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Chapter 0: Preliminaries

These are things Ulrich never said in his lectures. Probably more basic than needed. Some things
are stolen from Ben’s Bridge to Algebra Lectures, and some are stolen from Wikipedia.

Definition (Binary Operation). Let R be some set (informally a collection of objects). Then any
function f : R x R — R is called a binary operation.

Definition (Magma). A magma structure on a set M is a binary operation -.

Definition (Semigroup). A semigroup structure on a set S is a binary operation - satisfying the
following properties.

(a) (Associativity) For all a,b,c€ S, we have a- (b-¢c) = (a-b) - c.

Definition (Monoid). A monoid structure on a set M is a binary operation - such that the following
properties are satisfied.

(a) (Associativity) For all a,b,c€ M we have a- (b-c) = (a-b) - c.
(b) (Identity element) There exists an element e € M such that for all a € M we have a-e = e-a = a.

Definition (Group). A group is a set, denoted by G, together with some operation, denoted by
-, that combines any two elements a,b € G to form another element a - b in G. To qualify, the set
along with the operation must satisfy four axioms.

(a) (Closure) For all a,b € G, the result of the operation a - b is also in G.
(b

(c
(d

)
) (Associativity) For all a,b,c€ G, (a-b)-c=a-(b-c).

) (Identity element) There exists an element e € G such that for all a € G we have a-e = e-a = a.
) (Inverse element) For all a € G, there exists an element b € G such that a-b =b-a = e
generally, this b is denoted by a=1).

P

Definition (Abelian/Commutative Group). An abelian group is a set G with a binary operation
- such that it satisfies these five properties.

1. (Closure) For all a,b € G, the result of the operation a - b is also in G.

2. (Associativity) For all a,b,ce G, (a-b)-c=a- (b c).

3. (Identity element) There exists an element e € G such that for all a € G we have a-e = e-a = a.

4. (Inverse element) For all a € G, there exists an element b € G such that a-b =b-a = ¢
(generally, this b is denoted by a™1).

5. (Commutativity) For all a,b € G we have that a-b=1b- a.

Theorem (Zorn’s Lemma). Suppose a partially ordered set P has the property that every chain
in P has an upper bound in P. Then the set P contains at least one maximal element.


https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxkbWNyZXlufGd4OjcwOGViYmNmMWE5NTI1ZjU

Theorem (Fundamental Theorem on Homomorphisms). Given two algebraic structures (monoids,
vector spaces, modules, rings, groups) G and H, and a homomorphism f : G — H, let K be a
set with which we can quotient by (normal group, ideal, etc.) in G and ¢ the natural surjective
homomorphism ¢ : G — G/K. If K is a subset of ker f, then there exists a unique homomorphism
h:G/K — H such that f = ho ¢.

Definition (Monomorphism). A monomorphism is an injective homomorphism.
Definition (Epimorphism). An epimorphism is a surjective homomorphism.

Definition (Power Series Ring). The ring of formal power series in x with coeflicients in R is
denoted by R[[z]], and is defined as follows. The elements of R[[z]] are infinite expressions of the
form

f(x) = ag + a1x + axx® + - -

in which a, € R for all n € N. Addition and multiplication are defined just as for the ring of
polynomials R[z]. Notice that R[[x]] is commutative because R is.

Definition (Equivalence Relation). Let X be a set of objects. We define an equivalence relation
on X to be a subset of X x X; i.e., a collection R (not to be confused with ring) of ordered pairs
of elements X satisfying certain properties. These properties are

1. Tt is reflexive; (z,z) € R for all z € X.
2. Tt is symmetric; (z,y) € R implies (y,x) € R for all 2,y € X.

3. Tt is transitive; (z,y) € R and (y, z) € R implies (z, z) € R.



Chapter 1: Basics of Rings

Ideals
Definition (Ring). We say that R is a ring if
1. R is an abelian group with respect to addition.

2. R is commutative, associative, and has 1 with respect to multiplication. Multiplication is also
distributive.

Definition (Homomorphism). Let R and S be rings. We say ¢ : R — S is a homomorphism if it
satisfies these three conditions:

L op(z+y) =e(@) + (y).
2. p(zy) = p(z)p(y).
3. (p(lR) = 15.

Definition (Subring). We say R is a subring of S if R < S, R is a ring with respect to the
operations of S, and 1z = 1g. Equivalently, we say it is a subring if there is a homomorphism
¢ : R — S which is injective.

Definition (Ideal). Let I < R be a subset of R. We say that I is an R-ideal if I is a subgroup
with respect to I and RI < 1.

Fact (Fact 1). If ¢ : R — S is a homomorphism, then Im R is a subring of S and ker ¢ is an ideal
of R.

Definition (Factor Ring). If I isanideal, I € R: R/I = {x+ I :x € R} is aring. R/I called the
factor ring of R.

