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Chapter 1

Preliminaries (Day 1-2)

Some things are covered about set theory, functions, and proof methods, but I know these extremely
well at this point and don’t want to waste time by writing more. So we’re going to skip over this and
straight into induction.

1.1 Induction (Day 2)

Induction is often used to prove things.

Example 1. Prove, by induction,

1 + 2 + . . .+ n =
n(n+ 1)

2
.

Proof. We must first show the base case. For n = 2, we have 1 = 1(1+1)
2 = 2

2 = 1, as required. Next,
assume it holds for n. Then we need to show it holds for n+ 1.
If it holds for n, we have 1 + . . . + n = n(n+1)

2 . For n + 1, we add n + 1 to both sides to get

1 + . . . + n + (n + 1) = n(n+1)
2 + (n + 1) = n2+n+2n+2

2 = n2+3n+2
2 = (n+1)(n+2)

2 , as required. Thus,
induction has been shown, and the statement is true.

Definition 1.1.1. (Well Ordering Principle) Any nonempty set A of N has a least element.

We use the well ordering principle to show induction.

Theorem 1. (Weak Induction) Let A ⊂ Z>0 = {x | x ∈ Z and x > 0}. Suppose that the following
two conditions hold:

1. 1 ∈ A

2. If n ∈ A, then n+ 1 ∈ A

Then A = Z>0.

Proof. Suppose Ac 6= ∅, since Z>0 is the sample space. Then Ac has aa least element, denoted by
b ∈ Ac, by the well ordering principle. Then b − 1 ∈ A, since b − 1 6= − as 1 ∈ A, and b > 1. If
b− 1 ∈ A, then (b− 1) + 1 ∈ A by property (2). This is a contradiction, though.

Theorem 2. (Strong Induction) Let A ⊂ Z>0. Now suppose that the following is true:
If for all k ∈ (0, n), k ∈ A, then n ∈ A.
Then A = Z>0.

Proof. Again, suppose Ac 6= ∅, and prove by contradiction. If Ac 6= ∅, then there is a least element
b ∈ Ac. This implies b− 1 ∈ A, or 1, . . . , b− 1 ∈ A. But if 1, . . . , b− 1 ∈ A, then b ∈ A by hypothesis,
and thus we have a contradiction.

Theorem 3. (Division Algorithm) Let m ∈ Z, n ∈ Z>0. THen there exists a unique q, r ∈ Z such
that m = nq + r, where 0 ≤ r < n.
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Proof. Assume m > 0 (the argument for m < 0 follows similarly). Consider the set A = {b | nb−m ≥
0} ⊂ Z>0. Note that this is not an empty set (A 6= ∅). By the well ordering principle, A has a
least element, denoted q. Then nq −m = r ≥ 0, by definition. But this |r| < n. Suppose that it’s
not, or |r| ≥ n. This implies nq + r = m. If |r| ≥ n, then we can rewrite the original statement as
nq + n+ r′ = m→ n(q + 1) + r′ = m. This is a contradiction, snce we now have a smaller q. Now we
need to consider uniqueness.
Assunme that q′, r′ are also factors. Then we have m = q′n + r′ = nq + r → n(q′ − q) = r − r′.
However, r − r′ < n, which implies r − r′ = 0, and q − q′ = 0→ r = r′ and q = q′.

1.1.1 Exercises

Question 1: Prove that for all positive integers n > 0,

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

.
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Chapter 2

Groups (Day 3- 19)

2.1 General Group Properties (Day 3-7)

Definition 2.1.1. (Binary Operation) A binary binary operation on a nonempty set A is the map
◦ : A×A→ A such that

1. ◦ is defined for every pair of elements in A

2. ◦ uniquely associates each pair of elements in A to some element of A.

Definition 2.1.2. (Group) A group, denoted (G, ·), is a set with a binary operation such that

1. There exists an identity element, denote e; i.e., ∀a ∈ G, ae = ea = a.

2. There exists inverses; i.e., ∀a ∈ G, there exists an a−1 ∈ G such that aa−1 = a−1a = e.

3. The associative law is upheld; i.e. ∀a, b, c ∈ G, a(bc) = (ab)c.

Example 2. Let K,M be two sets. Then Fun(K,M) := {f : K → M}. Let ◦ : Fun(K,K) ×
Fun(K,K) → Fun(K,K) such that (f ◦ g)(x) = f(g(x)). Then we will see that G ⊂ Fun(K,K) of
bijective functions is a group using the binary operation. In order to do so, we need to go through the
axioms.

1. There is an identity: 1 : K → K which maps 1(x) = x. Note that (f ◦ 1)(x) = f(1(x)) = f(x)
and (1 ◦ f)(x) = 1(f(x)) = f(x).

2. Since the functions are bijective, there exists an f−1 ∈ G such that (f ◦ f−1) = f(f−1(x)) = x.
Likewise, we have (f−1 ◦ f) = f−1(f(x)) = x. Note that this axiom requires the functions to be
bijective.

3. The associative law is upheld. Note that f ◦ (g ◦ h) = f ◦ (g(h(x)) = f(g(h(x))) and (f ◦ g) ◦ h =
(f(g(x)) ◦ h = f(g(h(x))). So, the associative law is upheld.

Thus, G is a group.

Definition 2.1.3. 1. A function f : K → M is surjective if for all m ∈ M , ∃k ∈ K such that
f(k) = m.

2. A function f : K →M is injective if whenever f(k) = f(k′), we have k = k′, ∀k, k′ ∈ K.

3. A function f : K →M is bijective if it is both injective and surjective.

Example 3. The symmetric group Sn is the group of bijective functions from the set K = {1, . . . , n}
to itself. Notice that the group has order |Sn| = n!.

Definition 2.1.4. (Order) The order of a finite group, denoted |G|, is the number of elements in G.

Definition 2.1.5. (Equivalence Relation) Given a set A, an equivalence relation on A is a subset
K ⊂ A×A such that the following three properties are satisfied:
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1. (Reflexive) If a ∈ A, then (a, a) ∈ K.

2. (Symmetric) If (a, b) ∈ K, then (b, a) ∈ K.

3. (Transitive) If (a, b) and (b, c) are both in K, then (a, c) ∈ K.

Definition 2.1.6. (Congruence) Two integers are congruent, mod an integer n (denoted a ≡ b) if
n|(a− b). Notice that congruence gives an equivalence relation on the integers.

Definition 2.1.7. (Abelian or commutative) A group is called commutative, or Abelian, if for all
a, b ∈ G, ab = ba.

Remark. The group Zn is the group of integers modulo n.

Example 4. Z3 = {0, 1, 2}.

