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Chapter 1

Prerequisites

1.1 Sets, Functions, and R
We start with the very vague definition of a set (for a more formal definition,
look into ZFC set theory).

Definition (Set). A set is a collection of distinct objects.

Example 1.1. The collection ta, b, cu is a set.

Definition (Empty Set). The empty set, denoted ∅, is the set with no objects.

Sets are very intuitive by design. They are what we naturally think about
things. Objects must be members of sets, and generally this is denoted by P.

Definition (Subset). A subset of a set X is a collection of objects C such that
for all x P C, x P X. We denote this by C Ă X. If C could be equal to X, we
denote it by C Ď X.

Example 1.2. If X “ ta, b, cu, C “ ta, bu, then C Ă X (this is strict).

We can do some basic operations on sets, such as taking the product of sets,
taking the union of sets, taking the intersection of sets, and subtracting sets.

Definition (Product). The (Cartesian) product of two sets X and Y is the set

X ˆ Y “ tpa, bq : a P X, b P Y u.

Definition (Union). The union of two sets X and Y is the set

X Y Y “ ta : a P X or a P Y u.

Definition (Intersection). The intersection of two sets X and Y is the set

X X Y “ ta : a P X and a P Y u.
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1.1. SETS, FUNCTIONS, AND R CHAPTER 1. PREREQUISITES

Definition (Set minus). The difference or set minus between two sets X and
Y is

Y zX “ ty P Y : y R xu.

Notice we get the relation

X X Y Ď X,Y Ď X Y Y.

Definition (Powerset). The powerset of a set X is denoted P pXq, and it is the
set of all subsets of X. Notationally,

P pXq “ tC : C Ď Xu.

Example 1.3. If X “ ta, b, cu, Y “ tb, c, du, then

X X Y “ tb, cu,

X Y Y “ ta, b, c, du,

X ˆ Y “ tpa, bq, pa, cq, pa, dq, pb, bq, pb, cq, pb, dq, pc, bq, pc, cq, pc, dqu,

P pXq “ t∅, tau, tbu, tcu, ta, bu, ta, cu, tb, cu, ta, b, cu “ Xu.

We want to compare sets, and one way to do so is a function.

Definition (Function). For two sets X,Y , a function f : X Ñ Y is an assign-
ment of objects from X to objects in Y .

More formally, we want our functions to be well-defined.

Definition (Well-Defined). We say that a function f : X Ñ Y is well-defined
if for y1, y2 P Y , fpxq “ y1 and fpxq “ y2 implies y1 “ y2. Loosely speaking, if
fpxq maps to only one thing.

Example 1.4. If X “ R, Y “ R, then fpxq “ x is a function.

Definition (Injective). A function f : X Ñ Y is injective if fpxq “ fpyq implies
x “ y.

Definition (Surjective). A function f : X Ñ Y is surjective if for all y P Y ,
there exists x P X such that fpxq “ y.

Example 1.5 (Non-example). The function f : RÑ R defined by fpxq “ x2 is
not surjective (it does not hit negative numbers). Moreover, it is not injective;
fp´1q “ 1, fp1q “ 1, but ´1 ‰ 1. However, restricting the codomain to postive
real numbers, we have f : RÑ Rě0 is surjective, since for any x P Rě0, we can
take

?
x P R so that fp

?
xq “ x.

Definition (Bijective). We say that a function f : X Ñ Y is bijective if it is
injective and surjective.

One thing we will want to do is combine functions, through composition.
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CHAPTER 1. PREREQUISITES 1.1. SETS, FUNCTIONS, AND R

Definition (Composition). If f : X Ñ Y , g : Y Ñ Z, then the function
g ˝ f : X Ñ Z is the function which takes x P X to gpfpxqq.

Proposition 1.1. If f : X Ñ Y is injective, g : Y Ñ Z is injective, then g ˝ f
is injective.

Proof. If g, f are both injective, then gpfpxqq “ gpfpyqq implies fpxq “ fpyq
implies x “ y, so their composition is injective. Q.E.D

Proposition 1.2. If f : X Ñ Y and g : Y Ñ Z are both surjective, then g ˝ f
is surjective.