Fact (Natural Projection). Take w : R — R/I. This is called the natural projection. Then 7 is an
epimorphism, with ker 7 = I. Thus, we see every ideal is a kernel.

Theorem (Theorem 1.1). Given any ¢ : R — S, and choose any I < ker ¢, where I is an R ideal.
Then there is a unique homomorphism ¢ : R/I — S so that ¢ = @ - 7. Moreover, Im@ = Im ¢,
and ker ¢ = ker ¢/I. In particular, if you choose I = ker ¢, then ¢ is injective. Hence, there exists
a unique monomorphism @ : R/ker ¢ — S where the following diagram commutes.

R—% 5§
A
R/ker ¢
Proof. Proof is left as an exercise. Q.E.D

Proposition (Proposition 1.2). Let # : R — R/I be surjective. Then there is a one-to-one
correspondence with ideals of R containing I and ideals of R/I. Under this correspondence, factor
(B/D)
(K/1)°

ideals are preserved, i.e., R/K =~ where K is an ideal that contains I.



Definition (Principle Ideal). (Principal Ideal) I < R is called a principal ideal if I = Rz for some
x. Sometimes we denote this by I = (z).

Definition (Unit). We say that x € R is a unit if it has a multiplicative inverse, denoted by z 1.
Equivalently, we say that z is a unit if (z) = R.

Definition (Zero Divisor). We say that z € R is a zero divisor if zy = 0 for some y # 0. Otherwise,
it’s a nonzero divisor.

Definition (Integral Domain). We say that R is an integral domain if R # 0 and every x # 0 in
R is a nonzero divisor.

Definition (Principle Ideal Domain). We say that R is a principal ideal domain (shortened to
PID) if R is a domain and every ideal is a principal ideal.

Proposition (Proposition 1.3). Suppose R # 0 is a ring. Then the following are equivalent:
1. R is a field.
2. The only ideals in R are 0 and R.
3. Any homomorphism ¢ : R — S # 0 is injective.

Proof. We show that 1 implies 2. Suppose we have an ideal I # 0. Then there exists a nonzero
2 € I. But a nonzero element in a field is a unit, and so we have zz~! = 1, and thus 1 € I. But
this means that I = R.

We show that 2 implies 3. Notice that ¢ # 0, because p(1g) = lg, and since S # 0 then
1g # 0. Since ¢ # 0, ker ¢ # R and since ker ¢ is an ideal then we must have ker ¢ = 0 by
assumption. Hence, ker o = 0 implies ¢ is injective.

We show that 3 implies 1. Take z € R, z # 0. look at 7 : R — R/(z). Since z # 0 and x € ker,
7 is not injective. By assumption, this means that R/(z) = 0. But for this to be true implies
() = R, i.e. x is a unit. Since we chose arbitrary = # 0 in our ring R, this means that every x # 0
is a unit, and so this forces R to be a field. Q.E.D

Definition (Prime Ideal). Let I be an R-ideal. Then I is a prime ideal if I # R and whenever
xy € I, eitherx el oryel.

Definition (Maximal Ideal). Let I be an R-ideal. Then I is a maximal ideal if, whenever J is an
ideal such that I < J < R, we have that either I = J or J = R.

Fact (Fact 2). We have that I is a prime ideal iff R/I is a domain, and I is a maximal ideal iff
R/I is a field.

Fact (Fact 3). We have that 0 is a prime ideal if and only if R is a domain.

Fact. Suppose ¢ : R — S is a homomorphism of rings, and p is a prime ideal in S. Then if
¢ : R/o~t(p) — S/p is injective, we have that p~1(p) is a prime ideal of R.

Theorem (Theorem 1.4). Every nonzero ring has a maximal ideal.



Proof. Let ¥ = {I : I is an R-ideal, I # R}. This is a set which is partially ordered via inclusion.
We need to then show that ¥ has a maximal element. First, notice that ¥ # @, since (0) € X. To

apply we need to check that every totally ordered subset {I,} has an upper bound
in 3. Let I = u,l,, which is an ideal since the set is totally ordered. Notice that 1 ¢ I, for all «

since I, # R for all a. Thus, 1 cannot be in the union, and so 1 ¢ I. Therefore, I € ¥. Clearly, we
have that this must be an upper bound, since I, < I for all «. We apply Zorn’s Lemma, and so
there must be a maximal element. This must then be the maximal ideal. Q.E.D

Corollary (Corollary 1.5). If I # R is an R-ideal, then R has a maximal ideal containing I.