Lemma 3.1. (Zn,+) is an Abelian group.

Proof. We need to show that (Zn,+) satisfies the group axioms.

1. We have that 0 is the identity element – 0 + a = a+ 0 = a for all a ∈ Zn.

2. If 0 < a ≤ n, then n− a ∈ Zn is an inverse, since (n− a) + a = n = 0.

3. Associativity follows from the associativity of addition on the integers.

4. (Remark) Commutativity also follows from the properties of addition.

So, we can see that it’s a group, and not only that but an Abelian group.

Remark. Note that all finite Abelian groups in some sense look like (Zn,+).

Lemma 3.2. Every group has a unique identity.

Proof. Assume that there are two identities – e and e′. Then we have that ee′ = e. By definition,
though, ee′ = e′, and so we have e′ = e.

Lemma 3.3. For every element in G there is a unique inverse.

Proof. Suppose g′ and g′′ are two possible inverses. Then we have g′ = eg′ ↔ g′ = (g′′g)g′ ↔ g′ =
g′′(gg′)↔ g′ = g′′e↔ g′ = g′′.

Lemma 3.4. (Cancellation Law) If we have ab, c ∈ G and ab = ac then b = c.

Proof. We can multiply a−1 to the left hand side of both sides of the equation to get a−1(ab) = a−1(ac).
Using the associativity law, we then have (a−1a)b = (a−1a)c↔ b = c.

Definition 2.1.8. A subgroup H of a group G is a subset H ⊂ G such that

1. It is closed under the identity; i.e., e ∈ H.

2. It is closed under multiplication; i.e., if g, h ∈ H then gh ∈ H.

3. It is closed under inverses; i.e., if h ∈ H, then h−1 ∈ H.

Lemma 3.5. If H is a subgroup, then H is a group with respect to the operation induced by G.

Proof. The proof is trivial and is left to the reader as an exercise (Question 2). As a general outline,
though, one would exhaust the group axioms using the definition of a subgroup.

Proposition 3.1. Every subgroup of Z is of the form bZ for some b ∈ Z>0.

Remark. We can defined the GCD using this. Note that heuristically, the GCD is the greatest number
that divides both integers given; i.e. gcd(a, b) = d where d is the greatest number such that d|a and d|b.

Properties 2.1.1. For g ∈ G, we have

1. gngm = gn+m.

2. (gn)m = gn·m.
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2.1.1 Exercises

Question 3: Prove that (g−1)−1 = g.

2.2 Cyclic Groups (Day 8-9)

Definition 2.2.1. (Cyclic Group) G is a cylic group if G =< g > for some g ∈ G. Note that
< g >= {gn | n ∈ Z}.

Example 5. Note that (Z,+, 0) is a cyclic group. It’s generators are ±1.

Remark. The smallest subgroup of G containing g ∈ G is < g >.

Definition 2.2.2. (Order of an Element) The order of g ∈ G is the smallest integer n such that
gn = e. If there is no such integer, then we say that the element has infinite order.

Theorem 4. Let G =< g > be a group.

1. If the order of g is infinite, then gi = gj ↔ i = j.

2. If the order of g is n, then gi = gj ↔ n|(i− j).

Proof. 1. Suppose |g| is infinite. Then it’s trivial to note if i = j, then gi = gk. On the other
hand, suppose gi = gj . We can assume arbitrarily that i > j. Then gig−j = e. By properties of
exponents, we then have gi−j = e, which implies g has finite order. This is a contradiction, and
so if gi = gj then i = j.

2. Suppose |g| = n. Assume n|(i− j). THen by definition, ther exists a q ∈ Z such that i− j = nq.
It follows, then, that gi−j = (gn)q. However, any multiple of the order still results in the identity,
and so gi−j = eq. Multiplying gj on the right of both sides gives us gi = gj .

Now assume gi = gj . THen this implies gi−j = e. Assume arbitrarily that i > j, since if i = j,
its trivial. Now note i− j = nq + r for 0 ≤ r < n by the division algorithm. If this is true, then
gi−j = gnqgr = (gn)qgr = eqgr = gr = e. This is a contradiction of the definition of order if we
assume 0 < r < n. Thus, r = 0. Since r = 0, we get n|(i− j).

Corollary 4.1. Let G =< g >, and |g| = n.

1. |g| = | < g > |

2. If gk = e for some k, then n divides k.

Proof. 1. If |g| is infinite, then all elements in < g > are distinct, which implies that | < g > | is
infinite.

2. Suppose |g| is finite and equal to n. Then the group < g >= {e, . . . , gn−1}, in particular
| < g > | ≤ n. However, if | < g > | is less than n, then this means gk = g0, which implies n|k
for k < n. This is impossible, and so | < g > | = n.

Theorem 5. Suppose g ∈ G has order n. THen < gk >=< ggcd(n,k) > and |gk| = n
gcd(n,k) .

Proof. Let d = gcd(n, k). We must first show < gk >⊂< gd >. In other words, it’s sufficient to show
gk ∈< gd >. Since d divided k, then dm = k for some m, and thus gk = (gd)m ∈< gd >. Next, it’s
sufficient to show gd ∈< gk >. Assume k = md + r. Then the rest follows as a consequence of the
divison algorithm (see piror proofs for examples of what to do from here).
Next we need to show that |g| = n

gcd(n,k) . By prior, we have that |gk| = | < gd > |.

Claim 1. If d|n then |gd| = n/d.

Proof. We have (gd)n/d = gn = e→ |gd||nd . Suppose for contradiction |gd| < n/d. Let |gd| = r. THen
this implies that dr < n, and this implies gdr = e. This is a contradiction, and so there must be
equality.
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With this claim, the theorem is proven.

Corollary 5.1. Suppose G and H are cyclic of order m and n respectively. THen G×H is cyclic if
n,m are coprime.

Remark. The converse is also true.

Proof. Let G =< g >, H =< h >. Then (g, h) ∈ G × H. First, (g, h)nm = e = (gnm, hnm). Then
|(g, h)||nm. We will ow show nm||(g, h)|. Suppose |(g, h)| = k. Then gk = e → m|k. Similarly,
hk = e→ n|k. Then nm|k → nm = k.

Remark. If gcd(n,m) = 1→ lcm(n,m) = nm.

Example 6. What is an example of a cyclic group of order 40? Z40.
What is an example of a noncyclic group of order 40? Z4 × Z10.

Proposition 5.1. Let G be a cyclic group of order n, G =< g >.