Proof. If g is surjective, then for all z P Z there is some y P Y so that gpyq “ z.
Since f is surjective, for all y P Y there is some x P X so that fpxq “ y. Hence,
gpfpxqq “ gpyq “ z. Q.E.D

Corollary 1.0.1. If f : X Ñ Y and g : Y Ñ Z are both bijective, then g ˝ f is
bijective.

Example 1.6. The function f : R Ñ R defined by fpxq “ x is injective and
surjective, and so it is bijective.

Definition (Countable). We say that a set X is countable if there is a bijective
function between it and the natural numbers, N “ t1, 2, 3, . . .u.

Remark 1. In general, we would like to construct our examples from prior
examples. There is no real way to construct the natural numbers though, so we
will just assume their existence.

Example 1.7. We have thatX “ t2k, k ě 1u (the set of even positive numbers)
is countable. We construct the bijection f : X Ñ N via fpxq “ x{2. Then it is
surjective, since for any n P N I simply take 2n P X so that fp2nq “ n, and it
is injective since fpxq “ fpyq “ n implies x{2 “ y{2 “ n, or x “ y “ 2n.

Example 1.8. Less trivially, the set X “ tp : p is primeu is countable as well.

One thing we may want to do is see which sets are “essentially” the same.
To do so, we introduce something called an equivalence relation.

Definition (Binary Relation). A binary relation on a set X is a subset R of
the product Aˆ A. A binary relation between two sets X,Y is a subset of the
product X ˆ Y . We say that px, yq P X ˆ Y are related if px, yq P R Ď X ˆ Y .

Definition (Equivalence Relation). An equivalence relation is a binary relation
R Ď X ˆX which satisfies three properties:

i. (Reflexive) For all x P X, px, xq P R.

ii. (Symmetric) For all x, y P X, px, yq P R implies py, xq P R.

iii. (Transitive) For all x, y, z P X, px, yq P R and py, zq P R implies px, zq P R.
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1.1. SETS, FUNCTIONS, AND R CHAPTER 1. PREREQUISITES

Example 1.9. Taking X “ ta, b, cu, we have

X ˆX “ tpa, aq, pa, bq, pa, cq, pb, aq, pb, bq, pb, cq, pc, aq, pc, bq, pc, cqu.

Taking a subset R “ tpa, aq, pa, bq, pb, aq, pb, bq, pc, cqu Ď X ˆ X gives us an
equivalence relation (Exercise: Check the properties).

Remark 2. Equivalence relations are denoted generally with either R or „.
We denote two elements x and y being related by either xRy or x „ y.

One thing we would like to do (and will like to do often) is quotient things.
In laymen terms, to quotient is to divide up our set based on equivalence classes.
If you had a collection of coins, for example, their equivalence classes could be
their amounts, and to divide them up is to put them in piles corresponding to
their class. The more rigorous definition is given below.

Definition (Equivalence Class). Given a set S and an equivalence relation R,
we define an equivalence class to be

x̄ “ rxs “ ta P S : aRxu.

Definition (Quotient Set). Given a set S and an equivalence relation R, we
define the quotient set to be the set of all equivalence classes. That is,

S{R “ trxs : x P Ru.

Remark 3. Instead of quotient, some say modulo. This comes from a very
classical example, given below.

Example 1.10 (Modulo Integers). Take the set of integers Z “ t. . . ,´1, 0, 1, . . .u,
which we construct by groupifying the natural numbers (see next section). By
the division algorithm (see future sections), we know that we can write all inte-
gers as

x “ ay ` r.

So, we create an equivalence relation based on this r, the remainder of a number.
Notationally, we denote this by

x pmod yq “ r.

Then we have
R “ tpx, yq : x ” y pmod nqu

is an equivalence relation (it is a fun exercise to check this, although we’ll do it
later on). The quotient set is then

Z{R “ tr0s, r1s, . . . , rn´ 1su.

Quotienting is a very important concept, and will come up often. As a result,
one should take the time to explore what it really means to be an equivalence
relation and to quotient by an equivalence relation.
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CHAPTER 1. PREREQUISITES 1.1. SETS, FUNCTIONS, AND R

Remark 4. The astute reader may also notice that this gives us a very natural
function from our original set S to our quotient set S{R. This function is just
sending an element to its equivalence class. By construction, this function is
surjective, so this gives us a way to relate this objects back to our original
objects.

