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1. Preliminaries

1.1. Extension Fields.

Definition. Let E, F be fields. If F is a subfield of E, i.e. F ⊂ E and F is closed under the
operations, then we call E an extension of F . We will (maybe poorly) denote E being an extension
of F by E ⊂ F . We will also sometimes write E/F for E being an extension of F .

We remark that if E/F is an arbitrary extension, we can view E as a vector space over F . The
action will simply be multiplication; i.e. if x ∈ E, r ∈ F , then r · x = rx (the usual multiplication
as a field). The other axioms for a vector space follow just as easily. As a result, we’ll sometimes
ambiguously write E/F for a field extension and as a way of denoting the vector space E over F .

Definition. Let E/F be a field extension. We define the degree of the extension, denoted by
(E : F ), to be the dimension of E as a vector space over F . That is,

(E : F ) = dimF (E)

is the degree of E over F .

There is a multiplicativity that comes with degrees of field extensions.

Theorem 1. Let F ⊂ E ⊂ K be fields. Then (K : F ) is finite iff (K : E) and (E : F ) are finite,
and moreover we have that

(K : F ) = (K : E)(E : F ).

Proof. ( =⇒ ): Assume first that (K : F ) is finite. Furthermore, since E ⊂ K, we can view E/F
as a subspace of K/F . Consequently, (E : F ) ≤ (K : F ) <∞, so (E : F ) is finite.

Next, we wish to show that (K : E) is finite as well. Let {α1, . . . , αn} be a basis for K/F . Then
every element β ∈ K can be written as

β =

n∑
j=1

ajαj ,

where aj ∈ F . Notice that, in particular, the αj ∈ E as well, so we have that {α1, . . . , αn} span
K/E as well. Consequently, we get that (K : E) ≤ (K : F ) <∞. So they’re both finite.
( ⇐= ) : Assume (K : E) and (E : F ) are both finite. Let {α1, . . . , αn} be a basis for E/F ,
{β1, . . . , βm} be a basis for K/E. We wish to show that we can use these to find a finite basis for
K/F . Let β ∈ K be arbitrary, then we have

β =
m∑
j=1

ajβj ,

where aj ∈ E. Notice that for each j, we have

aj =
n∑
i=1

bi,jαi,

where bi,j ∈ F . Hence, substituting this in, we have

β =
m∑
j=1

n∑
i=1

bi,jαiβj .

In other words, we have {αiβj}i=n,j=mi=1,j=1 form a spanning set for K/F , giving us that (K : F ) <∞
as well.
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Finally, we need to show the moreover clause. Suggestively, we should check that {αiβj}i=n,j=mi=1,j=1

form a basis for K/F . If we have this, then (K : F ) = (K : E)(E : F ), as desired. Since it’s a
spanning set apriori, it suffices to show that it’s linearly independent. Assume that

m∑
j=1

n∑
i=1

bi,jαiβj = 0.

Notice that, since the βj are a basis, this implies that for each j,

n∑
i=1

bi,jαi = 0,

and since the αi form a basis, we get that for each i bi,j = 0. Hence, for every (i, j), we have
bi,j = 0, and so we must have that the set is linearly independent. That is, it’s a basis. �

Corollary 1. If F ⊂ F1 ⊂ · · · ⊂ Fn is a chain of extensions of fields, then

(Fn : F ) = (Fn : Fn−1) · · · (F1 : F ).

Proof. This is a simple induction exercise. We’ve shown it for the case n = 2 in the prior theorem.
Assume it holds for n− 1. Then for the case of n, we have

(Fn : F ) = (Fn : Fn−1)(Fn−1 : F )

by the n = 2 case. Applying the induction hypothesis gives the result. �

We introduce some more notation. Let E/F be an extension of fields, S ⊂ E a subset of the
elements of E. Then we denote by F [S] the subring of E generated by F and S and F (S) the
subfield generated by F and S [Parentheses will, in general, have a connotation of inverses].

Let S = {α1, . . . , αn} be finite. Consider the map ϕ : F [x1, . . . , xn]→ E, where ϕ(p(x1, . . . , xn)) =
p(α1, . . . , αn); that is, ϕ is the evaluation map. Notice, then, that F [S] = ϕ(F [x1, . . . , xn]);
i.e. F [S] = Im(ϕ). This gives us a more concrete way of viewing this subring. Analogously, if
φ : F (x1, . . . , xn)→ E is also given by evaluation, then we can view F (S) = Im(φ).

1.2. (Optional) Polynomials. While a little silly, we’ll diverge from the notes [3] to recall some
facts on polynomials. This will hopefully make the next section a little easier to digest. This is
Artin II B. [2].

Recall that an expression of the form anx
n + · · ·+ a0 = p(x) is a polynomial of degree n as long

as the ai ∈ F , a field, and an 6= 0. Addition of polynomials is done in the obvious fashion; if n ≤ m,
then

n∑
i=0

aix
i +

m∑
i=0

bix
i =

m∑
k=0

(ai + bi)x
i,

where if i > n then we set ai = 0. Multiplication is done via a convolution fashion; that is,(
n∑
i=0

aix
i

) m∑
j=0

bjx
j

 =
∑
k=0

ckx
k,

where ∑
i+j=k

aibj = ck.

Let deg : F [x]→ Z≥0∪{−∞} be the function which evaluates the degree of a polynomial. Notice
that deg(p(x) + q(x)) ≤ max{deg(p(x)),deg(q(x))}, and deg(p(x)q(x)) = deg(p(x)) + deg(q(x)),
and we assign to 0 the degree −∞ (hence why we added it on).
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Recall that a polynomial is reducible in F if it is equal to the product of two polynomials in F ,
each of degree at least one. Polynomials which are not reducible are said to be irreducible.

If p(x) = q(x)h(x), then we say that q(x) divides p(x) and that q(x) is a factor of p(x). By the
observation of degree above, we have deg(q(x)) ≤ deg(p(x)) if it is a factor of p(x). Note as well
we can always represent polynomials as a product of finitely many irreducible polynomials.

Recall as well we have the division algorithm for polynomials; for any two polynomials p(x) and
q(x), there exists a g(x) and an r(x) so that

p(x) = g(x)q(x) + r(x),

and such that deg(r(x)) < deg(g(x)). We have that r(x) is referred to as the remainder. A
consequence of this over fields is that if a ∈ F is so that p(a) = 0, then p(x) = (x − a)g(x)
for some g(x). First, notice that the division algorithm tells us that p(x) = (x − a)g(x) + r(x).
Viewing g(x) as the divisor, notice that this forces the remainder to have degree strictly less than
1; i.e., it must be a constant. So we have p(x) = (x − a)g(x) + r. Substituting in a, we have
0 = p(a) = (a − a)g(a) + r = r. So r = 0, and therefore p(x) = (x − a)g(x). Note that a
consequence of this is that a polynomial cannot have more roots in the field than its degree.

The following lemma tells us the uniqueness of irreducible polynomials up to constants.

Lemma 1. If p(x) is an irreducible polynomial of degree n in F , then there do not exist two
polynomials each of degree less than n in F whose product is divisible by p(x).

Proof. We proceed by contradiction. Assume h(x), q(x) are such that p(x) | h(x)q(x),

max{deg(q(x)), deg(h(x))} < deg(p(x)) = n.

Among all pairs h(x) and q(x), let h(x) be the one with minimal degree. Since p(x) | h(x)q(x), we
have a polynomial k(x) so that

p(x)k(x) = h(x)q(x).

We now apply the division algorithm; we have

p(x) = d(x)h(x) + r(x),

where deg(r(x)) < deg(h(x)). Since p(x) is irreducible, we get as well that r(x) 6= 0. The goal,
then, is to show that r(x) is paired with a polynomial so that f(x) divides their product; in doing
so, we will have a contradiction, since h(x) was assumed to have the smallest degree.

Multiplying by q(x), we have

q(x)p(x) = q(x)d(x)h(x) + q(x)r(x) = k(x)p(x)d(x) + q(x)r(x).

Subtracting, we get then that

q(x)r(x) = p(x)q(x)− k(x)p(x)d(x) = p(x) [q(x)− k(x)d(x)] .

In other words, p(x) | r(x)q(x), but deg(r(x)) < deg(h(x)), which gives a contradiction. �

1.3. Algebraic Elements.

Definition. If E/F is an extension of fields, α ∈ E, then we say that α is algebraic if it is the root
of a non-zero polynomial p(x) ∈ F [x]. In other words, α is algebraic if there exists p(x) ∈ F [x],
p(x) 6= 0, where p(α) = 0.

Consider now the map ϕα : F [x] → E where ϕα(p(x)) = p(α); that is, the evaluation map. If
α ∈ E is algebraic, then we see that there exists a polynomial p(x) where ϕα(p(x)) = p(α) = 0.
Thus, the map ϕα has non-zero kernel iff α is algebraic. Recall that the kernel, Ker(ϕα) = K ⊂ F [x],
forms an ideal. Recall as well that if F is afield, then the ring F [x] is a principle ideal domain, so
we have K = (pα(x)) for some polynomial pα(x) ∈ F [x]. Note that we can make pα(x) monic (by
dividing out the leading coefficient, since we’re in a field) and we have pα(x) is irreducible (we get
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a contradiction otherwise by the division algorithm). We call pα(x) the minimal polynomial. We
formalize the last paragraph in the next definition.

Definition. If E/F is a field extension, the minimal polynomial for α ∈ E in F [x] is the monic
polynomial which generates the kernel of ϕα : F [x]→ E defined by ϕα(p(x)) = p(α).

Note that the minimal polynomial is the polynomial of f(x) of least degree so that f(α) = 0.
This is a consequence of the fact that the pα(x) generates the kernel of the map ϕα; if f(x) is a
polynomial of degree smaller, then pα would divide it, giving us a contradiction.

Minimal polynomials are useful for looking at field extensions.

Theorem 2. Let E/F be an extension of fields. Then α ∈ E is algebraic over F if and only if
(F (α) : F ) <∞.

Proof. ( =⇒ ) : Assume α is algebraic, and let

pα(x) = xn + an−1x
n−1 + · · ·+ a0 ∈ F [x]

be its minimal polynomial. Note that we have F [α] ∼= F [x]/(pα(x)), and since pα(x) is irreducible,
we get F [α] = F (α). The goal, then, is to find a basis for F (α) over F . Note that for all g(x) ∈ F [x],
the division algorithm gives us that

g(x) = q(x)pα(x) + r(x),

where deg(r(x)) < deg(pα(x)) =: n. Evaluating g(α) = ϕα(g(x)), then, we have

g(α) = q(α)pα(α) + r(α) = r(α).

That is,

g(α) = an−1α
n−1 + · · ·+ a1α+ a0.

Thus, the set {1, α, . . . , αn−1} form a spanning set for F (α). We check now that this forms a basis.
Assume now that we have

a0 + · · ·+ an−1α
n−1 = 0,

then this implies that we can form a polynomial

f(x) = a0 + a1x+ · · ·+ an−1x
n−1

where ϕα(f(x)) = f(α) = 0. This is a contradiction if there is an ai 6= 0 for some i, since we have
that pα(x) is the minimal polynomial and this would give us a polynomial of degree smaller.
( ⇐= ): We prove this by contrapositive. Assume that α is not algebraic. Then there is no
polynomial p(x) ∈ F [x] so that p(α) = 0. Recall that an infinite set of elements is linearly
independent if every finite subset of it is linearly independent. Examining the set {αi}i≥0, we see
that every finite subset must be linearly independent, since otherwise we would have a polynomial
which evaluates to 0 at α, contradicting the fact that α is not algebraic. Thus, this forms an infinite
linearly independent set, and so (F (α) : F ) =∞. �

Notice that in the proof of the prior theorem, we’ve established the following result.

Corollary 2. If α ∈ E is algebraic over F , then we have that

(F (α) : F ) = deg(p1(x)).

Proof. In the prior proof, we had that if α is algebraic, then {1, . . . , αn−1} forms a basis for F (α)
over F , where n = deg(p1(x)). This gives the desired result. �

Definition. If E/F is a field extension, an element α ∈ E is called transcendental if it is not
algebraic. In other words, there does not exist a p(x) ∈ F [x] so that p(α) = 0.
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The goal now is to flip this last theorem. That is, we wish to take p(x) ∈ F [x] and find a field
extension E/F where p(x) has a root in E. We can do this by a theorem from Kronecker.

Theorem 3 (Kronecker). If p(x) ∈ F [x] is a polynomial of degree greater than or equal to 1, then
there exists an extension E/F in which p(x) has a root.

Proof. Like before, we assume p(x) is monic; we can do so by dividing out by the leading coefficient.
Applying the division algorithm a finite number of times, we can write

p(x) = p1(x) · · · pk(x),

where pi(x) is monic and irreducible in F [x]. It suffices, then, to construct an extension E/F in
which p1(x) has a root (we can do this same process for all pi(x), 1 ≤ i ≤ k). We remark that
this is easy if p1(x) = x − a; that is, if p1(x) has degree 1. In this case, a is the root, so our field
extension is just F itself.

Assume now that deg(p1(x)) ≥ 2. As suggested in the proof of the last theorem, let’s try
examining E = F [x]/(p1(x)). Recall that irreducible elements form maximal ideals, so (p1(x)) is
maximal, and hence E is a field. Note as well that F ⊂ E, so E constitutes a field extension. It
suffices to then show that E contains a root for p1(x).

Let

α = x+ (p1(x)) ∈ E.
Then we see that E = F (α) = F [x]/(p1(x)), and we observe that p1(α) = 0. Thus, we have that
E/F is an extension which contains a root of p1(x), and hence a root of p(x). �

We remark that, using Corollary 2, we have that the extension constructed in Theorem 3 is
such that

(E : F ) = deg(p1(x)) ≤ deg(p(x)).

A consequence of Kronecker is the following theorem.

Theorem 4. Let σ : F → F ′ be an isomorphism of fields. Let p(x) ∈ F [x] be irreducible,
p′(x) = σ(p(x)) ∈ F ′[x]. Then if E = F (β), where p(β) = 0, and if E′ = F ′(β′), where p′(β′) = 0,
then σ can be extended to an isomorphism σ : E → E′.

Proof. We first remark the following lemma.

Lemma 2. If p(x) ∈ F [x] is irreducible, σ : F → F ′ is an isomorphism of fields, then σ(p(x)) =
p′(x) is also irreducible, where σ : F [x] → F ′[x] is a ring isomorphism defined by σ(x) = x and
extending it linearly.

Proof. Assume for contradiction p′(x) were not irreducible. Then there exists q(x), h(x) with
degrees greater than or equal to 1 such that p′(x) = q(x)h(x). That is, we have

p′(x) =

 n∑
j=0

ajx
j

( m∑
i=0

bjx
j

)
.

Applying σ−1, we get

σ−1(p′(x)) = p(x) = σ−1

 n∑
j=0

ajx
j

( m∑
i=0

bjx
j

) =

 n∑
j=0

σ−1(aj)x
j

( m∑
i=0

σ−1(bj)x
j

)
.