1. Every subgroup of G is cyclic.

2. For every divisor, k, of n, there is exactly one subgroup of order k, namely < gn/k >.

Proof. 1. Let H ⊂ G, then e ∈ H. If H = {e}, then H =< e >. therwise, there exists gm ∈ H such
that m > 0. Let H+ = {m | gm ∈ H,m > 0}. Let b be the smallest element in H+, which exists
by the well ordering principle. This implies < gb >⊂ H. THen we want to show H ⊂< gb >.
Proceed by contradiction. Suppose h ∈ H such that h /∈< gb >. Then h = gk for some k. By
the division algorithm, k = qb + r, 0 < r < b. THen gk = gqbgr ↔ gk−qb = gr. Since H is a
subgroup, gk−qb ∈ H, and so this implies gr ∈ H. This is a contradiction. Thus, we have r = 0,
and so we have H ⊂< gb > and by set equality < gb >= H.

2. By previous corollary, | < gn/l > | = n
gcd(n,n/k) = n

n/k = k. If H ⊂ G, then we know H =< gr >

for some r. Then we need to show < gr >=< gk > where k|n. By previous corollary, < gr >=<
ggcd(n,r) >.

Definition 2.2.3. Homomorphism

1. A homomorphism from G to G′ is a function f : G → G′ such that f(eG) = eG′ and f(g · h) =
f(g)f(h).

2. A function f is an isomorphism if f is a homomorphism and it’s bijective.

Remark. Let f : G → H and g : H → K where g and f are isomorphisms. Then g ◦ f is an
isomorphism.

Theorem 6. 1. If G is an infinite cyclic group, then G ∼= (Z,+, 0).

2. If G is cyclic of order n, then G ∼= (Zn,+, 0).

Proof. 1. Suppose G =< g >. Let f : Z → G be the function defined by f(n) = gn. THus, we
need to show f(eZ) = eG and f(n + m) = gngm. However, this is trivial – f(0) = g0 = e,
and f(n + m) = gn+m = gngm. Thus, this is a homomorphism. We now need to show that
f is bijective. Suppose f(n) = f(m), n = m. This follows, however, from the theorem earlier.
Therefore, f is injective. To show that it’s surjective, note that if there’s a gk ∈ G, then we have
f(k).

2. Proven exactly the same way, except we use f : Zn → G.

7



2.3 Symmetric Group and Permutations (Day 10)

Remark. Recall that Dn is the dihedral group, and An is the alternating group. Note that Dn ⊂ Sn

is a subgroup and An ⊂ Sn is a subgroup. Also recall that Dn is the symmetries of the n-gon. The
alternating group is the symmetries of three dimensional objects.

Example 7. Following is an example of cycle notation:(
1 2 3 4 5 6
2 3 5 6 1 4

)
Here, we have 1→ 2, 2→ 3, 3→ 5, 4→ 6, 5→ 1, 6→ 4.

Definition 2.3.1. (Cycle Notation) Let α : {1, . . . , n} → {1, . . . , n} be a cycle. Then we can denote
it using cycle notation: (

1 . . . n
α(1) . . . α(n)

)
Definition 2.3.2. (Cycle) A cycle of length m is a sequence (α1, . . . , αm) where αi are distinct integers
between 1 and n.

Lemma 6.1. Disjoint cycles commute

Proof. α is a cycle, and β is another disjoint cycle. We want to show that α ◦ β = β ◦ α. In other
words, for all i ∈ {1, . . . , n}, α(β(i)) = β(α(i)). Suppose i is an element of β, then α(β(i)) = β(i).
Then α ◦ β = β ◦ α if i ∈ β. The argument for i ∈ α is the same. If i /∈ α, β, then α and β fix it, and
thus α ◦ β = β ◦ α.

Theorem 7. Every permutation can be written as a disjoint product of cycles.

Proof. (Outline of constructive proof): Let α : {1, . . . , n} → {1, . . . , n}, and select arbitrary a. Then
you have (1, α(a), . . .)(a, α(a), . . .). There’s no way a is in the first cycle, so it follows that αn(a) is not
in the cycle. Doing so repeatedly eventually construct all disjoint cycles.

Corollary 7.1. The order of a permutation is the least common multiple of the lengths of cycles
appearing in it’s decomposition into a disjoint product of cycles.

Proof. Suppose α and β are cycle of length n,m and they are disjoint. Then we need to show r := |αβ|
divides lcm(n,m) and lcm(n,m)|r. Suppose r is the order, then (αβ)lcm(n,m) = αlcm(n,m)βlcm(n,m) = e.
This implies r|lcm(n,m). Suppose r is the order again. Then we have e = (αβ)r = αrβr → αr =
β−r. The only way this is true is if αr = e and β−r = e. THis means n|r and m|r. So we have
r = lcm(n,m).

2.4 More on Groups (Day 11-15)

Definition 2.4.1. (Automorphisms) An automorphism is an isomorphism from a group to itself.

Theorem 8. Aut(Zn) ∼= (Z×n , ·, 1).

Proof. An automorphism from a group to itself is entirely determined by where it sends the generator.
Therefore, we have that the function can only send a generator to other generators, which are all the
numbers coprime to it. Therefore, we have that Aut(Zn) ∼= (Z×n , ·, 1).

Definition 2.4.2. We defined the equivalence class of an element to be [a] := {b ∈ S|a n}, where a b
denotes that two elements are equivalent under a relation.s

Lemma 8.1. Given two elements a and b, we have

[a] ∩ [b] =

{
∅
[a] = [b]
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Lemma 8.2. Both left equivalence and right equivalence are relations on G. The equivalence classes
are of the form, for R, Ha, and for the left equivalence are of the form aH where a ∈ G.

Definition 2.4.3. aH := {ah | h ∈ H} and Ha := {ha | h ∈ H}.

Proof. Note that the proof for L is the same as for R. It is sufficient, then, to just show one of
them. We want to show R is an equivalence relation. We then need to go through the axioms for this
equivalence relation. First, not K = {(a, b) | ab−1 ∈ H}.

1. Reflexive: We need to show a Ra. However, by definition, this means we need to show aa−1 ∈ H.
Since H is a subgroup, this is true.

2. Symmetric: Need to show that if we assume a Rb, then b Ra. This means, by definition, that
if we assume ab−1 ∈ H, then we need to show b−1a ∈ H. However, since H is a subgroup, it’s
closed under inverses, and so (ab−1)−1 ∈ H → ba−1 ∈ H.

3. Transitive: Need to show if a Rb, b Rc, then a Rc. So, by definition, if ab−1 ∈ H, and bc−1 ∈ H,
then we need to show ac−1 ∈ H. Since H is a subgroup, it’s closed under multiplication, and so
(ab−1(bc−1) ∈ H ↔ ac−1 ∈ H.