Proof. Notice R/I # 0, and so it must have a maximal ideal by [Theorem 1.4 Denote this by

M. By |Proposition 1.2} there is a corresponding ideal M < R such that I € M < R. We now
establish that this ideal is maximal. Assume it were not; that is to say, there is an ideal M’ such

that M < M’ < R. Then we have that M’/I = M’ is an ideal in R/I. We chose M to be maximal,
however, and so M'/I = M /I. This gives us the resulting contradiction, since M’/I = M /I implies
M = M’'. So, M is maximal. Q.E.D

Corollary (Corollary 1.6). Let R* denote the units of R. Then

R\R* = U m,

mem—Spec(R)
where m — Spec(R) denotes the set of maximal ideals of R.

Proof. For notational reasons, denote

Y = U m.

mem—Spec(R)

We show Y € R\R*. Let x € Y. Then x ¢ R*, since this contradicts the property of being a
maximal ideal. So x € R/R*.
We now show R\R* < Y. By |Corollary 1.5 every non-unit in R is contained in some maximal

ideal. Moreover, every non-unit is in the union of maximal ideals. Q.E.D

Example. (1) The prime ideals in a PID are the prime elements which are not equal to 0. The
maximal ideals are (p), where p is a prime element, if R is not a field.

(2) Let 0 # n € Z. Then the set of prime ideals of Z/Zn is equal to the set of maximal ideals
which is equal to the set (p)/(n) where p is a prime divisor of n, p > 0, and this has a one to one

correspondence with the positive prime divisors of n.
(3) Suppose f € k[x1,...,2,], k a field, and f irreducible. Then k[z1,...,z,]/(f) is a domain.

Definition (Local). A ring R is called local if R has exactly one maximal ideal, m.

Definition (Residue Field). Let R be a local ring with maximal ideal m. Then k = R/m is called
the residue field of R.

Definition (Semilocal). A ring R is semilocal if it has at most finitely many maximal ideals.

Proposition (Proposition 1.7). A ring R is local if and only if R\R* is an ideal.



Proof. We start with the implication. Since R is local, we have that m — Spec(R) = {m}. By
Corollary 1.6] R\R* = m, which is an ideal.

We show the converse. By |Corollary 1.6 again, R\R* = U,em—spec(r)™m- Notice that this
cannot be the whole ring (if it were, this would mean that there are no units in R, but R has 1, a
contradiction), and so R\R™ # R. So, let R\R* = I be an R ideal by assumption. By
I contains every maximal ideal. Therefore, I must be every maximal ideal, meaning that there’s
only one. Q.E.D

Definition (Operations on Ideals). Let I,.J be R ideals. Then I + J:={x +y: 2z €,y € J}, and
this is an ideal. Also IJ = {D i ite sums Ti¥i © i € I,y; € J} is again an ideal. One can also take
intersections. Note that IJ € I n J. The union of two ideals is not necessarily an ideal.

Lemma (Lemma 1.8). Suppose p is an R-ideal, p # R. Then p is a prime ideal if and only if
whenever there are ideals I, J < R such that IJ c p, then I < p or J < p.

Proof. We start with the implication. Suppose IJ < p, and suppose I & p and J ¢ p. Then we can
pick © € I/p, y € J/p. Notice zy € p by definition, and zy € I.J. Since p is prime, we have either
x € por y € p. But this grants us a contradiction; since if x € p then we have that I < p and vice
versa for y.

We show the converse. This follows by definition. Specifically, select arbitrary =,y € R so that
xy € p. If zy € p, we have (z)(y) < p. By assumption, this forces either (z) < p or (y) < p. If
(x) < p, then this implies « € p, and likewise for (y). Thus, if xy € p, then either z € p or y € p,
and by definition this means p is prime. Q.E.D

Definition (Multiplicative Subset). Let S be a subset of a ring R. We say S is a multiplicative
subset if

1. a,be S implies abe S.
2. 1€S.

Example. (1) If z € R, then {2" : n > 0} is a multiplicative subset of R.

(2) If p is a prime ideal of R, then we have that S = R\p is a multiplicative set. Not every
multiplicative set is the complement of a prime ideal. The case where this is true is if we let (i) be
if and only if.

Theorem (Theorem 1.9). Let I be an R-ideal, S a multiplicative subset of R with I n S # @.
Then

1. There exists an ideal p which is maximal with respect to the property that I < p and pnS = @.
2. Such a p is prime.

Proof. We prove 1. Let ¥ be the set of all ideals J where I < J and J n S = @. Notice that this
satisfies the assumption of Zorn’s Lemma (proof of [Theorem 1.4). Let p be the maximal ideal of ¥.

We prove 2. In order to do this, we must show that p is prime. Notice that p # R, since S # @
and S np = &. Also notice that p # 0. We must establish the primality condition. let =,y € R/p.
Then by the maximality of p in X, we get that (p, ) = p+ () is an ideal which is strictly larger than
p, along with (p,y). Thus, (p,z)(p,y) NS # & since xy € S. Therefore, it follows (p,z)(p,y) & p.
Notice that (p,z)(p,y) = p?> + xp + yp + (zy), and so in particular we get that xy ¢ p. By the
contrapositive, we get what we desire. Q.E.D



Corollary (1.10). Suppose I is an R-ideal, S a multiplicative set of R with S n I = &, then there
is a prime ideal p with I npand pn § = @.

