ϕ : X → (−π/2, π/2), ϕ(x) := πx− π

2
.
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This map is invertible with inverse given by

ϕ−1 : (−π/2, π/2)→ X, ϕ−1(x) :=
x

π
+

1

2
.

We check that the map is measure preserving. Take I ⊆ (−π/2, π/2). Then

λ(ϕ−1(I)) =

∫ 1

0
χI(ϕ(x))dx =

∫ π/2

−π/2
χI(y)

dy

π
=
λ(I)

π
= ν(I).

We see ϕ−1 is also measure preserving; taking I ⊆ (0, 1), we have

ν(ϕ(I)) =

∫ π/2

−π/2
χI(ϕ

−1(x))
dx

π
=

∫ 1

0
χI(y)dy = λ(I).

Now if T2 : [0, 1)→ [0, 1) is the doubling map defined by

T2(x) ≡ 2x (mod 1),

then we claim that ((−π/2, π/2), ν, S) is isomorphic to ([0, 1), λ, T2). This amounts to
showing that ϕ−1 ◦ S = T2 ◦ ϕ−1 almost everywhere. Notice that (using a little bit of
precalculus)

ϕ−1(S(x)) =
S(x)

π
+

1

2

=
arctan

(
tan(x)2−1
2 tan(x)

)
π

+
1

2

=
arctan(− cot(2x))

π
+

1

2

=

{
2x/π + 1 if − π/2 < x < 0

2x/π if 0 < x < π/2,

and

T2(ϕ−1(x)) =

{
2ϕ−1(x) if 0 < ϕ−1(x) < 1/2

2ϕ−1(x)− 1 if 1/2 ≤ ϕ−1(x) < 1

=

{
2x/π + 1 if − π/2 < x < 0

2x/π if 0 < x < π/2.

Thus these are equal almost everywhere, and so this is an isomorphism between T2 and
S. We can then use the isomorphism between σ the one-sided left shift on B(1/2, 1/2)
and T2 (see Walters (2) near the top of Page 58) to get the isomorphism from S to σ
(see Walters Remark (1) on Page 58 – here we use the transitivity of an equivalence
relation).

�

44



Problem 54. Let X = [0, 1] with Lebesgue measure m. Then T (measure preserving) is ergodic
on X iff

1

n

n−1∑
k=0

f(T kx)→
∫
fdm a.e.

for each continuous function f .

Proof. ( =⇒ ): This follows by Petersen Theorem 4.4, since continuous functions are measurable.
The argument is as follows: assume T is ergodic. Then from Petersen Theorem 2.2.3 (1) we
know that for continuous f we have

f(x) := lim
n→∞

1

n

n−1∑
k=0

f(T kx)

exists almost everywhere. Since f is T -invariant by Petersen Theorem 2.2.3 (2), we get that
f is constant almost everywhere by Petersen Proposition 2.4.1. Set f(x) = C ∈ R almost
everywhere. Using Petersen Theorem 2.2.3 (4), we have∫

X
fdλ =

∫
X
fdλ = Cλ([0, 1]) = C.

This gives us the result.
( ⇐= ): Assume we have it for all f continuous. Let g ∈ L1. Notice that for arbitrary continuous
f we have∣∣∣∣∣ 1n

n−1∑
k=0

g(T k(x))−
∫
gdm

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n−1∑
k=0

[g(T k(x))− f(T k(x))]

∣∣∣∣∣+

∣∣∣∣∣ 1n
n−1∑
k=0

f(T k(x))−
∫
fm

∣∣∣∣∣+

∣∣∣∣∫ (f − g)dm

∣∣∣∣
≤

∣∣∣∣∣ 1n
n−1∑
k=0

[g(T k(x))− f(T k(x))]

∣∣∣∣∣+

∣∣∣∣∣ 1n
n−1∑
k=0

f(T k(x))−
∫
fdm

∣∣∣∣∣+ ‖f − g‖1.

Fix ε > 0. By Folland Proposition 7.9 (i.e. density of continuous functions in L1), we can choose
f so that ‖f − g‖1 < ε/3. Integrating both sides of the inequality, this leaves us with∫ ∣∣∣∣∣ 1n

n−1∑
k=0

g(T k(x))−
∫
gdm

∣∣∣∣∣ dm ≤
∫ ∣∣∣∣∣ 1n

n−1∑
k=0

[g(T k(x))− f(T k(x))]

∣∣∣∣∣ dm
+

∫ ∣∣∣∣∣ 1n
n−1∑
k=0

f(T k(x))−
∫
fdm

∣∣∣∣∣ dm+ ε/3.

Since f continuous on a compact domain, we get that it’s bounded. Defining

fn =
1

n

n−1∑
k=0

f(T k(x)),

we see that each fn ∈ L1 since f ∈ L1, and |fn| ≤ supx∈[0,1] |f(x)|. These observations tell us that

the dominated convergence theorem (Folland Theorem 2.24) applies. Using the assumption we
get ∫ ∣∣∣∣∣ 1n

n−1∑
k=0

f(T k(x))−
∫
fdm

∣∣∣∣∣ dm→ 0.
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Thus we can choose N sufficiently large so that for n ≥ N we have∫ ∣∣∣∣∣ 1n
n−1∑
k=0

f(T k(x))−
∫
fdm

∣∣∣∣∣ dm < ε/3.

Now using linearity of the integral and the triangle inequality, we get an upper bound∫ ∣∣∣∣∣ 1n
n−1∑
k=0

g(T k(x))−
∫
gdm

∣∣∣∣∣ dm ≤ 1

n

n−1∑
k=0

∫
|g(T k(x))− f(T k(x))|dm+ 2ε/3.

Applying a change of variables and using the fact that T is measure preserving, we then get∫ ∣∣∣∣∣ 1n
n−1∑
k=0

g(T k(x))−
∫
gdm

∣∣∣∣∣ dm ≤ 1

n

n−1∑
k=0

‖g − f‖1 + 2ε/3

<
1

n

n−1∑
k=0

(ε/3) + 2ε/3 = ε.

The choice of ε > 0 was arbitrary, so this implies that 1
n

∑n−1
k=0 g(T k(x)) →

∫
gdm in L1. Recall

convergence in L1 implies there is a subsequence along which it converges almost everywhere. Since
we know that limn→∞

1
n

∑n−1
k=0 g(T k(x)) =: g(x) exists almost everywhere by Petersen Theorem

2.2.3 (1), we get that we must have g =
∫
gdm almost everywhere for every L1 function g. We

can now apply Petersen Theorem 2.4.4 to finish the result. �
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Problem 55. Suppose that T is ergodic and f ≥ 0 is measurable. Prove that if

lim sup
n→∞

1

n

n−1∑
k=0

f(T kx) <∞ a.e.

then f ∈ L1.

Proof. Let

f∗(x) := lim sup
n→∞

1

n

n−1∑
k=0

f(T k(x)).

We claim that f∗ is T -invariant. This follows from the first paragraph of the proof of Walters
Theorem 1.14. The idea is to let

an(x) :=
1

n

n−1∑
k=0

f(T k(x)).

Then we have that (
n+ 1

n

)
an+1(x)− an(T (x)) =

f(x)

n
,

lim sup
n→∞

f(x)

n
= 0,

and

lim sup
n→∞

((
n+ 1

n

)
an+1(x)− an(T (x))

)
= f∗(x)− f∗(T (x)).

Since T is ergodic, this implies that f∗ is constant almost everywhere. Since f ≥ 0, this implies
that 0 ≤ f∗ = C <∞. Let

fk := fχf≤k + kχf>k.

This is a bounded function, so fk ∈ L1. Moreover fk ↗ f , so we get that

1

n

n−1∑
j=0

fk(T
j(x)) ≤ 1

n

n−1∑
j=0

f(T j(x)) for all n.

Let

f∗k (x) := lim sup
n→∞

1

n

n−1∑
j=0

fk(T
j(x)).

The above observation tells us that f∗k ≤ f∗ = C almost everywhere. Petersen Theorem 2.2.3
(4) tells us that ∫

X
fkdµ =

∫
X
f∗kdµ ≤ Cµ(X) for all k.

We can now apply the monotone convergence theorem (Folland Theorem 2.14) to get∫
fdµ = lim

k→∞

∫
fkdµ ≤ Cµ(X) <∞.

Thus we have f ∈ L1. �
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Problem 56. For m = 1, 2, . . . , prove that T is weakly mixing iff Tm is weakly mixing.

Remark. We may assume T is nice enough so that the criteria applies.

Proof. Recall Petersen Theorem 2.6.1. We have two equivalences for weakly mixing. First, T
is weakly mixing iff for every measurable A,B there exists J ⊆ Z≥0 of density zero so that

lim
n→∞
n/∈J

µ(T−n(A) ∩B) = µ(A)µ(B).

Second, T is weakly mixing iff T has no measurable eigenfunctions other than the constants.
( =⇒ ): Fix m and let J ⊆ Z≥0 be a set of density zero. We claim that J1 = {n ∈ N : mn ∈ J}
has density zero. To see this, notice that for fixed n we have

|J1 ∩ {0, . . . , n− 1}|
n

=
|J ∩ {0, . . . ,m(n− 1)}|

n
|J ∩ {0, . . . ,m(n− 1)}|

n
· mn
mn

=
|J ∩ {0, . . . ,m(n− 1)}|

mn
· mn
n

= m · |J ∩ {0, . . . ,m(n− 1)}|
mn

.

Take the limit as n→∞ to get
d(J1) = m · d(J).

Since d(J) = 0, this tells us that d(J1) = 0. Now, take A,B measurable. Since T is weakly mixing,
we have that there exists a J with density zero so that

lim
n→∞
n/∈J

µ(T−n(A) ∩B) = µ(A)µ(B).

By the prior observation, we have J1 has density zero, and if we set S := Tm we see that

lim
n→∞
n/∈J1

µ(T−mn(A) ∩B) = lim
n→∞
n/∈J1

µ(S−n(A) ∩B) = µ(A)µ(B).

This gives us that S := Tm is weak mixing for any m ≥ 1.
(⇐= ): The goal is to prove that for fixed m ≥ 1, Tm weakly mixing implies T is weakly mixing.
We proceed by contrapositive; namely we will show that T not weakly mixing implies that Tm is
not weakly mixing. Since T is not weakly mixing, we have a measurable eigenfunction f which is
nonconstant, so UT (f) = λf , λ 6= 0. But then we see that UTm(f) = (UT )m(f) = λmf , so f is also
a non-constant eigenfunction for Tm. By our equivalence, this forces Tm to not be weakly mixing,
thus proving the contrapositive. �
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Problem 57. Show that

h(T ) = sup{h(α, T ) : α is a countable measurable partition with H(α) <∞}.

Remark. Recall that
h(T ) := sup{h(α, T ) : α is a finite partition}.

Proof. If α is a finite partition, say α = {A1, . . . , An}, then

H(α) = −
n∑
i=1

µ(Ai) log2(µ(Ai)).

It’s a finite sum of finite things, so we get that H(α) <∞. We can make a finite partition countable
by adding empty sets. Let β = {A1, . . . , An, B1, . . .} be a countable partition, where Bi = ∅ for all
i ≥ 1. Then

H(β) = −
n∑
i=1

µ(Ai) log2(µ(Ai))−
∞∑
i=1

µ(Bi) log2(µ(Bi)) = −
n∑
i=1

µ(Ai) log2(µ(Ai)) = H(α) <∞.

We now claim that h(α, T ) = h(β, T ). Recall

h(α, T ) := lim
n→∞

H(α ∨ T−1α ∨ · · · ∨ T−n+1α)/n.

It follows readily from the above calculation and the definition of join that for each n we have

H(α ∨ T−1α ∨ · · · ∨ T−n+1α) = H(β ∨ T−1β ∨ · · · ∨ T−n+1β).

Hence the result follows. So we can view the set of finite partitions as a subset of the set of countable
partitions with finite entropy, and this tells us that

h(T ) := sup{h(α, T ) : α is a finite partition}
≤ sup{h(α, T ) : α is a countable measurable partition with H(α) <∞}.

We now need to show the other inequality. Let α be a countable partition such that H(α) < ∞.
Write α = {A1, . . .}. Let αn = {A1, . . . , An−1, Bn}, where

Bn =

∞⋃
j=n

Aj .

Now by Petersen Proposition 5.2.13 we have

h(α, T ) ≤ h(αn, T ) +H(α|αn) for all n.

By construction, α1 ≤ α2 ≤ · · · and α∞ =
∨∞
n=1 αn = α. Using Petersen Proposition 5.2.7 and

Petersen Poposition 5.2.111 we get that

h(α, T ) ≤ lim
n→∞

h(αn, T ) +H(α|α) = lim
n→∞

h(αn, T ) ≤ sup{h(α, T ) : α is a finite partition}.

This holds for all α countable measurable partitions with H(α) < ∞, so by supremum properties
we get

sup{h(α, T ) : α is a countable measurable partition with H(α) <∞}
≤ h(T ) := sup{h(α, T ) : α is a finite partition}.

Hence we have equality. �

1Slight caveat here – technically the proposition only works for finite partitions, but the remark right after
Petersen Proposition 5.2.12 points out that it still works if we have a countable partition with finite entropy
using Petersen Corollary 6.2.2.
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Problem 58. Use the Shannon-McMillan-Breiman Theorem to compute the entropy of an ergodic
Markov shift.

Proof. Let A = (aij) be an n×n stochastic matrix with fixed row probability vector p (i.e. we have
pA = p). Assume our elements are given by {1, . . . , n} without loss of generality. Let α be the
partition given by the time 0 cylinders, so

α := {{(xn) : x0 = i} : 1 ≤ i ≤ n} .
This partition is a generator (see Petersen Example 5.3.4, although the calculation is easy).
Thus the Kolmogorov-Sinai theorem (Petersen Theorem 5.3.1) tells us that h(α, σ) = h(σ).
We now use the Shannon-McMillan-Breiman theorem (Petersen Theorem 6.2.3) to calculate
h(α, σ).

For 1 ≤ i, j ≤ n let
Ci,j := {(xn) : x0 = i, x1 = j}.

For a fixed sequence (xn) let ki,j,m((xn)) be the number of occurrences of ai followed by aj in the
sequence {x0, . . . , xm}. That is, we have

ki,j,m((xn)) :=
m−1∑
k=0

χCi,j (σ
−k((xn))).

Notice that we can write the information function of the sequence (xn) as

Iαm
0

((xn)) = − log2

 n∏
i=1

p
χCi((xn))

i ·
n∏

i,j=1

a
ki,j,m((xn))
ij


= −

 n∑
i=1

χCi((xn)) log2(pi) +
n∑

i,j=1

ki,j,m((xn)) log2(aij)

 .
Dividing by m+ 1 and taking the limit, we see that the sum on the left vanishes. It suffices to then
look at

lim
m→∞

ki,j,m((xn))

m+ 1
.

Since σ is ergodic, Petersen Theorem 2.4.4 tells us that

lim
m→∞

1

m
ki,j,m = lim

m→∞

1

m

m−1∑
k=0

χCi,j ◦ σ−k =

∫
X
χCi,jdµ = µ(Ci,j) = piai,j almost everywhere.

Notice now that

lim
m→∞

ki,j,m((xn))

m+ 1
= lim

m→∞

(
m

m+ 1

)(
ki,j,m((xn))

m

)
= piai,j .

Therefore
1

m+ 1
Iαm

0
→ −

n∑
i,j=1

piai,j log2(ai,j) almost everywhere as m→∞.

Putting it all together, we see that

h(σ) = −
n∑

i,j=1

piai,j log2(ai,j).

Notice this matches the calculation given in Petersen Example 5.3.5. �

50



Problem 59. Let T : X → X is a homeomorphism of a compact metric space, as is S : Y → Y . Let
ϕ : X → Y be a continuous surjective map such that S ◦ϕ = ϕ ◦ T . Prove that hTop(T ) ≥ hTop(S)
by using

(1) the Adler-Konheim-McAndrew definition;
(2) the Bowen definition.

Remark. In the above scenario, we say that the system (X,T ) is a continuous extension of the
system (Y, S).

Proof. First notice that the compatibility condition (i.e. the condition that S ◦ ϕ = ϕ ◦ T ) applies
for iterates, meaning

Sk ◦ ϕ = Sk−1 ◦ S ◦ ϕ = Sk−1 ◦ ϕ ◦ T = · · · = ϕ ◦ T k.

We use this fact in both proofs.

(1) We follow Walters Theorem 7.2. Recall that

hTop(T ) := sup{h(U , T ) : U an open cover of X}.

Let U be an open cover of Y . We first claim that

H(ϕ−1(U)) = H(U),

where we recall that

H(U) = log(N(U)),

N(U) = smallest cardinality of finite subcover of U ,

and ϕ−1(U) = {ϕ−1(U) : U ∈ U}.

Since ϕ is continuous we have ϕ−1(U) consists of open sets. Since Y ⊆
⋃
U∈U U we have

that ϕ−1(Y ) = X ⊆
⋃
U∈U ϕ

−1(U). Thus for every open cover U of Y we have a cor-
responding open cover W for X. Let A = {A1, . . . , An} ⊆ U be the finite subcover
with smallest cardinality. The above observations tell us that ϕ−1(A) ⊆ W is a finite
subcover, and therefore H(ϕ−1(U)) ≤ H(U). If we can refine it further, then we have
B = {ϕ−1(A1), . . . , ϕ−1(Am)} ⊆ W for m ≤ n. We have ϕ(B) = {A1, . . . , Am} ⊆ A is an
open subcover by surjectivity. Since A was chosen to have smallest cardinality, we must
have m = n. Therefore H(ϕ−1(U)) = H(U).

Recall that for two open covers U and W, we define U ∨W = {U ∩W : U ∈ U ,W ∈ W}.
We claim that ϕ−1(U ∨W) = ϕ−1(U) ∨ ϕ−1(W). Notice that

ϕ−1(U ∨W) = {ϕ−1(U ∩W ) : U ∈ U,W ∈ W}
= {ϕ−1(U) ∩ ϕ−1(W ) : U ∈ U,W ∈ W} = ϕ−1(U) ∨ ϕ−1(W).

Now let U be an open cover. By definition (Petersen Proposition 6.3.2) we have

h(S,U) := lim
n→∞

1

n
H

(
n−1∨
i=0

S−i(U)

)
.
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By what we’ve just shown and the compatibility condition for ϕ, we have

h(S,U) = lim
n→∞

1

n
H

(
ϕ−1

(
n−1∨
i=0

S−i(U)

))

= lim
n→∞

1

n
H

(
n−1∨
i=0

ϕ−1S−i(U)

)

= lim
n→∞

1

n
H

(
n−1∨
i=0

T−iϕ−1(U)

)
= h(T, ϕ−1(U)).

Hence hTop(S) ≤ hTop(T ).
(2) Petersen Proposition 6.3.7 tells us that

hTop(X) = lim
ε→0+

lim sup
n→∞

1

n
log2(r(n, ε)),

where

r(n, ε) := min{|E| : E ⊆ X is (n, ε)− spanning},
and we recall that an (n, ε)-spanning set is a set F ⊆ X so that for all x ∈ X there is a
y ∈ F so that

d(T k(x), T k(y)) ≤ ε for 0 ≤ k ≤ n− 1.

Since ϕ is continuous (hence uniformly continuous) we have that for all ε > 0 there is a
δ(ε) > 0 such that

dX(x, y) < δ(ε) =⇒ dY (ϕ(x), ϕ(y)) < ε.

Let F ⊆ X be an (n, ε)-spanning set. We can define the Bowen-Dinaburg metric as

dTX,n(x, y) := max{dX(T i(x), T i(y)) : 0 ≤ i ≤ n}.

Notice that this measures the distance of orbits. Using the observation above, we have the
for all ε > 0 fixed and each 0 ≤ i ≤ n there is a δ(ε, i) > 0 so that

dX(T i(x), T i(y)) < δ(ε, i) =⇒ dY (ϕ(T i(x)), ϕ(T i(y))) < ε.

Using the compatibility condition for iterates, we have

dX(T i(x), T i(y)) < δ(ε, i) =⇒ dY (Si(ϕ(x)), Si(ϕ(y))) < ε.

Take δ(ε) = min{δ(ε, i) : 0 ≤ i ≤ n}. In terms of the Bowen-Dinaburg metric, we have

dTX,n(x, y) < δ(ε) =⇒ dSY,n(ϕ(x), ϕ(y)) < ε.

Let

BX
ε (x) := {y ∈ X : dTX,n(x, y) < ε}

denote the balls with respect to this new metric. The above tells us that

ϕ(BX
δ(ε)(x)) ⊆ BY

ε (ϕ(x)).

Consider an (n, δ(ε))-spanning set for X. The above observation coupled with surjectivity
says that the image of this set gives an (n, ε)-spanning set for Y . Thus the minimal car-
dinality for an (n, δ(ε))-spanning set for X will be at least the minimal cardinality for an
(n, ε)-spanning set for Y . Hence

rY (n, ε) ≤ rX(n, δ(ε)).
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Monotonicity of logarithms and the independence of n tells us

lim sup
n→∞

1

n
log(rY (n, ε)) ≤ lim sup

n→∞

1

n
log(rX(n, δ(ε))).

Taking ε→ 0+ gives
hTop(S) ≤ hTop(T ),

as desired.

�
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James Marshall Reber, ID: 500409166 Math 7221, Homework misc

Let G be a locally compact abelian group. Let

Ĝ = {χ : G→ S1 : χ is a continuous homomorphism}.

We call Ĝ the collection of characters of G.

Problem 60. Show that Ĝ is an abelian group under pointwise multiplication.

Proof. Let χ1, χ2 ∈ Ĝ. Then for any x ∈ G we have

(χ1χ2)(x) = χ1(x)χ2(x) = χ2(x)χ1(x) = (χ2χ1)(x).

Thus χ1χ2 = χ2χ1 and we have that the group is abelian. �

We now recall the compact open topology. This is the topology generated by sets of the form

B(K,U) = {χ ∈ Ĝ : χ(K) ⊆ U,K ⊆ G compact and U ⊆ S1 open}.

It is a difficult exercise to prove that Ĝ equipped with the open compact topology is a LCA
group (see here). Here’s a list of facts.

(1) G has a countable topological basis iff Ĝ has a countable topological basis.

(2) G is compact iff Ĝ is discrete.

(3) (̂Ĝ) is naturally isomorphic to G, with isomorphism given by α 7→ a where α(γ) = γ(a) for

all γ ∈ Ĝ.

(4) If G is compact then G is connected iff Ĝ is torsion free.
(5) If G1, G2 are locally compact abelian groups, then

Ĝ1 ×G2 = Ĝ1 × Ĝ2.

(6) If Γ a subgroup of Ĝ, then

H = {g ∈ G : γ(g) = 1∀γ ∈ Γ}

is a closed subgroup of G, and Ĝ/H = Γ.

(7) If H is a closed subgroup of G and H 6= G, then there exists a γ ∈ Ĝ with γ 6≡ 1 such that
γ(h) = 1 for all h ∈ G.

(8) Let G be compact. The members of Ĝ are all mutually orthogonal members of L2(m),
where m is Haar measure.

(9) If G is compact, the members of Ĝ form an orthonormal basis for L2(m).

(10) If A : G → G is an endomorphism, we can define the dual endomorphism Â : Ĝ → Ĝ by

Âγ = γ ◦A for γ ∈ Ĝ. Note Â is an automorphism iff A is an automorphism.

Problem 61. Prove that the only homomorphisms of Tn to T1 = S1 are maps of the form

(z1, . . . , zn) 7→ zm1
1 · · · zmn

n where m1, . . . ,mn ∈ Z.
To prove this, follow these steps.

(1) Show that every closed subgroup of T1 is either T1 or a finite cyclic subgroup consisting of
all pth roots of unity for some p > 0.

(2) Show the only automorphisms of K are the map z 7→ −z and the identity.
(3) Show that the only homomorphisms of K are maps of the form

ϕn(z) = nz (mod 1), n ∈ Z.
(4) Deduce the result.
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Proof. We follow the steps.

(1) Let’s view T1 = R/Z = [0, 1]/ ∼ with 0 ∼ 1 so that things are in terms of addition.
Consider H a closed subgroup of T1. Suppose it had an infinite number of elements. This
implies that there is some limit point z0. So for all ε > 0, there is an a 6= z0 which satisfies
d(a, z0) < ε. The metric is invariant under the group operation, so d(a − z0, 0) < ε. So
bε = a− z0 ∈ H are ε-dense around 0. By adding these bε to themselves over and over, we
get that H is ε dense in T1, so H = T1.

If H is finite, it has order say p, so for all a ∈ H we have pa ≡ 0 (mod 1). For pa to be
an integer implies that it is a rational number with p as the denominator. The only rational
numbers with p as a denominator are{

0,
1

p
, . . . ,

p− 1

p

}
= 〈1/p〉.

This is a cyclic group with p elements, and we see that H ⊆ 〈1/p〉 and has the same size,
so H = 〈1/p〉.

(2) Consider θ : T1 → T1 an automorphism. Notice θ(0) = 0. Notice 1/2 is the only element of
order 2, and so we must have θ(1/2) = 1/2. Now 1/4 and 3/4 are the only elements of order
4, so either θ(1/4) = 1/4 or θ(1/4) = 3/4 and vice versa for 3/4. Consider θ(1/4) = 1/4.
We need to have intervals are mapped to intervals, so consider the interval [0, 1/4] ⊆ T1.
We have θ([0, 1/4]) is an interval, and the endpoints are fixed, so it is either going to be
[1/4, 1] (where we flip the order and note that 1 = 0) or [0, 1/4] (we keep the order the
same). There is no element of order 2 in [0, 1/4], so we cannot have it mapped to [1/4, 1],
and thus we must have [0, 1/4].