Thus, K is an equivalence relation. (The left equivalence relation follows similarly.)

Corollary 8.1. Let G be a group, and H ⊂ G a subgroup.

1. aH = bH ↔ b−1a ∈ H ↔ a−1b ∈ H

2. Ha = Hb↔ ab−1 ∈ H ↔ ba−1 ∈ H

3.

aH ∩ bH =

{
∅
aH = bH

Definition 2.4.4. (Index) [G : H] is the number of left (respectively, right) cosets of H.

Theorem 9. If G is finite, then [G : H]|H| = |G|. In other words, [G : H] = |G|/|H|.

Proof. First, a lemma.

Lemma 9.1. If G is a group, and H ⊂ G a subgroup, then for any a there exists a bijection between
H and aH.

Proof. Let φ : H → aH be the function defined by sending φ(h) = ah for h ∈ H. It’s injective,
because if a, b ∈ H, then if φ(a) = φ(b), we have ah = bh, and by the cancellation theorem a = b.
For surjectivtiy, if we have ah, then this implies there is an h ∈ H such that φ(h) = ah. So, φ is
bijective.

First, note that G is finite, and so [G : H] is finite. Then let a1H, . . . , anH denote the distinct cosets
of H. Hence, r = [G : H]. However, since R is an equivalence relation, then R is a partition, and
so |G| =

∑r
i=1 |aiH|. However, we have a bijective function from all aiH to H. So, |aiH| = |H|.

Therefore, we have |G| =
∑r

i=1 |H| ↔ |H| = r|H|. However, r = [G : H], and so |G| = [G : H]|H|.

Corollary 9.1. If G is finite, then for any g ∈ G, |g|||G|.

Proof. We have |g| = | < g > |, and by the theorem prior, [G :< g >]|g| = |G| ,and so |g|||G|.

Corollary 9.2. 1. |H|||G|.

2. For any g ∈ G, |g|||G|.

3. For any g ∈ G, g|G| = e.

Example 8. Show that A4 has no subgroup of order 6.
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Proof. Let H ⊂ A4 be a subgroup of order 6. Then [G : H] = 2, because by Lagrange’s theorem,
[G : H]|H| = |G|. By definition, this means there are two cosets for H. In other words, ∃a ∈ G such
that H and aH are two cosets (remark: a /∈ H).

Claim 2. |A| 6= 3

Proof. Since there are only two cosets, this means that a2H + Hoor aH. If |a| = e, then this means
that a3H = aH which means that H = aH. This can’t be true, since we took a to be an element
where these cosets are distinct.

This implies that all elements of order 3 are in H. This is a contradiction, since there are 8 elements
of order 3 in A4.

Corollary 9.3. (Fermat’s Little Theorem) For any integer a and a prime p, ap ≡ a modp.

Proof. We can prove this using group theory. Recall Aut(Zn) ∼= Z×n , and so if p is prime Z×p =
{1, 2, . . . , p− 1} implies |Z×p | = p− 1. By the division algorithm, we have a = kp+ r, where 0 ≤ r < p.
Then ap ≡ rp modp. Assume r 6= 0. Then we have rp = r modp. By the corollary, we have
rp−1 = 1 modp and so rp = r modp.

Remark. We can also use representations to show groups. For example, we have that D2n =<
r, f | (rf)2 = e, f2 = e, rn = e >. We als o have G =< g | gn = e > is another way to write the cyclic
group.

Theorem 10. If G is a group of order 2p, then G ∼= Z2p or G ∼= D2p.

Proof. The proof is too long for these notes, and is excluded.

2.5 Normal Groups (Day 16)

Definition 2.5.1. (Normal Group) A subgroup H ⊂ G of G is a normal subgroup if aH = Ha for all
a ∈ G.

Remark. First, note that aH = Ha does not mean that every element commutes, but rather it means
that for all a ∈ G, h ∈ H we have ah = h′a.
Second, if it s true that every element commutes with h ∈ H, then aH = Ha is trivially true. In other
words, every H ⊂ G of an abelian group G is normal.

Theorem 11. H ⊂ G is normal if and only if for all x ∈ G, xHx−1 ⊂ H. By definition, we have
xHx−1 = {xhx−1 | h ∈ H}.

Proof. Suppose H is normal. THen given any h ∈ H and x ∈ G, there exists h′ ∈ H such that
xh = h′x. This implies, after multiplying x−1 on the right hand side, that xhx−1 = h′. This implies
xhx−1 ∈ H for all h ∈ H,x ∈ G. This therefore implies xHx−1 ⊂ H.
Next, we have that for all x ∈ G, xHx−1 ⊂ H → xH ⊂ Hx. Since this is true for all x, apply with
x−1 to get Hx ⊂ xH. Therefore, xH = Hx.

Remark. Note that the center is the largest Abelian group, and so when we apply G/Z(G), we get a
group which is not Abelian.

Theorem 12. If H ⊂ G is a normal subgroup, then G/H is a group where we define aH ∗ bH = abH.

Proof. We must first check that aaH ∗ bH is well defined. We need to show that if aH = a′H,
bH = b′H then abH = a′b′H. Saying that these two cosets are the same is equivalent to saying
ah = h′a for some h, h′ ∈ H, and similarly bh′′ = h′′′b for some h′′, h′′′ ∈ H. In particular, this
means h′−1ah = a′, and h′′′−1bh′′ = b′. Thus, if one were to write (b′)−1, one would have h′′−1b−1h′′′,
likewise (a′)−1 = h−1a−1h′′. This implies in particular that (b′)−1(a′)−1ab = h′′−1b−1h′′′h−1a−1h′ab.
We need to then note that this is in H. Note h′a = ah′′′′. Thus, we have h′′−1b−1h′′′h−1a−1ah′′′′b. Do
this similarly with b to get a bunch of h’s, which means that (b′)−1(a′)−1ab ∈ H, as required. Thus,
multiplication is well defined. Now, we need to exhaust the axioms of a group:

1. There exists an identity: eH → aH ∗ eH = eH ∗ aH = aH.
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2. (aH)−1 = a−1H.

3. Note (aH ∗ bH) ∗ cH = (ab)HcH = (ab)cH = a(bc)H = aH(bc)H = aH(bH ∗ cH).

Thus, G/H is a group.

Theorem 13. If H,K are normal subgroups such that H∩K = {e} and G = HK, then φ : H×K → G
is an isomorphism.

Theorem 14. (Cauchy’s 2nd Theorem) Let G be a finite Abelian group. Then there exists an element
of order p for every prime dividing n = |G|.