Definition (Radical Ideal). Let I be an R-ideal. Then v/I = {x € R : 2™ € I for some n > 0} is
called a radical ideal.

Definition (Nilpotent Element). An element of a ring = € R is nilpotent if x € 1/0.
Definition (Nilradical). The nilradical of R is /0, or the set of nilpotent elements.
Definition (Reduced). We say that R is reduced if /0 = 0.

Remark. Every domain is reduced.

Remark (Remark 1.11). 1. /I is an ideal and T < V/I.

2. \/7 =+/I. (Think of it as a closure operation)
BANIT=VInT=VInVJ
4. VI=Riff I = R.
5. VI + J # VI ++/J but rather \/VI ++/J.
6. /p" = p if p is prime and n > 0.
Proof. We first need a lemma.

Lemma. If I, J are R-ideals, and I < J, then VT < +/J.

Proof. Let @ € v/I. Then 2" € I. By assumption, z” € J. But this means = € v/J. Thus,
VIc V. Q.E.D

We show 1. Notice that we need to establish that /T is an ideal. Let T,y € +/I. Then by
definition, we have x™ € I for some n > 0 and y™ € I for some m > 0. Assume without loss of
generality that n < m. Then (z + y)™ € I, m > 0, by the binomial theorem, and so z + y € VI.
We must then show RvI < v/I. Let r € R, y € v/I. Then y" € I for some n > 0, and so (yr)™* e 1.
Hence, yr € v/I. Since this applies for arbitrary y € VI, r € R, we have that RVI < v/I. So, /T is
an ideal. We must then establish that I < +/I. This, however, is clear (let € I, then z' € I and
soz eI ).

We show 2. From 1, it follows that VI \/ﬁ It remains to show that \/\ﬁ < VI. Let
z € v/v/I. Then we have that 2" € v/T, n > 0. But if 2" € v/, this means (z™)™ e I for m > 0. In

other words, ™" € I. But this means that 2 € v/I. So, \/\ﬁ < /I, and we get equality.

We show 3. Let = € v/IJ. Then we have 2™ € I.J. If ™ € I.J, then 2" € I n J by definition and
so we have v/IJ c /T J. Let x € /T nJ. Then we have 2" € I and z" € J. Therefore, we have
x?" € I.J, or in other words x € v/I.J. Thus, we have /I nJ = v/IJ.

Next, we need to show VI nJ =TI n+/J. Let € I ~nJ. Then we have 2" € I and z" € J.
This means that 2 € VI n+/J. Next, let 2 € v/I n+/J. Then " € I and 2™ € J. This means that
xre+InJ. Thus, VInJT =+TnAJ.

We show 4. We first show the implication. Assume v/I = R. Then we have that for all z € v/I,
x™ € I. However, this means that for all x € R, we have ' € I. More importantly, take 1 € R.



Then we have 1™ € I for some n > 0. Hence, I = R. The converse follows (if I = R, then z™ € I
for all z € R and so VI = R).

We show 5. We show /T ++/J € T+ J. Since I,J < I+ J (see |Operations on Idoalsb,
we get that v/I,v/J < v/ + J by the lemma. Hence, VI ++J < +/T+J. By 1 and 2, we see
that \/\ﬁ—i-\/j;\/\/m:m We show /T + J < VT ++/J. By 1, we have I < /1,
J € +/J, and so I +J < I+ +/J. Using the lemma again, we get v/ +J < VI ++/J.

Combining these, we get /T + J = /I ++/J.

We show 6. Assume p is prime and n > 0. We show /p® < p. Let © € 4/p™. Then z" € p™.
Notice that p™ < p, and so we have x™ € p. Notice that p is prime, and so x € p. We show that
p S /p". Let x € p. Then 2" € p” < p. But this means that = € /p”. Thus, /p" = p. Q.E.D

Theorem (Theorem 1.12). Let I be an ideal. Then

\Fzﬂp.

peSpec(P)
Icp

Proof. We show the inclusion first. Suppose I < p, then /T ¢ VP =p (1.11.6).

We show other inclusion. We must show that if an element is not in +/7, then it’s not in Nnp
(this is the contrapositive of what we want). In other words, we must show there exists a prime
ideal which contains I but it does not contain x. Let ¥ = {z™ : n = 0}. Then S NI = &, since z is
not in v/I. By (1.10), there is a prime ideal p n S = &, I < p. Notice as well x ¢ p. Thus, we have
what we want. Q.E.D

Definition (Reduced Ring). If R is a ring, then R..q = R/+/0 is a reduced ring.