One thing we will want to do is explore functions between sets. One may
ask, for example, how many functions exist between sets, how many injective
functions exist between sets, and how many surjective functions exist between
sets? We explore some of these questions now.

Definition (Cardinality). We define the cardinality of a setX to be the number
of elements in it. It is generally denoted by |X|.

Proposition 1.3. The number of functions between two finite sets X and Y
with domain in X and codomain in Y is |Y ||X|.

Proof. For each element x P X, we have that it could map onto |Y | different
candidates. Hence, we get

|Y | ¨ |Y | ¨ ¨ ¨ |Y | “ |Y ||X|.

Q.E.D

Proposition 1.4. Given that |X| ă |Y | ă 8, the number of injective functions
between X and Y with domain in X and codomain in Y is

|Y | ¨ p|Y | ´ 1q ¨ p|Y | ´ 2q ¨ ¨ ¨ p|Y | ´ |X| ` 1q.

Proof. We first select where x P X is going to go. We have |Y | possible options
for this. Now, we decide where x1 P Xzx is going to go. Since the function is
injective, it cannot go to where the first element went. There are |Y |´1 options
for this. Continuing down the line, we get the above equation. Q.E.D

For surjective functions, we need something a bit more technical, which is
the inclusion-exclusion principle.

Theorem 1.1 (Inclusion-Exclusion Principle). For finite sets A1, . . . , An, we
have

ˇ

ˇ

ˇ

ˇ

ˇ

n
ď
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ˇ

ˇ

ˇ

ˇ

ˇ

“

n
ÿ
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n
ÿ
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n

ˇ

ˇ

ˇ

ˇ
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ˇ
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ˇ
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Proposition 1.5. Given that |Y | ă |X| ă 8, the number of surjective func-
tions between X and Y with domain in X and codomain in Y is

|X|
ÿ

i“1

p´1q|X|

ˆ

|X|

i

˙

p|X| ´ iq
|Y |
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1.1. SETS, FUNCTIONS, AND R CHAPTER 1. PREREQUISITES

From intuition and from what was discussed, we know that Q “ tp{q :
p P Z, q P Zzt0uu Ď R. However, one may wonder whether R Ď Q; that is, do
we have equality? The ancient Greeks believed this; they thought that every
number was representable by rational numbers. However, the reality is not as
clean as we would like. It turns out, in fact, that we have a strict inequality
Q Ĺ R. To see this, we propose the following theorem;

Theorem 1.2. The solution to x2 “ 2, that is, ˘
?
2, is not a rational number.

Before proving this, I’d like to note that this is a common path of reaching
the reals (and furthermore, the complex numbers). We try to solve polynomials
with coefficients in our field of choice, and see if the roots remain in the field. If
not, it’s clear we need to expand our field to append these kinds of roots, and
then we should check that this remains a field. But we’ll go more into this later.

Proof. We first propose a lemma, based on the Fundamental Theorem of
Arithmetic (which I will not prove quite yet, as it’s an involved proof).

Lemma 1.1. If a prime q divides an integer p2, then q divides p.

I’ll leave this as an exercise (we discussed this in person). Using this, though,
we will prove that

?
2 is irrational through a proof by contradiction. Assume

?
2 “

p

q
,

where p P Z and q P Zzt0u. Furthermore, assume that p and q do not share any
factors; that is, this is a reduced representation. Doing some algebra, we have

p2

q2
“ 2 ùñ p2 “ 2q2.

This implies, by definition, that 2 divides p2. By our lemma above, we get 2
divides p. Thus, we may write p “ 2k, where k P Z. Thus, we rewrite our
equality as

p2kq2 “ 4k2 “ 2q2 ùñ 2k2 “ q2.

This then gives us that 2 divides q2, and so 2 divides q. However, this means that
p and q share a factor of 2, and so we have reached a contradiction. Q.E.D

To finish this chapter, let’s discuss a theorem called Cantor’s theorem.

Theorem 1.3. For any set X, we have X Ĺ PpXq.