This, however, contradicts the fact that p(x) was irreducible. Hence, we must have p′(x) is also
irreducible. �
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From the proof of Kronecker (Theorem 3), we remark that we have an isomorphism

θ : F (β)→ F [x]/(p(x)),

defined by β 7→ x+ (p(x)). Using the idea in Lemma 2, we get an isomorphism

σ : F [x]/(p(x))→ F ′[x]/(p′(x)).

Finally, we note that we have an isomorphism

θ′−1 : F ′[x]/(p′(x))→ F ′(β′)

defined by x + (p′(x)) 7→ β′. Combining these together, we can extend σ to F (β) → F ′(β′) by
following θ′−1σθ. �

1.4. Splitting Fields.

Definition. Let F be a field, p(x) ∈ F [x] monic. An extension E/F is called a splitting field of
p(x) over F if two conditions are satisfied:

(1) p(x) = (x− α1) · · · (x− αn) in E[x] (the polynomial splits),
(2) E = F (α1, . . . , αn) (it is the minimal extension for which the polynomial splits).

There is one nice observation we can make on splitting fields.

Lemma 3. If E is the splitting field for a field F , then (E : F ) <∞.

Proof. We observed earlier that the number of roots of a polynomial cannot exceed the degree.
Let p(x) be a polynomial of degree n. By Kronecker, we can find a field extension F (α1)/F where
p(α1) = 0. Repeatedly applying it, we have E = F (α1, . . . , αn)/F (α1, . . . , αn−1)/ . . . /F , and
furthermore we see that (F (α1, . . . , αj) : F (α1, . . . , αj−1)) <∞ for all 1 ≤ j ≤ n. By Theorem 1,
we have

(E : F ) =

n∏
j=1

(F (α1, . . . , αj) : F (α1, . . . , αj−1)) <∞.

�

Naturally, we need to explore whether or not splitting fields exist for individual polynomials.
The answer is yes.

Theorem 5. If p(x) ∈ F [x] is a monic polynomial with deg(p) ≥ 1, then there exists a splitting
field E of p(x).

Proof. Factor the polynomial into irreducible factors; that is, we have p(x) = p1(x) · · · pr(x), with
pi(x) ∈ F [x] irreducible for 1 ≤ i ≤ r. Note that r ≤ n = deg(p(x)). We do induction on n − r.
First, if n− r = 0, then this means that the pi(x) are all linear factors, and so p(x) splits already
in F [x]. Hence, a splitting field exists. If n − r > 0, then pi(x) has degree bigger than 1 for
some i. Assume without loss of generality that i = 1 (this is just for notational convenience). By
Kronecker, we construct K = F (α1), where p1(α1) = 0. Notice that p(x) ∈ F [x] ⊂ K[x], and note
that in K[x], we have p1(x) = (x−α1)g1(x). Thus, factoring p(x) in K[x], we see that the number
of irreducible factors must strictly increase. If we have k irreducible factors in K[x], then we note
that k > r (strictly), and hence n − k < n − r. Applying the induction hypothesis, we can find a
splitting field E/K, where

p(x) = (x− α1) · · · (x− αn) in E[x].

Thus, adjoining α1, we have E = K(α2, . . . , αn) = F (α1)(α2, . . . , αn) = F (α1, . . . , αn), so E is a
splitting field of p over F . �
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1.5. Uniqueness of Splitting Fields. Now that we have a splitting field for our polynomial,
the next question to ask is whether it is unique (up to isomorphism, of course; we could just
rearrange variables to keep getting other splitting fields). A preliminary theorem will be extending
isomorphisms of fields to isomorphisms of splitting fields.

Theorem 6. Let σ : F → F ′ be an isomorphism of fields. Let p(x) ∈ F [x] and p′(x) = σ(p(x)) ∈
F ′[x]. Let E/F be a splitting field of p(x) over F , E′/F ′ a splitting field of p′(x) over F ′. Then σ
can be extended to an isomorphism σ; : E → E′.

Note that as a corollary, we have the following.

Corollary 3. If p(x) ∈ F [x], then any two splitting fields of p(x) are isomorphic.

Proof. Take σ : F → F to be the identity and apply the theorem. �

We now prove the theorem.

Proof. Let E be a splitting field of p(x) over F . If f(x) ∈ F [x] is an irreducible factor of p(x), then
E contains a root of f(x). We then prove this based on the number of roots of p(x) which do not
lie in F . First, if all of the roots of p(x) lie in F , so

p(x) = (x− α1) · · · (x− αn)

in F [x], then

p′(x) = (x− α′1) · · · (x− α′n)

in F ′[x], where α′i = σ(αi) ∈ F ′. In this case, σ′ is just σ, and we’re done.
Now, we induct on the number of roots which do not lie in F . Suppose k ≥ 1. Factor p(x) into

it’s irreducible factors, i.e. we examine

p(x) = f1(x) · · · fm(x)

in F [x], where each fi(x) is irreducible. Notice that there must be some fi(x) so that deg(fi(x)) > 1,
since otherwise p(x) splits. Assume for simplicity this is f1(x). Hence, deg(f1(x)) > 1. Applying
σ, we get

p′(x) = f ′1(x) · · · f ′m(x)

in F ′[x] is the decomposition of p′(x) = σ(p(x)) into irreducibles in F ′[x], where we have f ′i(x) =
σ(fi(x)).

By Theorem 4, we have that if α is a root of f1(x) in E and α′ is a root of f ′1(x) in E′,
then σ extends to an isomorphism, say σ1 : F (α) → F ′(α′). Now, note we have F ⊂ F (α) ⊂ E,
F ′ ⊂ F ′(α′) ⊂ E′, so we have that E is a splitting field of p(x) over F (α) and E′ is a splitting field
of p′(x) over F ′(α′). We’ve now reduced the number of roots, so we can hit it with the induction
hypothesis to extend σ1 to an isomorphism σ′ : E → E′ over σ1 : F (α) → F ′(α′), and σ1 extends
σ, so σ′ extends σ. Thus, we have the desired result. �

1.6. Group Characters. Let G be a group written multiplicatively. The goal is to take G = E×

to be the multiplicative group of a field.

Definition. Let F be a field. A homomorphism

σ : G→ F

is called a character of G in F .
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As an aside, this is a 1-dimensional representation of G with image not necessarily in C, but
rather in the field F . Since elements in G have inverses, we note that the image of σ must lie in
F×; otherwise, if σ(a) = 0 for some a, we get σ(x) = 0 for all x ∈ G. To see this, we apply a−1 to
get

σ(1) = σ(aa−1) = σ(a)σ(a−1) = 0,

so for all x ∈ G we have
σ(x) = σ(x1) = σ(x)σ(1) = 0.

In practice, we will consider the embeddings σi : E ↪→ E′ restricted to E×.

Definition. If σ1, . . . , σn : G→ F are characters in F , they are called independent (over F ) if any
relation

a1σ1(x) + · · ·+ anσn(x) = 0 ∀x ∈ G
with coefficients a1, . . . , an ∈ F is trivial; i.e.,

a1σ1(x) + · · ·+ anσn(x) = 0 ∀x ∈ G
implies a1 = · · · = an = 0.

One should note this is similar to linear independence for a vector space.
It turns out we have a powerful result telling us that characters are independent, so long as they

are distinct.

Theorem 7 (Dedekind’s Independence of Characters). If G is a group and σ1, . . . , σn are n distinct
characters of G with values in a field F , then σ1, . . . , σn are independent over F .

Proof. As usual, we induct. For the case n = 1, the result should follow. If we have the relation
a1σ(x) = 0 for all x ∈ G, then choosing the identity, we have a1σ(1) = a1 = 0 [Note: This follows
by our earlier remark since σ : G→ F× is a group homomorphism.]

It turns out the case n = 2 will be of most use to us. Suppose that we have the non-trivial
relation

a1σ1(x) + a2σ2(x) = 0

for all x ∈ G. Notice that we may assume a1, a2 6= 0, since otherwise this reduces to the n = 1 case,
and we have a contradiction immediately. By assumption, σ1 and σ2 are distinct, so σ1(a) 6= σ2(a)
for some a ∈ G. Dividing out by, say, a2, we have

(1)
a1
a2
σ1(x) + σ2(x) = 0 ∀x ∈ G.

Substitute in ax, where x ∈ G is arbitrary. Then we have
a1
a2
σ1(a)σ1(x) + σ2(a)σ2(x) = 0.

Divide out by σ2(a) to get

(2)
a1σ1(a)

a2σ2(a)
σ1(x) + σ2(x) = 0

for all x ∈ G. Subtracting equation (2) from equation (1), we are left with[
a1
a2

(
1− σ1(a)

σ2(a)

)]
σ1(x) = 0 ∀x ∈ G.

However, by assumption, a1, a2, σ1(a), σ2(a) 6= 0, and 1−σ1(a)/σ2(a) 6= 0, so we have a non-trivial
relation, contradicting our n = 1 case.

The case n > 2 follows similarly. Assume the result holds for n−1. Assume as well that we have
a non-trivial relation

a1σ1(x) + · · ·+ anσn(x) = 0 ∀x ∈ G.
9



Like before, we may assume ai 6= 0 for all 1 ≤ i ≤ n, since otherwise this reduces to the n− 1 case,
and we immediately get a contradiction. Dividing out by an and letting bi = ai/an for 1 ≤ i ≤ n−1,
we have

(3) b1σ1(x) + · · ·+ σn(x) = 0 ∀x ∈ G.
Like in the n = 2 case, we use the fact that these are distinct. Notice that there exists an a ∈ G so
that σ1(a) 6= σn(a). Substituting ax into the equation, we get

b1σ1(a)σ1(x) + · · ·+ σn(a)σn(x) = 0 ∀x ∈ G.
Dividing out by σa(x), we are left with

(4) b1
σ1(a)

σn(a)
σ1(x) + · · ·+ σn(x) = 0 ∀x ∈ G.

Substracting equation (4) from (3), we have

b1

(
1− σ1(a)

σn(a)

)
σ1(x) + · · ·+ bn−1

(
1− σn−1(a)

σn(a)

)
σn−1(x) = 0.

We note that

b1

(
1− σ1(a)

σn(a)

)
6= 0,

so we have a non-trivial relation among the σ1, . . . , σn−1, contradicting the induction hypothesis.
Thus, it holds for all n. �

Corollary 4. If E and E′ are two fields and

σ1, . . . , σn : E ↪→ E′

are distinct field embeddings, then σ1, . . . , σn are independent over E′, i.e.,

a′1σ1(x) + · · ·+ a′nσn(x) 6= 0

for a′1, . . . , a
′
n ∈ E′, not all 0, and all x ∈ E×.

Proof. Take G = E×. Then σ1, . . . , σn are all E′ valued characters of G, and hence independent
over E′. �

1.7. Fixed Fields.

Definition. Let σ1, . . . , σn : E ↪→ E′ be distinct embeddings of fields. An element α ∈ E is called
a fixed point of the σi if we have

σ1(α) = · · · = σn(α).

The idea behind fixed points is that if the σi are automorphisms and σ1 is the identity, then
σ1(x) = x and we have σi(x) = x for 1 < i ≤ n. That is, this is an honest fixed point of the set of
automorphisms.

Lemma 4. Let σ1, . . . , σn : E ↪→ E′ be distinct field embeddings. Let F be the set of fixed points
of σ1, . . . , σn. Then F is a subfield of E.

Remark. We call F the fixed field of σ1, . . . , σn.

Proof. First, since these are automorphisms, we see that σi(0) = 0 σi(1) = 1 for 1 ≤ i ≤ n. Thus,
0, 1 ∈ F . It suffices to show pairwise equality, so let’s compare σi to σ1. Then if a, b ∈ F , we see
that

σi(a− b) = σi(a)− σi(b) = σ1(a)− σ1(b) = σ1(a− b),
so

σ1(a− b) = · · · = σn(a− b),
10



and so a− b ∈ F . Thus, (F,+, 0) ⊂ (E,+, 0) is a subgroup. Next, consider a, b 6= 0. Then we see
that

σi(ab
−1) = σi(a)σi(b)

−1 = σ1(a)σ1(b)
−1 = σ1(ab

−1),

and so we have
σ1(ab

−1) = · · · = σn(ab−1),

so (F×, ·, 1) ⊂ (E×, ·, 1) is a subgroup (recall that for a field F , F× is the collection of elements
which are non-zero; in general, F× is the collection of units for F ). Since (F,+, 0) is a group,
(F×, ·, 1) is a group, we get that F is a field. �

Remark. Notice that if there is a single σ1, we trivially that F = E, since σ1(x) = σ1(x) for all
x ∈ E.

From the proof above, we see that F ≤ E is a subfield. As a result, we can look at the extension
E/F . We can’t exactly determine the degree of this extension, however we can get a lower bound.

Theorem 8. If σ1, . . . , σn : E ↪→ E′ are distinct, F the fixed field of σ1, . . . , σn, then (E : F ) ≥ n.

Proof. Suppose for contradiction that (E : F ) = r < n. Then we have a basis of E/F given by
ω1, . . . , ωr. The goal is to contradict Dedekind’s Independence of characters (Theorem 7; since
these are distinct, we must have that they are independent over F (the fixed field) with regards to
the multiplicative groups. We will find a non-trivial relation among them.

We build the system of equations

σ1(ω1)x1 + · · ·+ σ1(ω1)xn = 0

· · ·
σ1(ωr)x1 + · · ·+ σn(ωr)xn = 0.

This system has coefficients σi(ωj) ∈ E′. Since we have that r < n, we see that there is a non-zero
solution; that is, we have βi ∈ E′, 1 ≤ i ≤ n, where not all of the βi are zero. Substituting this in,
then, we get

σ1(ω1)β1 + · · ·+ σ1(ω1)βn = 0

· · ·
σ1(ωr)β1 + · · ·+ σn(ωr)βn = 0.

Let y ∈ E be arbitrary. Since the ωi form a basis, we have that

y =
r∑
1

akωk.

Hence,

σ1(y)β1 + · · ·+ σn(y)βn

= σ1

(
r∑
1

akωk

)
β1 + · · ·+ σn

(
r∑
1

akωk

)
βn

= σ(a1) [σ1(ω1)β1 + · · ·+ σn(ω1)βn] + · · ·+ σ(ar) [σ1(ωr)β1 + · · ·+ σn(ωr)βn]

= σ(a1)(0) + · · ·+ σ(ar)(0) = 0,

where the last equality comes from the observation above. The choice of y was arbitrary, so we have
that for all y ∈ E, σ1(y)β1 + · · · + σn(y)βn = 0; this contradicts Dedekind, since it in particular
holds for all y ∈ E×, and so we cannot have (E : F ) < n. Consequently, (E : F ) ≥ n. �

We remark that the bound is independent of the choice of {σi}ni=1; it is purely a linear algebra
result. This observation gives us the following corollary.
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Corollary 5. Let σ1, . . . , σn ∈ Aut(E), σ1 = idE . Let F ⊂ E be the fixed field of σ1, . . . , σn. Then
we have (E : F ) ≥ n.

1.8. (Optional) Constructions with straight-edge and compass. We diverge from the notes
to discuss a little on straight-edge and compass constructions, following Milne [4]. The idea follows
from the Greeks; upon realizing that irrational numbers exist, they decided to expand Q to a set
of numbers called the constructible numbers.