Now suppose we have that θ([0, 1/2n]) = [0, 1/2n] for 0 ≤ n ≤ k− 1. The goal is to show
it holds for k. Take 1/2k ∈ [0, 1/2k−1], and notice it is an element with order 2k so must be
mapped to an element of order 2k. The only elements in T1 with order 2k are{

1

2k
,

3

2k
, . . .

2k − 1

2k

}
.

We see that none of these are in [0, 1/2k−1] except for 1/2k, so this must be fixed. Thus we
have that the interval [0, 1/2k] is fixed by the same argument as above.

Note that there was nothing special about [0, 1/2n]; we can apply this argument to all
subintervals. This gives us that all elements of order 2n are fixed. But by continuity this
gives us that it is the identity.

The same kind of argument works if we set θ(1/4) = 3/4, except θ(x) = −x.
(3) We now check that the only homomorphisms of T1 are of the form θn(x) = nx, where

n ∈ Z. Suppose θ : T1 → T1 is an endomorphism. If it is non-trivial, its image is a closed
connected subgroup of T1, so using (1) we have that it must be the whole group (i.e. it is
surjective). The kernel is a closed subgroup, so either ker(θ) = T1 (trivial) or ker(θ) = Hp,
where

Hp = {x ∈ [0, 1) : px ≡ 0 (mod 1)} = 〈1/p〉.

Notice we have an isomorphism

θ1 : T1/Hp → T1, θ1(x+Hp) = px (mod 1).

Examine the induced isomorphism

θ : T1/Hp → T1, θ(x+Hp) = θ(x).
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Then we have that θ ◦ θ−1
1 is an automorphism of K. By (2), we know that this must be

either the identity (so θ = θ1) or the inverse map (so θ = θ−1
1 ). This forces θ(x) = px

(mod 1) or θ(x) = (−p)x (mod 1).
(4) Embed and check on generators.

�

Problem 62. Suppose

T : (X,M, µ)→ (X,N , ν)

is a measurable map between probability spaces, and suppose we have A is a semialgebra that
generates N such that for all A ∈ A,

µ(T−1(A)) = ν(A).

Show that

E =
{
C ∈ N : µ(T−1(C)) = ν(C)

}
is a σ-algebra equal to N . Use this to deduce (5) from (4) in the prior exercise.

[In other words, state/prove Theorem 1.1 from Walters and use it to establish (5) in the last
problem.]

Proof. Note that we have

A ⊆ E .
Let α(A) be the algebra generated by the semialgebra. The first remark is that

α(A) ⊆ E .

To see this, recall that the algbera is created via finite disjoint unions (see Walters Theorem
0.1), so all E ∈ α(A) are of the form

⊔n
i=1Ei, where Ei ∈ A. We have that

µ

(
T−1

(
n⊔
i=1

Ei

))
= µ

(
n⊔
i=1

T−1(Ei)

)
=

n∑
i=1

µ(T−1(Ei)) =
n∑
i=1

ν(Ei) = ν

(
n⊔
i=1

Ei

)
,

hence E ∈ E . The next thing to note is that E is a monotone class. This follows from the continuity
of measures and the fact that we’re dealing with a probability measure space. By the monotone
class theorem, this implies that

σ(α(A)) = N ⊆ E ⊆ N ,
so E = N . This implies measure preserving by definition.

The conditions here are such that µ = ν = λ (Lebesgue measure) and the σ-algebras are the
Borel σ-algebras. The collection of all intervals forms a semialgebra which generates the Borel
σ-algebra, and as we’ve shown before the measures agree on all intervals, so invoking the theorem
we have that they agree on all Borel sets, telling us that our map is measurable. �

Remark. The actual statement of Walters is as follows:

Theorem (Walters, Theorem 1.1). Suppose T : (X,M, µ) → (Y,N , ν) is a measurable transfor-
mation of probability spaces. Let C be a semi-algebra that generates N . If for each A ∈ C we have
T−1(A) ∈M and µ(T−1(A)) = ν(A), then T is measure-preserving.

I tried to modify the above to fit the original spirit of the problem.

Problem 63. Suppose T : (X,M, µ) → (X,M, µ) is a measure preserving transformation of
probability spaces. Let E ⊆ X be a measurable set with 0 < µ(E). Then almost every x ∈ E
returns to E infinitely often.
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Proof. Consider

E∗∗ := E \

 ∞⋂
n=1

⋃
j≥n

T−jE

 .

Notice that if x ∈ E∗∗, then x does not return to E infinitely often. The goal is to show that the
measure of E∗∗ is 0. By DeMorgan’s, we have

E∗∗ = E ∩

 ∞⋃
n=1

⋂
j≥n

(T−j(E))c


=

∞⋃
n=1

E ∩ ⋂
j≥n

(T−j(E))c

 .

Taking the measure then gives

µ(E∗∗) ≤
∞∑
n=1

µ

E ∩ ⋂
j≥n

(T−j(E))c


≤
∞∑
n=1

µ

E ∩ ⋂
j≥1

(T−j(E))c


=

∞∑
n=1

µ(E∗) = 0,

where

E∗ = E \

 ∞⋃
j=1

T−jE

 .

Poincare’s theorem tells us that µ(E∗) = 0. �

Problem 64. Let (X,M, µ) be a probability space, T : X → X invertible, injective, measure
preserving transformation. Let A ⊆ X be a measurable set with µ(A) 6= 0. Define

nA : X → N, nA(x) := inf{n ≥ 1 : Tnx ∈ A},

µA :=
µ

µ(A)
,

N := {E ∩A : E ∈M},
TA : A→ A, TA(x) := TnA(x)x,

An = {x ∈ A : nA(x) = n}.
We call TA a derivative transformation (or induced transformation).

(1) Express why nA should be finite and defined for almost every x ∈ A.
(2) Show that nA is measurable.
(3) Show that N is a σ-algebra.
(4) Show that µA is a measure on N .
(5) Show that (A,N , µA) is a probability space.
(6) Show that TA is measurable.
(7) Show that TA is a measure preserving transformation.

Proof.
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(1) This follows by Poincare’s theorem.
(2) The assumed σ-algebra on N is the trivial one, P(N). So it suffices to show that it is

measurable on each k ∈ N. Notice that

n−1
A ({k}) = {x ∈ X : T kx ∈ A, T jx /∈ A for 1 ≤ j < k} = T−k(A) \

k−1⋃
j=1

T−j(A)

 .

These are all measurable sets (since T is measurable) so n−1
A ({k}) is measurable for all

k ∈ N.
(3) We see that A ∈ N, since X ∩A = A. Let {Ei ∩A}∞i=1 ⊆ N . Then

∞⋃
i=1

(Ei ∩A) = A ∩
∞⋃
i=1

Ei ∈ N .

If E ∈ N , then E = A ∩ F , F ∈M. We need to show A \ E ∈ N . To do so, notice

A \ E = A ∩ Ec = A ∩ (Ac ∪ F c) = A ∩ F c ∈ N .
(4) Notice

µA(∅) =
µ(∅)

µ(A)
= 0.

Notice

µA

( ∞⊔
i=1

(Ei ∩A)

)
=

1

µ(A)
µ

( ∞⊔
i=1

(Ei ∩A)

)
=

1

µ(A)

( ∞∑
i=1

µ(Ei ∩A)

)
=

∞∑
i=1

µA(Ei ∩A).

This is indeed a measure. Notice

µA(A) = 1,

so it is a probability measure.
(5) Follows by (4).
(6) Let E ⊆ A. Then

T−1
A (E) = {x ∈ A : TnA(x)x ∈ E} =

⋃
n≥1

An ∩ {x ∈ A : Tnx ∈ E} =
⋃
n≥1

(An ∩ T−n(E)).

Moreover, notice that the An are disjoint (useful for next part).
(7) We define a bunch of sets which have convenient properties and hope things work out. Let

E ⊆ A be measurable.
First, notice that

T−1
A (E) =

⊔
n≥1

(An ∩ T−n(E)),

so

µA(T−1
A (E)) =

1

µ(A)

∑
n≥1

µ(An ∩ T−n(E)).

Next, let

F0 = A, Fk = {x ∈ X : T kx ∈ A, T jx /∈ A for 0 ≤ j < k} for k ≥ 1.

Notice that

T−1(Fk) = {x ∈ X : T k+1x ∈ A, T j /∈ A for 1 ≤ j < k + 1}
= Ak+1 t Fk+1.

Now we see that
µ(E) = µ(E ∩A) = µ(E ∩ F0).
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Since T is measure preserving, we have

µ(E ∩ F0) = µ(T−1(E ∩ F0)) = µ(T−1(E) ∩ T−1(F0)) = µ(T−1(E) ∩A1) + µ(T−1(E) ∩ F1).

We can continue this inductively; that is, we have

µ(T−n(E) ∩ Fn) = µ(T−n−1(E) ∩ T−1(Fn)) = µ(T−(n+1)(E) ∩ Fn+1) + µ(T−(n+1)(E) ∩ En+1).

Letting this go to infinity gives

µ(E) =
∑
n≥1

µ(T−n(E) ∩An).

Thus

µA(T−1
A (E)) =

1

µ(A)

∑
n≥1

µ(An ∩ T−n(E))

=
1

µ(A)
µ(E) = µA(E).

So TA is measure preserving.

�

We now go through the construction of a primitive transformation on a superset.
Consider · · · ⊆ Y3 ⊆ Y2 ⊆ Y1 ⊆ Y0 = X to be a decreasing sequence of measurable sets. We

can take {Xi} to be the copies of Yi such that they are all disjoint. Notice each Xi is a measure
space, via the induced σ-algebra Mi = {E ∩Xi : E ∈ M} and induced measure µi = µ

µ(Xi)
. Let

X̂ =
⊔
i≥0Xi. We equip X̂ with the appropriate σ-algebra and measure, labeled M̂ and µ̂. Let

E ⊆ X̂. Then we have that

µ̂(E) =
∞∑
n=0

µ(E ∩Xn).

We have a picture of X̂ being a tower built over X0 = X. Suppose T : X → X is an invertible
measure preserving transformation of a probability space. Define ϕj,i : Xj → Xi to be the map
defined by the inclusion Yj ⊆ Yi. If T : X → X is a measure preserving transformation of a
probability space, we get an induced map

T̂ : X̂ → X̂, T̂ =

{
ϕ−1
i+1,i(x̂) if x̂ ∈ Xi and ϕ−1

i+1,i(x̂) 6= ∅,
T (ϕi,0(x̂)) otherwise.

.

While notationally cumbersome, this can also be described via a picture (sometimes called Kaku-
tani’s skyscraper):

For simplicity, define π : X̂ → X to be the projection map (so that we can view π(x̂) ∈ X).
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Problem 65.

(1) Show that T̂ is measurable.

(2) Show that T̂ preserves µ̂.

Proof.

(1) Let E ⊆ X̂ be a measurable set. The goal is to show T̂−1(E) is also measurable. Let
En = E ∩ Xn, n ≥ 0. Note that each En ⊆ Xn is a measurable set. Then we get

E =
⊔
n≥0En, so if we show each T̂−1(En) is measurable then we have the result. Now,

for n ≥ 1, T̂−1(En) can be thought of as ϕn,n−1(En). The claim then is that for n ≥ 1,
ϕn,n−1(En) is a measurable set. But this follows by viewing this as the inclusion Yn ⊆ Yn−1

and then using the fact that measurable subsets of Yn are measurable subsets of Yn−1. Now
we consider E0. We see

T̂−1(E0) = {x̂ ∈ X̂ : For some i, x̂ ∈ Xi and ϕ−1
i+1,i(x̂) = ∅ and T (π(x̂)) ∈ E0}.

In other words, if we view E0 ⊆ X as well, then

T̂−1(E0) =
⊔
n≥0

Fn, where Fn = T−1(E0) ∩ Yn ∩ Y c
n+1 ⊆ Xn.

Each of these are measurable sets, so we get that T̂−1(E0) is measurable as well.

(2) We now need to show that for E ⊆ X̂, we have

µ̂(T̂−1(E)) = µ̂(E).

Notice by the description in (1), we have

T̂−1(E) =
⊔
n≥0

T̂−1(En) = T̂−1(E0) t
⊔
n≥1

T̂−1(En)

=
⊔
n≥0

(T−1(E0) ∩Xn ∩Xc
n+1) t

⊔
n≥1

E′n,

where E′n is En = E ∩Xn but viewed in Xn−1. Taking the measure of this, we have

µ̂(T̂−1(E)) =
∑
n≥0

µ(T−1(E0) ∩ Yn ∩ Y c
n+1) +

∑
n≥1

µ̂(E′n)

=
∑
n≥0

µ(T−1(E0) ∩ Yn ∩ Y c
n+1) +

∑
n≥1

µ(En)

= µ(T−1(E0)) +
∑
n≥1

µ(En) = µ(E0) +
∑
n≥1

µ(En) =
∑
n≥0

µ(En) = µ̂(E).

So this transformation is measure preserving.

�

Now let (X,M, µ, T ) be a measure-preserving system (meaning (X,M, µ) is a probability space,
T : X → X is an invertible measure preserving transformation). For f : X → (0,∞), consider

Γf = {(x, t) : 0 ≤ t < f(x)}.

This is the collection of points “under f .” We identify (x, f(x)) and (Tx, 0). We have the following
picture:
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For n ∈ Z, define

Sn(x) =


∑n−1

k=0 f(T k(x)) if n > 0

0 if n = 0

−
∑−n

k=1 f(T−k(x)) if n < 0.

Problem 66. Use Poincare recurrence to show that Sn(x) → ∞ as n → ∞. The same kind of
argument can be used to show Sn(x)→ −∞ as n→ −∞.

Proof. Notice that f−1((0,∞)) = X. By continuity of measures, there must be some a > 0 so
that µ(f−1((a,∞))) 6= 0. If we let Ea = f−1((a,∞)), then by Poincare recurrence almost every
x ∈ Ea returns to Ea infinitely often, so f(T k(x)) > a infinitely often for almost every x ∈ Ea.
Consequently, for almost every x ∈ Ea, we have Sn(x) → ∞ as n → ∞. Now this holds for each
Ea (technically, even if the set Ea has measure zero it will still hold), and we can write

X =
⋃
a>0

Ea.

The union of sets of measure zero will be measure zero, so it holds for almost every x ∈ X. �

For x ∈ X, 0 ≤ t < f(x), s ∈ R, define

n(x, t, s) := min {k ∈ Z≥0 : s+ t < Sk+1(x)} .
This is called the hitting number.

Problem 67. Show that n(x, t, s) is well-defined, and satisfies the property that

Sn(x,t,s) ≤ s+ t < Sn(x,t,s)+1.

Proof. The fact that n(x, t, s) is well-defined follows from the fact that Sn(x)→∞, so there must
be some n so that s + t < Sn(x), and the minimum will be unique. The fact that it’s a minimum
tells us that we have the above identity. �

For t ≥ 0, define

T fs (x, t) = T f (x, t, s) := (Tn(x,t,s)(x), s+ t− Sn(x,t,s)(x)).

Problem 68. Show that Sn satisfies the cocycle relation; i.e.,

Sn+m = Sn + Sm ◦ Tn.

Proof. We see that

Sm ◦ Tn(x) =
m−1∑
j=0

f(T j+n(x)) =
m+n−1∑
j=n

f(T j(x)) = Sm+n(x)− Sn(x).

�
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Problem 69. Show that ns = n(·, s) satisfies the coycle relation; i.e.,

n(x, t, s+ q) = n(x, t, s) + n(Tn(x,t,s)(x), s+ t− Sn(x,t,s)(x), q).

Proof. Notice that

n(Tn(x,t,s)(x), s+ t− Sn(x,t,s)(x), q) = min
{
k ∈ Z : s+ t+ q − Sn(x,t,s)(x) < Sk+1(Tn(x,t,s)(x))

}
.

By the cocyle relation for Sn, this is the same as

n(Tn(x,t,s)(x), s+ t− Sn(x,t,s)(x), q) = min
{
k ∈ Z : s+ t+ q < Sn(x,t,q)+k+1(x)

}
.

After changing variables appropriately, we see

n(Tn(x,t,s)(x), s+t−Sn(x,t,s)(x), q) = min {α ∈ Z : s+ t+ q < Sα+1(x)}−n(x, t, q) = n(x, t, s+q)−n(x, t, q).

This gives us the cocycle property. �

Problem 70. Show that T fs is a flow.

Proof. There are two things we need to show.

(1) We see that

n(x, t, 0) = min{k ∈ Z : t ≤ Sk+1(x)} = min

k ∈ Z : t ≤
k∑
j=0

f(T j(x))

 .

Since 0 ≤ t < f(x), this implies that

t ≤ S1(x) = f(x),

so n(x, t, 0) = 0. Therefore

T f0 (x, t) = (T 0(x), t− S0(x)) = (x, t).

So T f0 is the identity.
(2) We next need to check that the R action is satisfied, meaning

T fs+q(x, t) = T fs ◦ T fq (x, t).

Notice

T fs

(
T fq (x, t)

)
= T fs (Tn(x,t,q)(x), q + t− Sn(x,t,q)(x))

=

(
Tn(Tn(x,t,q)(x),s+t−Sn(x,t,q)(x),s)(Tn(x,t,q)(x)),

s+ q + t− Sn(x,t,q)(x)− Sn(Tn(x,t,q)(x),s+t−Sn(x,t,q)(x),s)(T
n(x,t,q)(x))

)
.

Use the cocycle property for n to get

n(Tn(x,t,q)(x), s+ t− Sn(x,t,q)(x), s) = n(x, t, s+ q)− n(x, t, q),

so

Tn(Tn(x,t,q)(x),s+t−Sn(x,t,q)(x),s)(Tn(x,t,q)(x)) = Tn(x,t,s+q)(x).

Now

Sn(Tn(x,t,q)(x),s+t−Sn(x,t,q)(x),s)(T
n(x,t,q)(x)) = Sn(x,t,s+q)−n(x,t,q)(T

n(x,t,q)(x)).
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Plugging in the definition, we get

Sn(x,t,s+q)−n(x,t,q)(T
n(x,t,q)(x)) =

n(x,t,s+q)−n(x,t,q)−1∑
j=0

f(T j+n(x,t,q)(x)) =

n(x,t,s+q)−1∑
j=n(x,t,q)

f(T j(x))

= Sn(x,t,s+q)(x)− Sn(x,t,q).

Substituting this in, we have

Sn(x,t,q)(x) + Sn(Tn(x,t,q)(x),s+t−Sn(x,t,q)(x),s)(T
n(x,t,q)(x)) = Sn(x,t,s+q)(x).

So

T fs

(
T fq (x, t)

)
=
(
Tn(x,t,s+q)(x), s+ q + t− Sn(x,t,s+q)(x)

)
= T fs+q(x, t).

Thus this is actually a flow.

�

We call {T fs }s∈R the induced flow. Note this is the flow going upward with unit speed.
Let n ∈ Z and define

Γn,s = {(x, t) ∈ Γ : n(x, t, s) = n}.
If we fix s ∈ R, we denote the above as just Γn. Another way to view these points is as the following:

{(x, t) ∈ Γ : T fs (x, t) = (Tn(x), s+ t− Sn(x))}.
That is,

T fs (Γn,s) = {(Tn(x), t+ s− Sn(x)) : (x, t) ∈ Γn,s}.
Set

Xn = π(Γn,s).

Define
t1 : Xn → [0,∞), t1(x) = inf{t ∈ [0, f(x)) : n(x, t, s) = n},
t2 : Xn → [0,∞), t2(x) = sup{t ∈ [0, f(x)) : n(x, t, s) = n}.

We note that
n(x, t1(x), s) = n.

This says that for t1(x) and t2(x) we have the property that

0 ≤ s+ t1(x) ≤ s+ t2(x) < Sn+1(x), Sn+1(x) = Sn(x) + f(Tn(x)),

0 ≤ s+ t1(x)− Sn(x) ≤ s+ t2(x)− Sn(x) < f(Tn(x)).

We also have
0 ≤ t1(x) ≤ t2(x) < f(x).

Notice these are measurable functions by construction. Finally, we can write

Γn,s = {(x, t) : x ∈ Xn, t1(x) ≤ t ≤ t2(x)},

T fs (Γn,s) = {(Tnx, t+ s− Sn(x)) : (x, t) ∈ Γn}.
Let µf denote µ× λ|Γ (µ times Lebesgue measure restricted to Γ). For any E ⊆ Γ, we can write

µf (E) =

∫
x∈X

(∫ f(x)

0
χE(x, t)dt

)
dµ(x).

Problem 71. Using the above, verify that

µf (T fs (E)) = µ(E).

Recall the Mean Ergodic Theorem.
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Theorem (Mean Ergodic Theorem). Let U : H → H be an isometry of a complex Hilbert space.
Let M = {x ∈ H : Ux = x} be the space of vectors invariant under U . Let P : H → M be the
projection map. Then we have

An(x) =
1

n

n−1∑
j=0

U j(x)→ Px for all x ∈ H.

Problem 72. Proof the Mean Ergodic Theorem by following these steps.

(1) Show that it holds true for the space M.
(2) Let

N = {x− Ux : x ∈ H}.
Show that the theorem holds true for this subspace.

(3) Show that it holds for N , the norm closure of N .

(4) Show that it holds for N⊥ (the orthogonal closure of N ).
(5) Deduce that it holds for all of H.

Proof.

(1) Notice that for all x ∈M, we have

U jx = x for all j ≥ 0,

so

1

n

n−1∑
j=0

U j(x) =
nx

n
= x = Px for all n ≥ 1.

(2) Take y = x− Ux ∈ N . Then

1

n

n−1∑
j=0

U j(x− Ux) =
1

n

n−1∑
j=0

[
U j(x)− U j+1(x)

]
=

1

n
[x− Un(x)] .

Taking the norm of both sides, we have∥∥∥∥∥∥ 1

n

n−1∑
j=0

U j(y)

∥∥∥∥∥∥ ≤ 2

n
‖x‖,

since U is an isometry. Taking the limit as n → ∞, we get that the norm tends to zero,
which is P (y).

(3) Take N the norm closure of N . Let (yk) ⊆ N be a sequence with yk → y ∈ N . Then

‖An(y)‖ ≤ ‖An(y − yk)‖+ ‖An(yk)‖.

Now y → yk, so choose k sufficiently large so that ‖y − yk‖ < ε/2. Then

‖An(y − yk)‖ =

∥∥∥∥∥∥ 1

n

n−1∑
j=0

U j(y − yk)

∥∥∥∥∥∥ ≤ 1

n

n−1∑
j=0

‖U j(y − yk)‖ <
1

n

n−1∑
j=0

ε/2 = ε/2.

This holds for arbitrary n, so choose n sufficiently large so that ‖An(yk)‖ < ε/2. Then we
have that for n large,

‖An(y)‖ < ε.

We can find such an n for all ε > 0, so ‖An(y)‖ → 0.
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(4) First, we remark that N⊥ = N⊥. So take y ∈ N⊥. That is, y is such that 〈x, y〉 = 0 for all
x ∈ N . Since x ∈ N , we can write it as x = z−Uz for z ∈ H. Thus we have 〈z−Uz, y〉 = 0
for all z ∈ H. Using linearity, we have

〈z − Uz, y〉 = 〈z, y〉 − 〈Uz, y〉 = 0.

So
〈z, y〉 = 〈Uz, y〉.

Now U is an isometry, so we can take its adjoint to get

〈z, y〉 = 〈z, U∗y〉.
Subtract again to get

〈z, y − U∗y〉 = 0.

This holds for all z ∈ H, so y − U∗y = 0, or y = U∗y. The goal now is to use this to show
that y = Uy. Notice

‖Uy − y‖2 = 〈Uy − y, Uy − y〉 = 〈Uy,Uy〉 − 〈y, Uy〉 − 〈Uy, y〉+ 〈y, y〉
= 2〈y, y〉 − 〈y, Uy〉 − 〈Uy, y〉.

Notice
〈y, Uy〉 = 〈U∗y, y〉 = 〈y, y〉,
〈Uy, y〉 = 〈y, U∗y〉 = 〈y, y〉.

Substituting this in gives

‖Uy − y‖2 = 0 =⇒ Uy = y.

Thus, we have that N⊥ =M. Now apply (1).
(5) We can write

H = N ⊕M.

So every x ∈ H can be written uniquely as x = x1 +x2, where x1 ∈ N and x2 ∈M. Apply
An to this and use the linearity to get the desired result.

�

We now move on to the Birkhoff Ergodic theorem. Suppose we have a sequence of real numbers
(aj)

n
j=1. Let m be a positive integer such that m ≤ n. A term ak of the sequence we be called a

m-leader if there exists a positive integer p with 1 ≤ p ≤ m and such that

ak + · · ·+ ak+p−1 ≥ 0.

For example, the 1-leaders are the non-negative terms of the sequence.

Problem 73. Show that the sum of m-leaders is non-negative.

Proof. First, notice that if ak is an m-leader, then we have a 1 ≤ p ≤ m so that

ak + · · ·+ ak+p−1 ≥ 0.

Let p be the smallest such, and suppose k is the smallest numbers to that ak is an m-leader (that
is, ak is the first m-leader). The claim then is that each of the at in this are m-leaders themselves.
If at in this is not an m-leader, then we see there is no 1 ≤ p ≤ m so that

at + · · ·+ at+p−1 ≥ 0.

Consequently
at + · · ·+ ak+p−1 < 0,

so we can omit it to get a smaller p. Thus

ak + · · ·+ at−1 ≥ 0.
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This however contradicts minimality of p. So at must be an m-leader.

Thus we have (aj)
k+p−1
j=k gives us some of the m-leaders, and we have that the sum of these is

greater than or equal to 0. For ak+p, . . . , an we repeat this process with all of the other m-leaders.
Thus each of these have their associated sequences, which are greater than or equal to 0, and adding
them all up gives us a number greater than or equal to zero. �

We will use this to prove the Maximal Ergodic Theorem.