Proof. Suppose n = pn1
1 · · · pnr

r , where pi are prime. Then there exists an x ∈ G such that the order of x
is pi for some i. This is because G is a nontrivial group. It is implied there is some g ∈ G where |g| = m
and m|n. This implies m = qr for some prime diving n. Then note xr has order q. Let H =< xr >.
Let y = xr. tHen H =< y >. Since G is Abelian, H E G. This implies G/H is a group. Note |H| = q,

then |G/H| =
p
n1
1 ···p

nr
r

q < n. By induction, there exists y′ ∈ G/H such that |y′| = pi′ , i
′ 6= i. This

means y′ < y > has order pi′ , where y′ ∈ G. This means y′pi′ < y >=< y >→ y′p
′
i ∈< y >→ y′p

′
i = e.

By induction, this means that there is an element in G of order pi for all i.

Theorem 15. Let f : G→ H be a group homomoprhism. Then

1. ker(f) E G

2. Im(f) is a subgroup of H.

3. If H ′ is a subgroup of G, Im(H ′) is a subgroup of H.

4. If g ∈ G, then |f(g)| divides |g| and |f(g)| divides |H|.

5. f(gn) = f(gn) for all n.

Proof. 1. To show that ker(f) is a normal subgroup, we need to show that xyx−1 ∈ ker(f) for
all y ∈ ker(f), x ∈ G. However, to show that, we need to then show that f(xyx−1) = e.
Using the properties of homomorphisms, we have f(x)f(y)f(x−1) = f(x)f(y)f(x)−1. Note that
y ∈ ker(f), and so f(y) = e. Therefore, we have f(x)ef(x)−1 = f(x)f(x)−1 = e. So, by
definition, xyx−1 ∈ ker(f) for all x ∈ G, y ∈ ker(f), as required.

2. To show that it’s a subgroup, we can use the one-step subgroup test – that is, if for all x, y ∈
Im(f), we have xy−1 ∈ Im(f), then we have that Im(f) is a subgroup. However, by definition,
Im(f) = {h ∈ H | f(g) = h for some g ∈ G}. So we have f(g) = x and f(g′) = y for some g, g′ ∈
G. Therefore, we want to show f(g)f(g′)−1 ∈ Im(f). However, by properties of homomorphisms,
this is equivalent to asking f(gg′−1) ∈ Im(f), which is true since gg′−1 ∈ G. Therefore, the image
of a homomorphism is a subgroup.

3. We have that H ′ is a subgroup of G, and thus for all x, y ∈ H, xy−1 ∈ H ′. We then need to show
that Im(H ′) is a subgroup of H. We then want to use the subgroup test. Let x, y ∈ Im(H ′),
then we want to show that xy−1 ∈ Im(H ′). However, if x, y ∈ Im(H ′), this means that
there are x′, y′ ∈ H ′ such that f(x′) = x and f(y′) = y. Therefore, we want to show that
f(x′)f(y′)−1 ∈ Im(H ′). However, by properties of homomorphisms, this is equivalent to asking
to show that f(x′y′−1) ∈ Im(H ′). However, we know that x′y′−1 ∈ H ′ by the subgroup test,
and so by definition it’s image is in the image of H ′, which means that Im(H ′) is a subgroup.

4. From prior, we know that f(g) is a subgroup of H and so by Lagrange it must be a divisor of the
order of H. Next, let |g| = n. Then we have f(gn) = f(e) = e, by properties of homomorphisms.
However, this also means f(g)n = e, which means that |f(g)||n.

5. We can prove this using induction. By properties of homomorphisms, we know that f(g2) =
f(g · g) = f(g) · f(g) = f(g)2. Assume it holds for n. Then we have f(gn+1) = f(gn · g) =
f(gn) · f(g) = f(g)n · f(g) = f(g)n+1, as required. For negative numbers, we can use the inverse.
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Example 9. How many homomorphisms are there from Z3 → Z5? We can find them using the
fact that the imge of a cyclic group must also be a cyclic group, by the prior theorme. THerefore, a
generator must map to a generator. There are no elements of order 3 in Z5 however, and so the only
homomorphism is the trivial one.
Generalizing further, to find the number of homomorphisms from Zn → Zm, where n < m, we look for
the number of elements of oder n in Zm.

2.6 Fundamental Theorem for Group Homomorphisms (Day
17-18)

Theorem 16. (Fundamental Theorem for Group Homomorphisms)

Remark. This is sometimes referred to as the First Homomorphism Theorem instead of the Funda-
mental Theorem.

Let φ be a homomorphism of G onto G′ with kernel K. Then G′ ∼= G/K, the isomorphism between
these being effected by the map

ψ : G/K → G′

defined by ψ(Ka) = φ(a).

Proof. Define ψ : G/K → G′ by ψ(Ka) = φ(a) for a ∈ G. Our first task is to show that ψ is well
defined. In other words, we want to show if Ka = Kb then ψ(Ka) = ψ(Kb). But if Ka = Kb, then
we know that a = kb for some k ∈ K. Hence, φ(a) = φ(kb) = φ(k)φ(b). Since k ∈ K, the kernel of π,
then φ(k) = e. So we have φ(a) = φ(b). Therefore, the mapping of ψ is well defined.
Because φ is onto G′, given x ∈ G′, then x = φ(a) for some a ∈ G, thus x = φ(a) = ψ(Ka). This
shows that ψ maps G/K onto G′.
Next, we need to establish whether or not ψ is 1-1. Suppose that ψ(Ka) = ψ(Kb), then φ(a) =
ψ(Ka) = ψ(Kb) = φ(b). Therefore, e′ = φ(a)φ(b)−1 = φ(a)φ(b−1) = φ(ab−1). Because ab−1 is thus in
the kernel of φ, which is K, we have ab−1 ∈ K. This implies that Ka = Kb. Thus, we have ψ is 1-1.
Finally, we need to show that ψ is a homomorphism to establish that it is an isomorphism. We check
ψ((Ka)(Kb)) = ψ(Kab) = φ(ab) = φ(a)φ(b) = ψ(Ka)ψ(kb). Consequently, ψ is a homomorphism of
G/K onto G′.

Example 10. If Z→ Zn, f(k) = k modn, then the ker(f) = {x ∈ Z | n|x}. By the theorem, Z/nZ ∼=
Zn.

Theorem 17. Let G be a group, and H,K ⊂ G be normal subgroups such that HK = G and H ∩K =
{e}. Then H ×K ∼= G.

Theorem 18. Let G be a group such that |G| = p2 where p is a prime. Then G ∼= Zp2 or Zp × Zp.