Definition. A real number is constructible if it can be “constructed” by forming successive inter-
sections of

(1) lines drawn through two points already constructed, and
(2) circles with center a point already constructed and radius a constructed length.

We rewrite these rules in more algebraic terms. Throughout, F is a subfield of R.

Definition. An F -line is a line in R×R through two points in the F -plane. That is, these are the
lines given by equations

ax+ by + c = 0, a, b, c ∈ F.

Definition. An F -circle is a circle in R × R with center an F -point and radius an element of F .
That is, these are the circles given by the equations

(x− a)2 + (y − b)2 = c2, a, b, c,∈ F.

The idea, then, is to start with F0 = Q, and append all the points which lie along a F0-line and
a F0-circle, and then call this new field F1. We then append to F1 the collection of all points which
lie along an F1-line and a F1-circle. Continue this process ad-infinitum.

One immediate issue to this process is whether adjoining all these points still gives us a field.
That is, is F1 still a field so that we can try iterating the process again? The answer, it turns out,
is yes.

Lemma 5 (Lemma 1.35 [4]). (a) If c and d are constructible, then so are c+ d, −c, cd, and c/d
for d 6= 0.

(b) If c > 0 constructible, then so also is
√
c.

Proof. The idea is to first show that we can construct a line perpendicular to a given line through a
given point. Thus, we are given a line L : ax+ by+ c = 0 and we wish to construct a perpendicular
line. Relabeling this in a more familiar package, we have that the line is given by L : y = mx+d so
long as b 6= 0, and if b = 0 we have that it is given by L : x = f for appropriate constants m, d, f .
Given some point (x0, y0), we wish to find a perpendicular line through L : y = mx + d. Notice
that we set r = −m, and solve d = y0 + rx0 to get a perpendicular line. Similarly, a perpendicular
line for L : x = f through the point (f, y0) will be given by L′ : y = f . Thus, we can find a
perpendicular line through a given point (which will remain an F -line).

Next, we wish to show that we can construct a line through a chosen point (x0, y0) parallel to
L : y = mx + d (the other case is the same). Since the line is parallel, it has the same slope, and
so we simply solve y0 = mx0 + d, and this gives us our parallel line through a point.

Thus, we have that we can construct triangles. Furthermore, given some triangle, we can con-
struct a similar triangle using these processes. Appropriate choices of triangles gives us cd and c−1

are constructible. It follows easily that we have c + d, cd−1, and −c are constructible, and so we
get (a).

For (b), construct a clever circle. That is, draw a circle of radius (c+ 1)/2 and center (c+ 1)/2,
and draw a vertical line through the point A = (1, 0) to meet the circle at P . The length AP will
be
√
c. �
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Thus, iterating this process does gives us a field Fn. That is, we have the following:

Corollary 6. F =
⋃
n Fn is a field.

The question, then, is how far do we get iterating this process. Geometrically, the three major
questions for constructible numbers are the following:

(1) Is it possible to duplicate the cube using only lines and circles?
(2) Is it possible to trisect an angle using only lines and circles?
(3) Is it possible to square the circle by straight-edge and compass constructions?

The answer to all of these is no, as we will eventually see.

Lemma 6 (Lemma 1.34 [4]). Let L 6= L′ be F -lines, and let C 6= C ′ be F -circles.

(a) L ∩ L′ = ∅ or consists of a single F -point.
(b) L ∩ C = ∅ or consists of one or two points in the F [

√
e]-plane for some e ∈ F with e > 0.

(c) C ∩ C ′ = ∅ or consists of one or two points in the F [
√
e]-plane for some e ∈ F with e > 0.

Proof. The proof is just solving the simultaneous equations, which will be at most a quadratic
equation with coefficients in F . �

It seems thus far that this has nothing to do with Galois theory. The following theorem connects
to the two concepts.

Theorem 9 (Theorem 1.36 [4]). A number α is constructible if and only if it is contained in a
subfield of R of the form

Q[
√
a1, . . . ,

√
ar],

where the ai ∈ Q[
√
a1, . . . ,

√
ai−1], ai > 0.

Proof. The prior lemma tells us that every constructible number is contained in such a field. On the
other hand, if all the elements of Q[

√
a1, . . . ,

√
ai−1] are constructible, then

√
ai is constructible by

Lemma 5 (b). Applying Lemma 5 (a) gives Q[
√
a1, . . . ,

√
ai] consists of constructible numbers.

Thus, we have the desired result. �

Corollary 7. If α is constructible, then α is algebraic over Q, and (Q[α] : Q) is a power of 2.

Proof. By the prior theorem, a number α is constructible iff it is contained in some Q[
√
a1, . . . ,

√
ar].

Let’s proceed by induction. Assume z ∈ Q[
√
a], where a ∈ Q. Notice that p(x) = x2 − a ∈ Q[x],

and
√
a is a root of this polynomial. Thus,

√
a is algebraic. If

√
a ∈ Q, then we see that p splits to

p(x) = (x−
√
a)(x+

√
a), the degree of the polynomial x−

√
a will be 1, and so by prior we have

that Q[
√
a] ∼= F [x]/(x−

√
a) ∼= Q(

√
a), so the field extension has degree

(Q(
√
a) : Q) = 1 = 20.

If
√
a /∈ Q, we get that p(x) is the minimal polynomial, so by the same reasoning we have that

(Q(
√
a) : Q) = 2.

Assume now that (Q(
√
a1, . . . ,

√
ar−1) : Q) = 2j for some j. We wish to show that ar ∈

Q(
√
a1, . . . ,

√
ar−1) is such that (Q(

√
a1, . . . ,

√
ar−1,

√
ar) : Q) = 2k, where k is either j + 1 or

j. By Theorem 1, we see that

(Q(
√
a1, . . . ,

√
ar−1,

√
ar) : Q) = (Q(

√
a1, . . . ,

√
ar−1,

√
ar) : Q(

√
a1, . . . ,

√
ar−1))(Q(

√
a1, . . . ,

√
ar−1) : Q)

= (Q(
√
a1, . . . ,

√
ar−1,

√
ar) : Q(

√
a1, . . . ,

√
ar−1))2

j .

If
√
ar ∈ Q(

√
a1, . . . ,

√
ar−1), we get that x−√ar is the minimal polynomial, so

(Q(
√
a1, . . . ,

√
ar−1,

√
ar) : Q(

√
a1, . . . ,

√
ar−1)) = 1
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and hence

(Q(
√
a1, . . . ,

√
ar−1,

√
ar) : Q) = 2j .

If
√
ar /∈ Q(

√
a1, . . . ,

√
ar−1), then the minimal polynomial is given by x2 − ar, so we get that

(Q(
√
a1, . . . ,

√
ar−1,

√
ar) : Q(

√
a1, . . . ,

√
ar−1)) = 2,

so

(Q(
√
a1, . . . ,

√
ar−1,

√
ar) : Q) = 2j+1.

�

Using this, we can answer some of our questions.

Corollary 8 (Corollary 1.38 [4]). It is impossible to duplicate the cube by straight-edge and
compass constructions.

Proof. It suffices to consider the unit cube. The goal, then, is to construct a cube with volume 2;
thus, “doubling” the cube. This requires constructing the real root of the polynomial x3−2. Using
Eisenstein, this is irreducible, so we have (Q( 3

√
2) : Q) = 3; thus, it cannot be constructible. �

Corollary 9 (Corollary 1.39 [4]). It is impossible to trisect an angle by a straight-edge and
compass construction in general.

Proof. Consider an angle α. We wish to trisect 3α, which using some trig identities is the same as
finding a solution to

cos(3α) = 4 cos3(α)− 3 cos(α).

Taking α so that cos(α) = 1/2, we see that we have to solve 8x3 − 6x− 1 = 0. This is irreducible,
since if there were a root r = c/d, c | 1, d | 8, and going through the options we see that none of
these are roots. Consequently, (Q(α) : Q) = 3. �

Corollary 10 (Corollary 1.40 [4]). It is impossible to square the circle by straight edge and
compass constructions.

Proof. This is similar to the cube. Consider the circle with radius r. To square the circle, we need to
find x so that x2 = πr2. Taking square roots, we see that x must be such that x =

√
πr. We have π

is transcendental, so
√
π must also be transcendental; consequently, x cannot be constructible. �

1.9. (Optional) Tricks For Irreducibility. In the last section, we used some tricks to determine
irreducibility of polynomials. We formally introduce those here.

Proposition 1 (Proposition 1.11 [4]). Let r ∈ Q be a root of the polynomial

amx
m + · · ·+ a0, ai ∈ Z.

Write r = c/d, with c, d ∈ Z in reduced form. Then c | a0, d | am.

Proof. Notice that

am
cm

dm
+ · · ·+ a0 = 0.

Multiplying throughout by dm, we have

amc
m + am−1c

m−1d+ · · ·+ a0d
m = 0.

Rearranging, we have

amc
m = d(−am−1cm−1 − · · · − a0dm−1).

Hence, d | cmam. Since (c, d) = 1 (since they are in reduced form), we see that d - cm. Thus, d | am.
A symmetric argument gives that c | a0. �
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Proposition 2 (Eisensteins Criterion, Proposition 1.16 [4]). Let

p(x) = amx
m + · · ·+ a0, ai ∈ Z.

That is, p(x) ∈ Z[x]. Suppose there is a prime p such that

• p does not divide am,
• p divides am−1, . . . , a0,
• p2 does not divide a0.

Then p is irreducible in Z[x].

Proposition 3 (Gauss’ Lemma, Proposition 1.13 [4]). Let p(x) ∈ Z[x]. If p(x) factors non-
trivially in Q[x], then it factors non-trivially in Z[x].

Instead of proving it, we make the useful observation.

Corollary 11. If p(x) is irreducible in Z[x], then it is irreducible in Q[x].

Notice that this let’s us extend the power of Eisenstein and the first proposition to Q[x]. Fur-
thermore, the arguments (see [4]) generalize to replacing Z with a UFD and Q with its field of
fractions.

2. Galois Theory (Finite)

2.1. Galois Extensions. We now look at things from the point of view of the underlying field.
Let F ⊂ E be a subfield of E. Let σ ∈ Aut(E) be an automorphism of E.

Definition. We say that σ leaves F fixed if σ|F = id; in other words, σ(x) = x for all x ∈ F .

Lemma 7. Consider the extension of fields E/F . The automorphisms that leave F fixed form a
subgroup of Aut(E).

Proof. Since Aut(E) is a group, it suffices to show that H = {σ ∈ Aut(E) : σ|F = id} is a subgroup
of Aut(E). Notice that the identity is in H, and if σ, τ ∈ H, then we have

στ−1(x) = σ(τ−1(x)) = σ(x) = x,

so στ−1 ∈ H. Hence, it’s a subgroup (so a group on its own right). �

We denote the collection of automorphisms of E that leave F fixed as Gal(E/F ).

Remark. Notice that we have the concept of fixed fields and fields fixed by automorphisms. Note
that these are different; that is, the field fixed by Gal(E/F ) does not necessarily have to be F , but
F will be contained in it.

Throughout, we will let G = Gal(E/F ). Let

EG = {α ∈ E : σ(α) = α∀α ∈ G}.
As observed above, we have F ⊂ EG.

Definition. A (finite) extension E/F is called Galois if the following hold:

(1) (E : F ) <∞,
(2) If G = Gal(E/F ), then F = EG.

Note that Artin calls such extensions normal. Normal in todays context has a different meaning.

Definition. An extension E/F is called normal if it is algebraic and every irreducible p(x) ∈ F [x]
which has a root α ∈ E splits completely in E, i.e., E contains a splitting field of the minimal
polynomial fα(x) ∈ F [x] for every α ∈ E.
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For Galois extensions we have the following result for the degree of the extension.

Theorem 10. Let E be a field, G = {σ1, . . . , σn} ≤ Aut(E) a subgroup. If F = EG, then
(E : F ) = n.

Proof. Note that G is a group, hence, without loss of generality, we have that σ1 = id. Thus, we
have

F = EG = {α ∈ E : σi(α) = α∀σi ∈ G}
is such that (E : F ) ≥ n. It suffices to show that (E : F ) ≤ n. Assume for contradiction that
(E : F ) > n. The goal is to do the same trick as last time. Since (E : F ) > n, there exists
α1, . . . , αn+1 ∈ E that are linearly independent over F . Thus, we can set up a system

n+1∑
1

σj(αi)xi = 0, j = 1, . . . , n.

There are more unknowns than equations, so there exists a non-trivial solution β1, . . . , βn+1. If
the βi ∈ F , we would have that

n+1∑
1

αiβi = 0

is a non-trivial relation (here, using σ1 = id), contradicting the fact that the αi are linearly
independent over F . Thus, the βi /∈ F .

Among all of the non-trivial solutions, we will choose the one which has the least number of
non-zero entries. Reorder so that we have tha the solution is going to be β1, . . . , βr, βi 6= 0 for
i = 1, . . . , r. Notice that r > 1, since otherwise we have

β1σ1(α1) = 0 =⇒ β1 = 0.

Divide all of the entries by βr; label β̃i = βi/βr for 1 ≤ i ≤ r − 1. The system then becomes

r−1∑
1

σj(αi)β̃i + σj(αr) = 0, j = 1, . . . , n.

By what we’ve noticed earlier, we must have that there exists a β̃i ∈ E/F . Without loss of

generality, let’s set it to be β̃1. Then we have a σk so that

σk(β̃1) 6= β̃1.

Now, apply σk to our system; we get the system

r−1∑
1

σk(σj(αi))σk(β̃i) + σk(σj(αr)) = 0, j = 1, . . . , n.

G is a group, so notice that σk · {σ1, . . . , σn} = {σ1, . . . , σn}. Up to relabeling, then, we have the
system

r−1∑
1

σj(αi)σk(β̃i) + σj(αr) = 0.

Substracting this system from the first, we get

r−1∑
1

σj(αi)
[
β̃i − σk(β̃i)

]
= 0.
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Hence, we have that β̃1 − σk(β̃1, . . . , β̃r−1 − σk(β̃r−1) is another solution of our system. By the
choice of σk, we have

β̃1 − σk(β̃1) 6= 0.

This is our contradiction; we have a set which is non-trivial, and which has less non-zero elements,
contradicting the minimality of the solution β1, . . . , βr−1. This gives (E : F ) ≤ n, and so (E : F ) =
n. �

Corollary 12. If G ⊂ Aut(E) is a finite group and F = EG, then G = Gal(E/F ).

Proof. We have that (E : F ) = n = |G|. Suppose that there was a σ ∈ Aut(E) such that σ /∈ G
but σ(a) = a for all x ∈ F . Then F is fixed by n + 1 distinct elements of Aut(E). Notice that
Corollary 5 tells us that (E : F ) ≥ n+ 1, which is a contradiction. �

Corollary 13. Let G1, G2 be finite subgroups of Aut(E) with G1 6= G2. Then

EG1 = F1 6= F2 = EG2 .