Theorem (Maximal Ergodic Theorem). Let (X,M, µ, T ) be a measure-preserving system. Let

fj = f(T j(x)).

If

E =

x ∈ X :

n−1∑
j=0

fj(x) ≥ 0 for some n

 ,

then ∫
E
f(x)dx ≥ 0.

Problem 74. Follow the proof of Halmos for the Maximal Ergodic theorem. That is, prove the
Maximal Ergodic theorem following these steps.

(1) Let

Em =

x ∈ X :

p∑
j=0

fj(x) ≥ 0 for some p ≤ m

 .

Show that Em ↗ E.
(2) Deduce that it is sufficient to show∫

Em

f(x)dx ≥ 0 for each m.

(3) Let n be an arbitrary positive integer. Consider for each point x the m-leaders in the
sequence f0(x), . . . , fn+m−1(x). Let s(x) be the sum of the m-leaders. Let

Dk = {x ∈ X : fk(x) is an m-leader of the sequence f0(x), . . . , fn+m−1(x)}.
Show Dk is measurable.

(4) Let
gk = χDk

.

Show that

s =
n+m−1∑
k=0

fkgk.

(5) Deduce that s is measurable and integrable.
(6) Deduce that

n+m−1∑
k=0

∫
Dk

fk(x)dx ≥ 0.

(7) Observe that if k = 1, . . . , n− 1, then the following conditions are equivalent:
(a) T (x) ∈ Dk−1.
(b) fk−1(Tx) + · · ·+ fk−1+p−1(Tx) ≥ 0 for some p ≤ m.
(c) fk(x) + · · ·+ fk+p−1(x) ≥ 0 for some p ≤ m.
(d) x ∈ Dk.

(8) Use the prior part to establish Dk = T−1Dk−1.
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(9) Deduce Dk = T−kD0.
(10) Show that D0 = Em.
(11) Use the prior part to calculate ∫

Dk

fk(x)dx.

(12) Use (6), (10), and (11) to conclude

n

∫
Em

f(x)dx+m

∫
|f(x)|dx ≥ 0.

(13) Finish the Maximal Ergodic theorem.

Proof.

(1) If n ≤ m, x ∈ En implies that
∑p

j=0 fj(x) ≥ 0 for some p ≤ n ≤ m, so x ∈ Em. This
implies En ⊆ Em, which gives us increasing. Next, let

F =
⋃
m≥0

Em.

Take x ∈ F . Then x ∈ Em for some m, so
∑p

j=0 fj(x) ≥ 0 for some p ≤ m. But this implies
that x ∈ E, taking n = p+ 1. So F ⊆ E. For the other direction, we see that x ∈ E implies∑n−1

j=0 fj(x) ≥ 0, so x ∈ En−1 for some n. Thus E = F .

(2) If we can show ∫
Em

f(x)dx ≥ 0

for each m, then ∫
E
f(x)dx = lim

m→∞

∫
Em

f(x)dx ≥ 0.

(3) If x ∈ Dk, then there is a 1 ≤ p ≤ m so that

fk(x) + · · ·+ fk+p−1(x) ≥ 0.

Let Gk,p(x) = fk(x) + · · ·+ fk+p−1(x) for each such p. Then Gk,p is a measurable function,
and

Fk,p = G−1
k,p([0,∞))

is a measurable set. We can then express

Dk =
⋃

1≤p≤m
Fk,p.

So Dk is measurable.
(4) Examine x ∈ X fixed. Then s(x) is the sum of the m-leaders. Notice that fk(x) is an

m-leader if and only if x ∈ Dk. Thus

n+m−1∑
k=0

fk(x)gk(x)

gives us the sum of all of the m-leaders in (fj(x))n+m−1
j=0 . So

s(x) =
n+m−1∑
k=0

fk(x)gk(x).

This works for each x ∈ X.
67



(5) Since Dk is measurable, gk is measurable. The product of measurable functions is measur-
able, and the sum of measurable functions is measurable, so s is measurable. Integrability
follows since s(x) ≥ 0 (using Problem 16).

(6) We use the linearity of integration to get∫
s(x)dx =

∫ n+m−1∑
k=0

fk(x)gk(x)dx =

n+m−1∑
k=0

∫
Dk

fk(x)dx ≥ 0.

(7) We observe the equivalence.
(a) =⇒ (b) : If T (x) ∈ Dk−1, then this says that fk−1(Tx) is an m-leader, giving us (b).
(b) =⇒ (c): This follows by definition of fj(x).
(c) =⇒ (d): This says fk(x) is an m-leader, so x ∈ Dk.
(d) =⇒ (a): If x ∈ Dk, then fk(x) is an m-leader, meaning there is some p ≤ m so that

fk(x) + · · ·+ fk+p−1(x) ≥ 0,

and using the definition of fj we have

fk−1(Tx) + · · ·+ fk+p−2(Tx) ≥ 0,

implying that fk−1(Tx) is an m-leader as well, or T (x) ∈ Dk−1.
(8) We have x ∈ Dk if and only if T (x) ∈ Dk−1 by the equivalence in (7). Thus

T−1(Dk−1) = {x ∈ X : T (x) ∈ Dk−1} = {x ∈ X : x ∈ Dk} = Dk.

(9) Proceed by induction to get T−k(D0) = Dk.
(10) We see

D0 = {x ∈ X : f0(x) is an m-leader of the sequence f0(x), . . . , fn+m−1(x)}.
If f0(x) is an m-leader of the sequence, we get that there is some 1 ≤ p ≤ m so that

p−1∑
j=0

fj(x) ≥ 0.

This says that x ∈ Em. The same argument backwards works.
(11) We see ∫

Dk

fk(x)dx =

∫
D0

fk(T
−k(x))dx =

∫
D0

f0(x)dx =

∫
D0

f(x)dx.

(12) We see that

0 ≤
n+m−1∑
k=0

∫
Dk

fk(x)dx =

n−1∑
k=0

∫
Dk

fk(x) +

n+m−1∑
k=n

∫
Dk

fk(x)

≤ n
∫
Em

f(x)dx+m‖f‖1 ≥ 0.

(13) Dividing by n in (12), we have∫
Em

f(x)dx+
m

n
‖f‖1 ≥ 0.

Taking the limit as n→∞, we get∫
Em

f(x)dx ≥ 0.

This holds for all m ≥ 0, so we get the result in (2).
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We now use this for Birkhoff’s Ergodic theorem.

Theorem (Individual Ergodic Theorem). If (X,M, µ, T ) is a measure-preserving system (X may
have possibly infinite measure) and if f ∈ L1, then

An(f) =
1

n

n−1∑
j=0

f(T j(x))

converges almost everywhere. Let f ′(x) be the value to which it converges. The function f ′ is
integrable and invariant. Furthermore, if µ(X) <∞, then∫

f ′ =

∫
f.

Problem 75. Follow Halmos’ proof for the Individual Ergodic theorem. That is, prove the theorem
using these steps.

(1) Let

f∗(x) = lim sup
n→∞

An(f)(x), f∗(x) = lim inf
n→∞

An(f)(x).

Show that these functions are T -invariant.
(2) Let a < b be real numbers. Let

Ya,b = {x ∈ X : f∗(x) < a < b < f∗(x)}.
Show that Y = Ya,b is measurable and T -invariant.

(3) Show that Y can be assumed to be σ-finite.
(4) Show that µ(Y ) < ∞. To do so, take C ⊆ Y a set with finite measure and show it is

uniformly bounded. (Hint: Use the Maximal Ergodic theorem with h = f − bχC .)
(5) Show that µ(Y ) = 0. (Hint: Use the Maximal Ergodic theorem with the functions h = f−b,

g = a− f)
(6) Applying the result to all (a, b) rational points, we get that the limit converges almost

everywhere. Show that f ′ is integrable and measurable.
(7) Show that f ′ is invariant.
(8) Show that if µ(X) <∞, then f and f ′ have the same integral.

Proof.

(1) The first thing to remark is that these functions are measurable, since limsups and liminfs
are measurable. Next, to see they are T -invariant, notice

f∗(T (x)) = lim sup
n→∞

An(f)(Tx) = lim sup
n→∞

 1

n

n∑
j=1

f(T j(x))


= lim sup

n→∞

(
An+1(f)(x)− 1

n
f(x)

)
= lim sup

n→∞
An+1(f)(x) = f∗(x).

The same argument applies with liminfs.
(2) Notice that

Ea = (f∗)
−1((−∞, a))

is a measurable set, and

Fb = (f∗)−1((b,∞))
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is a measurable set. We then have

Y = Ya,b = Ea ∩ Fb
is a measurable set. To get that it is T -invariant, notice that

T−1(Y ) = {x ∈ X : T (x) ∈ Y } = {x ∈ X : f∗(T (x)) < a < b < f∗(T (x))}
= {x ∈ X : f∗(x) < a < b < f∗(x)} = Y.

(3) Since f ∈ L1(µ), we have that σ(f) (the support of f) is σ-finite. Consequently Y ⊆ σ(f),
so Y must be σ-finite as well.

(4) Note that we can assume b > 0; if b ≤ 0, then we can repeat the same kind of argument
with −f and −a in place of f and b. Let g = χC . Consider the function

h = f − bg.

Let

F = {x ∈ X : An(h)(x) ≥ 0 for some n} .
We note that Y ⊆ F . Let x ∈ Y . Since b > 0, we have that f∗(x) > b, which implies that
for each x ∈ Y there is some n so that An(f)(x) > b. In particular, there is some n so that
An(h)(x) ≥ 0.

Applying the Maximal Ergodic theorem, we have∫
F
h(x)dx ≥ 0 =⇒

∫
F
f(x)dx ≥ bµ(C).

Notice that ∫
F
f(x)dx ≤ ‖f‖1,

so we have

µ(C) ≤ ‖f‖1
b

.

So every set of finite measure is uniformly bounded above by ‖f‖1/b, and hence µ(Y ) <∞.
(5) Now apply the maximal Ergodic theorem to X with the function h = f − b. We see that

the set E in this context will be Y . So∫
Y

(f(x)− b) ≥ 0.

We can also apply it to g = a− f to get∫
Y

(a− f(x)) ≥ 0.

Putting these facts together, we have

µ(Y )(a− b) ≥ 0 =⇒ µ(Y ) = 0.

(6) Apply the result to all rational points to get µ(Ya,b) = 0 for all rational endpoints. Use limits
to get that the average limits actually do converge. We get integrability and measurability
by using Fatou’s lemma;∫ ∣∣∣∣∣∣ 1n

n−1∑
j=0

fj(x)

∣∣∣∣∣∣ dx ≤ 1

n

∫ n−1∑
j=0

|fj(x)|dx =

∫
|f(x)|dx <∞.

(7) T -invariance follows from the fact that f∗ and f∗ are T -invariant.
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(8) Finally we need to check the integrals are equal. If f ′(x) ≥ a, then there is at least one n
so that for all ε > 0,

n−1∑
j=0

(fj(x)− a+ ε) ≥ 0.

Hence ∫
f(x)dx ≥ (a− ε)µ(X)

for each ε > 0, and so ∫
f(x)dx ≥ aµ(X).

A similar argument applies for f ′(x) ≤ b, giving us∫
f(x)dx ≤ bµ(X).

Write

Xk,n =

{
x ∈ X :

k

2n
≤ f ′(x) ≤ k + 1

2n

}
.

Note that Xk,n is T -invariant (since f ′ is). Thus we see

k

2n
µ(Xk,n) ≤

∫
Xk,n

f(x)dx ≤ k + 1

2n
µ(Xk,n),

k

2n
µ(Xk,n) ≤

∫
Xk,n

f ′(x)dx ≤ k + 1

2n
µ(Xk,n).

Taking the difference and summing over k, we get∣∣∣∣∫ f(x)dx−
∫
f ′(x)dx

∣∣∣∣ ≤ 1

2n
µ(X).

The choice of n was arbitrary, so let it go to infinity.

�

Problem 76. Assume the setting of the individual ergodic theorem. If f∗ = f∗ almost everywhere,
show that the limit function f∗ is integrable.

Proof. Let

E = {x ∈ X : f∗(x) = f∗(x)}.
Then on E we have

f∗(x) = lim
n→∞

Anf(x).

Now Fatou gives us∫
X
|f∗|dµ =

∫
E
|f∗|dµ =

∫
E

lim
n→∞

|Anf |dµ ≤ lim inf
n→∞

∫
E
|Anf |dµ ≤ lim inf

n→∞

∫
X
|Anf |dµ.

Notice

|Anf | =

∣∣∣∣∣∣ 1n
n−1∑
j=0

f(T j(x))

∣∣∣∣∣∣ ≤ 1

n

n−1∑
j=0

|f(T j(x))|,

so

lim inf
n→∞

∫
X
|Anf |dµ ≤ lim inf

n→∞

1

n

n−1∑
j=0

∫
X
|f(T j(x))|dµ.
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Since (X,M, µ, T ) is a measure preserving system, we have∫
X
|f(T (x))|dµ =

∫
T−1(X)

|f |dµ =

∫
X
|f |dµ = ‖f‖1.

Inducting gives us that ∫
X
|f(T j(x))|dµ = ‖f‖1 for j ≥ 0.

Substituting this in, we have∫
X
|f∗|dµ ≤ lim inf

n→∞

1

n

n−1∑
j=0

‖f‖1 = ‖f‖1 <∞.

So f∗ is integrable. �

Problem 77. Prove the following corollary of the Individual Ergodic Theorem: If (X,M, µ, T ) is
a measure-preserving system of a probability measure space and if f ∈ L1(µ), then∫

|An(f)− f∗| dµ→ 0,

where
f∗ = lim

n→∞
An(f).

Hint: First prove it for bounded f . Then approximate.

Proof. Recall the dominated convergence theorem:

Theorem (Dominated Convergence Theorem). If (fn) is a sequence of measurable functions which
converges pointwise to a function f and is dominated by a function g ∈ L1(µ), meaning

|fn| ≤ g for all n,

then

lim
n→∞

∫
|fn − f |dµ = 0.

We have An(f)→ f∗ pointwise. If f is bounded, say |f | ≤M , then

|An(f)| =

∣∣∣∣∣ 1n
n−1∑

0

f ◦ T j
∣∣∣∣∣ ≤ 1

n

n−1∑
0

|f ◦ T j | ≤ 1

n

n−1∑
0

M = M.

So An(f) is dominated by M , and we apply the dominated convergence theorem (which applies
since we are over a probability space), and we get the desired result.

Now assume f is not bounded. Using simple functions, we can approximate f by bounded
functions. Consequently, we have

‖An(f)− f∗‖1 ≤ ‖An(f − g)‖1 + ‖An(g)− g∗‖1 + ‖g∗ − f∗‖1.
As we’ve noted earlier,

‖An(f − g)‖ ≤ ‖f − g‖1.
On the other hand, we examine the L1 norm on the far right. Using the last part of the Individual
Ergodic theorem, we recall ∫

g∗ =

∫
g,

∫
f∗ =

∫
f,

so ∫
|g∗ − f∗| =

∫
|g − f | = ‖g − f‖1.
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So we can make these terms as small as we want, say ε/3 for some ε > 0 chosen arbitrarily. We
may then take n as large as we want so the middle term is smaller than ε/3 by the first part. This
gives us

‖An(f)− f∗‖1 < ε

for all ε > 0. Thus it goes to 0. �

Let (X,M, µ, T ) be a measure-preserving system on a probability space. We say that T is
ergodic if for all E ∈M, we have

T−1(E) = E =⇒ µ(E) = 0 or 1.

Problem 78. Let (X,M, µ, T ) be a measure-preserving system of a probability space. Show the
following are equivalent.

(1) T is ergodic.
(2) The only members E ∈M with µ(T−1(E)4E) = 0 are those with µ(E) = 0 or 1.
(3) For every E ∈M with µ(E) > 0, we have

µ

( ∞⋃
n=1

T−n(E)

)
= 1.

(4) For every A,B ∈M with µ(A) > 0, µ(B) > 0, there exists n > 0 with µ(T−n(A)∩B) > 0.
(5) Whenever f is measurable and UT (f) = f ◦ T = f for all x ∈ X, then f is constant almost

everywhere.
(6) Whenever f is measurable and UT (f) = f almost everywhere, then f is constant almost

everywhere.
(7) Whenever f ∈ L2(µ) and UT (f) = f for all x ∈ X, then f is constant almost everywhere.
(8) Whenever f ∈ L2(µ) and UT (f) = f almost everywhere, then f is constant almost every-

where.

Proof. (1) =⇒ (2): Assume T is ergodic. Then if T−1(E) = E implies µ(E) = 0 or 1. Assume
now that µ(T−1(E)4E) = 0. Notice for n ≥ 0 we have

µ(T−n(E)4E) = 0.

To see this, first see that

T−n(E)4E ⊆
n−1⋃

0

T−(j+1)(E)4T−j(E).

Let x ∈ T−n(E)4E. This says that

x ∈ T−n(E) \ E or x ∈ E \ T−n(E).

In other words, x is such that either x is in E but Tn(x) /∈ E or Tn(x) ∈ E but x is not in E. This

says that there is some point where T−k(x) ∈ E but T−(k+1)(x) /∈ E or vice versa, which implies it
is in the set on the right.

Now, recall

T−j(E)4T−j−k(E) = T−j
(
E4T−k(E)

)
.

This is because preimages play nicely with unions and intersections. So using this fact, we have

T−n(E)4E ⊆
n−1⋃

0

T−(j+1)(E)4T−j(E) =
n−1⋃

0

T−j
(
T−1(E)4E

)
.

Now taking the measure, we have

µ(T−n(E)4E) ≤ nµ(T−1(E)4E)
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since the system is measure preserving, and since we assumed µ(T−1(E)4E) = 0, this tells us that

µ(T−n(E)4E) = 0.

Let

E∞ =
∞⋂
n=0

∞⋃
j=n

T−j(E).

We have from the work above that

µ(E∞4E) ≤ µ

E4 ∞⋃
j=0

T−j(E)

 ≤ ∞∑
j=0

µ(E4T−j(E)) = 0.

So µ(E∞) = µ(E), and we see T−1(E∞) = E∞ by construction, so µ(E∞) = 0 or 1. Thus µ(E) = 0
or 1.
(2) =⇒ (3): Let

F =
∞⋃
n=1

T−n(E).

Notice

T−1(F ) =

∞⋃
n=1

T−n−1(E) ⊆ F.

Since µ(T−1(F )) = µ(F ), we have µ(T−1(F )4F ) = 0. Now T−1(E) ⊆ F , so

0 < µ(E) = µ(T−1(E)) ≤ µ(F ),

and (2) forces µ(F ) = 1.
(3) =⇒ (4): Since µ(A) > 0, (3) tells us that

F =
∞⋃
n=1

T−n(A)

is such that µ(F ) = 1. Now µ(F ∩B) = µ(B) > 0, so

0 < µ

( ∞⋃
n=1

(T−n(A) ∩B)

)
≤
∞∑
n=1

µ(T−n(A) ∩B),

so there must be some n with
0 < µ(T−n(A) ∩B).

(4) =⇒ (1): If E ∈M with T−1(E) = E, 0 < µ(E) < 1, then

0 = µ(E ∩ Ec) = µ(T−n(E) ∩ Ec) for n ≥ 1,

a contradiction.
(1) =⇒ (6): Consider

Ea = {x ∈ X : f(x) > a}.
We see that

T−1(Ea) = {x ∈ X : f(T (x)) > a}.
Since UT (f) = f almost everywhere, this gives us that (up to a set of measure zero which we take
out)

T−1(Ea) = {x ∈ X : f(T (x)) = f(x) > a} = Ea.

By ergodicity, we have µ(Ea) = 0 or 1. This applies for all real a ∈ R. If f non-constant, there
would be some Ea with 0 < µ(Ea) < 1, a contradiction.
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(6) =⇒ (5): This is clear.
(5) =⇒ (7): Functions which are L2 are measurable, so this follows.
(6) =⇒ (8): Same kind of argument as above.
(8) =⇒ (7): This is clear.
(7) =⇒ (1): Suppose T−1(E) = E with E ∈ M. Then χE ∈ L2(µ), χE ◦ T = χE for all x, so χE
is constant. Thus χE = 0 or 1 almost everywhere, and

µ(E) =

∫
χEdµ = 0 or 1.

�

Problem 79. Prove that if T is an ergodic invertible transformation of a probability measure
space, then TA (the induced or derivative transformation) is ergodic.

Proof. Suppose E ⊆ A a measurable set. We need to show that if T−1
A (E) = E, then µA(E) = 0

or 1. Recall

T−1
A (E) =

⋃
n≥1

(An ∩ T−n(E)).

We will prove on induction that for i ≥ 0 we have

T i(E) ∩A ⊆ E.

In other words, if E under T comes back to A, it must also come back to E. For i = 0, we have

T 0(E) ∩A = E ∩A = E ⊆ E.

Now suppose we know this for 0 ≤ i ≤ n− 1. The goal is to show it holds for n. Fix some k ∈ N.
Recall

Ak = {x ∈ A : nA(x) = k}.
Then

T i(E ∩Ak) ∩A = ∅ if i < k.

Notice that

T k(E ∩Ak) = TA(E ∩Ak),
since by definition this is the set of elements in E which return to A at time k. E is invariant under
TA, so this tells us

TA(E ∩Ak) ⊆ E.
Now take i > k. We see

T i(E ∩Ak) ∩A = T i−k(T k(E ∩Ak)) ∩A = T i−k(TA(E ∩Ak)) ∩A.

From our prior calculation this tells us

T i−k(TA(E ∩Ak)) ∩A ⊆ T i−k(E) ∩A.

This holds for all k. Since k ≥ 1, i− k ≤ n− 1. So the induction hypothesis applies to tell us

T i−k(E) ∩A ⊆ E.

Now

XE =
⋃
i≥0

T iE

is T -invariant, so XE is null or conull by ergodicity. If it is null, we win (since E ⊆ XE). If it is
conull, then A \ (XE ∩A) is null, and XE ∩A = E by our claim above. So A \ E is null. �
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Problem 80. Suppose (X,M, µ, T ) is an invertible ergodic system on a probability measure space.
If A ∈M with µ(A) > 0, then ∫

A
nAdµ = 1.

Proof. Recall

An = {x ∈ A : nA(x) = n}.
Let

Fn = An ∪ TAn ∪ · · · ∪ Tn−1An.

Using the Kakutani diagram, we see

X =
⋃
n≥1

Fn.

Now, notice that

X =
⋃
n≥1

Fn almost everywhere.

Since T is measure preserving and invertible, we have

µ(Fn) = nµ(An).

So ∑
n≥1

µ(Fn) =
∑
n≥1

nµ(An) = µ(X) = 1.

Finally, notice that we can decompose A into

A =
⋃
n≥1

An,

and ∫
A
nA(x)dµ(x) =

∑
n≥1

∫
An

nA(x)dµ(x).

On An, we see nA(x) = n, so this is equal to∫
A
nA(x)dµ(x) =

∑
n≥1

n

∫
An

dµ(x) =
∑
n≥1

nµ(An) = 1.

�

Problem 81. Prove that

T : [0, 1)→ [0, 1), T (x) ≡ 2x (mod 1)

is an ergodic transformation.

Proof. Use the L2 equivalence. Let f ∈ L2(µ) be such that f ◦ T = f almost everywhere. Then if
we write

f(x) =
∑

ane
−2πinx

as the Fourier series, we have

f(T (x)) =
∑

ane
−2πin2x.

These series are equal almost everywhere, so this says that |an| = |a2n| = |a4n| = · · · , so by
Riemann Lebesgue we get that this is 0 unless n = 0. �
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Problem 82. Let X be a compact metric space, B the Borel σ-algebra, and let µ be a probability
measure with the property that µ(U) > 0 for all non-empty open U . Suppose T : X → X is a
continuous measure preserving transformation which is also ergodic. Then almost all points of x
have dense orbit under T .

Proof. Suppose x ∈ X does not have a dense orbit OT (x) = {Tn(x) : n ≥ 0}. The base for the
topology of X is countable, so we have {Un}∞n=1 is a base. Since the orbit is not dense, there is a
Uj with the property that OT (x) ∩ Uj = ∅. Let f = χUj . Then

1

n

n−1∑
0

χUj ◦ T k(x) = 0.

In the proof of Birkhoff ergodic theorem, we have that for almost every x this series converges to
the measure of Uj which should be greater than 0. So the collection of all points x ∈ X whose orbit
does not intersect UJ has measure 0. Let Ej be the set of these points. Now

E =

∞⋃
j=1

Ej = {x ∈ X : x does not have a dense orbit}.

Notice µ(E) = 0. So almost every point has a dense orbit. �

Problem 83. Prove the following corollary of the Individual Ergodic theorem:

Theorem (Borel’s Normal Number theorem). Almost all numbers in [0, 1) are normal to base 2.
That is, the frequency of 1’s in the binary expansion of almost every number in [0, 1) is 1/2.

Hint: Construct a system and a function which measures the frequency.

Proof. Let B be the Borel σ-algbera on [0, 1). Then we consider the measure-preserving system
([0, 1),B, λ, T ), where T : [0, 1)→ [0, 1) is

T (x) ≡ 2x (mod 1).

�

Problem 84. Let (X,M, µ, T ) be a measure preserving probability space. Show the following are
equivalent.

(1) T is ergodic.
(2) For all A,B ∈M, we have

1

n

n−1∑
0

µ(T−j(A) ∩B)→ µ(A)µ(B).

Proof. (1) =⇒ (2): Assume T is ergodic. Consider χA, χB. These are measurable functions, and
moreover

χA ◦ T j = χT−j(A).