This theorem, while intuitively true, gives us some very big issues with our
definition of set. For example, we could declare U to be the universal set; that
is, the set of all sets. But this gives us an issue; declaring U as so would imply
that PpUq Ď U, but by Cantor’s theorem we have that this cannot be true. It’s
clear, then, that we need to be very careful with our definition of sets if we were
to be completely formal. We will not be completely formal here, as this is not
the purpose of these notes, but I encourage you to look into this matter more.
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CHAPTER 1. PREREQUISITES 1.2. QUANTIFIERS, CONVERGENCE

1.2 Quantifiers, Convergence

Quantifiers are a way of converting phrases into what is called formal logic.
Formal logic allows us to manipulate things in such a way that we may reach
tautologies, or truths. This is clearly an important factor of mathematics, and
so we see that these tools are important moving forward. I will warn you that,
while useful at first and for shorthand notes, using quantifiers in more official
proofs is discouraged, as things can get very messy very fast.

Definition. We have the following quantifiers:

1. We denote the quanitifier “for all” by @.

2. We denote the quanitifier “there exists” by D.

3. We denote the quanitifer “such that” by Q.

These will be the important ones to us moving forward. We also sometimes
care about the negation, denoted by ␣. This is the same as taking the opposite
statement. Note that the negation of @ is D and vice versa. These are mostly
intuitive, and so I’ll skim over them for now, but it’s important to play with
these things and see how they work.

Moving into real analysis, we care about things called sequences.

Definition. A sequence in R is a collection of objects ta0, a1, . . . , an, . . .u “
taiuně0 “ taiu such that ai P R for all i.

A lot of real analysis is studying these sequences. Sequences are important
in approximating things, for example, we could approximate functions through
Taylor’s theorem, which gives us a sequence of coefficients, or we could approx-
imate numbers by their closest rational number, or more. Approximation is at
the heart of analysis and mathematics, and so it’s important to hold this sort of
ideology in your mind moving forward (though I may not be very explicit with
how these things could be used to approximate things).

In order for an approximation to be accurate, we need it to be extremely
close to our goal number. So, if taiu is approximating a number, let’s say L,
then we want it to be very close to L. However, this is an approximation; so
it may be that it will never reach L. We thus need a condition that measures
extremely close. One such way is as follows;

Definition. Let taiu be a sequence in R. Then we say that taiu converges to
a number L if, for all ϵ ą 0, there exists an n0 such that for all n ě n0 we have

|an ´ L| ă ϵ.

We write tanu Ñ L or an Ñ L.

What this definition is saying is that, for any ball centered at L with radius
ϵ, I can find a point in my sequence, which is n0, so that all of my terms after
and including n0 will be within this ball. Since I can do this for all ϵ ą 0, it is
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1.2. QUANTIFIERS, CONVERGENCE CHAPTER 1. PREREQUISITES

clear that this will be a very good approximation of my number L. It’s good to
meditate on this for time and figure out for yourself why this is true.

Now, we could just simply say that a sequence diverges if it does not converge
(which is a valid and complete definition), but for practice let’s negate the
statement I just gave.

Definition. Let taiu be a sequence in R. Then we say that taiu diverges if
there exists an ϵ ą 0 and an n0 so that for all n ě n0, we have

|an ´ L| ą ϵ.

To translate this back to the ball example, there exists a point in the sequence
where I will never be inside the ball. So while I may jump in and out of the
ball at the beginning, as I go towards infinity I will eventually just not be in
the ball at all.

It’s worth noting here that the sequence need not be in R; there is nothing
intrinsic to the reals and sequences. However, we will have to modify the defi-
nition of convergence if we leave the reals, as the definition we gave requires us
to be in what is called a metric space. We will discuss more on metric spaces
later.

Let’s explore one example of convergence.

Example 1.11. The sequence t1{nuně1 converges to 0 in R.

Proof. We will use what is called theArchimedean Property here, or in other
words the fact that N is unbounded. We need to show that for all ϵ ą 0, there
exists an n0 so that for all n ě n0 we have

ˇ

ˇ

ˇ

ˇ

1

n

ˇ

ˇ

ˇ

ˇ

“
1

n
ă ϵ.

Assume for contradiction that there is no such point for an ϵ. Then we have

1

n
ą ϵ.

Using algebra, we rewrite this as

1

ϵ
ą n.

However, this implies that there is an upper bound, 1
ϵ to the natural numbers.