Proof. If F1 = F2 = F , then

G1 = {σ ∈ Aut(E) : σ(a) = a for all a ∈ F} = G2.

�

2.2. Separable Extensions. The idea of separable extensions of fields is to connect automor-
phisms of fields to properties of polynomials.

Definition. (i) Let p(x) ∈ F [x]. We call p(x) separable if its irreducible factors do not have
repeated roots in a splitting field.

(ii) If E/F is an extension, an element α ∈ E is called separable over F if it is the root of a
separable polynomial p(x) ∈ F [x]. That is, its minimal polynomial pα(x) is separable.

(iii) The extension E/F is called separable if every α ∈ E is separable over F .

Example. A non-intuitive example might be examining p(x) = (x − 3)2 ∈ Q[x]. The gut feeling
from the definition would be that this is not separable; however, notice that each of the irreducible
factors must not have repeated roots. The irreducible factors here are (x − 3), so there are no
repeated roots to worry about.

Example (Exercise 2.59 [6]). We will prove that, for characteristic 0 fields, we have that every
irreducible polynomial is separable (hence, every polynomial is separable, per our definition). Let
F be a field. Consider the operator

D : F [x]→ F [x],

where if

p(x) =

n∑
i=0

aix
i,

then

D(p(x)) =

n∑
i=1

iaix
i−1.

In other words, this is the formal derivative of a polynomial. Essentially, D is defined via setting

D(x) = 1,

and
D(p(x)q(x)) = D(p(x))q(x) + p(x)D(q(x)),

i.e. its established by the product rule and the power rule, and then linearly extending this operation.
Consequently, D is a linear operator.

We first show the following lemma.
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Lemma 8. p(x) ∈ F [x] is separable if and only if gcd(p(x), D(p(x))) = 1 (1 here is the multiplicative
identity in F ).

Proof. Assume first p(x) is separable. Let α be a root of p(x). Then we have that (α−x)h(x) = p(x)
for some h(x) with h(α) 6= 0 (this holds since the polynomial is separable; we have no repeated
roots). Taking the formal derivative and applying the product rule, we get

(α− x)D(h(x))− h(x) = D(p(x)).

Plugging in x = α, we have

−h(α) = D(p(α)) 6= 0,

so α is not a root of D(p(x)). This holds for all roots of p(x), so p(x) and D(p(x)) do not share a
root; notice this forces their gcd to be 1.

Assume p(x) is not separable. Let α be a repeated root. Thus, we have p(x) = (α − x)2h(x),
where h(α) may or may not be zero (it will not matter). Applying the product rule here gives us

D(p(x)) = 2(α− x)h(x) +D(h(x))(α− x)2,

which we see will be zero at x = α. Thus, they share a root, and so their gcd is not 1. �

We can now deduce the following.

Corollary 14. For fields of characteristic 0, every polynomial is separable.

Proof. Without loss of generality, it suffices to consider irreducible polynomials (per the definition).
By the lemma, it suffices to show that if p(x) is irreducible, then gcd(p(x), D(p(x))) = 1. Assume
otherwise; that is, gcd(p(x), D(p(x))) = h(x) 6= 1. Since p(t) is irreducible, this implies that
h(x) = rp(x) for some element r, and we have rp(x) | D(p(x)); that is, p(x) | D(p(x)). Notice that
deg(D(p(x))) < deg(p(x)), so the only way this can happen is if D(p(x)) = 0. In a characteristic
0 field, the only way that the derivative can be 0 is if the polynomial was constant; this tells
us that irreducible polynomials are separable, since by definition they are non-constant. Hence,
all irreducible factors of a polynomial will be separable, so every polynomial is separable in a
characteristic 0 field. �

We also get for free a classification of irreducible non-separable polynomials in fields of charac-
teristic p.

Corollary 15. Let F be a field of characteristic p 6= 0. If p(x) ∈ F [x] is irreducible and not
separable, then it is of the form q(xp) = p(x) for some q(x) ∈ F [x].

Proof. Assuming p(x) ∈ F [x] is irreducible and not-separable, we have that the lemma tells us
gcd(p(x), D(p(x))) 6= 1. From our observation in the prior corollary, we see that this tells us that
D(p(x)) = 0. Notice that, for the polynomial p(x) to be non-constant, we need

D(p(x)) =

n∑
i=1

iaix
i−1 = 0.

This implies p | iai for 1 ≤ i ≤ n. Since p is prime, we have that this implies p | i or p | ai. If p | ai,
this tells us that the coefficient was 0 all along, and so there was nothing to differentiate. Thus, we
must have p | i, so that p(x) is of the form

p(x) =

n∑
i=1

aix
kip =

n∑
i=1

ai(x
p)ki ,
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where the ki are some integers. Thus, setting

q(x) =

n∑
i=1

aix
ki ,

we have p(x) = q(xp). �

Notice the relation here with the Frobenius endomorphism.

We now get the relation between automorphisms of E and the splitting of polynomials in the
following theorem.

Theorem 11. We have that E/F is a finite Galois extension if and only if E is the splitting field
of a separable polynomial p(x) ∈ F [x].

Proof. ( =⇒ ): We start with a lemma.

Lemma 9. If E/F is a finite Galois extension, then E/F is separable and normal.

Proof. By assumption, we have (E : F ) <∞ and G = Gal(E/F ) is such that F = EG. There are
two things we wish to show:

(1) E/F is algebraic and every irreducible p(x) ∈ F [x] which has a root α ∈ E splits completely
(normal).

(2) For all α ∈ E, there exists a separable polynomial p(x) ∈ F [x] so that p(α) = 0 (separable).

We do both simultaneously. Write out G = {σ1, . . . , σn} with σ1 = id. Let α ∈ E. Let {α1, . . . , αn}
be the orbit of α underG, i.e. αi = σi(α) (note that we may have repeats here). Eliminating repeats,
we are left with the set {α1, . . . , αr}. Since G is a group, the αi are permuted among each other
by G. Therefore, the polynomial

f(x) = (x− α1) · · · (x− αr)
is fixed by G. Notice that this means that

σi(f(x)) = σi(x− α1) · · ·σi(x− αr) = (x− α1) · · · (x− αr) = f(x).

Writing out the coefficients of f , we see that this implies that the coefficients are fixed under the
σi. Since F = EG, this tells us that the coefficients are in F ; that is, we have f(x) ∈ F [x].

Let g(x) ∈ F [x] be such that it has α as a root. Writing out g, we have

g(x) =

n∑
i=0

aix
i.

Applying σj to g(α), we have

0 = σj(g(α)) =

n∑
i=0

aiσj(α)i =

n∑
i=0

aiα
i
k = g(αk),

where αk ∈ {α1, . . . , αr}. Thus, we have that g has the αk as roots as well, so f(x) | g(x). Notice
this applies for any polynomial which has α as a root, so f(x) must be the minimal polynomial
for α. This also forces f to be irreducible. Since the minimal polynomial for every α is separable
and splits completely, this tells us that E/F satisfies (1) and (2). Thus, E/F is separable and
normal. �

Going back to the theorem, suppose E/F is a finite Galois extension. Let ω1, . . . , ωt be a basis
of E/F . Let fi(x) ∈ F [x] be the separable irreducible polynomial having ωi as a root. Taking
f(x) = f1(x) · · · ft(x) ∈ F [x], we see that this is separable (since each irreducible component is
separable) and E is the splitting field of f since each fi splits completely by normality. Thus, we
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have the forward direction.
(⇐= ): Let E be the splitting field of a separable polynomial p(x) ∈ F [x]. The goal is to construct
the Galois group. First observe that if all of the roots of p(x) are in F , then we are done by setting
E = F and G = {id}.

We induct now on the number of roots of p(x) which do not lie in F . Let n denote this number.
Suppose that p(x) has n > 1 roots in E \F , but for all pairs of field K ⊂ E with fewer than n roots
of p(x) outside of K, the proposition holds. That is, for all fields F ⊂ K ⊂ E where p(x) has fewer
than n roots outside of K, we get that K/E is a finite Galois extension. Write p(x) = p1(x) · · · pr(x)
as the factorization of p(x) into irreducible factors in F [x]. Notice that one of them must have
degree greater than 1, since otherwise all of the roots belong to F , reducing us to our trivial case.
Without loss of generality, let’s take this to be the first factor; suppose deg(p1) = s > 1. If α1 is a
root of p1(x), then F ⊂ F (α1) ⊂ F , and (F (α1) : F ) = s = deg(p1) (by Corollary 2).

Now, E/F (α1) is still the splitting field of p(x) = 0, and the number of roots of p(x) outside
of F (α1) is going to be less than n, since α1 ∈ F (α1). Therefore, the theorem holds for F (α1),
and so we have E/F (α1) is a finite Galois extension. Let G1 = Gal(E/F (α1)). Since p9x) was
separable, the roots α1, . . . , αs of p1(x) are distinct in E. For each root αi, there exists a σi so that
σi(α1) = αi. Thus, σi : F (α1)→ F (αi) is a field isomorphism leaving F invariant. We can extend
the σi uniquely to an element of Aut(E), which we’ll also denote by σi. This gives us a collection
{σ1, . . . , σs} ⊂ Aut(E) which leaves F fixed.

Let G = Gal(E/F ) = {σ ∈ Aut(E) : σ(a) = a for all a ∈ F}. Suppose θ ∈ EG, the fixed field
of G. The goal is to show θ ∈ F , giving us EG = F . Notice that Gal(E/F (α1)) = G1 ⊂ G =
Gal(E/F ). Due to this, we have the relation that EG ⊂ F (α1); that is, if θ is fixed by all of the
σ ∈ G, then it is in particular fixed by all the σ ∈ G1, and since it’s a Galois extension we see that
θ ∈ EG1 = F (α1).

Since θ ∈ F (α1), we have that

θ =
s−1∑
i=0

ciα
i
1, ci ∈ F.

Applying σi ∈ G, we have

σi(θ) = θ = c0 + c1αi + · · ·+ cs−1α
s−1
i ∈ F (αi).

We claim now that the polynomial

g(x) = (c0 − θ) + c1x+ · · ·+ cs−1x
s−1 ∈ F [x]

has α1, . . . , αs for roots. To see this, notice that

g(αi) = (c0 − θ) + c1αi + · · ·+ cs−1α
s−1
i

=
(
c0 −

[
c0 + c1αi + · · ·+ cs−1α

s−1
i

])
+ c1αi + · · ·+ cs−1α

s−1
i = 0.

Notice this is more roots than the degree of the polynomial, which is impossible unless g(x) = 0.
So we get g(x) = c0 − θ = 0; that is, c0 = θ. So θ ∈ F . The choice of θ was arbitrary, and thus we
get EG ⊂ F ; apriori, we have F ⊂ EG, so EG = F . Thus, E/F is Galois, since the degree of the
extension was finite by assumption. �

Definition. If E/F is the splitting field of a separable polynomial f(x) ∈ F [x], we will call
Gal(E/F ) = Gf the Galois group of the polynomial f(x).

Remark. Note that we can extend Theorem 11 to the following.

Theorem 12 (Theorem 3.10 [4]). For an extension E/F , the following are equivalent:

(a) E is the splitting field of a separable polynomial f ∈ F [x].
(b) E/F is a finite Galois extension.
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(c) F = EG for some finite group G of automorphisms of E.
(d) E is normal, separable, and finite over F .

Proof. We showed in Theorem 11 (a) ⇐⇒ (b). Notice Lemma 9 establishes (b) =⇒ (d), and
we have (b) ⇐⇒ (c) by definition. We only need to show (d) =⇒ (a).
(d) =⇒ (a): Since (E : F ) < ∞, it is generated over F by a finite number of elements, say
E = F [α1, . . . , αm], where αi ∈ E. Taking fi to be the minimum polynomial over the αi, and f to
be the product of the fi, we get that each fi splits in E by normality, so E is the splitting field of
f . Notice f is separable, since E is separable over F , so each of the fi are separable. �

Thus, we have three different ways of defining a finite Galois extension.

2.3. Fundamental Theorem of Finite Galois Theory. We are now at the fundamental theo-
rem for finite Galois theory.

Theorem 13 (Fundamental Theorem for Finite Galois Theory). Let p(x) ∈ F [x] be separable,
E/F the splitting field of p(x), and G = Gal(E/F ) = Gp. Then we have the following:

(1) Every intermediate field F ⊂ K ⊂ E is the fixed field EH = K for some subgroup H < G.
Distinct subgroups have distinct splitting fields, so

K = EH and H = Gal(E/K).

(2) K/F is Galois if and only if H E G. That is, K/F is Galois if and only if EH = K and H
is a normal subgroup of G. In this case, we get

Gal(K/F ) ∼= G/H.

(3) If F ⊂ K ⊂ E and H = Gal(E/K), then (K : F ) = (G : H) and (E : K) = |H|.

Proof. (1) If F ⊂ K ⊂ E, then E is still the splitting field of p(x) ∈ F [x] ⊂ K[x] over K, p(x)
a separable polynomial by Theorem 12. Thus, invoking Theorem 12 again, we get that
E/K is Galois. If H = Gal(E/K), then we note that H < G and K = EH . To see that
H < G, we have that if σ ∈ H, then σ fixes K, and F ⊂ K, so σ also fixes F , and hence
σ ∈ G. To see that EH = K, we use Theorem 12.

Remark. An aside now is that we’ve seen that distinct subgroups of G have distinct fixed
fields (Corollary 13). So there is an order reversing bijection between intermediate fields
and subgroups of the Galois group.

(2) Now consider an intermediate field F ⊂ K ⊂ E and H = Gal(E/K). If σ ∈ Gal(E/F ) = G,
then σ(E) = E and σ(K) ⊂ σ(E) = E is another intermediate field (possibly still K). Thus,
we have the following:

E E

K σ(K)

F

σ

σ

If τ ∈ H = Gal(E/K), then τ(K) = K and στ(K) = σ(K). So elements in the same coset
in G/H give the same conjugate intermediate field. Next, if σ1, σ2 lie in distinct cosets of
G/H, then σ1 and σ2 give distinct isomorphisms of intermediate fields σ1(K) and σ2(K).
This is due to the fact if σ1(a) = σ2(a) for all a, then σ−12 σ1(a) = a for all a ∈ K, and so

σ−12 σ1 ∈ H. That is, σ1 ∈ σ2H.
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The next thing to note is that if K1 and K2 are two intermediate fields and σ : K1 → K2

over F , then since E is still the splitting field of p(x) over K1 and K2, any isomorphism
over F extends to an isomorphism of the splitting field E over F ; i.e., this isomorphism σ
is an element of Gal(E/F ). So it gives us a diagram

E E

K K

F

σ

σ

Together, these give that the distinct embeddings σ : K ↪→ E all come from restricting
σ ∈ Gal(E/F ). The number of such embeddings then is going to be the number of cosets;
i.e., (G : H) = |G/H|.