Proof. Note that by Lagrange, the possible order of elements for G are 1, p, and p2. Suppose it has
an element of order p2. Then we’re done, since this element therefore generates the group. Suppose
that otherwise, then Then we have that every non-trivial element has order p. Let H =< g > where
|g| = p. Then there exists a g′ ∈ G such that g′ /∈ H. Let K =< g′ >. We then need to check that
H,K are normal in G, HK = G, and H ∩K{e}. Note that H ∩K = {e} is trivial since g′ /∈ H and
so none of it’s powers are in H. HK = G follows since |HK| = p2. So we then need to check that H
and K are normal.
To check that H is normal, we need to check that xhx−1 ∈ H for all x ∈ G, h ∈ H. We have two
possible options – either x ∈ K or x ∈ H. If x ∈ H, then the results is trivial by properties of
subgroups. Assume x ∈ K, then. Also assume that xhx−1 /∈ H – then it follows that xhx−1 ∈ K.
Then this implies that xhx−1 = g′n for some n. But h = gs for some s. Note x = g′t for some t. So
we have g′tgsg′−t = g′n → gs = g′−tg′ng′t, which implies that gs ∈ K, a contradiction. So therefore
xhx−1 ∈ H, and so H is normal. The argument for the normality of K follows similarly, and so we
have that Zp × Zp

∼= G.
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2.7 Structure Theorem For Finite Abelian Groups (Day 18-
19)

Theorem 19. (Structure Theorem for Finite Abelian Groups) Let G be a finite Abelian group. Then
G is isomorphic to a direct product of cyclic groups of prime power order. Moreover, the number of
factors in this product and the prime power orders are uniquely determined by G.

Before proving this, we need to first establish a few lemmas and corollaries.

Lemma 19.1. Any finite Abelian group G of order pkm (where gcd(p,m) = 1) can be written as

G ∼= H ×K, where H = {x ∈ G | xpk

= e}, k = {x ∈ G | xm = e}. Moreover, |H| = pk.

Proof. First, we need to know that H and K are subgroups, and we need to (trivially) know that they
are normal.
Showing that they are subgroups: For H, e ∈ H and if x ∈ H, then xp

k

= e which implies x−p
k

= e,

which implies x−1 ∈ H. If x, y ∈ H, then xp
k

yp
k

= (xy)p
k

since H is Abelian, and so xy ∈ H. For
K, e have e ∈ K. If x ∈ K, then we have xm = e, and so x−m = e. This implies that x−1 ∈ K. If
x, y ∈ K, then xmym = (xy)m, which implies xy ∈ K. So, H and K are subgroups. We need to now

check that H ∩K = {e}. Suppose there is a x ∈ H ∩K. Then xp
k

= e and xm = e, which means that
|x||gcd(pk,m) which implies |x| = 1, or in other words, x = {e}.
Finally, we need to show that HK = G. We trivially know that HK ⊂ G k ∈ K. Since gcd(p,m) = 1,

then we know there exist s, t ∈ Z such that 1 = spk + tm. Note then that x = xsp
k

xtm. However,

xsp
k ∈ K, and xpm ∈ H, since some power of xsp

k

has order dividing m, and similarly xtm has some
order dividing pk. Finally, we need to show |H| = pk. Suppose it isn’t – suppose |H| = pk

′
, k′ < k.

Then we have |G| = |K||H| ↔ pkm = pk
′ |K|. This implies p||K|, and thus there exists some x ∈ K,

x 6= e, |x| = p. This cannot happen, though, since we assumed the gcd(p,m) = 1. So, |H| = pk.

Corollary 19.1. Any finite Abelian group is a product of groups of prime power order.

Remark. This is not saying the same thing as the theorem – the groups here are not necessarily cyclic.

Proof. Suppose |G| = n. If n = 1, there’s nothing to really show. If n = prb for some b where
gcd(p, b) = 1, then the lemma implies G ∼= H ×K, where |H| = pr. By induction, K ∼= H2× . . .×Hs,
where Hi are groups of prime power order. This implies G ∼= H1 × . . .×Hs.

Lemma 19.2. If G is a group of prime power order , say pk and a ∈ G is an element of maximal
order, then G ∼=< a > ×K for some K ⊂ G.

Proof. Let a ∈ G be an element of maximal order, say pk
′
, where k′ < k. If a ∈ G, |a| = pk then

G ∼=< a > ×{e}. Let b ∈ G/ < a >, whose order is minimal. Let φ : G → G/ < k >=: Ḡ. Let
x̄ := φ(x), i.e., x̄ = x < b >.

Claim 3. < a > ∩ < b >= {e}

Proof. If | < b > | = p, then < b >∼= Zp. If x ∈< a > ∩ < b >, < b >⊂< a >,. THis is a contradiction,
since b /∈< a >.

Claim 4. Ḡ ∼=< ā > ×k̄ for some k̄

Proof. First, note that ā has maximal order. Suppose not, i.e. (ā)p
k′−1 = e→ (a < b >)p

k′−1 =< b >.

Then this implies that ap
k′−1 = e, since ap

k′−1 ∈< b >. However, this is a contradiction, since this

implies ap
k′−1 6= ap

k′

. This implies ā = ap
k′

, i.e., maximal order. We know that |Ḡ| < |G| >. By
induction, Ḡ =< ā > ×K, for some K̄. Let K = φ−1(K̄). Then we need to show G ∼=< a > ×K.

Claim 5. G ∼=< a > ×K.

Proof. < a > ∩K = {e} since if x ∈< a > ∩K → x̄ ∈< ā > ∩K̄ = e→ x̄ ∈< b >→ x ∈< b >→ x ∈<
a > ∩ < b >→ x = e.

13



Claim 6. < a > K = G.

Proof. This follows from an order argument, since | < b > | = p.

Claim 7. | < b > | = p

Proof. Recall b ∈ G/ < a > with minimal order. So, if we show there is some leement of order p
which is in G/ < a >, then |b| = p, since all elements must have order greater than or equal to pp.
Look at |bp| = |b|/p → bp ∈< a >→ bp = ai for some i. Note that p|i → i = pq for some q ∈ Z.
Let c ∈ G/ < a >= a−qb. Then we have cp = e, since a−qpbp = e. Also note that c 6= e, and that
c /∈< a >, since if c = al, then al+q = b. Then the order of b has to be p.

With all of this, the lemma follows.

Proof. (Proof of Theorem) By Corollary, G ∼= H1 × . . .×Ht, where i has order of prime power.

Claim 8. Every finite Abelian group G of order pk is a product of cyclic groups of prime power order.