Notice that

(χA ◦ T j) · χB = χT−j(A)∩B.

We use the Birkhoff ergodic theorem and the fact that T is ergodic to get

1

n

n−1∑
0

χA ◦ T j →
∫
χAdµ = µ(A).
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Notice the Birkhoff ergodic theroem only tells us that the thing on the left converges to some
function f∗. We know this f∗ is T -invariant, so f∗ is constant almost everywhere by ergodicity.
Furthermore, since we have a probability measure space, we know that∫

f∗dµ =

∫
fdµ.

So f∗ = C for some C constant, and

C

∫
dµ = Cµ(X) = C =

∫
fdµ.

Thus

f∗ =

∫
fdµ almost everyhwere,

and we have the desired above result.
Now we can mulitply χB to get

1

n

n−1∑
0

(χA ◦ T j)χB → µ(A)χB almost everywhere.

Integrating both sides grants us∫
1

n

n−1∑
0

(χA ◦ T j)χBdµ→ µ(A)µ(B).

For each n, notice that linearity gives∫
1

n

n−1∑
0

(χA ◦ T j)χBdµ =
1

n

n−1∑
0

∫ (
(χA ◦ T j)χBdµ

)
=

1

n

n−1∑
0

µ(T−j(A) ∩B).

Thus we have the desired result.
(2) =⇒ (1): Assume now A = B = E, and E is T -invariant (meaning T−1(E) = E). Then

1

n

n−1∑
0

µ(T−j(E) ∩ E) =
1

n

n−1∑
0

µ(E) = µ(E) = µ(E)2.

This forces either µ(E) = 0 or µ(E) = 1. �

Remark. This same kind of result can be proven for just a generating algebra.

Problem 85. Show that the two sided shift (p0, . . . , pk−1) shift is ergodic.

Proof. Recall that our space is X = AZ, and our measure is defined by the property that if
F ∈ C(X) depends on coordinates −N to N , then∫

X
Fdµ :=

∫
A2N+1

(
F |∏N

−N A

)
dp2N+1.

Let

σ((xk)) = (yk), where yk = xk+1.

The goal is to show that σ is ergodic. Let E,F ⊆ X be subsets which depend only on finitely many
coordinates, say −N to N . Then

σ−i(E) = {(yk) : yj+i ∈ E for j ∈ {−N, . . . , N}}.
Now

χE ◦ σi = χσ−i(E)
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depends on N − i to N + i coordinates. Now if |i| ≥ 2N + 1, then χE and χF depend on different
coordinates entirely, so

µ(σ−i(E) ∩ F ) =

∫
χσ−i(E)χFdµ = µ(σ−i(E))µ(F ) = µ(E)µ(F ).

Now use the prior problem. �

Problem 86. Let (X,M, µ, T ) be a measure-preserving system of a probability space. Prove the
following are equivalent:

(1) T is ergodic.
(2) For all f, g ∈ L2(µ),

1

n

n−1∑
0

〈U iT f, g〉 → 〈f, 1〉〈1, g〉.

(3) For all f ∈ L2(µ),

1

n

n−1∑
0

〈U iT f, f〉 → 〈f, 1〉〈1, f〉.

Proof. (1) =⇒ (2): Assume T is ergodic. By the Birkhoff ergodic theorem, we know

1

n

n−1∑
0

U iT f →
∫
fdµ = 〈f, 1〉.

Notice that, since we are on a Hilbert space, 〈·, g〉 = g∗(·) is a bounded linear functional. By
continuity, we get

g∗

(
1

n

n−1∑
0

U iT f

)
→ g∗(〈f, 1〉) = 〈f, 1〉〈1, g〉.

Using the fact that it’s linear, we have

g∗

(
1

n

n−1∑
0

U iT f

)
=

1

n

n−1∑
0

〈U iT f, g〉.

(2) =⇒ (3): Set f = g.
(3) =⇒ (1): Take f = χE where E is T -invariant. We know

〈U iTχE , χE〉 =

∫
U iTχE · χEdµ = µ(T−i(E) ∩ E) = µ(E).

By (3), this is equal to µ(E)2. This forces µ(E) = 0 or 1. �

Let σ(T ) denote the spectrum of a bounded operator T . That is, we define

σ(T ) = {λ ∈ C : T − λI does not have an inverse}.

Problem 87 (Bounded inverse theorem). Show that if T − λI does have an inverse, it must be
bounded.

Proof. Suppose T is a bounded linear operator (on a Hilbert space). The goal is to show that if
T has an inverse, it’s inverse is bounded. We will do this with the closed graph theorem. Let
(xn, T

−1(xn))→ (x, y). The goal is to show that T (x) = y. Let yn = T−1(xn). Then

(yn, T (yn))→ (y, T (y))

since T is bounded. But this says that T (T−1(xn)) = xn → T (y) and xn → x. So we have x = T (y),
and taking the inverse this forces T−1(x) = y. Thus we have that T−1 is bounded. �
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Using the last problem, we can equivalently write

σ(T ) = {λ ∈ C : T − λI does not have a bounded inverse}.

Problem 88. Show the following.

(1) If the operator T is invertible, then

σ(T−1) = (σ(T ))−1 = {λ−1 : λ ∈ σ(T )}.
(2) If T is an operator, then

σ(T ∗) = (σ(T ))∗ = {λ∗ : λ ∈ σ(T )}.

Proof.

(1) First note that T invertible implies that 0 /∈ σ(T ). So inverting the set makes sense. Next,
let λ ∈ σ(T−1). Then T−1 − λI is invertible. But we can write this as

T−1 − λI = (λ−1I − T )(λT−1).

So (λ−1I − T ) is invertible, and hence λ−1 ∈ σ(T ). This tells us that σ(T−1) ⊆ σ(T )−1.
Now apply what we’ve done to T−1 to get σ(T ) ⊆ σ(T−1)−1 or σ(T )−1 ⊆ σ(T−1).

(2) Suppose λ ∈ σ(T ) so that T − λI is invertible. Then (T − λI)∗ = T ∗ − λ∗I∗ = T ∗ − λ∗I
is invertible as well, so that λ∗ ∈ σ(T ∗). This tells us σ(T )∗ ⊆ σ(T ∗). Now use the same
argument on T ∗ to get σ(T ∗)∗ ⊆ σ(T ). Applying ∗ to both sides gives σ(T ∗) ⊆ σ(T )∗ and
we’re done.

�

A Hermitian operator is one on a Hilbert space which satisfies the condition that

〈f, Tg〉 = 〈Tf, g〉.
A normal operator is an operator T on a Hilbert space which satisfies the condition that

TT ∗ = T ∗T.

Problem 89. Show that a Hermitian operator is normal.

Proof. We see that

〈f, Tg〉 = 〈Tf, g〉 = 〈f, T ∗g〉,
so for all g ∈ H we have

Tg = T ∗g =⇒ T = T ∗.

Now TT ∗ = T 2 = T ∗T . �

An operator T is bounded from below if ‖Tx‖ ≥ C‖x‖ for all x ∈ H.

Problem 90. Show that if T is a bounded operator on a Hilbert space, then it is injective if and
only if it is bounded from below.

Proof. ( =⇒ ) Assume it is injective. Notice that T : H → Im(T ) is a bijective bounded continuous
map. Thus T is open by the open mapping theorem. Now being an open mapping implies that
T−1 : Im(T ) → H is continuous as well, so ‖T−1x‖ ≤ C‖x‖ for some C > 0 and all x ∈ Im(T ).
This means that ‖Tx‖ ≥ 1

C ‖x‖ for all x ∈ H. This implies T is bounded from below.
(⇐= ): Assume that T is bounded from below. Then if Tx = 0 if and only if ‖Tx‖ = 0, and since
for all non-trivial x we have ‖Tx‖ > 0 this forces x = 0. �

Problem 91. Show that if T is an injective bounded operator, then Im(T ) ⊆ H is a Banach space.
Deduce it is closed.
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Proof. By the prior problem, we know that T injective iff T is bounded from below. Let T : H →
Im(T ). Let (yn) ⊆ Im(T ) be a Cauchy sequence. We know that yn → y ∈ H. The goal is to show
that y ∈ Im(T ). Notice we can define T−1 : Im(T )→ T . Thus

‖yn − ym‖ = ‖TT−1(yn)− TT−1(ym)‖ ≥ C‖T−1(yn)− T−1(ym)‖.
Since (yn) Cauchy, we have (T−1(ym)) Cauchy in H, so it converges to some x ∈ H. Notice that

T (x) = limT (T−1(yn)) = lim yn = y.

�

For a subspace K ⊆ H, we define

K⊥ = {x ∈ H : 〈x, y〉 = 0 for all y ∈ K}.

Problem 92. Show that K⊥ is a closed subspace.

Proof. The fact that it is a subspace is clear. Let (yn) ⊆ K⊥, and suppose yn → y. The goal is to
show that y ∈ K⊥. Let z∗ = 〈·, z〉. This is a bounded linear operator, and furthermore z∗(yn) = 0
for all n. Taking the limit, we have z∗(y) = 0. So y ∈ K⊥. �

Problem 93 (Parallelogram identity). Prove that for all x, y ∈ H, we have

‖x− y‖2 + ‖x+ y‖ = 2
[
‖x‖2 + ‖y‖2

]
Proof. Notice

‖x− y‖2 = 〈x− y, x− y〉 = ‖x‖2 − 〈x, y〉 − 〈y, x〉+ ‖y‖2,
‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2.

Adding these together, we have

〈x− y, x− y〉+ 〈x+ y, x+ y〉 = 2‖x‖2 + 2‖y‖2.
�

Problem 94. Let C ⊆ H a closed convex subset and z /∈ C. Then there is a unique x ∈ C so that

‖x− z‖ = inf
y∈C
‖y − z‖.

In other words, this infimum is achieved.

Proof. Let’s first prove it for z = 0 /∈ C. If (xn) ⊆ C is such that

‖xn‖ → r = inf
y∈C
‖y‖,

then we can apply the parallelogram identity to xn/2, xm/2. This gives us∥∥∥∥xn − xm2

∥∥∥∥2

+

∥∥∥∥xn − xm2

∥∥∥∥ = 2

[∥∥∥xn
2

∥∥∥2
+
∥∥∥xm

2

∥∥∥2
]
.

Simplifying, we have

‖xn − xm‖2 = 2‖xm‖2 + 2‖xn‖2 − 4‖xm + xn
2

‖2.

We see ‖xm‖ → r, ‖xn‖ → r, and ‖(xm + xn)/2‖ ≥ r. So therefore

lim sup
m,n

‖xn − xm‖2 = 0.

This tells us (xn) is Cauchy, so xn → x. Since C closed, x ∈ C. For uniqueness, suppose z ∈ C
satisfies ‖z‖ = r. Then the sequence (yk) where yk = x if k even and yk = z if k is odd is Cauchy.
The only thing it could converge to is 0, giving us the result. �
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Problem 95. Prove that H = M ⊕M⊥.

Proof. First let’s show that M ∩M⊥ = {0}. Notice x ∈M ∩M⊥ satisfies 〈x, x〉 = 0 which means
‖x‖ = 0, or x = 0.

Let δ = infy∈M ‖x − y‖. Let y be the point minimizing this distance, so ‖x − y‖ = δ. Take

u ∈M , let z = x− y. The goal is to show that 〈z, u〉 = 0. Scale u so that 〈z, u〉 is real. Now

f(t) = ‖z + tu‖2 = ‖z‖2 + 2t〈z, u〉+ t2‖u‖2.

This is a real function, and it has a minimum at t = 0. This follows since

z + tu = x− (y − tu), y − tu ∈M, f(t) = ‖x− (y − tu)‖2 ≥ δ2.

We see that f(0) = δ2 as well. Now

f ′(t) = 2〈z, u〉+ 2t‖u‖2.

If we plug in t = 0, we have

f ′(0) = 2〈z, u〉 = 0,

since t = 0 was a critical point. This tells us the result. If we scaled u by say α 6= 0, then we see
that

2α〈z, u〉 = 0,

so this doesn’t change anything. �

Problem 96. Prove that

(K⊥)⊥ = K.

Proof. It’s a matter of checking definitions to see K ⊆ (K⊥)⊥, so K ⊆ (K⊥)⊥. For the other
direction, it follows easily from the decomposition. We see K⊥∩ (K⊥)⊥ = {0}, and so (K⊥)⊥ ⊆ H
implies (K⊥)⊥ ⊆ K. �

Problem 97. Show that if T is an operator on a Hilbert space, then

(1) ker(T ∗) = (Im(T ))⊥;

(2) Im(T ) = (ker(T ∗))⊥.

Proof.

(1) Let y ∈ ker(T ∗). Then for all z ∈ Im(T ), we have T (x) = z for some x and

〈y, z〉 = 〈y, T (x)〉 = 〈T ∗(y), x〉 = 〈0, x〉 = 0.

So y ∈ (Im(T ))⊥, giving ker(T ∗) ⊆ Im(T ). Now let z ∈ Im(T )⊥. Then for all x ∈ H, we
see T (x) ∈ Im(T ) and we have

〈T (x), z〉 = 〈x, T ∗(z)〉 = 0.

This forces T ∗ (z) = 0, so z ∈ ker(T ∗).
(2) Apply (1) to T ∗. We see (T ∗)∗ = T , so ker(T ) = (Im(T ∗)⊥. Applying ⊥ to both sides gives

ker(T )⊥ = ((Im(T ∗)⊥)⊥ = Im(T ∗).

�

Problem 98. Show the following are equivalent:

(1) T is invertible.
(2) There is a constant α > 0 so that T ∗T ≥ αI and TT ∗ ≥ αI.
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Proof. (1) =⇒ (2): Assume T is invertible. Then T ∗ is also invertible. Define

‖T−1‖−2 = α = ‖(T ∗)−1‖−2.

Notice that
‖x‖ = ‖T−1(T (x))‖ ≤ ‖T−1‖‖Tx‖,

so
‖Tx‖ ≥ ‖T−1‖−1‖x‖.

Now
〈T ∗Tx, x〉 = 〈Tx, Tx〉 = ‖Tx‖2 ≥ ‖T−1‖−2‖x‖2 = α〈x, x〉 = 〈αx, x〉.

So
〈(T ∗T − αI)x, x〉 ≥ 0.

We have the result.
(2) =⇒ (1): Notice that

‖Tx‖2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 ≥ α〈x, x〉 = α‖x‖2,
so

‖Tx‖ ≥
√
α‖x‖.

This shows that T is injective. This shows that Im(T ) is closed, and we use the prior problem to
deduce that Im(T ) = (ker(T ∗))⊥. Now from the exact same argument,

‖T ∗x‖ ≥
√
α‖x‖,

so T ∗ is injective and ker(T ∗) = {0}. Thus T is surjective. �

Problem 99. Show that if T is a bounded operator, then TT ∗ and T ∗T are both positive.

Proof. This follows from the following observations:

〈TT ∗x, x〉 = 〈T ∗x, T ∗x〉 = ‖T ∗x‖2 ≥ 0,

〈T ∗Tx, x〉 = 〈Tx, Tx〉 = ‖Tx‖2 ≥ 0.

�

Problem 100. Show that every Hermitian has real spectrum (i.e. σ(T ) ⊆ R).

Proof. Suppose T is normal. Let λ ∈ C \ R so λ = a + bi with b 6= 0. Notice that if X = T − λI,
we have

X∗X = XX∗ = (T − λI)(T − λ∗I) = |λ|2I − 2(Re(λ))T + T 2

= (a2 + b2)I − 2aT + T 2 = b2I + (aI − T )2.

Now
(aI − T )2 = (aI − T )(aI − T )∗

is a positive operator, so we have that XX∗ ≥ b2I. Hence X is invertible. �

Problem 101. Show that if T is a Hermitian operator, then ‖T‖ = sup{|λ| : λ ∈ σ(T )}.

Proof. TODO �

Let T be an operator, f a comple-valued function on σ(T ). We define

NT (f) = sup{|f(λ)| : λ ∈ σ(T )}.

Problem 102. Show that if T is a Hermitian operator and p is a real polynomial, then

‖p(T )‖ = NT (p).

Proof. TODO �
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Suppose M is a closed subspace of H. From Problem 38 we know we can decompose the space
H into a direct sum H = M⊕M⊥. We define a projection of M to be a mapping P : H → H where
it takes each vector v = v1 + v2 ∈ H and maps it to v1. Note that P is necessarily an operator.

Problem 103.

(1) Show that an operator P is a projection if and only if it is Hermitian and idempotent
(meaning P 2 = P ).

(2) Show that for a projection operator we have

‖Pv‖2 = 〈Pv, v〉.

Proof.

(1) ( =⇒ ): If P is a projection, then P : H → H is defined by some closed subspace M . We
first note that it is idempotent, since P (v) = P (v1 + v2) = v1 and P (v1) = P (v1 + 0) = v1,
so P 2(v) = P (v) for all v ∈ H.

Next, we claim that it is Hermitian. Let v = v1 + v2, w = w1 + w2 ∈ H. Then

〈Pv,w〉 = 〈v1, w1 + w2〉 = 〈v1, w1〉+ 〈v1, w2〉 = 〈v1, w1〉 = 〈v1, w1〉+ 〈v2, w1〉 = 〈v, Pw〉.

( ⇐= ) : We now show that if P is idempotent and Hermitian, then you are a projection
mapping for some closed subspace. Let

M = {w ∈ H : P (w) = w}.
We claim that H = M ⊕M⊥ (so that M is a closed subspace). Take v ∈ H, then this is
equivalent to showing

〈Pv, v − Pv〉 = 0.

This is just a calcuation:

〈Pv, v − Pv〉 = 〈Pv, v〉 − 〈Pv, Pv〉 = 〈Pv, v〉 − 〈Pv, v〉 = 0.

(2) Notice

‖Pv‖2 = 〈Pv, Pv〉 = 〈Pv, v〉.
�

Denote by P(H) the collection of all projection operators on H. We can give this a partial
ordering by Pi ≤ Pj if Mi ⊆Mj (where we note from this last problem that a projection operator
is uniquely characterized by it’s fixed points). We can define∑

i∈I
Pi ∈ P(H) is the operator with fixed points

⋃
i∈I

Mi.

Let X be a set and M a σ-algebra on it. A spectral measure is a function E : M → P(H)
satisfying the following properties:

(1) E(∅) = 0 and E(H) = Id (here, these are the 0 operator and the identity operator).
(2) If {Un} ⊆ M are disjoint, then

E
(⋃

Un

)
=
∑

E(Un).

Problem 104. Show that condition (1) is slightly superfluous in the sense that we only require
E(H) = 1 and condition (2). That is, deduce E(∅) = 0 from E(H) = 1 and condition (2).

Proof. Notice that for any M ⊆ H we have E(H −M) = E(H) − E(M). This follows from the
fact that E(H −M) +E(M) = E(H) = 1. Now if we take M = H, we have E(H −H) = E(∅) =
E(H)− E(H) = Id− Id = 0. �
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Problem 105.

(1) Prove that E is modular, meaning

E(M ∪N) + E(M ∩N) = E(M) + E(N).

(2) Prove that

E(M)E(M ∩N) = E(M ∩N) and E(M)E(M ∪N) = E(M).

(3) Prove that E is multiplicative, meaning

E(M ∩N) = E(M)E(N).

Proof.

(1) We can write
M ∪N = (M −N) t (M ∩N) t (N −M).

So
E(M ∪N) = E(M −N) + E(M ∩N) + E(N −M).

Now add E(M ∩N) to both sides.

E(M ∪N) +E(M ∩N) = (E(M −N) +E(M ∩N)) + (E(N −M) +E(M ∩N)) = E(M) +E(N).

(2) We have
E(M ∩N) ≤ E(M) ≤ E(M ∪N),

where this is with respect to the partial ordering on fixed spaces. The claim then follows
from observing that if P0 ≤ P1, then P1P0 = P0. Examine the fixed space of P1P0. This is
going to be

M = {v ∈ H : (P1P0)(v) = v} = {v ∈ H : P1(P0(v)) = v}.
Write v = v1 + v2, where v1 ∈M1 which is the fixed space of P1. Then using the fact that
P0 ≤ P1 so M⊥1 ⊆M⊥2 , where M2 is the fixed space of P0, we have

P1(P0(v1 + v2)) = P1(P0(v1) + P0(v2)) = P1(P0(v1)) + P1(P0(v2)) = P1(P0(v1)) = v.

Now take v1 = w1 + w2, w1 ∈M2. Applying the same reasoning gives

P1(P0(v)) = w1 = v.

So its the collection of all v contained in M2. This means that P1P0 is the projection
operator with fixed space M2. It is uniquely characterized by this, so P1P0 = P0. The same
kind of argument also gives P0P1 = P0. Using this, we have

E(M)E(M ∩N) = E(M ∩N) and E(M)E(M ∪N) = E(M).

(3) Now multiply both sides of the modular equation by E(M) to get

E(M) + E(M ∩N) = E(M) + E(M)E(N).

Note here we used the property that projection operators are idempotent. Subtract to get
the result.

�

Problem 106. Show the following are equivalent for E :M→ P(H).

(1) E is a spectral measure.
(2) E(H) = 1 and for any pairs x, y ∈ H the complex set-valued function µ defined by

µx,y(M) = 〈E(M)x, y〉
is countably additive.
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Proof. (1) =⇒ (2): The first part follows by definition of a spectral measure. Inner products with
an infinite sum can be formed term by term, so that gives us the second part.
(2) =⇒ (1): We see for arbitrary x, y ∈ H we have

µx,y(MtN) = 〈E(MtN)x, y〉 = µx,y(M)+µx,y(N) = 〈E(M)x, y〉+〈E(N)x, y〉 = 〈(E(M)+E(N))x, y〉.
This holds for arbitrary choice of x and y, so we get E(M tN) = E(M) + E(N). Notice we also
get multiplicativity by the argument in the prior problem.

We now wish to extend this to countable unions. Here we need to be careful, as the sum doesn’t
quite make sense without some argument. Suppose {Mn} ⊆ M is a disjoint sequence of sets with⊔

n

Mn = M.

Then by the prior paragraph, {E(Mn)} is a sequence of orthogonal projections. So {E(Mn)x〉 is a
sequence of orthogonal vectors for any choice of x ∈ H. Now∑

n

‖E(Mn)x‖2 =
∑
n

〈E(Mn)x, x〉 = 〈E(M)x, x〉 = ‖E(M)x‖2.

The sequence {E(Mn)x} is thus summable. If we set∑
n

E(Mn)x = Ax,

then A : H] → H is a bounded linear operator. Thus the sum makes sense, and we can make the
calculation

〈E(M)x, y〉 =
∑
n

〈E(Mn)x, y〉 = 〈
∑
n

E(Mn)x, y〉.

�

We will use the symbol B to denote the class of complex-valued bounded measurable functions
on X. We will write

N(f) = sup{|f(λ)| : λ ∈ X}
whenever f ∈ B. Warning: do not confuse B with the Borel σ-algebra!

Problem 107. Show that if E is a spectral measure and if f ∈ B, then there exists a unique
operator A such that

〈Ax, y〉 =

∫
f(λ)d(〈E(λ)x, y〉)

for every pair of vectors x, y. The dependence of A on f and E will be denoted by writing

A =

∫
fdE.

Proof. The function

ϕ(x, y) =

∫
f(λ)d(〈E(λ)x, y〉)

makes sense for ever yx and y by the boundedness of f . We see that ϕ is a bilinear functional, and
furthermore it is bounded by

|ϕ(x, y)| ≤
∫
|f(λ)d(‖E(λ)x‖2) ≤ N(f)‖x‖2.

This gives us a unique operator. �

This gives us some nice properties.

Problem 108. Show the following properties for a spectral measure E, f, g ∈ B, and α ∈ C:
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(1) We have ∫
(αf)dE = α

∫
fdE.

(2) We have ∫
(f + g)dE =

∫
fdE +

∫
gdE.

(3) We have ∫
f∗dE =

(∫
fdE

)∗
.

(4) We have (∫
fdE

)(∫
gdE

)
=

∫
fgdE.

(5) If B is an operator that commutes with E, then B commutes with A on the level of

〈ABx, y〉 = 〈BAx, y〉.

Proof. The proof of all of these is essentially the same. I’ll prove (1), (3), and (4). We follow
Halmos.

(1) By the prior problem, we have operators A,Aα such that

A =

∫
fdE, Aα =

∫
(αf)dE.

The goal is to show αA = Aα. This is shown by taking arbitrary x, y, and noting that

〈αAx, y〉 = α

∫
f(λ)d(〈E(λx), y〉) =

∫
αf(λ)d(〈E(λx), y〉) = 〈Aαx, y〉.

(3) Let

A =

∫
fdE, B =

∫
f∗dE.

The goal is to show that A∗ = B. That is, for all x, y we have

〈Ax, y〉 = 〈x,By〉.

Notice

〈x,By〉 = 〈By, x〉∗ =

(∫
f∗(λ)d(〈E(λ)x, y〉)

)∗
=

∫
f(λ)d(〈x,E(λ)y〉)

=

∫
f(λ)d(〈E(λ)x, y〉) = 〈Ax, y〉.

Here we really use the fact that E(λ) is a projective operator.
(4) Let

A =

∫
fdE, B =

∫
gdE.

Define the (complex) measure µ in X by µ(M) = 〈E(M)Bx, y〉, where x, y are any fixed vectors.
Since E(M) is a projective operator, we see

µ(M) = 〈E(M)Bx, y〉 = 〈Bx,E(M)y〉 =

∫
g(λ)d(〈E(λ)x,E(M)y〉) =

∫
g(λ)d(〈E(M)E(λ)x, y〉)

=

∫
g(λ)d(〈E(M ∩ λ)x, y〉) =

∫
M
g(λ)d(〈E(λ)x, y〉).