With these, we can start to prove (2). Suppose K/F is Galois. Then we know that

|Gal(K/F )| = (K : F ). For the converse, let F ′ = KGal(K/F ). Then F ⊂ F ′ ⊂ K. But we
have

(K : F ′) = |Gal(K/F )|,
so we get that F = F ′. Hence, K is Galois over F . Thus, K is Galois over F if and only if
(K : F ) = |Gal(K/F )|. But

|Gal(K/F )| = (K : F ) = (G : H) = |G/H|,

or its equal to the number of distinct embeddings of K into E. Thus, the number of distinct
embeddings is equal to the number of isomorphisms, and so we have that σ(K) = K fo rall
σ ∈ Gal(E/F ). So

K/F is Galois ⇐⇒ |Gal(K/F )| = (K : F )

⇐⇒ σ(K) = K for all σ ∈ Gal(E/F )

⇐⇒ σHσ−1 = H for all σ ∈ Gal(E/F )

⇐⇒ H E G.

Note that the number of distinct embeddings is isomorphic to G/H, the number of distinct
automorphisms of K fixing F is Gal(K/F ), and so we get Gal(K/F ) ∼= G/H.

(3) Given (1), we see that

(E : K) = |Gal(E/K)| = |H|
and

(K : F ) = (E : F )/(E : K) = |G|/|H| = |G/H| = (G : H).

�

We remark that if F ⊂ K ⊂ E with K/F Galois, then we have the field diagrams

E

K

F

H=Gal(E/K)

G=Gal(E/F )

G/H=Gal(K/F )

22



3. Finite Fields

3.1. Preliminaries. We start with the following.

Theorem 14. Let F be a field, S a finite subgroup of F×. Then S is a cyclic group.

Proof. We use the structure theorem for finitely generated abelian groups, which says that if G is
a finitely generated abelian group, then

G ∼= C1 ⊕ · · · ⊕ Ct,
where each Ci is cyclic, |Ci| divides |Ci+1|, and t is the minimum number of generators of G. One
consequence of this is that if G is a finite abelian group and m = |Ct|, then every element of G has
order dividing m. So since S is a finite abelian group, we have

S ∼= C1 ⊕ · · · ⊕ Ct,
and the exponent of S is m = |Ct|. Thus, every element of S satisfies the following polynomial
relation:

xm − 1 = 0.

Let n = |S|. Since xm − 1 can have at most m roots, m ≥ n. Since the order of any element of
S divides |S| = n, we have m | n, so m ≤ n. Therefore, m = n. Since Ct = 〈α〉 has order m,
S = 〈α〉 = Ct. �

From this, we get a nice fact on finite fields.

Corollary 16. If F is a finite field, F× is the set of units, then F× is cyclic.

3.2. The Characteristic of a Field. Now, let F be an arbitrary field. We have a map

φ : Z→ F

where
φ(n) = (1 + 1 + · · ·+ 1)

n times. We consider the two cases here:

Case 1: If Ker(φ) = 0, then φ : Z → F and Z ⊂ F . The field of fractions is the smallest field
containing a ring, so we get that Q ⊂ F as well. In this case, the field has characteristic 0.

Case 2: If Ker(φ) 6= 0, then since Im(φ) ⊂ F is a domain, Ker(φ) = pZ for some prime p. Thus,

φ : Z/pZ ↪→ F.

In this case, the field has characteristic p > 0.

We denote the characteristic of a field F by Char(F ). Note that if Char(F ) = p, then for any
α ∈ F , we have that

p · α = (α+ α+ · · ·+ α) = α(1 + 1 + · · ·+ 1) = α · 0 = 0.

We can make a general statement on the characteristic of a finite field.

Theorem 15. If F is a finite field, then Char(F ) = p for some prime p, and Z/pZ = Fp ⊂ F .

Note here that Fp is the field with p elements.

Proof. Consider φ : Z → F . We have that Ker(φ) 6= 0, since otherwise we have that |F | = ∞.
Recall that the kernel of a ring homomorphism is a prime ideal, so we have that Ker(φ) = pZ for
some prime p. Thus, we have that the characteristic is p for some prime p. �

Corollary 17. If F is a finite field, then |F | = pν = q for some ν ≥ 1.

Proof. F is a finite dimensional vector space over Fp. If (F : Fp) = ν, then |F | = |Fp|ν = pν . �
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Note that if F is a finite field, then it is canonically the splitting field of a polynomial.

Theorem 16. Let F be a finite field of characteristic p. Then |F | = q = pν for some ν ≥ 1. We
have that F is the splitting field of

xq − x
over Fp.

Proof. Note that, since F× is cyclic of order q − 1, we get that

xq−1 − 1 = 0

for all x ∈ F×. Hence,

xq−1 − 1 =
∏
a∈F×

(x− a).

Appending x, we get

xq − x = x(xq−1 − 1) =
∏
a∈F×

(x− a) · (x− 0) =
∏
a∈F

(x− a).

So if Fp ⊂ F is the prime field generated by 1, then F is the splitting field of xq − x over Fp. �

Corollary 18. If |F | = q = pν , then F = {a : a is a root of xq − x = 0}.

Corollary 19. Any two finite fields of the same order are isomorphic.

Proof. Let |F | = |F ′| = q. Then if Fp and F′p are their prime fields, then Fp ∼= F′p. F is the splitting
field of xq − x over Fp, F ′ is the splitting field of xq − x over F′p, and Theorem 6 gives us that
F ∼= F ′. �

3.3. Separability and Differentiation. We’re back to letting F be any field again. If f(x) =
a0 + · · ·+ anx

n ∈ F [x], we can define its formal derivative as

f ′(x) = a1 + 2a2x+ · · ·+ nanx
n−1.

Note that we have the following:

(1) (p(x) + q(x))′ = p′(x) + q′(x),
(2) (p(x) · q(x))′ = p′(x)q(x) + p(x)q′(x),
(3) (pn(x))′ = npn−1(x)p′(x).

The formal derivative gives us a practical test for a polynomial to have repeated roots. For
irreducible polynomials, then, we have a test for separability.

Theorem 17. Let f(x) ∈ F [x]. Then the following are equivalent:

(i) f(x) has repeated roots.
(ii) In a splitting field E of f , f(x) and f ′(x) have a common root.
(iii) gcd(f, f ′) > 1 in F [x].

Proof. We showed the equivalence of (i) ⇐⇒ (iii) in Lemma 8. It suffices to show (i) ⇐⇒ (ii),
then. Let α be a root of f(x) = 0 in E. Suppose the multiplicity of α is k, so

f(x) = (x− a)kq(x)

in E[x], q(a) 6= 0. Using the product rule, we get

f ′(x) = (x− a)k−1
[
(x− a)q′(x) + kq(x)

]
.

If k ≥ 1, then α is a root of f ′(x) of multiplicity k − 1. If k = 1, then it’s not a root. So we have
(i) ⇐⇒ (ii). �

24



Recall Corollary 14 and Corollary 15, which told us that in Char(F ) = 0, we have that every
polynomial is separable, and if Char(F ) = p then things were afoot. This leads us to the definition
of perfect fields.

Definition. A field F is perfect if every irreducible polynomial f(x) ∈ F [x] is separable.

Note then that the Corollary we proved was that if Char(F ) = 0, then F is perfect. A more
surprising result is the following.

Theorem 18. If F is a finite field, then F is perfect.

Proof. We show first the following.

Lemma 10. A field F is perfect if and only if it has characteristic 0 or it has characteristic p and
F p = F .

Proof. ( =⇒ ): Assume that the field F is perfect and Char(F ) = p > 0. Assume as well (for
contradiction) that F p 6= F . Since F p 6= F , there exists a r ∈ F \ F p. Examine the polynomial
p(x) = xp−r ∈ F [x]. In the splitting field for this polynomial, we see that it splits as p(x) = (x−t)p,
where t is such that tp = r. We claim that the polynomial is irreducible in F [x]. Since it splits
as (x − t)p, we see that any monic non-trivial factor will be of the form (x − t)m, 1 ≤ m ≤ p − 1.
Expanding this with the binomial theorem, we have

(x− t)m =
m∑
j=0

(
m

j

)
xj(−t)m−j .

If this were in F [x], we have that
(
m
j

)
(−t)m−j ∈ F for 0 ≤ j ≤ m. Examining the m− 1 coefficient,

we get that this implies that −mtm−1 ∈ F for 1 ≤ m ≤ p − 1. Since m 6= 0, we get that
m ∈ F×p ⊂ F×, which then forces t ∈ F . This means that r ∈ F p, which is a contradiction. Since
the field is perfect, though, we must have that its separable, and thus we have the contradiction.
( ⇐= ): Assume that it is not perfect; in other words, Char(F ) = p > 0 and there is a separable
irreducible polynomial, say p(x) ∈ F [x]. By what we’ve established, this happens if and only if
p′(x) = 0, and so p(x) is a polynomial of the form p(x) = q(xp), where q(x) ∈ F [x]. Writing it out
explicitly, we have

p(x) = a0 + a1x
p + · · ·+ anx

np.

If F p = F , we have that ai = bpi for some bi ∈ F , so

p(x) = bp0 + (b1x)p + · · ·+ (bnx
n)p.

Notice that

(b0 + b1x+ · · ·+ bnx
n)p = bp0 + (b1x)p + · · ·+ (bnx

n)p = p(x)

by the binomial theorem. This contradicts the fact that f(x) is irreducible, so we cannot have
F p = F . Thus, we’ve shown that if Char(F ) = 0 or if Char(F ) = p > 0 and F p = F , then the field
is perfect. �

By this lemma, it suffices to show that if F is a finite field of characteristic p, then F p = F .
Notice that the map φ : F → F given by φ(x) = xp is injective (since if φ(x) = φ(y), we have
xp = yp, so x = y). Since F is finite, and we have an injective linear map between fields, we see
that this forces φ to be an isomorphism, so φ(F ) = F p = F . �
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4. Connected Topics

4.1. Cyclotomic Fields. We obtain cyclotomic fields from a base field F by adjoining roots of
unity. One reason to study cyclotomic fields is that they are good sources of abelian extensions,
where we define abelian extensions as extensions with abelian Galois group. A theorem of Kronecker
and Weber says that if the base field is Q, then every abelian extension of Q is a subfield of a
cyclotomic field.

Let F be any field and consider the polynomial

p(x) = xn − 1 ∈ F [x].

If n is not divisible by the characteristic of the field, then xn − 1 has no repeated roots, since
nxn−1 is not 0 (since n is not divisible by p, and this only has x = 0 as a root. So we get
gcd((xn − 1), D(xn − 1)) = 1 and xn − 1 is separable over F . From here on, we will assume
gcd(n, p) = 1.

Let E/F be the splitting field of xn − 1. We will call E the nth cyclotomic field over F . Since
xn − 1 is separable, E/F is a Galois extension. The set of roots of xn − 1, denoted by S, forms a
finite multiplicative subgroup of E×. To see this, note that 1 ∈ S, and let a, b ∈ S. The goal is to
show that ab ∈ S. Notice that we have

an = 1, bn = 1, (ab)n − 1 = anbn − 1 = 1− 1 = 0,

so ab ∈ S. Thus, it is cyclic by Theorem 14. Let ζn be any generator of this group. We call ζn a
primitive nth root of 1 (or of unity) in E, and we have E = F (ζn).

Theorem 19. The Galois group Gal(E/F ) is abelian. If n = q is a prime (not Char(F )), then
Gal(E/F ) is cyclic.

Proof. Let ζ = ζn so that E = F (ζ). If σ ∈ Gal(E/F ), then σ(ζ) is once again a root of xn− 1. So
there exists an nσ ∈ N so that σ(ζ) = ζnσ , with 1 ≤ nσ < n. If τ ∈ Gal(E/F ), then also

τσ(ζ) = τ(ζnσ) = (τ(ζ))nσ = ζnτnσ ,

so nτσ = nτnσ modulo n. Thus, we have a map σ 7→ nσ, and this gives us a homomorphism
Gal(E/F ) → (Z/nZ)×. Note that this is injective, since if σ 6= τ , then σ(ζ) 6= τ(ζ), so nσ 6= nτ .
Therefore, Gal(E/F ) is isomorphic to a subgrpup of (Z/nZ)×, and hence it must be abelian.

Note that if n is prime, then (Z/nZ)× is cyclic, so that Gal(E/F ) ≤ (Z/nZ)× is also cyclic. �

4.2. Noether’s Equations. Let E be a field, G ⊂ Aut(E) be a finite subgroup. Let σ 7→ ασ be
a map G→ E×. The set of elements {ασ : σ ∈ G} is called a solution to Noether’s equations if

ασ · σ(ατ ) = αστ

for all σ, τ ∈ G. We have the following criteria to determine whether something is a solution to
Noether’s equations.

Theorem 20 (Speiser). The set {ασ : σ ∈ G} is a solution to Noether’s equations iff there exists
β ∈ E× such that

ασ =
β

σ(β)

for all σ ∈ G.

Proof. ( =⇒ ): Assume that {ασ : σ ∈ G} is a solution to Noether’s equations. Since the au-
tomorphisms τ ∈ G are linearly independent over E, by Dedekind’s independence of characters
(Theorem 7), and the ατ 6= 0, then there exists γ ∈ E× such that∑

τ∈G
αττ(γ) 6= 0.
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Let β be this element, i.e.,

β =
∑
τ∈G

αττ(γ) 6= 0.

Let σ be any element of G. If we apply σ to β, we have

σ(β) =
∑
τ∈G

σ(ατ )στ(γ).

If we multiply by ασ, we obtain

aσσ(β) =
∑
τ∈G

ασσ(ατ )στ(γ).

By Noether’s equations, we have that ασ(σ(ατ )) = αστ , so we replace this to get

ασσ(β) =
∑
τ∈G

αστστ(γ).

Notice that σG = G, so we can rewrite this as

ασσ(β) =
∑
τ∈G

αττ(γ) = β.

Dividing by σ(β), we have

aσ =
β

σ(β)
.

(⇐= ): If we have a β ∈ E× such that

ασ =
β

σ(β)

for all σ ∈ G, then we see that

ασ · σ(ατ ) =
β

σ(β)
· σ
(

β

τ(β)

)
=

β

σ(β)
· σ(β)

στ(β)
=

β

στ(β)
= αστ .

�

Remark. In terms of group cohomology, Speiser’s theorem says that H1(G,E×) = 1. In other
words, every 1-cocycle is a 1-coboundary.

We have an interesting situation when the ασ actually live in the fixed field F = EG of G. In
this case, let χ : G→ F× be given by χ(σ) = ασ, with the {ασ} solutions to Noether’s equations.
We claim that χ is a character of G with values in F×, since

χ(στ) = αστ = ασσ(ατ ) = ασατ = χ(σ)χ(τ),

where we critically use that F = EG to deduce σ(ατ ) = ατ . Going backwards, we get that any
character χ : G→ F× with F = EG defines a solution to Noether’s equations.

Combining this observation with Speiser’s Theorem, we obtain the first half of the following
theorem.