Definition (Jacobson Radical). We define the Jacobson Radical Rad(R) to be the intersection of
all maximal ideals. Notice that by [Theorem 1.12, we have v/0 c Rad(R).

Proposition (Proposition 1.13). We have that € Rad(R) if and only if 1 + (z) € R*.

Proof. We show the implication. Assume that « € Rad(R). Then we have that « is in all maximal
ideals. Since z is in all maximal ideals, we get that (z) is in all maximal ideals as well. Hence,
1+ (x) cannot be in any maximal ideals, so it must be a unit (by since it’s not in
any maximal ideals, it’s not in the union, and since it’s not in the union it must lie in R*).

We show the converse. Suppose for contradiction that x ¢ m for some maximal ideal, and
assume 1+ (z) € R*. Then it follows that m + () = R, since m is maximal. Therefore, we get
that 1 = n+ax for n € m and a € R. Thus, 1 —ax = n € m, or in other words we have 1+ (z) < m.
But this is a contradiction, since we assumed that 1 + (z) € R*. Hence, z € m for all maximal
ideals. Q.E.D

Chinese Remainder Theorem

Definition (Comaximal). Let I and J be R-ideals. We say that I and J are comaximal if I+.J = R.
We equivalently call this coprime.

Lemma (Comaximality Property). If I and J are R-ideals which are comaximal, then I nJ = I.J.

10



Proof. We show I nJ < IJ. By [Operations on Ideals| we have IJ < I n J. It remains to show
that InJ cIJ. Let x€InJ. Then z €I and x € J. To show that it’s in I.J, it suffices to show
that = = lel a;b; for a; € I, b; € J. Since I and J are comaximal, we have that there is some
a € I and b € J such that a + b = 1. Multiply both sides by x to get axz + bx = x. Thus, we have
that InJc IJ,andsoweget InJ=1J. Q.E.D

Proposition (Product Comaximality). Let I, J, and K be R ideals. If I and J are comaximal,
and I and K are comaximal, then R = RR = (I + J)(I + K) < I + JK. Thus, I and JK are

comaximal.

Proof. The step R = (I+J)(I+K) is clear (since they are comaximal, (I+J) = Rand (I+K) = R).
It’s also clear that (I +J)(I+ K) € I+JK. Since (I +J)(I+ K) = R, and by [Operations on Ideals|
I+ JK is an R ideal, we get that I + JK = R. Hence, I and JK are comaximal as well. Q.E.D

Theorem (Theorem 1.14). Let I4,..., I, be R ideals, and have I, + I; = R for all ¢ # j (they are
pairwise comaximal). Then Iy ---I,, = NI I;.

Proof. We proceed by induction. The case n = 1 is both clear and non-illuminating. We proceed
to the case n = 2. Denote these ideals by I and J for notational simplicity. Then we have that
I+ J = R, and by the [Comaximality Property| we get that IJ = I n J. Assume it holds for nyg.
We must show it holds for ng + 1. Since it holds for ng, we have I - - - I,,, = n7°,I; = J, since by
[Operations on Ideals| this is an ideal. Then take I,,,11, and assume it is pairwise comaximal with

Ii,...,I,,. By[Product Comaximality| it’s clear that I,,,+1 and J are comaximal. We then use
|Comaximality Propcrty| again with I,,, 11 and J to get I,y 11 nJ = L, 1J, or A0 = H:L:‘Jfl 1;.
Thus, our result follows by induction. Q.E.D
Corollary (Corollary 1.15). Suppose R is a semilocal ring with maximal ideals m;,...,m,. Then

Rad(R) = H;L:l my;.

Proof. Let m;, m; be two maximal ideals. Then we must show they are comaximal. Notice that
ms,mj S m; +my © R, If my = m; +my, then we have that m; = 0 or m;, which contradicts
it being maximal and distinct from m;. Hence, m; + m; = R, and so two maximal ideals which
are distinct must be comaximal. Since myq,...,m, is a finite number of comaximal ideals, and

Rad(R) = n;m;, applying [Theorem 1.14| gives us the result. Q.E.D

Definition (Product of Rings). If R and A are two rings, we define R x A = {(a,b) : a € R,be A}
to be the direct product of the rings.

Theorem (Theorem 1.16 (Chinese Remainder Theorem)). Let I3,...,I, be R-ideals. Define a
homomorphism

¢:R—[[R/L
i=1
via ¢(z) = (x + I1,...,z + I,). Then
1. We have that ¢ is surjective if and only if I; + I; = R for all 7 # j.