87



Now

〈ABx, y〉 = (〈A∗x,Bx〉)∗ =

(∫
f∗(λ)d(〈E(λ)y,Bx〉)

)∗
=

(∫
f∗(λ)d(〈y,E(λ)Bx〉)

)∗
=

∫
f(λ)d(〈E(λ)Bx, y〉) =

∫
f(λ)dµ(λ) =

∫
f(λ)g(λ)d(〈(Eλ)x, y〉).

This gives the result. �

If E is a spectral measure, we say that E is regular if for every Borel set M0 we have

E(M0) = sup
M⊆M0

M is compact

E(M)

Let E be a spectral measure. Define

γ(E) = {U ⊆ X : U is open and E(U) = 0}.

We can set

Γ(E) =
⋃

U∈γ(E)

U.

We define the spectrum of a spectral measure E, denoted σ(E), by

σ(E) = X \ Γ(E).

A spectral measure is compact if its spectrum is compact. Note this doesn’t even make sense if
X is not a topological space, so we assume that from now on. To make things doable, we assume
X is a locally compact Hausdorff space.

Problem 109. Show that if E is a regular spectral measure, then σ(E) is a closed set such that
E(σ(E)) = 1.

Proof. We note Γ(E) is, by definition, a union of open sets, so open. Hence σ(E) is closed. By
regularity, it suffices to prove that if M ⊆ X \ σ(E) is a compact subset, then E(M) = 0. Since
M ⊆ X \ σ(E) = Γ(E), we have that for all x ∈ M there exists Ux ∈ γ(E) so that U open and
E(U) = 0. Thus M ⊆

⋃
x∈M Ux. Since M is compact, we can take a finite refinement so that

M ⊆
⋃n

0 Ui, E(Ui) = 0. Now by monotonicity, we get E(M) ≤
∑n

0 E(Ui) = 0. �

Problem 110 (Spectral Theorem for Hermitian Operators). Show that if A is a Hermitian opera-
tor, then there exists a (necessarily real and necessarily unique) compact, complex spectral measure
E, called the spectral measure of A, such that A =

∫
λd(E(λ)).

Proof. Let p ∈ R[x], and recall that for a Hermitian operator A we can associate to it p(A) a
matrix. Define Lx,y(p) = 〈p(A)x, y〉 for some vectors x, y. Notice that

|Lx,y(p)| ≤ NA(p) · ‖x‖ · ‖y‖.

Thus L is a bounded linear functional, Lx,y : R[x] → R. Hence we can find a unique complex
measure µ in the compact set σ(A) so that

Lx,y(p) =

∫
p(λ)dµ(λ).

Moreover, we see that for every Borel set M we have

|µ(M)| ≤ ‖x‖ · ‖y‖.

We will denote this measure by µM (x, y) to indicate the dependence on x and y. Notice that
µM : H×H → R is a symmetric bilinear functional. Moreover, the bilinear functionals are bounded.
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For each M , there exists a unique Hermitian operator E(M) such that µM (x, y) = 〈E(M)x, y〉. To
get that E is projection valued, we show it is multiplicative. Define

ν(M) =

∫
M
q(λ)d(〈E(λ)x, y〉).

If p is any real polynomial, then we see that∫
p(λ)dν(λ) =

∫
p(λ)d(〈E(λ)x, q(A)y〉),

so

ν(M) =

∫
q(λ)d(〈E(λ)E(M)x, y〉).

Thus

〈E(M ∩N)x, y〉 = 〈E(M)E(N)x, y〉.
This completes it. �

A similar kind of trick gives us the Spectral Theorem for Normal Operators.

Theorem. If A is a normal operator, then there exists a (necessarily unique) compact, complex
spectral measure E, called the spectral measure of A, such that A =

∫
λdE(λ).

Recall that T is strongly mixing if

|µ(T−k(A) ∩B)− µ(A)µ(B)| → 0 for all A,B ∈M.

Problem 111 (Petersen 2.5.2). Show that T is strongly mixing if and only if

〈Unf, g〉 → 〈f, 1〉〈g, 1〉 for all f, g ∈ L2.

Proof. Notice that if we let f = χA and g = χB for A,B ∈M then the result follows. Fix B ∈M
and suppose f is a simple function. That is, write

f =
n∑
i=1

aiχAi .

Plugging things in, we see

〈Ukf, χB〉 =

∫ n∑
i=1

aiχT−k(Ai)χB =
n∑
i=1

aiµ(T−k(Ai) ∩B).

Taking the limit as k →∞ and using the result on measurable sets, we see that

|〈Ukf, χB〉 − 〈f, 1〉〈1, g〉| =

∣∣∣∣∣
n∑
i=1

ai

(
µ(T−k(Ai) ∩B)− µ(Ai)µ(B)

)∣∣∣∣∣
≤ |ai|

n∑
i=1

|µ(T−k(Ai) ∩B)− µ(Ai)µ(B)| → 0.

This gives the result for simple functions. Now let f be in L2. Since simple functions are dense in
L2, we can find a sequence of simple function so that for all ε > 0 there is an N so that for n ≥ N
we have ‖fn − f‖2 < ε. Still fixing g = χB, we see that for arbitrary n ∈ N we get the estimate

|〈Ukf, χB〉 − 〈f, 1〉〈1, χB〉|

= |〈Ukf, χB〉 − 〈Ukfn, χB〉+ 〈Ukfn, χB〉 − 〈fn, 1〉〈1, χB〉+ 〈fn, 1〉〈1, χB〉 − 〈f, 1〉〈1, χB〉|

≤ |〈Ukf, χB〉 − 〈Ukfn, χB〉|+ |〈Ukfn, χB〉 − 〈fn, 1〉〈1, χB〉|+ |〈fn, 1〉〈1, χB〉 − 〈f, 1〉〈1, χB〉|.
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Using a change of variables and the fact that T is measure preserving, we get

|〈Ukf, χB〉 − 〈Ukfn, χB〉| ≤
∫
B
|f − fn|(x)dµ(x).

If we assume a probability measure space (which I don’t see why we’re not, see Walters, Theorem
1.23) we can use Folland, Proposition 6.12 to get∫

B
|f − fn|(x)dµ(x) ≤ ‖f − fn‖2C, C > 0 is some constant.

Note that the Folland proposition actually gives the constant.
For all ε > 0, we can choose n independent of k so that this is less than ε. A similar argument

applies for the last term in the sum, so we have

|〈Ukf, χB〉 − 〈f, 1〉〈1, χB〉| ≤ 2ε+ |〈Ukfn, χB〉 − 〈fn, 1〉〈1, χB〉|.
Since ε is independent of k and we know the result for simple functions, we can take k →∞ to get

lim
k→∞

|〈Ukf, χB〉 − 〈f, 1〉〈1, χB〉| ≤ 2ε.

Now ε > 0 was arbitrary, so take ε→ 0 to get the result. This gives us that for all f ∈ L2, g = χB
with B ∈ M, we have the result. Now fix f ∈ L2 and do the same kind of argument for g, first
establishing it for simple functions then using density to establish it for all g ∈ L2. �

Problem 112 (Petersen 2.5.3). Suppose J is a semialgebra generatingM. Show that T is strongly
mixing iff

|µ(T−k(A) ∩B)− µ(A)µ(B)| → 0 for all A,B ∈ J .

Proof. This follows Walters, Theorem 1.17. The implication is trivial, so we prove the converse.
The result holds trivially for the algebra A generated by J , so let’s assume that it holds for all
A,B ∈ A which generates M. We use the fact that for ε > 0 and A,B ∈M there are An, Bn ∈ A
so that µ(A4An), µ(B4Bn) < ε. Now note that

(T−k(A) ∩B)4(T−k(An) ∩Bn) ⊆ (T−k(A)4T−k(An)) ∪ (B4Bn).

The argument from here is the usual one. Notice

|µ(T−k(A) ∩B)− µ(A)µ(B)|

≤ |µ(T−k(A) ∩B)− µ(T−k(An) ∩Bn)|+ |µ(T−k(An) ∩Bn)− µ(An)µ(Bn)|
+|µ(An)µ(Bn)− µ(A)µ(Bn)|+ |µ(A)µ(Bn)− µ(A)µ(B)|.

Fix ε > 0 small (the size will be chosen later). By the above estimate and the fact that T is measure
preserving, we get

|µ(T−k(A) ∩B)− µ(T−k(An) ∩Bn)| < 2ε.

For the others, note that
µ(Bn)|µ(An)− µ(A)| < µ(Bn)ε,

µ(A)|µ(B)− µ(Bn)| < µ(A)ε.

Since |µ(B)− µ(Bn)| < ε, we have µ(Bn) < ε+ µ(B), so

µ(Bn)|µ(An)− µ(A)| < ε2 + εµ(B).

As long as ε < 1, we have
µ(Bn)|µ(An)− µ(A)| < ε+ εµ(B).

So for 0 < ε′ < 1, choose

ε < min

{
ε′,

ε′

µ(A)
,

ε′

µ(B)

}
.
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Then

|µ(T−k(A) ∩B)− µ(A)µ(B)| < |µ(T−k(An) ∩B)− µ(An)µ(Bn)|+ 5ε′.

Since ε′ and k are independent, we can take k →∞ to get

lim
k→∞

|µ(T−k(A) ∩B)− µ(A)µ(B)| ≤ 5ε′.

Now take ε′ → 0 to get the result. �

Recall a set E ⊆ N has density zero if

|E ∩ [0, n− 1]|
n

=
1

n

n∑
0

χE(k)→ 0.

Problem 113 (Koopman-von Neumann, Petersen Lemma 6.2). Let f : N → R be a nonnegative
bounded function. Show that

lim
n→∞

1

n

n−1∑
0

f(k) = 0

iff there is a subset E ⊆ N of density zero such that

lim
n→∞,n/∈E

f(n) = 0.

Proof. ( =⇒ ): Assume that

lim
n→∞

1

n

n−1∑
k=0

f(k) = 0.

Let E = {k ∈ N : f(k) = 0}. We can rewrite this as

0 = lim
n→∞

1

n

n−1∑
k=0

f(k) = lim
n→∞

1

n

n−1∑
0

((fχE)(k) + (fχEc)(k)) = lim
n→∞

1

n

n−1∑
0

(fχEc)(k)

≥ lim
n→∞

1

n

n−1∑
0

(χEc)(k) ≥ 0.

Thus the set Ec has density zero and we see that

lim
n→∞,n/∈Ec

f(n) = 0.

( ⇐= ): Let E ⊆ N be the set of density zero such that we have the property. Then again we
examine

lim
n→∞

1

n

n−1∑
k=0

f(k) = lim
n→∞

1

n

n−1∑
k=0

((fχE)(k) + (fχEc)(k)).

Examine the left part first. We have

lim
n→∞

1

n

n−1∑
k=0

(fχE)(k).

Fixing n, we have by Cauchy Schwarz that

1

n

n−1∑
k=0

(fχE)(k) ≤

√√√√ 1

n

n−1∑
k=0

f(k)2

√√√√ 1

n

n−1∑
k=0

χE(k).
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Taking the limit as n → ∞ of both sides and using the fact that E has density zero, this gives us
that

lim
n→∞

1

n

n−1∑
k=0

(fχE)(k) = 0.

Thus

lim
n→∞

1

n

n−1∑
k=0

f(k) = lim
n→∞

1

n

n−1∑
k=0

f(k)χEc(k).

Now

lim
n→∞

f(n)χEc(n) = 0

implies for all ε > 0 there is an N so that for n ≥ N we have

f(n)χEc(n) < ε.

Fix ε > 0 and N . For n ≥ N + 1 we can rewrite this sum as

1

n

n−1∑
k=0

f(k)χEc(k) =
1

n

N∑
k=0

f(k)χEc(k) +
1

n

n∑
k=N+1

f(k)χEc(k)

<
1

n

N∑
k=0

f(k)χEc(k) +
ε(n−N)

n
.

Taking n→∞ of both sides gives us

0 ≤ lim
n→∞

1

n

n−1∑
k=0

f(k) = lim
n→∞

1

n

n−1∑
k=0

f(k)χEc(k) ≤ ε.

The choice of ε > 0 was arbitrary, so we let ε→ 0 and this gives us the result. �

Problem 114. Assume (X,M, µ, T ) is a measure preserving system of a probability measure
space. Show that if T × T is weakly mixing, then so is T .

Proof. Let A,B ∈M. Examine A×X, B ×X ∈M⊗M. Since T × T is weakly mixing, we have

lim
n→∞

1

n

n−1∑
k=0

∣∣∣(µ⊗ µ)(T k(A×X) ∩ (X ×B))− (µ⊗ µ)(A×X)(µ⊗ µ)(X ×B)
∣∣∣ = 0.

Using the fact that these are measurable cylinders, we can rewrite this as

lim
n→∞

1

n

n−1∑
k=0

∣∣∣µ(T k(A) ∩B)µ(T k(X) ∩X)− µ(A)µ(B)µ(X)2
∣∣∣ = 0.

Since we’re assuming that (X,M, µ) is a probability measure space, this is equivalent to

lim
n→∞

1

n

n−1∑
k=0

∣∣∣µ(T k(A) ∩B)− µ(A)µ(B)
∣∣∣ = 0.

This implies T is weakly mixing. �

Problem 115 (Petersen Theorem 2.6.1). Let (X,M, µ, T ) be a measure preserving system on a
probability measure space. Show the following are equivalent.

(1) T is weakly mixing.
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(2) For all f, g ∈ L2(µ), we have

lim
n→∞

1

n

n−1∑
k=0

|〈Ukf, g〉 − 〈f, 1〉〈1, g〉| = 0.

(3) Given A,B ∈M, there is a set J ⊆ N of density zero so that

lim
n→∞,n/∈J

µ(Tn(A) ∩B) = µ(A)µ(B).

(4) T × T is weakly mixing.
(5) T × S is ergodic on X × Y for each ergodic system (Y,N , ν, S).
(6) T × T is ergodic.

Proof. We note that (1) ⇐⇒ (2) is clear by an earlier problem. We note (5) =⇒ (6) is clear.
(1) ⇐⇒ (3): Let

f(n) = |µ(Tn(A) ∩B)− µ(A)µ(B)|.
Assuming (1), we get

1

n

n−1∑
0

f(k) = 0,

and by an earlier problem that implies the existence of J with density zero so that

lim
n→0,n/∈J

f(n) = lim
n→0,n/∈J

|µ(Tn(A) ∩B)− µ(A)µ(B)| = 0.

Assuming (3), we do the prior argument backwards, again using the an earlier problem.
Note that we have (1) ⇐⇒ (2) ⇐⇒ (3).
(3) =⇒ (4): Consider X ×X with measure space M⊗M and measure µ ⊗ µ. We can consider
the cylindrical sets. Take A,B,C,D ∈M. By (3), there exists a J1 and J2 of density zero so that

lim
n→∞,n/∈J1

µ(Tn(A) ∩B) = µ(A)µ(B),

lim
n→∞,n/∈J2

µ(Tn(C) ∩D) = µ(C)µ(D).

Notice that J1 ∪ J2 has density zero, since

0 ≤ 1

n

n−1∑
k=0

χJ1∪J2(k) ≤ 1

n

n−1∑
k=0

[χJ1(k) + χJ2(k)]→ 0.

Now consider

lim
n→∞,n/∈J1∪J2

|(µ⊗ µ)(Tn(A× C) ∩ (B ×D))− (µ⊗ µ)(A× C)(µ⊗ µ)(B ×D)|

= lim
n→∞,n/∈J1∪J2

|µ(Tn(A) ∩B)µ(Tn(C) ∩D)− µ(A)µ(B)µ(C)µ(D)|

= lim
n→∞,n/∈J1∪J2

|µ(Tn(A) ∩B)µ(Tn(C) ∩D)− µ(Tn(A) ∩B)µ(C)µ(D)

+µ(Tn(A) ∩B)µ(C)µ(D)− µ(A)µ(B)µ(C)µ(D)|
≤ lim

n→∞,n/∈J1∪J2
|µ(Tn(A) ∩B)µ(Tn(C) ∩D)− µ(Tn(A) ∩B)µ(C)µ(D)|

+ lim
n→∞,n/∈J1∪J2

|µ(Tn(A) ∩B)µ(C)µ(D)− µ(A)µ(B)µ(C)µ(D)|

= µ(Tn(A) ∩B) lim
n→∞,n/∈J1∪J2

|µ(Tn(C) ∩D)− µ(C)µ(D)|

+µ(C)µ(D) lim
n→∞,n/∈J1∪J2

|µ(Tn(A) ∩B)− µ(A)µ(B)| = 0.
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We thus have (3) for T ×T on the semialgebra J =M×M which generatesM⊗M. By a density
argument, this tells us that it applies for M⊗M.
(4) =⇒ (5): Notice that T × T weakly mixing implies T is weakly mixing by the last problem.
Consider an ergodic system (Y,N , ν, S). We will show that T × S is weakly mixing, which implies
that it is ergodic. Take A,B ∈M, C,D ∈ N , and consider∣∣∣∣∣ 1n

n−1∑
k=0

(µ⊗ ν)((T × S)k(A× C) ∩ (B ×D))− (µ⊗ ν)(A× C)(µ⊗ ν)(B ×D)

∣∣∣∣∣ .
We may rewrite this as∣∣∣∣∣ 1n

n−1∑
k=0

µ(T k(A) ∩B)ν(Sk(C) ∩D)− µ(A)ν(C)µ(B)ν(D)

∣∣∣∣∣ .
We can now add and subtract

1

n

n−1∑
k=0

ν(Sk(C) ∩D)µ(A)µ(B)

on the inside to get∣∣∣∣ 1n
n−1∑
k=0

µ(T k(A) ∩B)ν(Sk(C) ∩D)− 1

n

n−1∑
k=0

ν(Sk(C) ∩D)µ(A)µ(B)

+
1

n

n−1∑
k=0

ν(Sk(C) ∩D)µ(A)µ(B)− µ(A)ν(C)µ(B)ν(D)

∣∣∣∣.
We then get an upper bound

ν(Sk(C) ∩D)
1

n

n−1∑
k=0

|µ(T k(A) ∩B)− µ(A)µ(B)|+ µ(A)µ(B)

∣∣∣∣ 1n
n−1∑
k=0

ν(Sk(C) ∩D)− ν(C)ν(D)

∣∣∣∣.
Taking n→∞ of both sides gives us that the first term tends to 0, since T is weakly mixing, and
the second term tends to 0 since S is ergodic. Thus we have it is weakly mixing on the cylinders,
so it is weakly mixing.
(5) =⇒ (6): Clear, since weakly mixing implies ergodic.
(6) =⇒ (3): Assume T × T is ergodic. Take A,B ∈M. We examine

1

n

n−1∑
k=0

[
µ(T k(A) ∩B)− µ(A)µ(B)

]2

=
1

n

n−1∑
k=0

[
µ(T k(A) ∩B)2 − 2µ(T k(A) ∩B)µ(A)µ(B) + µ(A)2µ(B)2

]
=

1

n

n−1∑
k=0

µ(T k(A) ∩B)2 − 2µ(A)µ(B)
1

n

n−1∑
k=0

µ(T k(A) ∩B) + (µ(A)µ(B))2.

Now we rewrite this in terms of T × T . We have

1

n

n−1∑
k=0

(µ⊗ µ)(T k(A×A) ∩ (B ×B))− 2µ(A)µ(B)
1

n

n−1∑
k=0

(µ⊗ µ)(T k(A×X) ∩ (B ×X))

+(µ⊗ µ)(A×A)(µ⊗ µ)(B ×B).
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Taking n→∞, we use ergodicity. The above is then equal to

(µ⊗µ)(A×A)(µ⊗µ)(B×B)−2µ(A)µ(B)(µ⊗µ)(A×X)(µ⊗µ)(B×X)+(µ⊗µ)(A×A)(µ⊗µ)(B×B).

These are cylinders, so we can evaluate this to get

µ(A)2µ(B)2 − 2µ(A)2µ(B)2 + µ(A)2µ(B)2 = 0.

Therefore

lim
n→∞

1

n

n−1∑
k=0

[
µ(T k(A) ∩B)− µ(A)µ(B)

]2
= 0.

Define

f(k) =
[
µ(T k(A) ∩B)− µ(A)µ(B)

]2
.

By an earlier problem, we get that there is a density zero subset J ⊆ N with

lim
n→∞,n/∈J

f(k) = lim
n→∞,n/∈J

[
µ(T k(A) ∩B)− µ(A)µ(B)

]2
= 0.

This forces

lim
n→∞,n/∈J

∣∣∣µ(T k(A) ∩B)− µ(A)µ(B)
∣∣∣ = 0,

which forces T to be weakly mixing.
Thus we’ve shown (1) ⇐⇒ (2) ⇐⇒ (3) =⇒ (4) =⇒ (5) =⇒ (6) =⇒ (3). This gives us all of
the equivalences. �

Recall that a unitary operator U : H → H is said to have continuous spectrum if 1 is the only
eigenvalue and the only eigenfunctions are the constants.

Problem 116. Let (X,M, µ, T ) be an invertible measure preserving system of a probability mea-
sure space. Let U : L2(µ) → L2(µ) be the corresponding unitary operator. Show that if λ is a
non-trivial eigenvalue of U , then |λ| = 1. Thus all eigenvalues of the unitary operator lie on the
circle.

Proof. Let λ be an eigenvalue, f an associated eigenfunction. We have

‖f‖2〈f, f〉 = 〈Uf,Uf〉 = 〈U2f, f〉 = λ2〈f, f〉 = λ2‖f‖2.
Taking square roots, we have |λ| = 1 or ‖f‖ = 0. Since λ was assumed to be non-trivial, f assumed
to be non-trivial, this gives us the result. �

We now include Walters version of the spectral theorem for unitary operators.

Theorem. Suppose U is a unitary operator on a Hilbert space H. Then for each f ∈ H there
exists a unique finite Borel measure µf on K so that

〈Unf, f〉 =

∫
K
λndµf (λ) for all n ∈ Z.

If T is an invertible measure preserving transformation, then UT is unitary. If T has continuous
spectrum and 〈f, 1〉 = 0, then µf has no atoms.

Let (X,M, µ, T ) be an ergodic measure-preserving system on a probability measure space. We
say that (X,M, µ) has discrete spectrum if there exists an orthonormal basis for L2(µ) which
consists of eigenfunctions of T .

Problem 117. Show that if T has discrete spectrum and (X,M, µ) is a Lebesgue space, then T
is (measure theoretically) invertible.
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Proof. Consider UT : L2(µ) → L2(µ). This is going to be surjective, since every element can be
expressed as a linear combination of eigenfunctions. Since it’s an eigenfunction, we have that

T̂−1 : (M, µ)→ (M, µ) (modulo sets of measure zero) is an automorphism of measure spaces. If it
is a Lebesgue space, we recall this induces a point measure map. �

Problem 118. Let (X,M, µ, T ) be an ergodic system of a probability measure space. Prove the
following:

(1) If UT f = λf , f 6= 0, then |λ| = 1 and |f | is constant almost everywhere.
(2) Eigenfunctions corresponding to different eigenvalues are orthogonal.
(3) If f and g are both eigenfunctions corresponding to the eigenvalue λ, then f = cg almost

everywhere for some c.
(4) The eigenvalues of T form a subgroup of the unit circle.

Proof.

(1) Assume f 6= 0 and
UT f = λf.

By definition,

‖UT f‖22 =

∫
|f ◦ T |2dµ.

Do the change of variables formula and use the fact that T is measure preserving to get

‖UT f‖22 =

∫
|f |2d(µ ◦ T−1) =

∫
|f |2dµ = ‖f‖22.

Thus we have ‖f‖2 = ‖UT f‖2 = ‖λf‖2 = |λ|‖f‖2. Subtracting from both sides, we see

(1− |λ|)‖f‖2 = 0.

This implies either |λ| = 1 or ‖f‖2 = 0. By assumption f 6= 0, so this forces |λ| = 1.
To see |f | is constant almost everywhere, notice

|f | ◦ T = |f ◦ T | = |λf | = |λ||f | = |f |.
Thus |f | is T -invariant. Since T is ergodic, this forces |f | to be constant almost everywhere.

(2) Suppose UT f = λ1f , UT g = λ2g, λ1 6= λ2. Recalling that UT is an isometry, we have

〈f, g〉 = 〈UT f, UT g〉 = λ1λ2〈f, g〉.
Notice this forces either 〈f, g〉 = 0 or λλ2 = 1. Since |λ2| = 1, notice that λ2λ2 = 1 so
that λ2 = λ−1

2 . Thus the second condition can be rewritten as λ1 = λ2. Since we assumed
λ1 6= λ2, this forces 〈f, g〉 = 0. This gives us orthogonality.

(3) Without loss of generality, g 6= 0. Notice f/g is T -invariant, since

UT (f/g) = UT (f)/UT (g) = λf/(λg) = f/g.

Thus f/g is constant almost everywhere.
(4) Let σ(T ) denote the eigenvalues. We’ve seen that if λ ∈ σ(T ), then λ−1 ∈ σ(T ). If f, g are

eigenfunctions for λ1, λ2, then

UT (fg) = UT (f)UT (g) = λ1λ2fg.

So λ1λ2 ∈ σ(T ). This concludes that it’s a subgroup.

�

Let (X1,M1, µ1, T1), (X2,M2, µ2, T2) be two systems. We say T1 and T2 are spectrally iso-
morphic if there exists a W : L2(µ2)→ L2(µ1) so that

(1) W is invertible,
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(2) 〈Wf,Wg〉 = 〈f, g〉 for all f, g ∈ L2(µ2),
(3) UT1W = WUT2 .

Problem 119. Show that if σ(T1) and σ(T2) denote the set of eigenvalues for T1 and T2 and T1

and T2 are spectrally isomorphic, then σ(T1) = σ(T2).