Theorem 21. Let E/F be a Galois extension, G = Gal(E/F ). Then for each character χ : G →
F×, there exists β ∈ E× such that

χ(σ) =
β

σ(β)
,

and conversely, if β/σ(β) ∈ F for all σ ∈ G, then χβ(σ) = β/σ(β) is a character of G.
Moreover, if r is the least common multiple of the orders of σ ∈ G, then βr ∈ F .
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Proof. Everything before the moreover has been shown. Thus, we just need to show that βr ∈ F ,
where β defines a character χ as above. Noting that F = EG, we just need to show that for all
σ ∈ G, σ(βr) = βr. Notice that

βr

σ(βr)
=

(
β

σ(β)

)r
= χ(σ)r = χ(σr) = χ(e) = 1,

so βr = σ(βr) for all σ ∈ G. Hence, βr ∈ F . �

4.3. Kummer Theory. Kummer theory provides us with descriptions of field extensions which
are obtained by adjoining nth roots. So Kummer theory actually gives us a characterization of
abelian extensions in the presence of sufficient roots of unity.

Let F be a field containing n distinct nth roots of 1. Let µn(F ) denote the group of distinct nth
roots of 1 in F .

Definition. A Kummer extensions E of F is the splitting field of a polynomial

f(x) = (xn − a1) · · · (xn − ar),

with a1, . . . , ar ∈ F . In other words,

E = F ( n
√
a1, . . . , n

√
ar).

Note that since F contains n distinct nth roots of 1, label these ε1, . . . , εn, then

xn − ai =
n∏
j=1

(x− εjαi),

where αi ∈ E with αni = ai. Hence, f(x) is separable, so E/F Galois extension, and we an realize
E = F (α1, . . . , αr).

Let σ ∈ G = Gal(E/F ). Then σ is completely determined by its action on the αi, and

σ(αi) = εi,σαi,

since σ(αi) is also a root of xn − ai = 0. If both σ, τ ∈ G, then for each αi we have

τσ(αi) = τ(εi,σαi) = εi,στ(αi) = εi,σεi,ταi

= εi,τ εi,σαi = στ(αi).

Hence, σ and τ commute on the generators of E/F , and hence Gal(E/F ) is abelian.
Suppose σ ∈ G. Then for each αi, we have

σ(αi) = εi,σαi

σ2(αi) = ε2i,σαi

...

σk(αi) = εki,σαi.

Thus, if εi,σ has order ni,σ in the group µn(F ), then σni,σ(αi) = αi. Since εi,σ ∈ µn(F ), a group of
order n, we have that ni,σ | n. Therefore,

ord(σ) = lcmi{ni,σ} = mσ, mσ divides n.

If we let m = lcmσ∈G{mσ}, then m also divides n. This is the exponent of G by definition. Thus,
we have proven the following result.
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Theorem 22. If F contains n distinct nth roots of 1 and E is a Kummer extension of F , i.e., a
splitting field of a polynomial

f(x) = (xn − a1) · · · (xn − ar)
with ai ∈ F , then

(a) E/F is a Galois extension.
(b) E/F is abelian (that is, Gal(E/F ) is an abelian group).
(c) Gal(E/F ) has exponent m dividing n.

As a corollary, we have the following.

Corollary 20. Let q be a prime and suppose F contains q distinct qth roots of 1. Let E be the
splitting field of xq−a with a ∈ F . Then either E = F and xq−a splits in F , or xq−a is irreducible
and Gal(E/F ) is cyclic of order q.

Proof. This is a consequence of (c) in the above theorem. We have that Gal(E/F ) has exponent
dividing the prime q. So it is either 1, in which case Gal(E/F ) is trivial and E = F , or it is q, in
which ase (E : F ) = q, forcing xq − a to be irreducible. �

The interesting part of the above result is that it actually completely characterizes Kummer
extensions. So an extension is Kummer iff (a), (b) and (c) hold. That is, we have the following.

Theorem 23. Let E/F be a field extension. We have E is a Kummer extension if and only if

(a) E/F is a Galois extension.
(b) E/F is abelian.
(c) Gal(E/F ) has exponent m dividing n.

The goal will be to prove this theorem.
From here on out, we assume

• E/F is a Galois extension with Gal(E/F ) abelian.
• If m is the exponent of Gal(E/F ), then F contains m distinct mth roots of 1.

Let µm(F ) denote the group of mth roots of 1 in F and let G = Gal(E/F ). Let

Ĝ = {χ : G→ µm(F ) ⊂ F×}
be the set of characters of G with values in µm(F ). Note that since G has exponent m, any character
of G with values in F× must take values in µm(F ).

Claim 1. Since m = exp(G), the exponent of G = Gal(E/F ), Ĝ ∼= G. Moreover, for any σ ∈ G,

σ 6= 1G, there exists a χ ∈ Ĝ such that χ(σ) 6= 1F .

Proof. We drop the subscripts for G and F for the identity, since it should be clear from context
which we are talking about.

We are assuming Gal(E/F ) = G is abelian, so we can invoke the structure theorem for finite
abelian groups to get

G ∼= C1 × · · · × Ct
where Ci are cyclic groups of order mi, with m1 | m2 | · · · | mt = m. Let σi denote the generator
of Ci. From this, we see that any σ ∈ G can be written as

σ = σν11 · · ·σ
νt
t ,

with νi (mod mi). Define a character χi : G→ µm(F ) by

χi(σj) =

{
εi if j = i,

1 if j 6= i,
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where we have εi is a primitive mith root of 1. Then if χ ∈ Ĝ, we can write χ(σi) = εµii = χi(σi)
µi .

This follows since σi has order mi, and so χ(σi) must be an mith root of 1, so of the form εµii for
some µi (mod mi). Thus, we see that we can write

χ(σ) = χ(σν11 · · ·σ
νt
t ) = χ1(σ1)

µ1ν1 · · ·χt(σt)µtνt .

Hence,

χ = χµ11 · · ·χ
µt
t .

Conversely, every χµ11 · · ·χ
µt
t defines a character of G. Thus, we see that we have

Ĝ ∼= Ĉ1 × · · · × Ĉt,

with Ĉt = 〈χi〉 ∼= Ci. So Ĝ ∼= G.
Now we show the moreover part. If σ ∈ G, then we write

σ = σν11 · · ·σ
µt
t .

Since σ 6= 1, there is some νi 6= 0, so

χi(σ) = ενii 6= 1.

Thus, there exists a χ ∈ Ĝ with χ(σ) 6= 1F . �

Noe, let

A = {α ∈ E× : αm ∈ F,m is the exponent of G}.
Then A is a multiplicative subgroup of E× and F× ⊂ A. Let

Am = {αm : α ∈ A} ⊂ F× and F×,m = {αm : α ∈ F×} ⊂ Am.

There is a convenient way to calculate G = Gal(E/F ).

Claim 2. (a) A/F× ∼= Am/F×,m.

(b) A/F× ∼= Ĝ ∼= G.

Proof. (a) Consider the surjective mth power map A → Am composed with the quotient map
Am → Am/F×,m. Let K be the kernel. We get an exact sequence

1→ K → A→ Am/F×,m → 1.

Note that

F× ⊂ K = {β ∈ A : βm ∈ F×,m}.
Thus, if β ∈ K, then there exists bm ∈ F×,m such that βm = bm. So β is a root of the
polynomial

xm − bm = 0.

Note that the roots of xm − bm are b, ε2b, . . . , εmb, where 1 = ε1, ε2, . . . , εm ∈ µm(F ) are the
mth roots of 1 in F . Therefore, we get that β = εib for some εi ∈ µm(F ). Thus, β ∈ F×. The
choice of β was arbitrary, so we have that K ⊂ F×. Hence, K = F×. So

A/F× ∼= Am/F×,m

as desired.
(b) The goal here is to show A/F× ∼= Ĝ. So for every [α] ∈ A/F×, we need to construct a character

χ : G = Gal(E/F )→ µm(F ). Fix α ∈ A. For each σ ∈ G, consider α/σ(α). Note that(
α

σ(α)

)m
=

αm

σ(αm)
.
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Recall that for α ∈ A, we have that αm ∈ F by the proof of (a), so σ(αm) = αm. Hence(
α

σ(α)

)m
= 1.

So it is an mth root, an hence α/σ(α) ∈ µm(F ) ⊂ F×. We can define

χα : G→ µm(F )

via
χα(σ) =

α

σ(α)
.

So we get a homomorphism θ : A→ Ĝ with θ(α) = χα. This is indeed a homomorphism, since
for each σ ∈ G we have

θ(αβ)(σ) = χαβ(σ) =
αβ

σ(αβ)
=

α

σ(α)

β

σ(β)
= χα(σ)χβ(σ) = θ(α)(σ)θ(β)(σ),

so θ(αβ) = θ(α)θ(β). We now note that every χ is of the form χ = χα, as a consequence of
Speisers theorem. The kernel will be

Ker(θ) = {α ∈ A : χα = 1}.
Thus,

Ker(θ) =

{
α ∈ A :

α

σ(α)
= 1 for all σ ∈ G

}
.

Notice that if α ∈ Ker(θ), we have that α = σ(α) for all σ ∈ G. This implies that α is in the

fixed field, which means that α ∈ F×. So A/F× ∼= Ĝ.
�

We are now ready to prove the theorem.

Proof of Theorem 23. The implication follows from what we showed earlier. It suffices to prove the
other direction.
( ⇐= ): Let A = {α ∈ E× : αm ∈ F×} again. Since we had A/F× is a finite group by the claim
prior, we can write

A = α1F
× ∪ · · · ∪ αtF×

as the coset representation for A/F×. Note that

t = |A/F×| = |G| = (E : F )

again by the claim above.
Since αi ∈ A, we know that αmi = ai ∈ F and αi is a root of the polynomial

xm − ai ∈ F [x].

If µm(F ) = {ε1, . . . , εm}, then in E[x] we have

xm − ai =
m∏
j=1

(x− εjai).

Thus, xm − ai splits completely in E.
We claim E is the splitting field of

t∏
i=1

(xm − ai) ∈ F [x].

In other words, we claim that E = F (α1, . . . , αt). IF not, then F ⊂ F (α1, . . . , αt) ⊂ E is an
intermediate field between E and F . So there exists some σ ∈ G = Gal(E/F ) such that σ 6= 1G,

31



but σ restricted to F (α1, . . . , αt) is the identity on the intermediate field. Now, there is a character

χ ∈ Ĝ such that χ(σ) 6= 1F . But Ĝ ∼= A/F×, that is, there is some α ∈ A so that χ = χα. Thus,

χ(σ) =
α

σ(α)
6= 1,

so σ(α) 6= α for this α ∈ A. But we have

α ∈ A = α1F
× ∪ · · · ∪ αtF×.

Therefore α ∈ F (α1, . . . , αt). This contradicts the fact that σ(α) 6= α, so we must have E =
F (α1, . . . , αn). Thus, E is a Kummer extension of F . �

Specializing this to the case m = q a prime, we get the following corollary.

Corollary 21. If E/F is Galois with (E : F ) = q a prime and F contains q distinct qth roots of
1, then E is the splitting field of an irreducible polynomial xq − a ∈ F [x].

We in fact have that if F contains m distinct mth roots of 1, then there is an order reversing
bijection between subgroups N so that F×,m ⊂ N ⊂ F× and abelian extensions E/F of exponent
m′ | m.

5. More on field extensions

5.1. Simple Extensions.

Definition. An extension E/F is said to be simple if E is generated over F by a single element.
In other words, if E = F (α) for some α ∈ E. The element α is then called the primitive element
for E/F .

Example. If we adjoin
√

2 to F = Q, we get that E = Q(
√

2) is a simple extension of F .

The following theorem gives us a necessary and sufficient condition for a finite extension E/F to
have a primitive element.

Theorem 24 (Steinitz). Let E/F be a finite extension. Then E/F has a primitive element iff
there are only a finite number if intermediate fields between F and E.

Proof. ( =⇒ ) : Suppose E = F (α) so that it has a primitive element α. Let K be an intermediate
field, so F ⊂ K ⊂ E. Let f(x) be the minimal polynomial of α over F and g(x) be the minimal
polynomial of α over K. Then g(x) | f(x) in K[x] ⊂ E[x]. Let K ′ be the subfield of E generated
over F be the coefficients of g(x). Since g(x) ∈ K[x], we know K ′ ⊂ K, and g(x) is also the minimal
polynomial of α over K ′. Now, E = F (α) = K(α) = K ′(α), and (E : K) = deg(g) = (E : K ′).
Since K ′ ⊂ K ⊂ E, we have that (E : K ′) = (E : K)(K : K ′), so (K : K ′) = 1. In other words,
K = K ′.

This tells us that the intermediate fields F ⊂ K ⊂ E are generated by the coefficients of the
(monic) factors g(x) of f(x) in E[x]. Since there are only a finite number of such factors by the
divisibility theory, there can only be a finite number of intermediate fields.
(⇐= ) : Now assume there are only finitely many intermediate fields F ⊂ K ⊂ E. If E and F are
finite fields, then E× is a cyclic group. If α is a generator so that E× = 〈α〉, then E = F (α) and
α is a primitive element. Thus, assume that E and F are infinite fields (if F finite, then E must
be finite since the degree is finite, so we can rule this out, and likewise for the ridiculous claim E
finite and F infinite). Let E = F (α1, . . . , αn), which we can do since E/F is finite. We will induct
on n, the number of generators of E over F . For n = 1, we win, since α1 is a primitive element.
Assume n = 2, so E = F (α, β). Consider the intermediate fields Kt = F (α + tβ), where t ∈ F .
Then we have F ⊂ Kt ⊂ E.
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The goal is to show that E = Kt for some t. Since there are an infinite number of elements t ∈ F
(since F infinite by assumption), we must have that there is a pair t1 6= t2 so that Kt1 = Kt2 . So
F (α+ t1β) = F (α+ t2β). Notice that this implies that

β =
(α+ t1β)− (α+ t2β)

t1 − t2
∈ F (α+ t1β),

since (α+ t2β) ∈ F (α+ t1β). Notice as well that

α = (α+ t1β)− t1β ∈ F (α+ t1β).

Hence, E = F (α, β) (the smallest field generated by these elements) must be contained in Kt1 . But
Kt1 is contained in E, so we have

E ⊂ Kt1 ⊂ E =⇒ E = Kt1 = F (α+ t1β).

Hence, we have that α+ t1β is a primitive element.
The case for n > 2 follows inductively. Assume we can show it for n−1, then the goal is to show

that E = F (α1, . . . , αn) = F (α) for some α. Consider then

F (α1, . . . , αn−1)(αn).

We have that

F (α1, . . . , αn) = F (α′)

by the induction hypothesis, so

F (α1, . . . , αn−1, αn) = F (α1, . . . , αn−1)(αn) = F (α′)(αn) = F (α′, αn).

Now, by the n = 2 case, we have that

F (α′, αn) = F (α)

for some α, so we get that E = F (α). Thus, the extension is primitive, and has primitive element
α ∈ E for some suitable α. �

Notice that this covers the case of Galois extensions.

Corollary 22. If E/F is a finite separable extension, then there is a primitive element for E/F .
In particular, finite Galois extensions are simple.

Proof. We have that E/F is a finite separable extension, so there is a basis ω1, . . . , ωn for E/F .
Letting fi(x) ∈ F [x] be the minimal polynomial for ωi over F , we have that

f(x) = f1(x) · · · fn(x)

is separable. Let K be the splitting field of f(x) over F . Then we have that F ⊂ E ⊂ K, and K/F
is Galois.