2. We have that ker¢ = nI;. In particular, if I,..., I, are distinct maximal ideals, then
R/ker¢ =~ R/I} x -+- X R/IL,.

11



Proof. We show 1. We first show the implication. Proceed by induction on n, the number of ideals.
For n = 1, we clearly have that this is surjective. For illustration, we do n = 2. Assume ¢ is
surjective. Then we have that there is an x in R so that ¢(z) = (1,0). Notice that ¢(1—z) = (0, 1).
So, we have that « € Iy, and 1 — z € I;. Adding these together grants us z + (1 — z) = 1, and so
I, + I are comaximal. Assume it holds for n, then we must show it holds for n+1. Denote R’ as the
ring [ [}, R/I;. Denote ng = n+ 1. Then examine the ring R’ x R/I,,, and assume ¢ is surjective
onto this. We have then that there is some z € R so that ¢(z) = (1,0), and ¢(1 —z) = (0,1).
Hence, we have (1—z)e 1 n---nI,, x€l,,,andso Iy n---n I, + I,, = R. In other words, I,
is comaximal with each I; (since we can find (1 — z) € I;, z € I,,,) and we are done.

We now show the converse. It suffices to show that we can find elements r; so that the ith place
is 1, that is, ¢(r;) = (0,...,0,1,0,...,0). Since I;+1; = R for all i # j, choose I; and notice that we
can find x € I; so that (1—x) € I, for all j # i. Hence, we get that ¢(1 —z) = (0,...,0,1,0,...,0),
and we're done. Q.E.D

Theorem (Theorem 1.17 (Prime Avoidance)). Let py,...,p, be prime ideals in R and let I be an
R-ideal contained in U} ;p;. Then I < p; for some %.

Proof. We prove 1. We use induction on n in the form

I'dpi—1E Ul pi

This is clear for n = 1 by definition. For induction, assume it holds for n — 1, and we want to show
it holds for n. If it holds for n — 1, then for each 4 there exists z; € I such that x; ¢ p; whenever
j # 1. If for some i we have x; ¢ p;, we are done. If not, then x; € p; for all . Consider the element

n
y= le"'xiqxiﬂ“'xn;
i=1

we have y € I and y ¢ p;. Hence, I & U} p;. Q.E.D

Remark. I deviated from Ulrich’s proof because I really didn’t like it. This is from Atiyah Mac-
Donald, Proposition 1.11 (i).

Corollary (Corollary 1.18). Let S be a subset closed under addition and multiplication, let I be
an R-ideal, and assume S & I. Let py,...,p, be finitely many prime ideals, n — 1 of which are
prime. If S/I < U}_;, then S < p; for some i.

Proof. 1f S < I U4 p;, then by the modified [Theorem 1.17 (Prime Avoidance)| (only n — 2 need
be prime by Ulrich’s version) S < I, which is impossible, or S € p; for some 7, as desired. Q.E.D

Example. Notice that R[[x1,...,2,]] is the power series ring in n variables (see
Ring).

1. R[[z1,...,zn]] = R* + (x1,...,2p).

2. 1+ (z1,...,2,) € R[[z1,...,2,]] then (z1,...,2,) S Rad(R[[21,...,zx]])-

3. We have R[[z1,...,2z,]] is a domain if and only if R is a domain.

12



Chapter 2: Modules

Operations on Modules
Definition (Module). Let R be a ring. We say that M is an R-module if
1. M is an abelian group with respect to addition.

2. The scalar multiplication operation - : R x M — M is associative, distributive, and it has
identity.

Example. If R is a ring, then R itself is an R-module.

Definition (Submodule). We say that a subset N < M is a submodule if it is closed under addition
and multiplication.

Definition (Quotient Module). The quotient of a module is a module.

Definition (Homomorphisms Of Modules). Let M, N be R-modules. A mapping f: M — N is
an R-module homomorphism if

L flz+y) = fz)+ fy)
2. f(az) = a- f()
for all a € R and x,y € M. Notice that these maps are sometimes called R-linear maps.

Example. (1) R-submodules of R are the ideals.

(2) Z-modules are the abelian groups. If you have a homomorphism of groups, it’s naturally a
Z-linear map.

(3) k[z] modules, where k is a field, are the k-vector spaces together with the fixed endomor-
phisms ¢ : V — V.

Definition (Ideal Quotient). If I, J are R-ideals, then their ideal quotient is
(I:J)={zeR:rJcI}
which is an ideal.

Definition (Annihilator). Let R be a ring, M a module. The annihilator of a module, denoted
Anng(M) = 0p :g M) ={ze R:rM = 0}.

Definition (Faithful Module). Let R be a ring, M a module. We say M is faithful if Anng(M) = 0.

Definition (Operations on Modules). Suppose M; : i € J is a family of R-modules. Then we can

define
HMi = {(z4)ies}
i€J
@ M; = {(z;)ie7 : almost all x; = 0}.}

i€J
Notice that

Dc]]Mm.

i€J i€J
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Definition (Free Module). Let R be a ring, M a module. Then M is a free module if M =~ @, _5 R.
In other words, M is a free module if and only if M has a basis.