Proof. Let λ ∈ σ(T1). There is some f ∈ L2(µ1) so that UT1(f) = λf , f 6= 0. Since W invertible,

there is some f̂ ∈ L2(µ2) so that W (f̂) = f (in L2). Notice that

λf = UT1(f) = UT1W (f̂) = WUT2(f̂).

Applying W−1 to both sides yields

λW−1(f) = λf̂ = UT2(f̂).

Notice as well

‖f̂‖22 = 〈f̂ , f̂〉 = 〈W (f̂),W (f̂)〉 = 〈f, f〉 = ‖f‖22,
so f̂ 6= 0 almost everywhere. Thus λ ∈ σ(T2). If λ ∈ σ(T2), there is some g non-zero so that
UT2(g) = λg. Consider ĝ = W (g). This is non-zero (again using the isometry condition) and we
see that

UT1(ĝ)UT1W (g) = WUT2(g) = λW (g) = λĝ.

Thus λ ∈ σ(T1). This gives equality. �

Problem 120. Let (X,M, µ) be a probability space, h ∈ L2(µ). Show the following are equivalent.

(1) We have h is bounded.
(2) We have h · f ∈ L2(µ) for all f ∈ L2(µ).

Proof. (1) =⇒ (2): If h is bounded, then h ∈ L∞(µ) ∩ L2(µ) so that

‖hf‖22 =

∫
|hf |2dµ ≤

∫
‖h‖∞|f |2dµ = ‖h‖∞‖f‖2 <∞.

(2) =⇒ (1): Consider

Xn = {x ∈ X : n− 1 ≤ |h| < n} n ≥ 1.

Then

X =

∞⊔
n=1

Xn.

Write

f =
M∑
i=1

i−1µ(Xi)
−1/2χXi(x).

Notice that we have

‖f‖22 =

∫
|f |2dµ ≤

∞∑
i=1

i−2 <∞.

Let F = {i : µ(Xi) 6= 0}. Then

‖hf‖22 =

∫
|hf |2dµ ≥

∑
i∈F

(
i− 1

i

)2

.

Thus F must be finite, so h is bounded. �

Recall this fact from algebra (a sort of Baer’s criterion argument, see Problem 26 in my notes).
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Theorem (Walters, Lemma 3.3). Let H be a discrete abelian group and K a divisible subgroup
of H. Then there exists a homomorphism ϕ : H → K such that ϕ|K = IdK .

Theorem. Let Ti be an ergodic measure preserving transformation of a probability space (Xi,Bi,mi)
and suppose Ti has discrete spectrum for i = 1, 2. Then the following are equivalent:

(1) T1 and T2 are spectrally isomorphic.
(2) T1 and T2 have the same eigenvalues.
(3) T1 and T2 are conjugate.

Let (X,M, µ, T ) and (Y,N , ν, S) be measure preserving transformations of probability measure
spaces. We say that T is isomorphic to S if there exists M ∈M and N ∈ N with µ(M) = 1 and
ν(N) = 1 so that

(1) T (M) ⊆M , S(N) ⊆ N (in other words M is T -invariant and N is S-invariant),
(2) there is an invertible measure-preserving transformation

ϕ : M → N with ϕT (x) = Sϕ(x) for all x ∈M.

Write this as T ∼= S.

Problem 121. Prove that isomorphism is an equivalence relation.

Proof. There are three properties to check.

(1) We see that T ∼= T by just taking M = X, N = X, and ϕ the identity.
(2) If T ∼= S, then S ∼= T by taking ϕ = ϕ−1.
(3) This is the more interesting thing to check. Suppose T ∼= S and S ∼= Q. Write the systems

as (X,M, µ, T ), (Y,N , ν, S), and (Z,B, ρ,Q). Since T ∼= S, we have that there exists a T -
invariant set M and an S-invariant set N , both of full measure, so that there is an invertible
measure-preserving transformation

ϕ : M → N with ϕT = Sϕ on M.

Since S ∼= Q, we have that there is an S-invariant set of full measure K and a Q-invariant
set of full measure O so that there is an invertible measure-preserving transformation

ψ : K → O with ψS = Qψ on K.

Consider K ∩N . Notice that

ν(K ∩N) = 1− ν(Kc ∪N c) ≥ 1− (ν(Kc) + ν(N c)) = 1,

so this is still a set of full measure. If we take M ∩ ϕ−1(K ∩ N), this is still a set of full
measure by the same argument, and ϕ restricted to this set is going to be an invertible
measure-preserving transformation. Consider O ∩ψ(K ∩N). The same argument says this
is a set of full measure. Thus if we relabel K ∩ N as N , relabel M ∩ ϕ−1(K ∩ N) as M ,
and relabel O∩ψ(K ∩N) as O, and relabel the transformations restricted to these sets, we
have ϕ : M → N is an invertible measure preserving transformation so that ϕT = Sϕ on M
and ψ : N → O is an invertible measure preserving transformation so that ψS = Qψ on N .
Thus κ = ψ ◦ ϕ : M → O is measure preserving (as the composition of measure preserving
transformations is measure preserving) and invertible, and moreover on M we have

κT = (ψ ◦ ϕ)T = ψ ◦ S ◦ ϕ = Q(ψ ◦ ϕ) = Qκ.

This gives an isomorphism. Thus T ∼= Q.

�

Problem 122. Show that if T and S in the above definition are invertible, then we can take M
and N so that TM = M and SN = N .
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Proof. If T is invertible, then µ(T (M)) = µ(M) = 1 and µ(T−1(M)) = µ(M) = 1. The intersection
of countably many sets of full measure has full measure, so consider

M ′ =
∞⋂

n=−∞
TnM.

Since T invertible, T (M ′) = M ′. Notice the same trick applies for S. Moreover, these sets work
for isomorphisms. �

A partition of a space (X,M, µ) is a disjoint collection of elements in M whose union is
X. We will mostly be focused on finite partitions, denoted with a Greek letter (for example,
ξ = {A1, . . . , An}.

Problem 123. Let (X,M, µ) be a measure space and let ξ = {A1, . . . , An} be a partition. Consider
the collection A(ξ) which consists of all unions of elements of ξ. Show this is a sub-σ-algebra.

Proof. We need to show three things.

(1) We see that X ∈ A(ξ), since
⋃n
i=1Ai = X ∈ A(ξ).

(2) Let {Ci} ∈ A(ξ). Then
⋃
iCi ∈ A(ξ), since a union of Ci is just a union of Ai.

(3) Let C ∈ A(ξ). Then by definition C is a union of Ai. After relabeling, we can assume that
C is a union of the first k. That is,

C =

k⋃
i=1

Ai.

Now

Cc = X \ C = X \

(
k⋃
i=1

Ai

)
=

n⋃
i=k+1

Ai.

To see this last equality, let x ∈ X \
(⋃k

i=1Ai

)
. Since X =

⋃n
i=1Ai, we see that this

forces x ∈
⋃n
i=k+1Ai, so it is a subset. The other direction is clear; x ∈

⋃n
i=k+1Ai implies

x /∈
⋃k
i=1Ai and x ∈ X.

�

Problem 124. Assume that C is a finite sub-σ-algebra of M. Then C = {Ci : i = 1, . . . , n}. Let
Bi be of the form Ci or Cci . Then show that the non-empty sets of the form B1 ∩ · · · ∩ Bn form a
finite partition of (X,M, µ). Denote this partition by ξ(C).

Proof. We need to show that they are disjoint and that they union to the whole set. One can write

B1 ∩ · · · ∩Bn = Bi1···in ,

where ij ∈ {0, 1} is 1 if Bi = Ci and is 0 if Bi = Cci . Then if i1 · · · in 6= j1 · · · jn, there is some
k ∈ {1, . . . , n} so that ik 6= jk. Without loss of generality, assume that ik = 1 and jk = 0. Then we
see that

Bi1···in ∩Bj1···jn ⊆ Ck ∩ Cck = ∅,
so these sets are disjoint.

We have that
⋃n
i=1Ci = X, since C is a sub-σ-algebra. So x ∈ X implies x ∈ Ci for some i. But

unioning over Bi1···in , we get Ci ⊆
⋃
i1···in Bi1···in , so we must have X =

⋃
i1···in Bi1···in . �

Problem 125. Deduce there is a one-to-one correspondence between finite sub-σ-algebras and
finite partitions.
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Proof. Let C = {Ci : i = 1, . . . , n}. We see that ξ(C) is going to be

ξ(C) = {Bi1···in : i1, . . . , in ∈ {0, 1}} .
Now we see that we can get Ck by fixing ik = 1 and union over all of the other elements varying.
Thus Ck ∈ A(ξ(C)) for k = 1, . . . , n, and we see that C = {C1, . . . , Cn} ⊆ A(ξ(C)). Since ξ(C) ⊆ C,
we get equality here by minimality. So A(ξ(C)) = C. The other direction is similar. �

Consider the space of finite partitions, call it Γ. We can introduce a partial ordering on Γ,
denoted ≤, by saying ξ ≤ η if each element if ξ is a union of elements of η. We call η a refinement
of ξ.

Problem 126. Show

ξ ≤ η ⇐⇒ A(ξ) ⊆ A(η)

Proof. ( =⇒ ): Notice ξ ≤ η if every element of ξ is a union of elements from η. Since A(ξ) is a
union of elements from ξ, this implies that A(ξ) ⊆ A(η).
(⇐= ): Same kind of idea. �

The same kind of idea shows that A ⊆ C iff ξ(A) ≤ η(C). Essentially what we’ve done is induced
a partial ordering via the one-to-one correspondence.

Let ξ = {A1, . . . , An} and η = {C1, . . . , Ck} be two finite partitions of (X,M, µ). Their join is
the partition

ξ ∨ η = {Ai ∩ Cj : 1 ≤ i ≤ n, 1 ≤ j ≤ k}.
Similarly the join of A and C, which are two finite sub-σ-algebras, is the smallest sub-σ-algebra of
M containing A and C.

Problem 127.

(1) Show that A ∨ C is a finite sub-σ-algebra. Deduce that the space of finite sub-σ-algebras
are closed under the join operation.

(2) Show that

A(ξ ∨ η) = A(ξ) ∨ A(η).

(3) Show that

ξ(A ∨ C) = ξ(A) ∨ ξ(C).

Proof.

(1) Let N = A ∨ C. This is the smallest sub-σ-algebra containing A and C. Let

B = {A ∩ C : A ∈ A, C ∈ C},
then σ(B), which is the union of all elements in B, is a finite sub-σ-algebra. Notice that
A ⊆ σ(B), C ⊆ σ(B), so N ⊆ σ(B) by minimality. Finally if K ∈ σ(B), then it can be
written as

K =
⋃
i,j

Ai ∩ Cj .

If τ is any σ algebra containing A and C, then we see that we must have K ∈ τ (since τ
contains {Ai} and {Cj}) implying that K ∈ N . Thus N = σ(B), and A ∨ C is a finite
sub-σ-algebra.

(2) We can view A(ξ) = σ({Ai : 1 ≤ i ≤ n}), A(η) = σ({Cj : 1 ≤ j ≤ k}) by (1). By definition

ξ ∨ η = {Ai ∩ Cj : 1 ≤ i ≤ n, 1 ≤ j ≤ k}.
Thus

A(ξ ∨ η) = σ({Ai ∩ Cj : 1 ≤ i ≤ n, 1 ≤ j ≤ k}).
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So this is unions of elements of this form. Meanwhile A(ξ) ∨ A(η) is the smallest sub-
σ-algebra containing A(ξ) and A(η). Again by (1) this is a finite sub-σ-algebra, and we
explicitly calculated in (1) that it will be A(ξ ∨ η).

(3) Write A = {A1, . . . , An}, C = {C1, . . . , Ck}, where elements in A are really unions of Ai
and same for C. We can write

ξ(A) = {Bi1···in : ij ∈ {0, 1} for 1 ≤ j ≤ n}.
Similarly

ξ(C) = {Kj1···jk : js ∈ {0, 1} for 1 ≤ s ≤ k}.
We have an explicit calculation for A∨C from (1) which says it looks like unions of elements
of the form Ai ∩ Cj . Notice that

ξ(A ∨ C) = {Ti1···inj1···jk : is, jr ∈ {0, 1} for 1 ≤ s ≤ n, 1 ≤ r ≤ k},
where Ti1···inj1···jk = Bi1···in ∩Kj1···jk . Notice that

ξ(A) ∨ ξ(C) = {Bi1···in ∩Kj1···jk} = {Ti1···inj1···jk}.
Thus these sets are the same.

�

Problem 128. Let ξ = {A1, . . . , An} be a partition of (X,M, µ, T ) a (invertible) measure pre-
serving system of a probability measure space (so the partition is of the space). Show that T−1(ξ)
is a partition of X.

Proof. We note T−1(X) = X, so

n⋃
i=1

T−1(Ai) = T−1

(
n⋃
i=1

Ai

)
= X.

Moreover these {T−1(Ai)} are disjoint. Thus it is a partition. �

If C and D are sub-σ-algebras of M, we write C
◦
⊂ D if for every C ∈ C there is a D ∈ D with

µ(D4C) = 0. If ξ and η are finite partitions, then ξ
◦
= η means A(ξ)

◦
= A(η).

Suppose C and D are finite and C ◦= D. Then if we can write ξ(C) = {C1, . . . , Cp, Cp+1, . . . , Cq}
where µ(Ci) > 0 for 1 ≤ i ≤ p and µ(Ci) = 0 for p < i ≤ q, we are then able to write ξ(D) =
{D1, . . . , Dp, Dp+1, . . . , Ds} with µ(Ci4Di) = 0 for 1 ≤ i ≤ p and µ(Di) = 0 for p+ 1 ≤ i ≤ s.

Recall the Radon-Nikodym theorem. If µ and ν are two measures on the same space (X,M),
we say µ � ν if for every E ∈ M with ν(E) = 0 we have µ(E) = 0. We say µ ⊥ ν if there exists
E ∈M with µ(E) = 0 and ν(Ec) = 0.

Theorem (Radon-Nikodym Theorem). Let µ, ν be two probability measures on the space (X,M).
Then µ � ν iff there exists f ∈ L1(ν) with f ≥ 0 and

∫
fdν = 1 so that µ(B) =

∫
B fdν for all

B ∈M. The function f is unique almost everywhere.

Theorem (Lebesgue Decomposition Theorem). Let µ and ν be two probability measures on
(X,M). There exists p ∈ [0, 1] and probability measures µ1, µ2 so that µ = pµ1 + (1 − p)µ2

and µ1 � ν, µ2 ⊥ ν. The number p and the measures µ1, µ2 are uniquely determined.

We use these theorems to define conditional expectation. Let (X,M, µ) be a measure space and
C a sub-σ-algebra of M. The goal is to define the operator E(·|C) : L1(X,M, µ)→ L1(X, C, µ). If
f ∈ L1(X,M, µ)∩L+(X,M, µ), then µf (E) = a−1

∫
C fdµ (where a =

∫
fdµ) defines a probability

measure µf on (X, C, µ) with µf � µ.

Problem 129. Prove this fact. That is, prove that µf defines a probability measure so that
µf � µ.
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Proof. To be a measure it needs to satisfy two conditions. These conditions are satisfied trivially by
the definition of integrals, though. To see it’s a probability measure, we have µf (X) = a−1

∫
X fdµ =

aa−1 = 1. The second condition also follows trivially by how we define integration; µ(E) = 0 implies∫
E fdµ = 0. �

So by Radon-Nikodym there is a function g ∈ L1(X, C, µ) so that µf (E) =
∫
E gdµ. Thus define

E(f |C) = g. By uniqueness, this operator is well-defined. Note that∫
E
fdµ =

∫
E
gdµ =

∫
E
E(f |C)dµ for C ∈ C.

Problem 130. Show that E(·|C) is additive on the positive function and E(cf |C) = cE(f |C) for
c > 0.

Proof. Notice that

µf+g(E) =

∫
E

(f + g)dµ = µf (E) + µg(E)

for all E. Thus µf+g = µf + µg. By this relation, we have∫
E

(E(f |C) + E(g|C))dµ =

∫
E
E(f + g|C)dµ.

Since these are positive functions and this equality holds for all E ∈ C, we get that they are almost
everywhere the same. Thus E(f |C) + E(g|C) = E(f + g|C). The scaling property follows by the
same argument. �

For arbitrary f , write f = f+ − f− and define E(f |C) = E(f+|C) − E(f−|C). Similarly works
for complex valued functions. This gives us that E(·|C) is an operator.

Problem 131. Prove the remaining properties.

(1) If f ∈ L1(X,M, µ) and g is C-measurable and bounded, then

E(fg|C) = gE(f |C).

(2) Show

|E(f |C)| ≤ E(|f ||C).
(3) Show that if C2 ⊆ C1, then

E(E(f |C1)|C2) = E(f |C2)

for f ∈ L1(X,M, µ).

Proof.

(1) Notice that for all K ∈ C we have∫
K
E(f |C)dµ =

∫
K
fdµ.

Fixing K ∈ C and taking E ∈M arbitrary we get that∫
E
E(f |C)χKdµ =

∫
E
fχKdµ.

Thus we have E(f |C)χK = fχK almost everywhere for every K ∈ C. Thus∫
K
E(fg|C)dµ =

∫
K
fgdµ =

∫
fχKgdµ =

∫
K
E(f |C)gdµ.
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This holds for every K ∈ C. Finally notice that since g is C measurable we have that the
support of g is in C, so taking arbitrary K ∈M we can use the above equality to get∫

K
E(fg|C)dµ =

∫
K
E(f |C)gdµ.

Thus E(fg|C) = E(f |C)g almost everywhere.
(2) Taking f = f+ − f−, we see that E(f |C) = E(f+|C)− E(f−|C), so

|E(f |C)| = |E(f+|C)− E(f−|C)| ≤ E(f+|C) + E(f−|C) = E(|f ||C).
(3) We see that E(E(f |C1)|C2) is the unique function in C2 so that for every K ∈ C2 we have∫

K
E(E(f |C1)|C2)dµ =

∫
K
E(f |C1)dµ =

∫
K
fdµ =

∫
K
E(f |C2)dµ.

Since the support of E(f |C2) and E(E(f |C1)|C2) lies in C2, we get that this holds for all K
measurable, so these things are equal almost everywhere (and thus equal). The choice of
f ∈ L1(X,M, µ) was arbitrary.

�

The goal is to capture the amount of randomness or uncertainty a transformation T generates on
a probability measure space (X,M, µ). This will be some quantitative value h(T ) which represents
the entropy of the transformation. We want h(T ) to have two properties:

(1) The amount of information gained by an application of T is proportional to the amount of
uncertainty removed.

(2) We have h(T ) is an isomorphism invariant.

Let α be a partition of our space X. We define the entropy of the partition by

H(α) := −
n∑
i=1

µ(Ai) log(µ(Ai)).

Problem 132. Let

f(t) =

{
−t log(t) if 0 < t ≤ 1

0 if t = 0.

Show that f is continuous, nonnegative, and concave downward. Moreover, show that for λ1, . . . , λn,
we have

1

n

n∑
i=1

f(λi) ≤ f

(
1

n

n∑
i=1

λi

)
.

Proof. Continuity follows if we can show that limt→0+ f(t) = 0. Notice that

lim
t→0+

f(t) = lim
t→0+

−t log(t) = lim
t→0+

− log(t)

1/t
.

We apply L’Hospital to get that this is 0, as desired. For nonnegative, we have that log(t) ≤ 0 for
0 < t ≤ 1, so −t log(t) ≥ 0 for 0 < t ≤ 1. Concave downward follows from taking derivatives. Use
definitions for the moreover part (see here). �

Problem 133.

(1) Show that
0 ≤ H(α) <∞.

(2) Establish H(α) ≤ log(n), where α = {A1, . . . , An}. Thus we really have 0 ≤ H(α) ≤ log(n).

Proof.
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(1) Notice that 0 ≤ µ(Ai) < 1, so log(µ(Ai)) < 0 (modulo the case µ(Ai) = 0, to be addressed),
hence − log(µ(Ai)) > 0, and −µ(Ai) log(µ(Ai)) > 0. In the case µ(Ai) = 0, we have by
convention −µ(Ai) log(µ(Ai)) = 0. This shows that H(α) ≥ 0. Wlog, assume µ(Ai) > 0
(just throw out the 0 ones since they won’t help with an upper bound). Let Aj be such
that µ(Aj) ≤ µ(Ai) for all i. Then

H(α) ≤ −n log(µ(Aj)) <∞.
(2) We can improve the bound in (1). Let λi = µ(Ai). Let f(t) = −t log(t). Then

1

n

n∑
i=1

f(λi) ≤ f

(
1

n

n∑
i=1

λi

)
= f(1/n) =

1

n
log(n).

�

We define the information content of a set to be I(A) = − log(µ(A)). The information function
of a (countable even) measurable partition α is given by

I(α)(x) =
∑
A∈α

I(A)χA(x).

Problem 134. Show that ∫
I(α)dµ = H(α).

Proof. We see

E(I(α)) =

∫
I(α)dµ =

n∑
i=1

− log(µ(Ai))

∫
χAidµ =

n∑
i=1

− log(µ(Ai))µ(Ai) = H(α).

�

Let α, β be two partitions of (X,µ). Define the conditional entropy of α given β by

H(α|β) = −
∑
A∈α

∑
B∈β

log

(
µ(A ∩B)

µ(B)

)
µ(A ∩B)

using the convention 0 log(0) = 0. This is interpreted as the average uncertainty about which
element of the partition α the point x will enter if we already know which element of β the point
will enter.

A useful trick will be Jensen’s inequality.

Problem 135 (Jensen’s Inequality). Suppose g : (X,M, µ)→ R is integrable, (X,M, µ) a proba-
bility measure space, and ϕ is a convex function on the real line. Show

ϕ(E(g|F)) ≤ E(ϕ(g)|F).

Deduce from this the usual Jensen’s inequality

ϕ

(∫
X
gdµ

)
≤
∫
X
ϕ ◦ gdµ.

Proof. Since ϕ is convex, we get that

ϕ(x) = sup
h≤ϕ

h is linear

h(x).

Notice that if E(ϕ(g)|F) =∞, then the result clearly follows, so assume it is finite. Then for h ≤ ϕ
linear we have

E(ϕ(g)|F) ≥ E(h(g)|F) = h(E(g|F)).
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Notice this was arbitrary, so

E(ϕ(g)|F) ≥ sup
h≤ϕ

h is linear

h(E(g|F)) = ϕ(E(g|F)).

Now let F = {∅, X} be the trivial σ-algebra. Then E(g|F) defined on this must be a constant
function (say C), and we have ∫

X
E(g|F)(x)dµ(x) = C =

∫
X
gdµ.

So E(g|F)(x) =
∫
X gdµ. Applying what we have, this tells us that

E(ϕ(g)|F) =

∫
X
ϕ(g)dµ ≥ ϕ(E(g|F)) = ϕ

(∫
X
gdµ

)
.

�

Problem 136. Prove the following for α, β, γ partitions of X.

(1) H(T−1(α)) = H(α).
(2) H(α ∨ β) = H(α) +H(β|α).
(3) H(β|α) ≤ H(β).
(4) H(α ∨ β) ≤ H(α) +H(β).
(5) If α ≤ β (i.e. a refinement) then H(α) ≤ H(β).

Proof.

(1) We see that

H(T−1(α)) = −
n∑
i=1

µ(T−1(Ai)) log(µ(T−1(Ai))) = −
n∑
i=1

µ(Ai) log(µ(Ai)) = H(α)

since T is measure preserving.
(2) Let α = {A1, . . . , An}, β = {B1, . . . , Bk}. Then

α ∨ β = {Ai ∩Bj : 1 ≤ i ≤ n, 1 ≤ j ≤ k}.

Notice

H(α ∨ β) = −
i=n,j=k∑
i,j=1

µ(Ai ∩Bj) log(µ(Ai ∩Bj)) =
n∑
i=1

− k∑
j=1

µ(Ai ∩Bj) log(µ(Ai ∩Bj))


=

n∑
i=1

− k∑
j=1

µ(Ai ∩Bj)[log(µ(Ai ∩Bj))− log(µ(Ai)) + log(µ(Ai))]


= −

n∑
i=1

 k∑
j=1

µ(Ai ∩Bj)
[
log

(
µ(Ai ∩Bj)
µ(Ai)

)
+ log(µ(Ai))

]
= −

n∑
i=1

k∑
j=1

µ(Ai ∩Bj) log

(
µ(Ai ∩Bj)
µ(Ai)

)
−

n∑
i=1

k∑
j=1

µ(Ai ∩Bj) log(µ(Ai))

= −
n∑
i=1

k∑
j=1

µ(Ai ∩Bj) log

(
µ(Ai ∩Bj)
µ(Ai)

)
−

n∑
i=1

µ(Ai) log(Ai)

= H(α|β) +H(α).
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(3) Define f(t) = −t log(t). We see that

H(β|α) = −
n∑
i=1

k∑
j=1

µ(Ai ∩Bj) log

(
µ(Ai ∩Bj)
µ(Ai)

)

= −
n∑
i=1

k∑
j=1

µ(Ai)
µ(Ai ∩Bj)
µ(Ai)

log

(
µ(Ai ∩Bj)
µ(Ai)

)

=

k∑
j=1

n∑
i=1

µ(Ai)f

(
µ(Ai ∩Bj)
µ(Ai)

)

≤
k∑
j=1

f

(
n∑
i=1

µ(Ai)
µ(Ai ∩Bj)
µ(Ai)

)

=

k∑
j=1

f(µ(Bj)) = −
k∑
j=1

µ(Bj) log(µ(Bj)) = H(β).

(4) Combine (2) and (3) to get

H(α ∨ β) = H(α) +H(β|α) ≤ H(α) +H(β).