This is a contradiction, and so we have that there must be some point where
1{n ă ϵ. Q.E.D

One important way of looking into convergence of sequences is looking at
the subsequences. Let’s define what we mean by a subsequence.

Definition. Let taku be a sequence of real valued numbers. Then a subsequence
tank

u is a subcollection of these numbers such that nk ă nk`1 for all k.
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Example 1.12. Let t1, 2, 3, 4, 5, . . .u be a sequence of integers. Then a subse-
quence would be the sequence of even integers, t2, 4, 6, 8, . . .u. A non-example
of a subsequence would be t2, 6, 4, 8, . . .u, since we have that 4 comes before 6
in our original sequence. An important thing to note is that the subsequence
preserves the order of the original sequence.

Now let’s see how subsequences relate to convergence.

Theorem 1.4. We have tanu Ñ L if and only if all subsequences converge as
well.

Proof. Let’s prove the implication. If an Ñ L, then we have for all ϵ ą 0 there
exists a point n0 so that for all n ě n0,

|an ´ L| ă ϵ.

Now, let ain be a subsequence of an. Then we have in ě n for all i. So if we
have an n0, then we have for all n ě n0,

|ain ´ L| ď |an ´ L| ă ϵ.

The converse is trivial; the sequence is a subsequence of itself. Q.E.D

This seems to be tricky; in order to show that tanu converges using this
theorem, we would have to show that all subsequences converge, which is not
a trivial matter. However, let’s look at the negation of this statement (that is,
the contrapositive).

Theorem 1.5. We have tanu does not converge to L if there exists a subse-
quence which does not converge to L.

Example 1.13. The sequence p´1qn does not converge in R.

Proof. We’re going to use the prior theorem to prove this. Notice that taking
the subsequence p´1qn for n even gives us a sequence converging to 1. However,
taking the subsequence p´1qn for n odd gives us a sequence converging to ´1.
Since these do not agree, we do not have convergence. Q.E.D

Before finishing, let’s talk about some properties of sequences.

Definition. We say a sequence is bounded if we have |an| ďM for all n.

Definition. We have that a sequence is increasing (decreasing respectively) if
an ď an`1 for all n (an ą an`1 for all n respectively). We say that a sequence
is strictly increasing (strictly decreasing respectively) if an ă an`1 for all n
(an ą an`1 for all n respectively). We say that a sequence is monotonic if it
is increasing or decreasing. We generally specify whether it is monotonically
increasing or monotonically decreasing if it is not clear from context.

Example 1.14. The sequence tp´1qnu8
n“0 is bounded, as we have |p´1qn| “ 1

for all n. It is not, however, monotonic.
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1.2. QUANTIFIERS, CONVERGENCE CHAPTER 1. PREREQUISITES

Example 1.15. The sequence t1{nu8
n“1 is monotonically decreasing. This is

because
1

n
ą

1

n` 1
@n.

Moreover, we get that this is strictly decreasing.

We can couple these definitions together to get a powerful statement.

Theorem 1.6. (Monotone Convergence Theorem) Let tanu be a sequence of
real valued numbers. If tanu is monotonic and bounded, then we have that it
converges to it’s bound.

Proof. Let’s examine the case where tanu is monotonically increasing and bounded
(the case of monotonically decreasing and bounded is analogous). Then we have

|an| ďM

for all n. Assume that M is the least upper bound. That is, for all ϵ ą 0, we
have that there exists an n0 so that

an0 ąM ´ ϵ.

We may find such an M by the least upper bound property of the reals
(we will talk more about this when we talk about Cauchy sequences). Since the
sequence is increasing, we get that this holds for all n ě n0 as well, so that we
have

an ąM ´ ϵ @n.

Using some algebra, we get
ϵ ą |M ´ an|.

Hence, we get that M is the limit. Q.E.D

Lemma 1.2. The following are properties of limits of sequences:

(i) For sequences an, bn (we drop the curly braces since this is clearly a se-
quence from context) which converge, we have

lim
nÑ8

an ˘ lim
nÑ8

bn “ lim
nÑ8

pan ˘ bnq.

(ii) Let c be a constant and an a sequence that converges. Then we have

c lim
nÑ8

an “ lim
nÑ8

can.
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