Definition (Finitely Generated). We say that M is finite, or finitely generated, if there are finitely
many elements in M such that M = Rxy+- -+ Rx,. In other words, we say M is finitely generated
if and only if there is a free module with n-basis elements R™ — M which surjects.

Lemma (Lemma 2.1). Suppose M is an R module, {z1,...,z,} € M, A is an n X n matrix with
entries in R. If
z1
Al t =0
LTn
then (det(A))x; = 0 for all s.
Proof. By assumption, we have
T
A =0
Tp
Multiplying both sides by adj(A) gives us
X1 T
0=(adjA)(A [ @ |) = ((adjA)A)
Tn Tn

Recall that ((adjA)A) = det(A), and so det(A)(z1,...,7,)T = 0. So for all i, we have det(A)z; =
0. Q.E.D

Theorem (Theorem 2.2 (Nakayama’s Lemma)). Suppose M is a finitely generated R-module, I is
an R-ideal, if M = I M, then there exists a € 1 + I so that aM = 0.

Proof. We have that M is finitely generated, so we have that M = Rxy + --- + Rz, (see
. So M = IM gives us (x1,...,2,)" = A(z1,...,2,)T, where A is some n x n matrix
with entries in I. This then gives us (I — A)(z1,...,2,)T = 0. By [Theorem 2.2 (Nakayama’s|
Lemma)| we get det(I — A)a; = 0 for all ¢ (recall that the x; come from the generating set). Hence,
det(I — A)x1+---+det(/ — A)x,, =0+4+---4+0=0. Thus, det(I — A) € 1 + I, since det(I — A) =1
(mod I). Q.E.D

Corollary (Corollary 2.3). Suppose N, M are R-modules with M /N finitely generated, and assume
I < Rad(R) an ideal. IF M = N + IM, then N = M.

Proof. It M = N+IM, (N+IM)/N = {(>;_,(a;m;)+ N :neN,a; € I,m; € M} = {>;" | a;(m;+
N) :n e Na € I,m; € M} = I(M/N). Thus, M/N = I(M/N), and using [Theorem 2.2
[(Nakayama’s Lemma )| we get M /N = 0. Since M /N = 0, this implies M = N. Q.E.D

Definition (Minimal Generating Set). W is called a minimal generating set of a module M if W
generates M, but no proper subset of W does generate M.

14



Example. Let M = R = Q x Q. Then {(1,1)} is a minimal generating set of M as an R-module.
On the other hand {(0,1), (1,0)} is a minimal generating set. The reason is because R is not local.

Theorem (Theorem 2.4). Assume R is a local ring with maximal ideal m, M is a f.g. R-module,
M = M/mM, k = R/m. For an element x € M, write Z for its image in M.

1. {z1,...,7,} is a minimal generating set of M if and only if {7, ...,2,} is a basis for M as
a k-vector space. In particular, every minimal generating set of M has the same cardinality.
Furthermore, this cardinality is finite.

2. Suppose {1, ...,z,} and {y1, ..., y,} are two minimal generating sets of M. Then (y1,...,yn)T
A(z1,...,2,)7T for some invertible n x n matrix A with entries in R.
Proof. We show 1. For the implication, we proceed by contradiction. We have to show {27, ..., 2,}
is a minimal generating set of M. Suppose not. Then we could take out one of the #;. Therefore,
{x1,...,2,} is not a minimal generating set, a contradiction.
We show the converse. In order to do that, we show that {x1,...,2,} is a generating set. Note

that it’s automatically minimal. We know M = ka7 + - - - + k2, hence M = Rz +-- -+ Rz, +mM.
Since R is local with maximal ideal m, m = Rad(R), and hence by this implies
M = Rx1+ -+ Rx,,. Thus {z 1...,x,} is a generating set.

We show 2. There exists an n x n matrix in A, with entries in R with (y1,...,yn
A(xh LERE xn)T' Now (y_la cee 7y_n)T = A(fla s 7x_n)T' By (a)v {y_la s 7y_n} and {117_1, < 'lx_n} are
k-vector spaces bases of M. So A has an inverse; in other words, det(A) # 0. Hence det(A) # 0.
Then det(A) ¢ m and it’s a unit. Hence, the A is invertible, since ﬁwadj(A) is the inverse of

A. Q.E.D

)T

Definition (Minimal Number of Generators). Let M be a finite module over a local ring R with
maximal ideal m and residue field k. Then the minimal number of generators of M, denote p(M), is
the cardinality of any minimal generating set. Notice that u(M) = dimy (M), where M = M /mM.
If M happens to be a vector space already, then u(M) = dimy(M). So we have a notion of dimension
of modules. In Noetherian rings, submodules of finitely generated modules will be finitely generated.