(5) If α is a refinement, then elements of α are unions of elements in β, so α ∨ β = β. Thus

H(α ∨ β) = H(β) = H(α) +H(β|α).

Thus

H(α) ≤ H(β).

�

We define the conditional information function of a countable partition α given a sub-σ-
algebra F ⊆M to be

I(α|F)(x) = −
∑
A∈α

log(µ(A|F)(x))χA(x),

where

µ(A|F) = E(χA|F)

is a function.
Note that if α a partition and F a σ-algebra, we write α∨F to mean σ(α)∨F ; i.e. it is the join

of the σ-algebra generated by α and the σ-algebra F .

Problem 137. Show that

µ(B|α ∨ F) =
∑
A∈α

µ(A ∩B|F)

µ(A|F)
χA.

Of course this is almost everywhere.

Proof. Take A′ ∩ F , A′ ∈ σ(α) and F ∈ F . Notice that∫
A′∩F

µ(B|α ∨ F)dµ =

∫
A′∩F

E(χB|α ∨ F)dµ =

∫
A′∩F

χBdµ =

∫
F
χA′∩Bdµ.

Notice that this is equivalent to∫
F
χA′∩Bdµ =

∫
F
E(χA′∩B|F)dµ =

∫
F
µ(A′ ∩B|F)dµ =

∫
F
E(χA′ |F)

µ(A′ ∩B|F)

µ(A′|F)
dµ.

106



This last equality comes from simply multiplying and dividing (note that E(χA′ |F) = µ(A′|F)).
We now wish to claim that∫

F
E(χA′ |F)

µ(A′ ∩B|F)

µ(A′|F)
dµ =

∫
F
E

(
χA′

µ(A′ ∩B|F)

µ(A′|F)

∣∣∣∣F) dµ.
This, however, follows by one of the earlier problems involving conditional expectation. Thus∫

F
E(χA′ |F)

µ(A′ ∩B|F)

µ(A′|F)
dµ =

∫
F
E

(
χA′

µ(A′ ∩B|F)

µ(A′|F)

∣∣∣∣F) dµ =

∫
F
χA′

µ(A′ ∩B|F)

µ(A′|F)
dµ.

Now recall that all of the A ∈ α are disjoint, so∫
F
χA′

µ(A′ ∩B|F)

µ(A′|F)
dµ =

∫
A′∩F

∑
α∈A

µ(A ∩B|F)

µ(A|F)
χAdµ.

Since this holds for all A′ ∩ F ∈ α ∨ F we have the result. �

Problem 138. Prove the following.

(1) I(α ∨ β) = I(α) + I(α|β).
(2) I(α ∨ β|F) = I(α|F) + I(β|α ∨ F).

Proof.

(1) This will follow from (2) using F = {∅, X}. To see this, notice that

I(α ∨ β|F) = −
∑

Ai∩Bj∈α∨β
log (µ(Ai ∩Bj |F)(x))χAi∩Bj (x).

Recall that for the trivial σ-algebra we have

µ(Ai ∩Bj |F)(x) = µ(Ai ∩Bj),
so

I(α ∨ β|F) = −
∑

Ai∩Bj∈α∨β
log(µ(Ai ∩Bj))χAi∩Bj (x) = I(α ∨ β).

The same kind of argument applies to the other two functions. Thus, assuming (2) we have
(1).

(2) Note that since the A are disjoint in α we can move the sum in and out of the log. Thus

I(β|α ∨ F) = −
∑
B∈β

log(µ(B|α ∨ F ))χB(x)

= −
∑
B∈β

log

(∑
A∈α

µ(A ∩B|F)

µ(A|F)
χA

)
χB

= −
∑
B∈β

∑
A∈α

log

(
µ(A ∩B|F)

µ(A|F)

)
χAχB

= −
∑
B∈β

∑
A∈α

[log (µ(A ∩B|F))− log(µ(A|F))]χAχB

= −
∑
A∈α
B∈β

log (µ(A ∩B|F))χA∩B +
∑
A∈α

log(µ(A|F))χA

= I(α ∨ β|F)− I(α|F).

This gives the result.

�
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The conditional entropy of α given F is defined by

H(α|F) =

∫
I(α|F)(x)dµ(x).

Problem 139. Prove the following.

(1) H(α ∨ β|F) = H(α) +H(β|α ∨ F).
(2) If F2 ⊆ F1, then H(α|F1) ≤ H(α|F2).

Hint: Jensen’s inequality.
(3) µ(T−1(A)|T−1(F))(x) = µ(A|F)(Tx).
(4) H(T−1(α)|T−1(F)) = H(α|F).

Proof.

(1) Integrate (2) from the last problem.
(2) Let f = −t log(t). Then

E(f ◦ µ(A|F1)|F2) ≤ f ◦ E(µ(A|F1)|F2) = f ◦ E(A|F2) = f ◦ µ(A|F2).

Integrate both sides of the inequality to get∫
E(f ◦ µ(A|F1)|F2)dµ ≤

∫
f ◦ µ(A|F2)dµ.

Notice that over all F ∈ F2, we have that the left hand side is such that∫
F
E(f ◦ µ(A|F1)|F2)dµ =

∫
F
f ◦ µ(A|F1)dµ.

Thus integrating over F ∈ F2 we have∫
F
f ◦ µ(A|F1)dµ ≤

∫
F
f ◦ µ(A|F2)dµ.

Writing out the definition grants us∫
F
− log(µ(A|F1))µ(A|F1)dµ ≤

∫
F
− log(µ(A|F2))µ(A|F2)dµ.

Since F2 a σ-algebra, we have in particular∫
X
− log(µ(A|F1))µ(A|F1)dµ ≤

∫
X
− log(µ(A|F2))µ(A|F2)dµ.

Now sum over all A ∈ α to get

H(α|F1) ≤ H(α|F2).

(3) Notice

µ(T−1(A)|T−1(F))(x) = E(χT−1(A)|T−1(F))(x).

Integrate over F ∈ T−1(F) to get∫
F
E(χT−1(A)|T−1(F))(x)dµ(x) =

∫
F
χT−1(A)(x)dµ(x) =

∫
F
χA(Tx)dµ(x).

Notice that for K ∈ F we have (using the fact T measure preserving)∫
K
E(χA|F)(x)dµ(x) =

∫
K
χA(x)dµ(x) =

∫
T−1(K)

χA(Tx)dµ(x).

Choosing T−1(K) = F gives us the desired result.
(4) Use (3).

�
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Two partitions α and β are independent if µ(A ∩ B) = µ(A)µ(B) for all A ∈ α, B ∈ β. We
denote it by α ⊥ β.

For a measure ν on (X,M) and a partition α define

H(ν, α) = −
∑
A∈α

log(ν(A))ν(A).

Problem 140.

(1) Show that H(·, α) is concave.
(2) Show that it is strictly concave.

Proof. We need to show that for 0 < γ < 1 and µ, ν probability measures we have

H(γµ+ (1− γ)ν, α) ≥ γH(µ, α) + (1− γ)H(ν, α).

This, however, follows from a simple calculation:

H(γµ+ (1− γ)ν, α) =
∑
A∈α

f(γµ(A) + (1− γ)ν(A))

≥
∑
A∈α

(γf(µ(A)) + (1− γ)f(ν(A))) = γH(µ, α) + (1− γ)H(ν, α).

Since f is strictly concave, we have equality iff µ = ν on α. �

Problem 141. Show that H(α|F) = 0 iff α ⊆ F (up to sets of measure 0). Conclude H(α|β) = 0
iff α ≤ β.

Proof. ( =⇒ ): Assume H(α|F) = 0. This is saying∑
A∈α

∫
− log(µ(A|F))χAdµ = 0.

Since this is a sum of positive things, each component must be 0. Since they are disjoint, we have

−
∫

log(µ(A|F))χAdµ = 0.

Again, the integral of a positive function is 0, so this implies (almost everywhere) that

− log(µ(A|F))µ(A|F) = 0.

This implies either µ(A|F) = 0 or 1 for all x ∈ X, so it is a characteristic function. Since
µ(A|F) = E(χA|F), this implies that for some F ∈ F we have µ(A|F) = χF . Finally, integrating
over this characteristic function, we have

µ(F ) =

∫
F
µ(A|F)dµ = µ(A ∩ F ),

so A ⊆ F . On the other hand,

µ(F ) =

∫
µ(A|F)dµ = µ(A),

so A = F (up to a set of measure zero). This holds for all A ∈ α, so α ⊆ F .
(⇐= ): If α ⊆ F , then µ(A|F) = χA almost everywhere (by almost the same argument as above),
which gives the result.
If H(α|β) = 0, then α ⊆ σ(β) by the above, but this then forces α ≤ β, since elements in α can be
written as unions of elements in β. Vice versa is the same. �

Problem 142. Show that H(α|β) = H(α) iff α ⊥ β.
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Throughout, define

µB(A) =
µ(A ∩B)

µ(B)
.

This is the conditional probability measure.

Proof. ( =⇒ ): We see

H(α|β) = H(µ, α|β) =
∑
B∈β

µ(B)H(µB, α)

≤ H

∑
B∈β

µ(B)µB, α

 = H(µ, α) = H(α).

By strict concavity, equality only occurs when we have

µ(A ∩Bi)
µ(Bi)

=
µ(A ∩Bk)
µ(Bk)

for all Bi, Bk ∈ β. Thus

µ(A) =
∑
B∈β

µ(A ∩Bi).

Fix B1 wlog. Notice µ(A ∩B) = µ(B)µ(A∩B1)
µ(B1) for all B ∈ β, so

µ(A) =
∑
B∈β

µ(B)µ(A ∩B1)

µ(B1)
=
µ(A ∩B1)

µ(B1)
.

Thus µ(A)µ(B1) = µ(A∩B1). Notice that the choices B1 and A were arbitrary, so in fact µ(A∩B) =
µ(A)µ(B) for all B ∈ β and A ∈ α. This give α ⊥ β.
(⇐= ): Take F = {∅, X}. By an earlier problem, we see that

µ(A|β) = µ(A|β ∨ F) = µ(A|F) = µ(A).

Thus

H(α|β) = −
∑
A∈α

∫
log(µ(A|β))χAdµ = −

∑
A∈α

∫
log(µ(A))χAdµ = H(α).

�

For a measure preserving transformation T and a partition α define

h(α, T ) = lim
n→∞

1

n
H(α ∨ T−1(α) ∨ · · · ∨ T−n+1(α)).

The heuristic for this is that it measures the entropy of the transformation T with respect to the
partition α. In other words, it measures the average uncertainty per time on which element of α
the point x will enter under T given it’s history. An important question is whether this exists.

Problem 143. For each countable partition α, h(α, T ) exists (it may be ∞).

Proof. The gist is to apply Problem 15. To do so, we define

Hn = H(α ∨ T−1(α) ∨ · · · ∨ T−n+1(α)).
110

https://marshareb.github.io/files/Dynamics.pdf


The claim is that this is an increasing, subadditive sequence of non-negative real numbers. By
earlier problems, we get Hn is increasing and non-negative. Thus we just need to show subadditivity.
However, we see

Hn+m = H(α ∨ T−1(α) ∨ · · · ∨ T−n+1(α) ∨ T−n(α) ∨ · · · ∨ T−m+n+1(α))

≤ H(α ∨ T−1(α) ∨ · · · ∨ T−n+1(α)) +H(T−n(α) ∨ · · · ∨ T−m+n+1(α))

= H(α ∨ T−1(α) ∨ · · · ∨ T−n+1(α)) +H(α ∨ · · · ∨ T−m+1(α)) = Hn +Hm.

Thus we have subadditivity. We can then apply the result �

Let (X,M, µ) be a probability measure space. Let F1 ⊆ F2 ⊆ · · · be an increasing sequence
of sub-σ-algebras of F . A sequence X1, . . . of functions in L1(µ) such that Xn is measurable with
respect to Fn for n = 1, 2, . . . is called

(1) a submartingale if E(Xn+1|Fn) ≥ Xn a.e.,
(2) a martingale if E(Xn+1|Fn) = Xn a.e.,
(3) a supermartingale if E(Xn+1|Fn) ≤ Xn a.e.

Theorem (Doob’s Martingale Convergence Theorem). If {Xn} is an L1 submartingale which is
bounded in the sense of supnE(|Xn|) <∞, then it converges a.e.

Problem 144. Let M1 ⊆ M2 ⊆ · · · be a sequence of sub-σ-algebras on M, and let
∨∞
i=1Mi =

M∞. If α is a finite partition, then

lim
n→∞

H(α|Mn) = H(α|M∞).

Proof. Fix A ∈ α arbitrary. Our submartingale will be the family {Xn = µ(A|Mn)}. Notice

E(Xn+1|Mn) = E(µ(A|Mn+1)|Mn) = E(E(χA|Mn+1)|Mn) = E(χA|Mn) = µ(A|Mn) = Xn.

So this is actually a submartingale (in fact, a martingale). We see that

E(|Xn|) = E(µ(A|Mn)) =

∫
µ(A|Mn)(x)dµ =

∫
χAdµ = µ(A).

Thus it is bounded. By Doob, it converges almost everywhere. Moreover we see

µ(A|Mn)→ µ(A|M∞) a.e.

Now f(t) = −t log(t) is a bounded continuous function, so

f(µ(A|Mn))→ f(µ(A|M∞)).

Use the bounded convergence theorem to get∫
f(µ(A|Mn))dµ→

∫
f(µ(A|M∞))dµ.

Sum over all A ∈ α to get the result. �

Problem 145. Assume α is a finite partition. Show that

h(α, T ) := lim
n→∞

1

n
H

(
n−1∨
k=0

T−k(α)

)
= lim

n→∞
H

(
α

∣∣∣∣ n∨
k=1

T−k(α)

)
= H

(
α

∣∣∣∣ ∞∨
k=1

T−k(α)

)
.

Proof. Let β =
∨n
k=1 T

−k(α). Recall that

H(α|β) = H(α ∨ β)−H(β).
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Using the definition of β, we have

H

(
α

∣∣∣∣ n∨
k=1

T−k(α)

)
= H

(
n∨
k=0

T−k(α)

)
−H

(
n∨
k=1

T−k(α)

)
.

If we sum over n we have a telescoping series. Thus

j∑
n=1

H

(
α

∣∣∣∣ n∨
k=1

T−k(α)

)
= H

(
j∨

k=0

T−k(α)

)
−H(α).

From earlier problems, we know that H
(
α
∣∣∣∨n

k=1 T
−k(α)

)
is nonnegative and decreasing, so its

limit exists as n→∞. Thus the Cesaro averages converge to the same point. This gives us

lim
j→∞

1

j + 1

j∑
n=1

H

(
α

∣∣∣∣ n∨
k=1

T−k(α)

)
= lim

j→∞
H

(
α

∣∣∣∣ j∨
k=1

T−k(α)

)
.

Moreover,

lim
j→∞

H

(
α

∣∣∣∣ j∨
k=1

T−k(α)

)
= lim

j→∞

1

j + 1
H

(
j∨

k=0

T−k(α)

)
= h(α, T ).

Finally the last equality follows from the previous problem. �

Problem 146 (Petersen 5.2.1). Show that α ≤ β implies I(α|F) ≤ I(β|F).

Proof. Like before, notice α ≤ β implies α ∨ β = β, so

I(β|F) = I(α|F) + I(β|α ∨ F).

Since I ≥ 0, this gives us the result. �

Problem 147. For any countable measurable partitions α and β, show

h(β, T ) ≤ h(α, T ) +H(β|α).

Proof. Write

βm−1
0 =

m−1∨
k=0

T−k(β), αn−1
0 =

n−1∨
k=0

T−k(α).

Notice
H(β ∨ T−1(β)|αn−1

0 ) = H(β) +H(T−1(β)|β ∨ αn−1
0 ).

We have
H(β) ≤ H(β|αn−1

0 ),

and
H(T−1(β)|β ∨ αn−1

0 ) ≤ H(T−1(β)|αn−1
0 ),

so
H(β2

0 |αn−1
0 ) ≤ H(β|αn−1

0 ) +H(T−1(β)|αn−1
0 ).

An induction argument establishes

H(βn−1
0 |αn−1

0 ) ≤
n−1∑
k=0

H(T−k(β)|αn−1
0 ).

Since T−k(α) ≤ αn−1
0 for 0 ≤ k ≤ n− 1, we have

H(βn−1
0 |αn−1

0 ) ≤
n−1∑
k=0

H(T−k(β)|T−k(α)) = nH(β|α).
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Finally βn−1
0 ≤ αn−1

0 , so

H(βn−1
0 ) ≤ H(βn−1

0 ∨ αn−1
0 ) = H(αn−1

0 ) +H(βn−1
0 |αn−1

0 ) ≤ H(αn−1
0 ) + nH(β|α).

Dividing by n and taking the limit gives the result. �

We call a finite partition α a generator with respect to T in the case that α∞−∞ =M (i.e. the
countable join generates the σ-algebra.

Problem 148 (Kolmogorov-Sinai). Show that if α is a generator with respect to T , then

h(T ) = h(α, T ).

Proof. Let β be a finite partition. It suffices (by earlier arguments) to show that h(β, T ) ≤ h(α, T )
for all possible β. Notice that

h(β, T ) ≤ h(αn−n, T ) +H(β|αn−n) ≤ h(α, T ) +H(β|αn−n).

Notice β ≤ α∞−∞, so

lim
n→∞

H(β|αn−n) = H(β|α∞−∞) = 0.

Taking the limit as n→∞ in the first inequality gives the result. �

Problem 149. Consider the Bernoulli scheme B(p1, . . . , pn) on the alphabet A = {a1, . . . , an}.
Let

Ai = {x = (. . . , x−1, x0, x1, . . .) : x0 = ai}, i = 1, . . . , n

be the time-zero cylinder sets.

(1) Show that α = {Ai}ni=1 forms a measurable partition.
(2) Show that α is a generator.
(3) Calculate the entropy.

Proof.

(1) These sets are measurable by construction. Take x ∈ AZ. Define [·]0 : AZ → A by
[x]j = xj , where x = (. . . , x−1, x0, x1, . . .). Then [x]0 = ai for some i, so x ∈ Ai. Now
Ai ∩ Aj = {x : [x]0 = ai, [x]0 = aj}. For i 6= j, we have that this must be empty, so α
indeed partitions the space.

(2) Define σ : AZ → AZ by σ(x) = y, with yi = xi+1 (i.e. the right shift). Examine∨∞
−∞M(σ−n(α)). Notice that this is a σ-algebra containing every measurable cylinder,

so this is the entire σ-algebra. Therefore α is a generator.
(3) By Kolmogorov-Sinai, it suffices to examine the entropy of a generator. Thus we need to

calculate

h(α, σ) = lim
n→∞

1

n
H

n−1∨
j=0

σ−j(α)

 .

Notice elements in
∨n−1
j=0 σ

−j(α) are of the form

Ai1 ∩ σ−1(Ai2) ∩ · · · ∩ σn−1(Ain) = {x ∈ AZ : [x]0 = ai1 , . . . , [x]n = ain}.
We claim α ∨ σ−1(α) are independent. This is clear by the observation above and the fact
that the measure is the product measure. Hence by an induction argument we see that∨n−1
j=0 σ

−j(α) are independent. By Petersen 5.2.9 and Petersen 5.2.3’ this implies that

H

n−1∨
j=0

σ−j(α)

 =

n−1∑
j=0

H(σ−j(α)) =

n−1∑
j=0

H(α) = nH(α).
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Therefore

h(σ) = h(α, σ) = H(α) = −
n∑
i=1

pi log2(pi).

�

Problem 150 (Petersen 5.3.4). Show that for any r > 0 there is a Bernoulli shift of entropy r.

Proof. Fix r > 0. The goal is to find a vector (p1, . . . , pn) and n so that

n∑
i=1

−pi log(pi) = r,
n∑
i=1

pi = 1.

Notice
n∑
i=1

−pi log(pi) = r ⇔
n∑
i=1

log(p−pii ) = r ⇔ exp

(
n∑
i=1

log(p−pii )

)
= exp(r)

⇔
n∏
i=1

p−pii = exp(r).

Without loss of generality just assume that we have

n∏
i=1

p−pii = r,

n∑
i=1

pi = 1.

Replace pn = 1−
∑n−1

i=1 pi, then

n−1∏
i=1

p−pii ·

(
1−

n−1∑
i=1

pi

)−1+
∑n−1

i=1 pi

= r.

Consider p1 = · · · = pn−1 = p. Then rewrite the left hand side of the above as

f(x) = (x−nx)(1− (n− 1)x)−1+(n−1)x.

Notice f(x) is continuous on the interval 0 ≤ x < 1
n−1 (assuming n > 1). Moreover, it is differen-

tiable on this interval, with derivative

f ′(x) = (1− (n− 1)x)(n−1)x−1x−nx(−n log(x) + (n− 1) log(−nx+ x+ 1)− 1).

We see this is well-defined and continuous on the interval 0 ≤ x < 1
n−1 . Noting that f(0) = 1

always and it increases until it hits a maximum (by looking at f ′(x)), we just need to determine
what the maximum is with respect to n. Noting

f(1/n) = n

(
1− n− 1

n

)n−1
n
−1

and 1/n < 1/n− 1, we see that for r ≥ 1 we can find an n so that f(x) = r. Recall we replaced r
with exp(r), so translating we can find an n and x so that f(x) = exp(r). But by taking logarithms,
we have log(f(x)) =

∑n
i=1−pi log(pi) = r, as desired. �

We say that T has a one-sided generator if there is a finite partition α so that α∞1 =M up
to sets of measure 0. The existence of this partition means that, in some sense, the present and
future of the system (X,M, µ, T ) are completely determined by its past.

Problem 151. Show that if T has a one-sided generator then the entropy is 0.
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Proof. We have
h(T ) = h(α, T ) = h(α|α∞1 ) = h(α|M) = 0.

�

Problem 152. Show that every discrete spectrum system has entropy zero.

Proof. We use Petersen 2.4.10. There exists a sequence of integers {nk} so that Tnkf → f in
L2 for each f ∈ L2. Let α = {A1, . . . , An} and define f(x) = i if x ∈ Ai. We see that Tnkf → f
implies that α ⊆ α∞1 =

∨∞
k=1 σ(T−k(α)), at least up to sets of measure 0. Thus

h(α, T ) = H(α|α∞1 ) = 0.

This holds for all finite partitions. �

Problem 153. Let G be a compact abelian group. Show that T : G → G defined by Tg(h) = gh
has zero entropy (i.e. show h(Tg) = 0).

Proof. We note that Tg has discrete spectrum since L2(m) is spanned by Ĝ (this follows by Stone-
Weierstrass). �

Problem 154. Let T be the left shift on the set X = {1, 2, . . . , n}Z endowed with the σ-algebra
M generated by the cylinder sets (i.e. the usual Borel one) and the Markov measure µ given by
the stochastic matrix P = (pij) and the probability vector π = (π1, . . . , πn) so that πP = π. Show
that

h(T ) = −
n∑
j=1

n∑
i=1

πipij log(πij).

Proof. Let’s recall how the stochastic matrix works in this context. We define the cylinders by

Ci1,...,inx1,...,xn = {x ∈ X : xij = xj}.
We then have the measure is defined by

µ(Ci1,...,inx1,...,xn) = πi1pi1i2 · · · pin−1in .

For notational simplicity, denote by Cz := C0
z a time-zero cylinder. We follow the Bernoulli scheme

argument now. A generator for our σ-algebra is the time-zero partition,

α := {C1, . . . , Cn}.
We now observe

m∨
i=0

T−iα =
{
Ci0 ∩ T−1(Ci1) ∩ · · · ∩ T−m(Cim) : ik ∈ X, 1 ≤ k ≤ m

}
= {C0,1,...,m

i0,...,im
: ik ∈ X, 1 ≤ k ≤ n}.

Notice that σ(
∨∞
i=0 T

−i(α)) =M, so α is indeed a generator. Next, we notice that

H

(
m∨
i=0

T−iα

)
=

m∑
i=0

H(T−i(α)).

We calculate H
(∨m

i=0 T
−i(α)

)
. Notice

H(α) = −
n∑
i=1

µ(Ci) log(µ(Ci))

= −
n∑
i=1

πi log(πi),
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H(T−1(α)) = −
n∑
i=1

µ(C2
i ) log(µ(C2

i ))

= −
n∑
i=1

πi log(πi),

H(α ∨ T−1(α)) = −
n∑

i1,i2=1

πi1pi1i2 log(πi1pi1i2).

We try to continue this idea. Let f(t) = −t log(t). Then

H

(
m∨
i=0

T−i(α)

)
=

n∑
i0,...,im=1

f(πi0pi0i1 · · · pim−1im)

= −
n∑

i0,...,im=1

πi0pi0i1 · · · pim−1im log(πi0pi0i1 · · · pim−1im)

= −
n∑

i0,...,im=1

πi0pi0i1 · · · pim−2im−1

[
pim−1im log(πi0pi0i1 · · · pim−2im−1) + pim−1im log(pim1 im

)
]

=

n∑
i0,...,im=1

pim−1imf(πi0pi0i1 · · · pim−2im−1) +

n∑
i0,...,im=1

πi0pi0i1 · · · pim−2im−1f(pim−1im)

=

n∑
i0,...,im−1=1

(
n∑

im=1

pim−1im

)
f(πi0pi0i1 · · · pim−2im−1)

+
n∑

im−1,im=1

 n∑
i0,...,im−2=1

πi0pi0i1 · · · pim−2im−1

 f(pim−1im)

=
n∑

i0,...,im−1=1

f(πi0pi0i1 · · · pim−2im−1) +
n∑

im−1,im=1

πim−1f(pim−1im).