We now invoke the Fundamental Theorem of Finite Galois Theory (Theorem 13) to get that the
number of intermediate fields F ⊂ K ′ ⊂ K is equal to the number of subgroupsH ofG = Gal(K/F ),
which is a finite group. So there are a finite number of intermediate fields forK/F , and since E ⊂ K,
there are a finite number of intermediate fields for E and F . Thus, the last theorem tells us that
E has a primitive element over F , as does K. �
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5.2. (Optional) Existence of Normal Basis. We follow Artin [2] II N. Note that the following
theorem is true for any field, thoguh we prove it only in the case where F contains infinite elements.

Theorem 25 (Existence of Normal Basis). If E is a normal extension of F , and σ1, . . . , σn are the
elements of its group G, there is an element θ ∈ E such that the n elements σ1(θ), . . . , σn(θ) are
linearly independent with respect to F .

Proof. Recall that an extension E/F is normal if it is algebraic and every irreducible p(x) ∈ F [x]
which has a root α ∈ E splits completely in E. By Theorem 24, we have that there is a α such
that E = F (α). Let f(x) be the minimal polynomial for α, and put σi(α) = αi. Then we set

g(x) =
f(x)

(x− α)f ′(α)

and

gi(x) = σi(g(x)) =
f(x)

(x− αi)f ′(αi)
.

We have that gi is a polynomial in E[x] having αk as a root for k 6= i, and so in E[x]/(f(x)), we
have

gi(x)gk(x) = 0 for i 6= k.

Consider
g1(x) + g2(x) + · · ·+ gn(x)− 1 = 0.

The left side of the equation has degree at most n− 1. Thus, the number of roots is at most n− 1
unless it is identically 0; hence, if it is true for n different values, then it must be 0. Notice that

g1(α1) + g2(α1) + · · ·+ gn(α1) = σ1(g(α1)) + · · ·+ σn(g(αn)).

Notice that if i = k, then we have that σi(g(αk)) = gk(αk) = 1, and if i 6= k¡ then σi(g(αk)) = 0.
Hence, we have

g1(α1) + g2(α1) + · · ·+ gn(α1) = 1

or
g1(α1) + g2(α1) + · · ·+ gn(α1)− 1 = 0.

The same applies for α2, . . . , αn, so we get that we must have that the left hand side is identically
zero; i.e., we have

g1(x) + g2(x) + · · ·+ gn(x)− 1 = 0.

Multiplying the above by gi(x) and using the fact that gi(x)gk(x) = 0 (mod f(x)), we get

(gi(x))2 = gi(x) (mod f(x)).

Computing the determinant, we see that

D(x) = |σiσk(g(x))| for i, k = 1, . . . , n.

The goal is to show that D(x) 6= 0. Squaring it and computing its value mod f(x), we see that
from the prior discussion the determinant has 1 along the diagonal and zero elsewhere when we
look modulo f(x). Thus,

(D(x))2 = 1 (mod f(x)).

Now, D(x) is a polynomial which can only have a finite number of roots in F . Avoiding them, we
can find a value a for x such that D(a) 6= 0. Setting θ = g(a), we have that

|σiσk(θ)| 6= 0.

Now, consider any linear relation

x1σ1(θ) + · · ·+ xnσn(θ) = 0,
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where xi ∈ F . Applying σi to it leads to n homogeneous equations for the n unknowns xi. The
fact that |σiσk(θ)| = 0 implies that xi = 0, and so the theorem is established. �

5.3. (Optional) Solutions of Equations by Radicals. We briefly mentioned solutions by rad-
icals in the Preliminaries section. We elaborate on this now, following Artin [2].

Definition. If E/F is an extension of fields, we call it an extension by radicals if there exists
intermediate fields B1, B2, . . . , Br = E and Bi = Bi−1(αi), where each αi is a root of an equation
of hte form xni − ai = 0, ai ∈ Bi−1.

A polynomial f(x) in a field F is said to be solvable by radicals if its splitting field lies in an
extension by radicals.

Unless otherwise stated, we assume that the base field has characteristic 0, and that F contains
as many roots of unity as are needed to make the subsequent statements valid.

Note that any extension of F by radicals can always be extended to an extension of F by radicals
which is normal over F . So if B1 = B0(α1) is an extension by radicals, then we have that B1 is a
normal extension as well, since it contains not only α1 but εα1 for any n1-root of unity ε. Thus,
B1 is the splitting field of xn−1 − a1. If

f1(x) =
∏

σ∈Gal(B1/B0)

(xn2 − σ(a2)),

then f1 ∈ B0[x], and adjoining successively the roots of xn2 −σ(a2) brings us to an extension of B2

which is normal over F . Continuing in this way, we arrive at an extension of E by radicals which
will be normal over F .

We recall briefly a group G is solvable if it has a sequence of subgroups

1 = G0 ≤ G1 ≤ · · · ≤ Gk = G

where Gn−1 E Gn and Gn/Gn−1 is an abelian group for n = 1, . . . , k.

Theorem 26. Let K be the splitting field for f(x) ∈ F [x]. The polynomial f(x) is solvable by
radicals if and only if Gal(K/F ) is solvable.

Sketch of Proof. ( =⇒ ) : Assume f(x) is solvable by radicals. Let E be a normal extension of F
by radicals containing the splitting field K of f(x). Let G = Gal(E/F ). For each i we have that Bi
is a Kummer extension of Bi−1, so the group Bi/Bi−1 is abelian. Thus, letting GBn = Gal(E/Bn),
we get

1 = GBk ≤ GBk−1
≤ · · · ≤ GB0 = G

is a normal sequence where the quotients are abelian, and hence G is solvable. Labeling GK =
Gal(E/K), we see that G/GK = Gal(E/F )/Gal(E/K) ∼= Gal(K/F ), so Gal(K/F ) is the homo-
morphic image of a solvable group, hence solvable.
(⇐= ) : Suppose Gal(K/F ) is solvable. Let E be the splitting field of f(x). Let

1 = Gr ⊂ · · · ⊂ G1 ⊂ G0 = G = Gal(K/F )

be a solvable sequence. Label Bi to be the fixed field associated to Gi. Since Gi−1 is the group
Gal(E/Bi−1), and the group Gi−1/Gi is abelian, then Bi is a Kummer extension of Bi−1, hence an
extension by radicals. Thus, E is an extension by radicals. �

5.4. The Algebraic Closure of a Field. The notes now shift to following Jacobson [1].

Definition. A field L is called algebraically closed if every polynomial f(x) ∈ L[x] of degree ≥ 1
has a root in L.

Lemma 11. Let L be an algebraically closed field.

(1) If f(x) ∈ L[x], then f(x) splits completely into linear factors in L[x].
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(2) If F is a subfield of L, then every polynomial f(x) ∈ F [x] has a root in L, and in fact splits
completely in L[x].

Proof. (1) Write f(x) = f1(x) · · · fr(x), the product of its irreducible factors. Notice that fi(x) ∈
L[x] is a polynomial of degree ≥ 1, so it has a root in L (by definition). Since fi(x) is irreducible,
it cannot be factored any further, and so it must be a linear factor. Hence, fi(x) is a linear
factor with respect to its root, so f(x) splits completely into linear factors.

(2) We have f(x) ∈ F [x] ⊂ L[x], so viewing it in L[x] we have that it splits completely into linear
factors by (1). Thus, it has a root in L.

�

The first basic fact towards the existence of an algebraic closure is the following.

Theorem 27. Let F be a field. Then there exists an algebraically closed field L such that F ⊂ L.

Proof. We proceed in two steps. In the first step, we construct an extension E1/F such that every
polynomial f(x) ∈ F [x] of degree ≥ 1 has a root in E1. To do this, we associate to every f(x) ∈ F [x]
with deg(f) ≥ 1 an indeterminate, labeled xf . Let

S := {xf : f(x) ∈ F [x], deg(f) ≥ 1}.
Let R = F [S] be the polynomial ring in this infinite number of variables. Let

a = 〈f(xf ) : f(x) ∈ F [x], deg(f) ≥ 1〉 ⊂ R
be an ideal generated by the f(xf ).

The first claim is that a is non-trivial. If 1 ∈ a, then there is an expression

1 = g1f1(xf1) + · · ·+ gnfn(xfn)

in R, that is, with coefficients gi ∈ R. Set xi = xfi for notational simplicity. Let xn+1, . . . , xN be
any remaining variables occurring in g1, . . . , gn. Then we have

1 = g1(x1, . . . , xN )f1(x1) + · · ·+ gn(x1, . . . , xN )fn(xn)

in F [x1, . . . , xn] ⊂ R.
Now take a finite extension E′/F in which each polynomial f1(x), . . . , fn(x) has a root, label-

ing these α1, . . . , αn. Take βn+1, . . . , βN to be any elements in E′. Then we have a non-trivial
homomorphism

T : F [x1, . . . , xN ]→ E′

sending
T (xi) = αi for 1 ≤ i ≤ n, T (xi) = βi for n+ 1 ≤ i ≤ N.

The relation
1 = g1f(x1) + · · ·+ gnf(xn)

in F [x1, . . . , xN ] becomes 1 = 0 in E′ after applying this map, since

T (1) = 1 = T (g1f(x1)) + · · ·+ T (gnf(xn))

= g1(α1, . . . , αn, βn+1, . . . , βN )f(α1) + · · ·+ gn(α1, . . . , αn, βn+1, . . . , βN )f(αn) = 0.

This is a contradiction, so a is a non-trivial ideal of R.
Now, let m be a maximal ideal of R containing a. Consider E1 = R/m. Since m is maximal, E1

is a field, and we have F ⊂ E1. Moreover, each f(x) ∈ F [x] has a root in E1, namely xf = xf +m.
In step 2, the goal is to build our algebraically closed field L. We inductively construct a tower

of fields
F = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ek ⊂ · · ·

such that every polynomial g(x) ∈ Ei[x] of degree deg(g) ≥ 1 has a root in Ei+1.
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Let

L =

∞⋃
i=0

Ei.

Then L is a field, since it is an increasing nested union of fields. The claim is that L is algebraically
closed.

Let f(x) ∈ L[x], and write

f(x) =
m∑
i=0

aix
i,

with m = deg(f) ≥ 1. Then there is a field in our tower, say without loss of generality Ek, such that
the coefficients a0, . . . , am ∈ Ek. Then we have that f(x) ∈ Ek[x], so f(x) has a root in Ek+1 ⊂ L.
Thus, L is algebraically closed and contains F . �

We now have the tools to define the algebraic closure of a field.

Definition. If F is a field, then an algebraic closure of F is a field, denoted F , such that

(i) F is algebraic over F .
(ii) F is algebraically closed.

Thus, we see the following corollary.

Corollary 23. If F is a field, then F admits an algebraic closure F .

Proof. Take F ⊂ L as in the theorem, with L algebraically closed. Set

F = {y ∈ L : y is algebraic over F}.

There are two facts we need to show:

(1) F is a field. If a, b ∈ F , then F (a, b) is a finite extension of F , so

a± b, a · b, a/b ∈ F (a, b) ⊂ F

and so are algebraic over F .
(2) F is algebraically closed. To see this, if f(x) ∈ F [x], then since F ⊂ L, f(x) has a root in L.

We now write out f ;

f(x) =

m∑
j=0

ajx
j .

Notice this is of degree m ≥ 1, and each aj ∈ F , so it is algebraic over F . Then F (a0, . . . , am)
is a finite algebraic extension of F . Letting ξ ∈ L be a root of f(x) = 0, then since f(x) ∈
F (a0, . . . , am)[x] ⊂ F [x], ξ is algebraic over F (a0, . . . , am). Then the degree (F (a0, . . . , am, ξ) :
F (a0, . . . , am)) < ∞ implies (F (a0, . . . , am, ξ) : F ) < ∞, which in turn implies ξ is algebraic
over F , so ξ ∈ F by definition.

�

The goal now is to determine whether algebraic closures are unique up to isomorphism. For this,
we need an extension of a previous result extending field homomorphisms.

Theorem 28. Let F be a field, E an algebraic extension of F , and σ : F ↪→ L an embedding
of F into an algebraically closed field L. Then there exists an extension of σ to an embedding
τ : E ↪→ L.
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Proof. This is a Zorn’s lemma argument. Let

S = {(K, τ) : F ⊂ K ⊂ E and τ : K ↪→ L extends σ}.

We have that S is non-empty, since (F, σ) ∈ S. Put a partial ordering on S via

(K, τ) < (G, κ) iff K ⊂ G and κ|K = τ.

We now need to show that all chains are bounded. Let (K1, τ1) < · · · < (Kn, τn) < · · · be an
increasing chain in S. Notice that we can set K =

⋃
nKn, which is a field, and we have that

F ⊂ K ⊂ E. We can also set τ to be the unique homomorphism such that τ |Ki = τi. Note this
is well-defined by the ordering (i.e. by inclusion). We have that (K, τ) is an upper bound of our
chain, so Zorn’s lemma says that we have a maximal element in S, denote it by (K, τ).

The claim then is that K = E. If not, we have α ∈ E \K. Note that α is algebraic over F , since
E/F is algebraic, and since F ⊂ K, we have α is algebraic over K. By prior results (Theorem ??)
we can extend τ : K ↪→ L to τ ′ : K(α) ↪→ L. Note this contradicts maximality, and so K = E. �

Corollary 24. Let E be an algebraic closure of F , L an algebraically closed field, and σ : F ↪→ L.
Suppose L is algebraic over σ(F ). Then E ∼= L.

Proof. Let σ : F ↪→ L. By our theorem, this extends to τ : F = E ↪→ L. We have that L is
algebraic over σ(F ), and this implies that L is algebraic over τ(E). We have τ(E) is algebraically
closed, so L = τ(E). In other words, L ∼= E. �

We have now the desired result.

Corollary 25. If E and E′ are both algebraic closures of F , then E ∼= E′.

One question to ask is how large is the algebraic closure of a field?

Lemma 12. (1) If F is infinite, then the cardinality of the algebraic closure is the same as the
field.

(2) If F is finite, the cardinality of the algebraic closure is countable.

(1) If F is infinite, we have that |F | = |F |. To see this, notice that we can write

F = F ∪

⋃
n≥1

⋃
deg(f)=n

Z(f)

 ,

where Z(f) is the set of roots f(x) = 0 in F . Since |Z(f)| ≤ n = deg(f) and |{f(x) ∈ F [x] :
deg(f) = n}| = |Fn+1| = |F |, where we deduce the first equality from looking at the coefficients
of the polynomial, then ∣∣∣∣∣∣

⋃
deg(f)=n

Z(f)

∣∣∣∣∣∣ = |F |

and so ∣∣∣∣∣∣
⋃
n

⋃
deg(f)=n

Z(f)

∣∣∣∣∣∣ = |F |.

(2) If F is finite, then the same argument gives us that |F | ≤ |Z|, so that F is countable.

A consequence of (1) is the following.