Proof. If |G| = p then this implies G ∼= Zp. Otheriwse, if |G| = pK , then by Lemma 2 G ∼=< a > ×K,

where |K| = pk
′
, K ′ < K. By induction, K ∼= K1 × . . . × Kr, where Ki are cyclic of prime power

order. Therefore, we have G ∼=< a > ×K1 × . . .×Kr.

If G ∼= H1 × . . .×Hr of prime power order, then each Hi = H
(1)
i × . . .×H(si)

i , where H
(ji)
i is a cyclic

group of prime order. Then we have G ∼= H
(1)
1 × . . .×H(Si)

1 × . . .×H(1)
r × . . .×H(Si)

r .

Example 11. If we have a finite Abelian group of order 8, then the possible options are Z8, Z2×Z2×Z2,
Z2 × Z4.
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Chapter 3

Rings (Day 20-27)

Rings will be done more heuristically. As such, there are not many sections to seperate this by.

Definition 3.0.1. (Ring) A set (R,+,×) is a ring if the following properties hold:

1. + and × are laws of composition which are associative.

2. (R,+, 0) is an Abelian group.

3. × has an identity denoted by 1 ∈ R when you restrict R/{0}.

4. The distributive property holds – i.e., a, b, c ∈ R→ a× (b+c) = ab+ac and (b+c)×a = ba+ca.

Remark. We will only be studying commutative rings – or rings in which multiplication is commuta-
tive.

Example 12. 1. Z,Q, and R are all rings.

2. Mn(R) = {n× n -values over R} is a ring, but not a commutative ring.

3. C[x] = {anxn + · · ·+a0, where ai ∈ C, n ≥ 0} (this is not just restricted to the complex numbers,
but rather Z[x],R[x], and Q[x] are all rings as well).

Lemma 19.3. Let (R,+,×, 0, 1) be a ring.

1. 0× a = 0.

2. (−1)× a = −a.

3. −(−a) = a.

Remark. Note that the cancellation law holds for addition, but not necessarily for multiplication (we
need to be over a field for this to be true).

Proof. 1. We know that (0 + 0)a = 0a. Distributing gives us 0a+ 0a = 0a. By the cancellation law
of addition, we then have 0a = 0.

2. We know that −a = (−a) + 0. Note that this is equivalent to −a = (−a) + (1 + (−1))a.
Distributing, we have −a = −a + 1(a) + (−1)a. By the multiplicative identity, we know that
1(a) = a, and so we have −a = −a+ a(−1)a. This results in −a = (−1)a.

3. a = a + 0, which is equivalent to a = a + (−a + −(−a)), and by the associative law we have
a = (a+ (−a)) + (−(−a)). Note that (a+ (−a) = 0, and so we have a = (−(−a))

Definition 3.0.2. (Integral Domain) A ring R is an integral domain if for all a ∈ R/{0}, b, c ∈ R, if
ab = ac→ b = c. Equivalently, we have that if ab = 0, then either a = 0 or b = 0.

Example 13. We have that Z is an integral domain.
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Remark. A field is a ring, but with multiplicative inverses.

Definition 3.0.3. (Subring) If R is a ring, then a subset R′ ⊂ R is a subring if

1. It’s closed under addition and multiplication.

2. 0, 1 ∈ R′

3. If r ∈ R′, then −r ∈ R′, where −r denotes the additive inverse.

Lemma 19.4. A subring R′ is a ring with the induced +, 0,×, 1, etc.

Lemma 19.5. (R1 × · · · ×Rn,+,×, (11, . . . , 1n), (01, . . . , 0n)) is a ring.

Definition 3.0.4. (Polynomial Ring) Given a ring R we define the polynomial ring of R to be R[x],
where

R[x] = {pmxm + . . .+ p1x
1 + p0 | p ∈ R

Definition 3.0.5. (Ideal) An ideal I ⊂ R is an additive subgroup such that if a ∈ I then ra ∈ I for
all r ∈ R.

Lemma 19.6. If 1 ∈ I, then I = R

Proof. If 1 ∈ I, then since it’s an ideal we have a(1) ∈ I for all a ∈ R. However, this means that
R ⊂ I, and it’s given that I ⊂ R, so we have I = R.

Lemma 19.7. (α1, . . . , αk) is an ideal in R.

Proof. 0k ∈ (α1, . . . , αk) trivially, and the additive inverse is also clear.
Note that r1α1 + · · ·+ rkαk + s1α1 + · · ·+ skαk = (r1 + s1)α1 + · · ·+ (rk + sk)αk ∈ (α1, . . . , αk).
Thus, the ideal property is clear by construction.

Definition 3.0.6. (Ring Homomorphism) A function f : R→ R′ is a ring homomorphism if

1. f is a group homomorphism; i.e. f(R,+)→ (R′,+) such that f(a+ b) = f(a) + f(b), f(0) = 0.

2. f(1) = 1 and f(ab) = f(a)f(b).

Definition 3.0.7. (Ring Isomorphism) A ring isomorphism is a bijective ring homomorphism

Lemma 19.8. If f : R→ R′ is a ring homomorphism, then ker(f) is an ideal.

Theorem 20. If R is a ring, and I ⊂ R is an ideal, then (R/I,+,×) is a ring.

Proof. It’s left as an exercise, though all that really needs to be done is to check that multiplication is
well defined.

Theorem 21. Let φ : R1 → R2 be a surjective ring homomorphism. Then the induced map φ̄ :
R1/I → R2 is an isomorphism. (Note: I = ker(φ).

Remark. This derives from the Fundamental Group Homomorphism Theorem.

Lemma 21.1. (Polynomial Rings) Let R be a ring such that R is an integral domain. Then R[x] is
an integral domain.

Proof. IF f, g ∈ R[x], f 6= 0, g 6= 0, then fg 6= 0. If f, g 6= 0, then note f(x) = anx
n + · · · + a0 and

g(x) = bmx
m + · · ·+xb0, where an, bm 6= 0. Then this implies that f(x)g(x) = anbmx

n+m + · · · . Since
an 6= 0 and bm 6= 0, then anbm 6= 0 since we’re in an integral domain.

Definition 3.0.8. (Unit) An element of R is a unit if it has a multiplicative inverse.

Definition 3.0.9. (Factors of a Polynomial) Given f, g ∈ R[x], we say that g|f if there exists h ∈ R[x]
such that f = gh.

Corollary 21.1. Let f ∈ F [x].