So to conclude, we have
n∑

i0,...,im=1

f(πi0pi0i1 · · · pim−1im) =
n∑

i0,...,im−1=1

f(πi0pi0i1 · · · pim−2im−1) +
n∑

im−1,im=1

πim−1f(pim−1im).

By a recursion argument, we get

H

(
m∨
i=0

T−i(α)

)
=

n∑
i0,...,im=1

f(πi0pi0i1 · · · pim−1im) =
n∑
i=1

f(πi) +m
n∑

i,j=1

πif(pij).

In other words,

H

(
m∨
i=0

T−i(α)

)
= −

n∑
i=1

πi log(πi)−m
n∑

i,j=1

πipij log(pij).

Using this identity, we have

h(T ) = lim
m→∞

1

m
H

(
m∨
i=0

T−i(α)

)
= −

n∑
i,j=1

πipij log(pij).

�
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Problem 155. Suppose (X1,M1, µ1, T1) and (X2,M2, µ2, T2) are two dynamical systems. Show
that

h(T1 × T1) = h(T1) + h(T2).

Proof. We first show h(T1) ≤ h(T1×T2). Let α1 be a partition for X1, and let α1 = {A×X2 : A ∈
α1}. Then this is a partition for X1 ×X2. Moreover,

h(α1, T1) = h(α1, T1 × T2).

This gives us the inequality, since these are defined as supremums. The same inequality applies for
T2. Therefore if at least one of T1, T2 are infinite the equality above holds. Assume now that both
are finite. Let α1 be a partition for X1 and α2 a partition for X2. Define β1 = α1 and β2α2 as
before. Note these are independent of each other. Let β = β1 ∨ β2. Then

H

(
n∨
i=0

T−i(β)

)
= H

(
n∨
i=0

T−i(β1)

)
+H

(
n∨
i=0

T−i(β2)

)
.

Taking 1/n and the limit gives

h(β, T1 × T2) = h(β1, T1) + h(β2, T2).

Now take increasing partitions αn1 for X1 and αn2 for X2 so that
∨∞
n=1 α

n
1 =M1 and

∨∞
n=1 α

n
2 =M2.

Then
∨∞
n=1 α

n
1 ∨ αn2 = M1 ×M2, and invoking Petersen Proposition 3.6 and the last remark

we get the desired result. �

We now consider topological entropy. Throughout this next part, consider X a compact topo-
logical space.

An open cover α is a collection of open subsets U ⊆ X so that

X ⊆
⋃
U∈α

U.

Problem 156 (Lebesgue Number Lemma). Let X be a compact metric space. Let α be an open
cover. Show that there exists an ε so that for all x ∈ X, we have B(x, ε) ⊆ U for some U ∈ α.
Such an ε is called the Lebesgue number.

Remark. The following proof is from Munkres.

Proof. Since α an open cover and X compact, we have that there exists {A1, . . . , An} ⊆ α so that

X ⊆
n⋃
i=1

Ai.

Notice redundant information doesn’t help, so suppose all of the Ai are distinct. If n = 1 in this
case, we can just take ε to be anything, so suppose n > 1 so that we have at least 2 distinct sets.
Let Ci = Aci . Define a function

f : X → R, f(x) =
1

n

n∑
i=1

d(x,Ci).

Recall

d(x,Ci) = inf{d(x, y) : y ∈ Ci}.
We claim this is a continuous function. Since we are in a metric space, the function d(x, ·) : X → R
is continuous. The infimum of continuous functions is continuous, so d(x,Ci) is continuous. The
sum of continuous functions is continuous, so f is continuous. Since {A1, . . . , An} is an open cover,
we have that x ∈ Ai for some i, so f(x) > 0 for all x. Since X a compact metric space, we have

117



that f achieves it’s minimum, call it ε > 0. The goal now is to show that ε satisfies the desired
criteria. Examine

B(x, ε) = {y ∈ X : d(x, y) < ε}.
Since ε is a minimum for f , we get that f(x) ≥ ε, meaning that d(x,Ci) ≥ ε for some i. Therefore
for each y ∈ B(x, ε), we have y ∈ Cci = Ai, hence B(x, ε) ⊆ Ai. This finishes the proof. �

If α, β are two open covers of X, their join, denoted α ∨ β, is the collection of all sets of the
form A ∩B for all A ∈ α, B ∈ β.

An open cover β is said to be an refinement of α, written α < β, if every member of β is a
subset of a member of α. In other words, for all B ∈ β, there is an A ∈ α so that B ⊆ A.

Recall that a cover β is a subcover of α if for all B ∈ β we have that B ∈ α.

Problem 157.

(1) Show that α < α ∨ β for any open covers α, β.
(2) Show that if β is a subcover of α then α < β.

Proof.

(1) We have
α ∨ β = {A ∩B : A ∈ α,B ∈ β}.

The goal is to show that every member C ∈ α∨ β is a subset of a member A ∈ α. But this
follows, since every member C = A ∩B ∈ α ∨ β is naturally a subset of A ∈ α.

(2) This is also easy. Let B ∈ β. Then B ⊆ B ∈ α.

�

Problem 158.

(1) Suppose α is an open cover of X and T : X → X is continuous. Show that

T−1(α) = {T−1(A) : A ∈ α}
is also an open cover.

(2) Show that T−1 behaves well with our operations. That is, show

T−1(α ∨ β) = T−1(α) ∨ T−1(β), α < β =⇒ T−1(α) < T−1(β).

Proof.

(1) Since T is continuous, T−1(A) is open for all A ∈ α. Hence T−1(α) is a collection of open
sets. Next we note it is a cover, since

X = T−1(X) ⊆ T−1

(⋃
A∈α

A

)
=
⋃
A∈α

T−1(A) =
⋃

A∈T−1(α)

A.

(2) Let A∩B ∈ α∨β. Then T−1(A∩B) = T−1(A)∩T−1(B), so T−1(α∨β) ⊆ T−1(α)∨T−1(β).
The same idea goes the other way. The same idea also applies to refinements.

�

If α is an open cover of X, let N(α) denote the minimum number of sets so that there exists

A1, . . . , AN(α) ∈ α with X ⊆
⋃N(α)
i=1 Ai. We define the entropy of the open cover α to be

H(α) := log(N(α)).

Problem 159. Show the following properties for entropy.

(1) H(α) ≥ 0.
(2) H(α) = 0 ⇐⇒ N(α) = 1 ⇐⇒ X ∈ α.
(3) α < β ⇐⇒ H(α) ≤ H(β).
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(4) N(α ∨ β) ≤ N(α) ·N(β).
(5) H(α ∨ β) ≤ H(α) +H(β).
(6) If T : X → X is continuous, then H(T−1(α)) ≤ H(α).
(7) If T : X → X is continuous and surjective, then H(T−1(α)) = H(α).

Proof.

(1) Consider θ ⊆ P(α), where for all γ ∈ θ we have

X ⊆
⋃
A∈γ

A.

Define an equivalence relation ∼ on θ so that γ1 ∼ γ2 iff |γ1| = |γ2|. This is easily checked to
be an equivalence relation since this is just cardinality. Now quotient θ by this equivalence
relation, and look at only the finite sets. This will be in bijection with N, since it is
impossible for an empty set to be an open cover for X (so there must be at least one set).
Taking the image under the bijection with N, we can find a minimum and label that N(α).
This satisfies the condition N(α) ≥ 1, and so we have H(α) ≥ 0.

(2) Now N(α) = 1 ⇐⇒ X ∈ α, since if γ ⊆ P(α) satisfies |γ| = 1 and

A ⊆ X ⊆
⋃
A∈γ

A = A,

then A = X, and if X ∈ α then we have that N(α) = 1, the smallest possible value. It’s
clear N(α) = 1 ⇐⇒ H(α) = 0.

(3) Let n = N(β), take {B1, . . . , Bn} ⊆ β so that X ⊆
⋃n
i=1Bi. Since α < β, we have that

we can find Ai ∈ α so that Bi ⊆ Ai. Therefore X ⊆
⋃n
i=1Ai, and hence N(α) ≤ N(β) by

definition of minimality. Taking logs, we get H(α) ≤ H(β).
(4) This argument is the same as in the last one. Let n = N(α), m = N(β), take {A1, . . . , An} ⊆

α so that X ⊆
⋃n
i=1Ai, {B1, . . . , Bm} ⊆ β so that X ⊆

⋃m
i=1. Then taking

γ = {Ai ∩Bj : 1 ≤ i ≤ n, 1 ≤ j ≤ m},
we have X ⊆

⋃
C∈γ C, |γ| = N(α) · N(β), and γ ⊆ α ∨ β, so by minimality we get

N(α ∨ β) ≤ N(α) ·N(β).
(5) Taking logs from the last part gives us the result.
(6) Let n = N(α), {A1, . . . , An} as before. Then {T−1(A1), . . . , T−1(An)} covers X, and so by

definition of minimality we get N(T−1(α)) ≤ N(α). Taking logs gives the result.
(7) Let n = N(T−1(α)), {B1, . . . , Bn} such that it covers and Bi = T−1(Ai) for some i. We

claim that {A1, . . . , An} also covers X. This follows from the fact that T has a right inverse,
so

X = T (X) ⊆ T

(
n⋃
i=1

Bi

)
=

n⋃
i=1

T (Bi) =

n⋃
i=1

Ai.

�

We define the topological entropy of α with respect to T , denoted h(T, α), to be

h(T, α) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−i(α)

)
.

We need to check that this exists first.

Problem 160. Define

αn0 :=

n−1∨
i=0

T−i(α), an := H(αn0 ).
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Show that the above exists by showing an+m ≤ an + am and then invoking Fekete’s lemma.

Proof. We see

an+m = H

(
n+m−1∨
i=0

T−i(α)

)
= H

(
n−1∨
i=0

T−i(α) ∨
n+m−1∨
i=n

T−i(α)

)

= H

(
n−1∨
i=0

T−i(α) ∨ T−n
(
m−1∨
i=0

T−i(α)

))

≤ H

(
n−1∨
i=0

T−i(α)

)
+H

(
T−n

(
m−1∨
i=0

T−i(α)

))

≤ H

(
n−1∨
i=0

T−i(α)

)
+H

(
m−1∨
i=0

T−i(α)

)
= an + am.

�

Problem 161. Prove the following properties.

(1) We have h(T, α) ≥ 0.
(2) If α < β, then h(T, α) ≤ h(T, β).
(3) We have h(T, α) ≤ H(α).
(4) We have h(Id, α) = 0 for all α open covers.

Proof.

(1) This follows since H(α) ≥ 0 for all open covers α.
(2) This follows since α < β implies H(α) ≤ H(β), and α < β implies T−1(α) < T−1(β).
(3) This is the trickier calculation. Here use the fact that H(α ∨ β) ≤ H(α) +H(β). Then

H

(
n−1∨
i=0

T−iα

)
≤

n−1∑
i=0

H(T−i(α)).

Now use the fact that H(T−i(α)) ≤ H(α) to get

H

(
n−1∨
i=0

T−iα

)
≤

n−1∑
i=0

H(T−i(α)) ≤ nH(α).

Hence

h(T, α) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−i(α)

)
≤ lim

n→∞

1

n
(nH(α) = H(α).

(4) This is a matter of showing that α < α ∨ α < α. We know from prior that for any open
cover β (and therefore for β = α) we have α < α ∨ β. Now to show that α ∨ α < α, we
need to show that for all A ∈ α is a subset of a member of α ∨ α. But this follows, since
A ∈ α is a subset of A ∩ A = A ∈ α ∨ α. Therefore H(α ∨ α) = H(α ∨ Id−1(α)) = H(α).
By induction, we have

H

(
n−1∨
i=0

Id−i(α)

)
= H(α),

so

h(Id, α) = lim
n→∞

1

n
H(α) = 0.
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If T : X → X is continuous, we define the topological entropy of T to be

h(T ) = sup
α
h(T, α),

where α ranges over all open covers of X.

Problem 162. Prove the following properties.

(1) h(T ) ≥ 0.
(2) We have

h(T ) = sup
β
h(T, β),

where β rangers over all finite open covers of X.
(3) h(Id) = 0.
(4) If Y is a closed subset of X and TY = Y , then h(T |Y ) ≤ h(T ).

Proof.

(1) This follows since h(T, α) ≥ 0 for all α.
(2) Apriori we have

sup
β
h(T, β) ≤ h(T ).

We need to show the other direction. But this follows since for all open covers α there
always exists an open subcover β, so that α < β. Therefore h(T, α) ≤ h(T, β), and this
holds for all open covers α, so

h(T ) ≤ sup
β
h(T, β).

(3) This follows since h(Id, α) = 0 for all α.
(4) Consider all open covers of Y in the subspace topology, call this space Y. Consider all

open covers of X with respect to its topology, call this space X . We see there is a natural
embedding Y ↪→ X via α ∈ Y gets mapped to α̂ = α ∪ {Y c}. We can then view Y ⊆ X ,
and therefore h(T |Y ) is defined via a supremum over a subset, hence h(T |Y ) ≤ h(T ).

�

Let {αn} be a sequence of covers. We call this sequence refining if α1 < α2 < · · · and for each
open cover β of X we have β < αn for some n.

Problem 163. Show that if {αn} is a refining sequence of covers then

h(T ) = lim
n→∞

h(αn, T ).

Proof. Let β be any cover. Since it is refining, we know that there exists an n so that β < αn.
Hence

h(T, β) ≤ sup
n
h(T, αn) = lim

n→∞
h(T, αn).

This holds for all possible covers β, so

sup
β
h(T, β) = h(T ) ≤ lim

n→∞
h(T, αn).

Since αn is a collection of covers, we note that

sup
n
h(T, αn) = lim

n→∞
h(T, αn) ≤ h(T ).

Hence we have equality. �
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Problem 164. Let σ be the shift transformation on {0, 1}Z. Use the prior problem to prove the
following:

(1) h(σ) = 1.
(2) If X ⊆ {0, 1}Z consists of a single periodic orbit, then h(σ|X) = 0.
(3) If X ⊆ {0, 1}Z consists of all sequences containing only even length maximal strings of 0’s

and 1′s, then h(σ|X) = 1/2.

Proof.

(1) From the prior problem, we know that

h(σ) = lim
n→∞

1

n
H(αn−1

0 ),

where here α = {C0, C1} and

Ci = {(xn) ∈ {0, 1}Z : x0 = i}.
So in other words, αn−1

0 is going to be the collection of all cylinders of length n of the form

C = {(xn) ∈ {0, 1}Z : x−n+1 = i−n+1, . . . , x0 = i0}, ij ∈ {0, 1},−n+ 1 ≤ j ≤ 0.

Now for the set {0, 1}Z, all of these are needed to cover the entire set, and there are 2n of
them. Hence

h(σ) = lim
n→∞

1

n
log2(2n) = 1.

(2) Consider (xn) ∈ {0, 1}Z periodic, say of period m. Then there are exactly m-distinct words
of length m in X. So again using the prior problem, we have

h(σ|X) = lim
n→∞

1

n
H(αn−1

0 ),

where here αn−1
0 consists of the cylinders

C = {(xn) ∈ {0, 1}Z : x−n+1 = i−n+1, . . . , x0 = i0} ∩X, ij ∈ {0, 1},−n+ 1 ≤ j ≤ 0.

Taking n ≥ m, we see that only 2m of these are needed to cover the entire set, so we have

h(σ|X) = lim
n→∞

1

n
log2(2m) = lim

n→∞

m

n
= 0.

(3) In essence, we have that X represents all possible orbits with an even number of 0s and 1s
occurring. We consider then the total number of words of length n. Building such a word,
we fix the first letter, and we know that the next letter must be the same one. So we have
2 options for the first letter, and then only one option for the next letter, 2 options for the
following letter, and so on. This gives us a total of 2n/2 possible words if the length was
even and 2(n+1)/2 possible words if the length was odd. Since this encompasses the total
number of words, we take log and then the limit. Both of these limits agree, so we get
h(σ|X) = 1/2.

�

Problem 165 (Petersen 6.4.3). Consider the Thue-Morse sequence. Let

A0 = {0},
For a sequence A = {x0, . . . , xn−1} write

A = {1− x0, . . . , 1− xn−1},
and for two sequences A = {x0, . . . , xn−1}, B = {xn, . . . , xm}, we write

AB = {x0, . . . , xm}.
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Then the Thue-Morse sequence is generated by the recursion

An = An−1An−1.

Let A∞ be the forward orbit. Then the full orbit is generated by setting

x = (xn) = A = A∞A∞.

Consider X = Oσ(x). This is a closed σ-invariant set. Calculate h(σ|X).

Proof. Credit to Dr. Nimish Shah. As before, we wish to calculate the number of words of length
n = 2k (we choose powers of 2 since that’s how the sequence is generated). Notice that the set up
for our shifts are

· · ·AAAAAAAA · · · ,
where here A represents blocks of length n. We claim that the only options for occurrences will be
AA, AA, AA, or AA. This follow since we are enumerating all possible options without caring about
order. Now, if we shift n times we see we are getting at most n new words in each combination,
and this enumerates all possible words of length n. This gives us an upper bound of 4n total words
of length n. Calculating topological entropy with this, we have

h(σ|X) ≤ lim
n→∞

1

n
H(αn0 ) = lim

k→∞

1

2k
log2(4 · 2k) = 0.

Therefore the topological entropy is 0. �

We recall a few definitions.
Recall that a map T : X → X is ergodic if there exists a measure µ so that if B measurable

satisfies µ(T−1(B)4B) = 0, then µ(B) = 0 or 1. It is called uniquely ergodic if there is a
unique such measure. For X a compact metric space, T : X → X a homeomorphism, we have a
dynamical system (X,T ). The orbit for a point is the set

OT (x) = {Tn(x) : n ∈ Z}.

We say that (X,T ) is minimal if for all x ∈ X we have OT (x) is dense.

Problem 166. Suppose Y ⊆ X is a T -invariant subset. Show that Y is also a T -invariant subset.

Proof. Let y ∈ Y , then we have (xn) ⊆ Y so that xn → y. Since Y is T -invariant, we have that
(T (xn)) ⊆ Y , and by continuity T (xn)→ T (y), so T (y) ∈ Y . Therefore T (Y ) ⊆ Y , giving us that
Y is T -invariant. �

Problem 167. Show that this is equivalent to X having no proper closed T -invariant subsets.

Proof. ( =⇒ ): Assume that (X,T ) is minimal. Suppose Y ⊆ X is a closed T -invariant subset.

Then we have y ∈ Y , and we see OT (y) ⊆ Y . Taking the closure, we have X = OT (y) ⊆ Y ⊆ X.
Hence X = Y , and so we see that it is impossible for Y to be proper.
(⇐= ): Assume that X has no proper closed T -invariant subsets. First we note that for all x ∈ X,

OT (x) is a closed T -invariant subset. Since it is non-empty, it cannot be proper, so we must have

OT (x) = X. This shows that the orbit of every point is dense; i.e. the system is minimal. �

We say that a system (X,T ) is strictly ergodic if it is minimal and uniquely ergodic.
We now discuss the Bowen definition for entropy. Let X be a compact metric space, T : X → X

a homeomorphism. The goal is to count the number of different orbit-blocks of length n that can
be observed, where we fail to distinguish points closer together than some positive error term, ε (in
other words, our measurement system fails at this point).

123



We say that x and y are (n, ε)-separated if their initial blocks of length n can be distinguished
by our measurement system. In other words, if

d(T kx, T ky) > ε for some 0, 1, . . . , n− 1.

A set E ⊆ X is said to be (n, ε)-separated if x and y are (n, ε)-separated for all x, y ∈ E, x 6= y.
The maximum number of distinguishable orbit n-blocks will be

s(n, ε) = max{|E| : E ⊆ X is (n, ε)-separated}.

Define

h(T, ε) = lim sup
n→∞

1

n
log2(s(n, ε)).

Set

hTop(T ) = lim
ε→0+

h(T, ε).

Problem 168. Determine why should a limit should exist.

Proof. We need to show that h(T, ε) decreases as ε decreases. This will follow if we can show s(n, ε)
decreases with ε. But this follows since we’re taking a max over a smaller and smaller set. �

We now wish to generalize this for arbitrary metric spaces. Assume that X is not compact. For
each compact K ⊆ X, let

sK(n, ε) = max{|E| : E ⊆ K is (n, ε)-separated}.

In other words, we viewK ⊆ X as a compact metric space. Define all of the other terms analogously;

hK(T, ε) = lim sup
n→∞

1

n
log2(sK(n, ε)),

hK(T ) = lim
ε→0+

hK(T, ε).

We can then define

hTop(T ) = sup
K
hK(T ).

We can go the opposite direction as well. For ε > 0, n = 1, 2, . . ., call a set F ⊆ X (n, ε)-
spanning if for each x ∈ X there is a y ∈ F so that

d(T kx, T ky) ≤ ε for all k = 0, 1, . . . , n− 1.

Problem 169. Show that a maximal (n, ε)-separated set is (n, ε)-spanning. If we set

r(n, ε) = min{|F | : F ⊆ X is (n, ε)-spanning},

deduce that r(n, ε) ≤ s(n, ε).

Proof. The idea here is to note that if we add on a point, it will no longer be (n, ε-separated by
maximality. Hence by the above definition and minimality, we get r(n, ε) ≤ s(n, ε). �

One can also show s(n, ε) ≤ r(n, ε/2) (see K&H), and this will give us the following proposition.

Proposition. We have

hTop(T ) = lim
ε→0+

lim sup
n→∞

1

n
log2(r(n, ε)).

Recall Karamata’s inequality.
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Theorem (Karamata’s Inequality). Let I = [0, 1], and suppose we have to sets of numbers
{xi}ni=1, {yi}ni=1 ⊆ I such that

x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn,
and for each 1 ≤ k ≤ n− 1 we have

x1 + · · ·+ xk ≤ y1 + · · ·+ yk,

with equality in the case that k = n. If f is a real-valued convex function on I, then we have

f(x1) + · · ·+ f(xn) ≤ f(y1) + · · ·+ f(yn).

Proof. If xi = yi for all i, then the inequality holds clearly. Suppose then xi 6= yi for some 1 ≤ i ≤ n.
If xi = yi for some 1 ≤ i ≤ n− 1, then removing xi and yi from their sequences does not affect the
assumptions nor conclusion, so iterating we may assume xi 6= yi for all 1 ≤ i ≤ n−1. For 1 ≤ i ≤ n
let

A0 = 0, Ai = x1 + · · ·+ xi,

B0 = 0, Bi = y1 + · · ·+ yi.

By assumption, Ai ≤ Bi for 1 ≤ i ≤ n− 1 and An = Bn. Observe as well that

Ai −Ai−1 = (x1 + · · ·+ xi)− (x1 + · · ·+ xi−1) = xi,

and similarly Bi −Bi−1 = yi. Now for 1 ≤ i ≤ n− 1 let

ci =
f(yi)− f(xi)

yi − xi
.

(Note here that we are using the fact that xi 6= yi for all i). Observe that ci+1 ≤ ci since it is a
convex function. Hence we have

n∑
i=1

(f(yi)− f(xi)) =
n∑
i=1

ci(yi − xi) =
n∑
i=1

ci(Bi −Bi−1 − (Ai −Ai−1))

=
n∑
i=1

ci(Bi −Ai)−
n∑
i=1

ci(Bi−1 −Ai−1)

= cn(Bn −An) +
n−1∑
i=1

(ci − ci+1)(Bi −Ai)− c1(B0 −A0) ≥ 0.

This gives the result. �

Remark. We get the reverse equality for f concave. Simply use the fact that −f is convex.

Problem 170. Show that if pi ≤ qj for all i and j, then the entropy of B(p1, . . . , pn) is no less
than that of B(q1, . . . , qm).

Proof. Assume n = m. Then we are in a position to apply Karamata’s inequality. After rearranging
the pi and qj , we may assume that p1 ≤ p2 ≤ · · · ≤ pn, q1 ≤ q2 ≤ · · · ≤ qn, and we have the property
that for each 1 ≤ k ≤ n

p1 + · · ·+ pk ≤ q1 + · · ·+ qk.

This follows since p1 ≤ q1, p2 ≤ q2, etc. Since it is a probability vector, we also have

p1 + · · ·+ pn = q1 + · · ·+ qn = 1.

Hence by Karamata we get that for f(t) = −t log(t) we have
n∑
i=1

f(pi) ≥
n∑
j=1

f(qj).
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Now suppose n 6= m. Consider m < n. Appending 0s at the end of the vector q to get
(q1, . . . , qm, 0, . . . , 0) so that there are n terms, we have that the assumptions for Karamata still
hold and so the inequality still holds. Assuming pi, qj 6= 0 for all i and j, we claim that it is
impossible for m > n. If this were the case, then we have

1 = p1 + · · ·+ pn ≤ q1 + · · ·+ qn < q1 + · · ·+ qm = 1,

a contradiction. �

We do some Einsiedler and Ward exercises here (separated since I don’t want to try to organize
these in with the other solutions).

Problem 171 (2.1.7). Let (X,M, µ, T ) be any measure-preserving system. A sub-σ-algebra A ⊆
M with T−1(A) = A modulo µ is called a T -invariant sub-σ-algebra. Show that the system

(X̂, B̂, µ̂, T̂ ) defined by

• X̂ = {x ∈ XZ : xk+1 = T (xk) for all k ∈ Z};
• (T̂ (x))k = xk+1 for all k ∈ Z and x ∈ X̂;

• µ̂({x ∈ X : x0 ∈ A}) = µ(A) for any A ∈M and µ̂ is invariant under T̂ ;

• B̂ is the smallest T̂ -invariant σ-algebra for which the map π : x 7→ x0 from X̂ to X is
measurable;

is an invertible measure-preserving system, and that the map π : x 7→ x0 is a factor map. The

system X̂ is called the invertible extension of X.

Proof. Let’s first check measure-preserving. �
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