Corollary 26. We have that Q 6= C.
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5.5. Separability, Normality, and Galois Extensions. The goal here is to investigate the
concepts of separability, normality, and Galois extensions in the context of infinite extensions (as
opposed to the finite results which we have discovered). Throughout, we fix a field F and we denote
its algebraic closure by F . If E/F is any algebraic extension, we view E ⊂ F , so that F is also the
algebraic closure of E.

We first generalize our definition of a splitting field.

Definition. Let Γ = {f(x) ∈ F [x] : deg(f) ≥ 1} ⊂ F [x] be a collection of polynomials. An
extension E/F is called a splitting field of Γ if:

(1) Every f(x) ∈ Γ splits completely into linear factors in E[x], and
(2) E = F ({α : f(α) = 0 for some f(x) ∈ Γ}).

Note that F is the splitting field of the family Γ = F [x].
Zorn’s lemma lets us extend the uniqueness of splitting fields to families, as seen in the next

theorem.

Theorem 29. Let σ : F → F ′ be an isomorphism of fields, Γ ⊂ F [x], and Γ′ = σ(Γ) ⊂ F ′[x] the
corresponding family of polynomials over F ′. If E/F is a splitting field of Γ and E′/F ′ a splitting
field of Γ′, then σ extends to an isomorphism τ : E → E′.

The proof of this is essentially the same as Theorem 28, so we omit it.

Definition. We define

Aut(E/F ) = {σ : E → E : σ is an automorphism, σ|F = idF }.

Corollary 27. If E is the splitting field (in F ) of a family of monic polynomials Γ ⊂ F [x] and
σ ∈ Aut(F/F ), then σ : Γ→ Γ and so restricts to an element of Aut(E/F ).

Recall that an algebraic extension E/F is said to be normal if any irreducible polynomial f(x) ∈
F [x] which has a root in E splits completely into linear factors in E[x].

Lemma 13. If E is a normal extension of F , then E is a splitting field of a family Γ.

Proof. Consider

ΓE := {pα(x) ∈ F [x] : pα is the minimal polynomial in F [x] for all α ∈ E}.
Notice that for all pα ∈ ΓE , we can view pα(x) ∈ E[x], and we see that, since E is normal, pα(x)
splits into linear factors. Next, we need to show that

E = F ({α : f(α) = 0 for some f(x) ∈ Γ}).
However, this follows just from definitions. That is, this is the smallest field so that every polynomial
in F [x] splits into linear factors in E[x]. �

The next result is a converse.

Theorem 30. If E is the splitting field over F for a set of monic polynomials Γ ⊂ F [x], then E is
normal over F .

Proof. Let f(x) ∈ F [x] be irreducible and have a root in E. In F [x], we have

f(x) =

n∏
i=1

(x− αi)

with α = α1 ∈ E. The goal is to show that for all i, αi ∈ E. If this is the case, then f(x) splits
completely into linear factors in E[x], and so by definition E is a normal extension of F .
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Consider E(αi). Since E is a splitting field over F for the family Γ, we know that F (αi) ⊂ E(αi)
is a splitting field for the same family Γ. Note that α and αi have the same irreducible minimal
polynomial, f(x), so we have that

F (α)
∼=−→ F [x]/(f(x))

∼=−→ F (αi).

Thus, we have an isomorphism σ : F (α)→ F (αi). Since E(α) is the splitting field of Γ over F (α)
and E(αi) is the splitting field of Γ over F (αi), then by Theorem 29 we see that σ extends to an
isomorphism τ : E(α)→ E(αi). Since σ|F = idF , we have τ |F = idF . Since E is the splitting field
over F of Γ ⊂ F [x], the isomorphism τ “stabilizes” E; in other words, τ(E) = E. Since α ∈ E, we
have that E(α) = E, so E(αi) = τ(E(α)) = τ(E) = E. Hence, αi ∈ E for all i. �

We now move on to the normal closure.

Definition. Let E/F be an algebraic extension, F ⊂ E ⊂ F . Let K be the splitting field over F
of the family

ΓE = {fα(x) : α ∈ E, fα(x) ∈ F [x] the minimal polynomial of α}.

We call K the normal closure of E.

Notice a few facts about K based on the definition:

• E ⊂ K,
• K is a normal extension of F ,
• K is the smallest normal extension of F containing E and contained in F .

The name “normal closure” makes sense based off of these.

Definition. An algebraic extension E/F is called Galois if E is normal and separable over F .

Note here that E/F is allowed to be an infinite extension. If E/F is a finite extension, then this
recovers the definition of Galois from before (see Theorem 12). Note as well that the definition
of separability doesn’t care whether the extension is finite or infinite.

If E/F is a Galois extension, then we set

Gal(E/F ) := Aut(E/F ) = {σ ∈ Aut(E) : σ|F = idF }.

As before, we get the following result.

Proposition 4. Let E/F be a Galois extension and G := Gal(E/F ). Then F = EG.

Proof. Let E/F be Galois. By definition, F ⊂ EG. Suppose that EG 6= F , so that there is some
α ∈ EG \ F . We can view F ⊂ E ⊂ F , since E is algebraic over F , so α ∈ F . Since E/F is
separable, we have that the minimal polynomial for α, denoted pα ∈ F [x], is also separable. In
F [x], we have that it splits;

pα(x) = (x− α1) · · · (x− αr)
where we set α1 = α. Since F (α) ∼= F [x]/(pα(x)) ∼= F (α2) ⊂ F , we get an embedding

σ : F (α) ↪→ F

such that σ(α) = α2 6= α (the 6= comes from the fact that pα is separable).
Since E/F is algebraic, then by Theorem 28 we have that σ extends to an embedding τ : E → F ,

again with τ(α) = α2. Since E/F is a normal extension, it is the splitting field of some family
Γ ⊂ F [x] by Lemma 13, and the corollary of uniqueness of splitting fields (Corollary 27) gives
τ(E) = E; that is, τ ∈ G = Gal(E/F ). But τ(α) = σ(α) = α2 6= α. So we have an element τ ∈ G
which does not fix α, contradicting α ∈ EG. �
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6. Infinite Galois Theory

The Galois theory of infinite algebraic extensions is due to Krull. Krull constructs the Galois
group of an infinite algebraic extension as a profinite group, and the topology of the Galois group
plays a definitive role. So we need to start by exploring topological groups.

6.1. Topological Groups.

Definition. A topological group is a group G with a topology such that the maps

G×G→ G given by (x, y) 7→ x · y,

G→ G given by x 7→ x−1

are continuous. In other words, multiplication and inversion are continuous.

We list some common facts about topological groups.

Lemma 14. Any open subgroup H of a topological group G is also closed.

Proof. We begin by writing G in terms of its coset decomposition; so we have

G =
⊔
gH.

Note that we have that the map θg : G → G given by θg(x) = gx is a homeomorphism; it is
continuous (since multiplication is continuous), it is invertible (with inverse given by θg−1), and its
inverse is continuous. To see the last remark, note that

θg−1(x) = g−1x = (x−1g)−1,

so it is the composition of the inverse map, along with multiplication on the right, along with the
inverse map again, so it is continuous. Hence, θg is a homeomorphism, so in particular an open
map. Thus, gH = θg(H) is an open set for each g. Thus, we can realize H as

H = G \
⊔
g 6=e

gH;

by what we’ve shown, this is the complement of an open set, hence closed. �

Lemma 15. Any closed subgroup of H of finite index is also open.

Proof. Since it is finite index, we have that

G =
n⊔
i=1

giH.

By what we’ve shown, we know that giH is a closed set for all i. Without loss of generality, assume
g1 = e. Then we get that

G \
n⊔
i=2

giH =

n⋂
i=1

(giH)c = H.

This is a finite intersection of open sets, hence open. Thus, H is also open. �

Lemma 16. Let H,U be subgroups of G, and assume that U is open. If U ⊂ H, then H is open.

Proof. We write H in terms of its coset decomposition with respect to U . So we have

H =
⊔
hU.

Multiplication by h ∈ H ⊂ G is a homeomorphism, so H is an arbitrary union of open sets, hence
open. �
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Let G be a topological group with identity e. We claim that e has a fundamental system of
neighborhoods R = R(e) which satisfies the following:

(1) For all U ∈ R, e ∈ U .
(2) If U1, U2 ∈ R, then U1 ∩ U2 ∈ R.
(3) For all U ∈ R, there exists W ∈ R such that W ·W ⊂ U .
(4) For all U ∈ R, U−1 ∈ R.
(5) For all U ∈ R, there exists W ∈ R such that W ⊂ gUg−1 ∈ R.

Remark. If a group G possesses a set R of subsets of G satisfying these properties, then G can be
givne the structure of a topological group with R a fundamental system of neighborhoods of e.

If g ∈ G, then a fundamental system of neighborhoods of g are the gU with U ∈ R. In other
words, we get

R(g) = {gU : U ∈ R(e)}.
So we translate around the fundamental system of neighborhoods.

6.2. Galois Groups. Let E/F be a Galois extension. Thus, E is a separable, normal, algebraic
extension of F . Let G = Gal(E/F ). Let

K := {Kλ : F ⊂ Kλ ⊂ E with Kλ/F a finite Galois extension}

with parameter set λ ∈ Λ. For each Kλ, E/Kλ is still a Galois extension, and if we set Nλ =
Gal(E/Kλ), then Nλ is a normal subgroup of G and Gal(Kλ/F ) = G/Nλ. The argument for both
of these claims is the same as for finite Galois theory.

Let R = {Nλ = Gal(E/Kλ) : λ ∈ Λ}.

Proposition 5. We have that R can be taken as a fundamental system of neighborhoods of e for
a topology on G.

Proof. We verify the properties.

(1) It is clear that e ∈ Nλ for all λ.
(2) If Nλ, Nµ ∈ R, then we claim that there is a Nν so that Nλ ∩ Nµ = Nν ∈ R. To see this,

let Kν = Kλ · Kµ be the composite field. Then we have that Kν/F is finite Galois, and
Nν = Gal(E/Kν) = Nλ ∩Nµ.

(3) For all Nλ ∈ R, there exists an Nµ such that Nµ ⊂ Nµ ⊂ Nλ (to see this, let Nµ = Nλ).
(4) For all Nλ ∈ R, there exists an Nµ so that N−1µ = Nλ (to see this, take Nµ = Nλ).

(5) For all Nλ ∈ R and σ ∈ G, there exists Nµ such that σNµσ
−1 = Nλ (Nλ is normal, so take

Nµ = Nλ).

�

Using our remark, we get a topology on G = Gal(E/F ), called the Krull topology. We now list
some basic facts on the Krull topology.

Lemma 17. The Krull topology is T0; that is, given σ, τ ∈ G with σ 6= τ , there exists a neighbor-
hood V of σ such that τ /∈ V .

Proof. We remark that, since E =
⋃
λKλ, {e} =

⋂
λNλ. We can then shift this around to get

{σ} =
⋂
λ σNλ. Hence, there exist a λ such that τ /∈ σNλ (since otherwise it would be in this

intersection). Take V = σNλ and we have the desired result. �

Remark. Since σNλ is both open and closed, we get that G is totally disconnected.

Lemma 18. The Krull topology on G is Hausdorff.
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Proof. Take σ, τ ∈ G, σ 6= τ . Since these are distinct, there exists a finite Galois extension K/F
such that σ|K 6= τ |K . Let K = Kλ. We have that σ(Nλ) 6= τ(Nλ); since these are distinct cosets
of Nλ in G, we get that σNλ ∩ τNλ = ∅. �

Lemma 19. For all σ ∈ G, {σ} is closed.

Proof. All of the Nλ are both open and closed. The fact that they are open follows by construction
of the Krull topology, and the fact that they are closed follows since they have finite index in G.
Now,

{σ} =
⋂
λ

σNλ,

so it is an arbitrary intersection of closed sets; hence, it is closed. �

Lemma 20. If E/F is finite, then the Krull topology is the discrete topology.

Proof. Apriori, we have that singleton sets are closed, so it suffices to show that they are open.
But since the extension is finite, we can use Lemma 15 to get that these are also open. Hence,
singletons are open and closed, so the topology is discrete. �

We now characterize the open subgroups of the Galois group.

Proposition 6. Let G = Gal(E/F ), equipped with the Krull topology. Then H ⊂ G is an open
subgroup iff there exists F ⊂ K ⊂ E with (K : F ) <∞ such that H = Gal(E/K).

Proof. ( =⇒ ) : Suppose H is an open subgroup of G. H is a subgroup, so e ∈ H, and hence there
exists a λ ∈ Λ such that Nλ ⊂ H. Thus, (G : H) ≤ (G : Nλ) < ∞. Now, Nλ = Gal(E/Kλ) is a
normal subgroup of G, so we have Gal(Kλ/F ) = G/Nλ is finite and H/Nλ ⊂ G/Nλ. By the finite
Galois correspondence, there is an intermediate field F ⊂ K ⊂ Kλ so that Gal(Kλ/H) = H/Nλ.
Thus, H = Gal(E/K).
( ⇐= ): If K/F is finite, we have that K is separable over F . This follows since K ⊂ E and E is
separable. Let L be the normal closure of K. Then L/F is finite Galois, so L = Kλ for some λ.
Hence, Nλ ⊂ H. Since H ⊂ G and Nλ is open, we have that H is open by Lemma 16. �

The next goal is to characterize the closed subgroups of the Galois group.

Proposition 7. Let G = Gal(E/F ) with the Krull topology. Then H is a closed subgroup of G
iff there exists a collection {Uα : α ∈ A} of open subgroups such that H =

⋂
α Uα.

Before proving this, we have a useful lemma.

Lemma 21. Let H be any subgroup of G. Then its closure H is given by

H =
⋂
λ

HNλ.

Proof. By definition of the closure, we have that σ ∈ H iff for all λ ∈ Λ, σNλ ∩H 6= ∅. Now, if
σNλ ∩H, then we have that there is an nλ ∈ Nλ so that σnλ = hλ ∈ H; i.e., σ = hλn

−1
λ . But if

σ = hλn
−1
λ , then this implies that σ ∈ HN−1λ = HNλ. This is true for all λ, so combining these all

together, we have

σ ∈ H ⇐⇒ σ ∈
⋂
λ

HNλ.

Hence, H =
⋂
λHNλ. �

We now have the ingredients to prove the proposition.
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Proof of proposition. ( =⇒ ) Assuming that H is a closed subgroup of G, we get that H = H =⋂
λHNλ. Notice that HNλ =

⋃
h∈H hNλ, hence each HNλ is open. Since Nλ is a normal subgroup,

HNλ is a subgroup of G, so HNλ is an open subgroup of G. Hence, take Uλ = HNλ and A = Λ.
( ⇐= ): If H =

⋂
α Uα, then since each Uα is an open subgroup, Uα is also a closed subgroup,

finishing the proof. �

A consequence of this is the following.

Corollary 28. Let F ⊂ K ⊂ E be any intermediate field. Then Gal(E/K) is closed in Gal(E/F ).

Proof. This follows by the observation that

Gal(E/K) =
⋂
α∈K

Gal(E/F (α))

and the fact that (F (α) : F ) < ∞. The first proposition gives us that these are open, and the
second proposition tells us that Gal(E/K) is closed. �

TODO: FINISH WEEK14 NOTES
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