1. f(a) is the remainder of f(x)|(x− a) for any a ∈ F .
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2. If f(a) = 0, then x− a divides f(x)

3. If deg(f)− n and f 6= 0, then f(x) has at most n-zeroes.

Proof. 1. Consider f(x)− f(a) ∈ F [x]. By the division algorithm, we know f(x)− f(a0 = g(x)(x−
a) + r(x). If one set x = a, we have 0 = r(a). THerefore, r(x) = 0, so therefore we have
f(x) − f(a) = g(x)(x − a). Adding f(a) to both sides then gives f(x) = g(x)(x − a) + f(a).
Therefore, the remainder is f(a).

2. By (1), if f(a0 = 0 then f(x) = g(x)(x− a) which implies (x− a)|f(x).

3. IF a1, . . . , an+1 are unique zeroes, then (x− a1) · · · (x− an+1)|f(x), a contradiction.

Lemma 21.2. Any unit u(x) ∈ F [x] is a non-zero constant polynomial.

Proof. Suppose u(x) ∈ F [x] is a unit. Then u(x)u−1(x) = 1→ deg(u(x))+deg(u−1(x)) = 0. However,
the degree is greater than or equal to zero, and so this implies that deg(u(x)) = deg(u−1(x)) = 0.

Definition 3.0.10. (Associates) We say that f, g ∈ F [x] are associates if there exists a unit such that
f = ug.

Definition 3.0.11. (Monic Polynomial) A monic polynomial is a polynomial whose leading coefficient
is 1.

Remark. For every polynomial there is an associated polynomial which is monic. We can note that
this associated monic polynomial is unique.

Definition 3.0.12. (GCD of Polynomials) If f, g ∈ F [x], and f, g 6= 0, then gcd(f, g) is a polynomial
d ∈ F [x] such that

1. d|f , dg

2. If k|f and k|g, then k|d

3. d is monic.

Remark. If a|b and b|a, then we cannot say a = b, since this is true if they are associated. If they
were monic, though, then a = b.

Definition 3.0.13. (Principal Ideal Domain) A principal ideal domain is an integral domain R such
that every ideal in R is principal; i.e., I ∈ R implies I = (a) for some a ∈ R.

Theorem 22. F [x] is a principal ideal domain.

Proof. Let I ⊂ F [x]. If I = {0}, there’s nothing to show. Suppose I 6= {0}. Observe S = {n ∈
Z>0 | ∃p(x) of degp = n in I}. Then there exists a polynomial, d, of minimal positive degree in I.
Note that d ∈ I implies (d) ⊂ I.

Claim 9. I ⊂ (d).

Proof. Assume for contradiction that there is a f ∈ I/(d). Applying the division algorithm, we have
f = qd + r, which implies r = f − qd. However, f and qd ∈ I, which means that r ∈ I. So we found
something of smaller degree in I, which is a contradiction.

Theorem 23. For f, g ∈ F [x], the gcd exists and is unique

Proof. Using the prior theorem, we have (f) + (g) = (f, g)→ (f, g) = (d). Let the gcd be the unique
monic polynomial generating (d). Then one may establish that this has all the properties of the
gcd.

17



Definition 3.0.14. (Irreducibility) Let D be an integral domain. A polynomial f(x) ∈ D[x] that is
neither the zero polynomial nor a unit in D[x] is said to be irreducible over D if whenever f(x) is
expressed as a product f(x) = g(x)h(x), with g(x) and h(xx) from D[x], then g(x) or h(x) is a unit
in D[x]. A nonzero, nonunit element of D[x] that is not irreducible over D is called reducible over
D. In the case that an integral domain is a field F , it is equivalent and more convenient to define a
nonconstant f(x) ∈ F (x) to be irreducible if f(x) cannot be expressed as a product of two polynomials
of lower degree.

Lemma 23.1. Let F be a field. If f(x) ∈ F [x] and deg(f(x)) = 2, 3, then f(x) is said to be reducible
over F if and only if f(x) has a zero (or root) in F .

Lemma 23.2. p( s
t ) = 0 implies s|a0 and t|an, where p(x) = anx

n + · · · + a0. In other words, all
rational roots of a polynomial are of the form s/t, where s|a0 and t|an.

Remark. The proof is not really worth knowing.

Theorem 24. Let f(x) ∈ Z[x] such that f(x) = g(x)h(x) for h, g ∈ Q[x]. Then there exists
G(X), H(X) ∈ Z[x] such that f(x) = G(X)H(X).

Remark. Once again, I feel like the proof does not give any insight to the theorem.

Theorem 25. Let f(x) ∈ Z[x] which is monic. Suppose there exists p a prime such that f(x) ∈ Zp[x]
is irreducible. Then f(x) is irreducible.

Proof. If f(x) = g(x)h(x) ∈ Z[x] then we have f̄(x) = ḡ(x)h̄(x).

Example 14. SHow that x4 + 10x2 + 7 = f(x) is irreducible.
We can map this to Z5[x] to get x4 + 7. Then we can note that x4 + 7 is irreducible in Z5[x].

Lemma 25.1. Suppose f(x) ∈ Z[x] and f(x) = g(x)h(x), g(x), h(x) ∈ Z[x]. If p|ai for all i, then p|bi
for all i or p|ci for all i (here, ai denotes coefficients of f , bi denotes coefficients of g, and ci denotes
coefficients of h).

Proof. Suppose p - all bi or ci. THen there is some largest bt or ct suc hthat b - bt or ct. Let bt and
cs denote these values, respectively. Then ovserve at+s = b0cs+t + · · ·+ bs+tc0. Note that all of these
values are of the form bicj . If i < t then p|bicj , if j < s then p|bicj and thus p divides all the coefficients
on the right hand side except b ∈ cs. Let h = btcs. THen this implies p|h which implies p|bt or p|cs,
which is a contradiction.

Theorem 26. (Eisenstein’s Criteria) Let f(x) = anx
n + · · · + a0 ∈ Z[x] and p a prime such that

p - an, p|ai for all i 6= n, and p2 - a0. Then f(x) is irreducible.

Example 15. Let f(x) = xp−1 + · · · + 1. Then by the geometric sum (see: Probability Notes) we

have f(x) = xp−1
x−1 . Substituting x = y + 1, we have (y+1)p−1−1

y . Using the binomial formula, we have

yp−1 +
(
p
1

)
yp−2 +

(
p
2

)
yp−3 + · · ·+

(
p

p−1
)
, which satisfies Eisensteins criteria.

Definition 3.0.15. (Primitive) A polynomial f(x) = a0 + a1x
1 + · · · + xn ∈ Z[x] is called primitive

if the gcd of all its coefficients is 1.

Lemma 26.1. (Gauss’s Lemma) If f, g ∈ Z[x] are primitive, then so is fg.
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