Theorem (Theorem 2.5). Let M be a finite R-module, ¢ € Hompg (M, M). Suppose ¢ is surjective.
1

Then ¢ is injective, i.e. it’s an isomorphism. Furthermore, =" = f(¢) for some f € R[x].

Proof. M is an R[z]-module via x-n = ¢(n). By extension, any polynomial f € R[z] and f(z)-n =
(f(¥))(n). Notice that M is in particular a finite R[z]-module. Since ¢ is surjective, (M) = M.
Recall o(M) = M then ()M = M. Applying |Theorem 2.2 (Nakayama’s Lemma)| we have that
(14 (x))M = 0. Thus, we have (1 —zf)M. So (1—xf)-n =0 for all n € M. Thus, distributing, we
get n = naf for all n € M. Then we get that n = (p o f(p))(n) for all n in N, which is equivalent
to po f(p) = 1pr. Thus, f(p) o = 1. Since ¢ has an inverse and it’s surjective, it is a bijective
homomorphism (isomorphism). Q.E.D

Tensor Products

Theorem (Theorem 2.6 (Tensor Product)). There exists an R-module T' = T(M, N) and an R-
bilinear map u : M timesN — T so that for any R-bilinear map ¢ : M x N — P there exists a
unique R-linear map f : T — P so that ¢ = f o u. Notice that it commutes. This is called the
tensor product.
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Proof. Proof omitted. Q.E.D

Remark. Let 77 and g’ have the same property as T and p, then there exists a unique R-linear
map g : T — T’ which is an isomorphism, and furthermore y/ = g o .

Proof. (Proof of remark) We begin with uniqueness. Notice that we have the commutative diagram
below. For now, assume existence. Let the first dotted line be g and let the second dotted line be
g’. Then we get g o ¢’ = Id, and likewise g o ¢’ = Id, and so it is an isomorphism, as the remark
required.

M x N
/ l"/x
/AR VA R

We now show existence. Using the universal property, we get the diagram below. The problem
is, however, that ¢ is not bilinear, so T is a submodule generated by all elements of the form
(rimq + romao,n) — r1(mq,n) — ro(me,n) and (m,riny + rong) — r1(m,nq) — ro(m,n2). Then u is
bilinear. By the|Fundamental Theorem on Homomorphisms| f exists if and only if D < ker(f). It’s
enough to check this for the generators of D. Indeed, F((rymy+rema,n))—ri(my,n)—ra(ma,n)) =
F((riymy+romo,n)—riF(my,n))—reF((ma,n)) = ¢(rimi+rema, n)—ri¢(my,n)—rod(me,n) = 0,
since ¢ is bilinear. Finally, f is uniquely determined by ¢, because T is generated as an R-module
by u(M x N), and moreover the f is etermined uniquely on u(M x N), and f is R-linear.

Q.E.D

Definition (Tensor Product). We call T' = T'(M, N) the tensor product of M and N, and we write
M ®pr N. We also write z ®g y for p(z,y).

Remark. If V and W are generating sets of M and N respectively, then MQ®rN = {D 110 Ti®RY:
X; € M,yi € N} = {Zﬁniteri(vi ®r wz) 1 V; € V,wz € VV,TZ‘ € R}

Theorem (Theorem 2.7). Let M, N, P be R modules. The following properties hold.
(a) M®rN=~N®grM.

(b) (M@RN)@)RP;M@RN@RP;M@R (N@RP)

() (M®N)®r P~ (M®gP)®(N®rP).

(d) Rp M =~ M.
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Proof. (a) Note that M x N =~ N x M via (m,n) — (n,m). We then have M x N - N x M —
N ®pg M is a bilinear mapping from M x N into N ®g M via (m,n) — n ® m. Note then by
the universal property we have that there is a unique linear mapping from M ®gr N to N ®g M
by sending m ® n — n ® m. There is an analogous argument for N g M — M ®r N. Let
h: M®rN — N®gr M and h: N®r M — M ®r N. We must show that these are inverses on the
on the generators. This is, however, clear; if m®n is a generating element, then h(h(m®n)) = m®n
and likewise h(h(n® m)) = n® m. Hence, h~! = h, and we have M @ g N = N ®g M. Hence, the
tensor product is symmetric.

(b) We must construct homomorphisms f, g such that f: (M ® g N) ®r P - M ®r N ®r P
and g : M ®r N®r P > (M ®r N) ®r P, and we will show that fog = go f = 1. Fixing an
element p € P, we must show that the homomorphism (m,n) — m®n®p is bilinear. The function
is well-defined, since the selection of representatives is arbitrary. We have m@n®p =m'®n' ® p.
Notice that (a1mq +asmy,n) — (a1mi+asm)@n®p = a1m1 @nN®p+asma®@n®p = a1(m; N
p) + az(ma®n® p) which is equivalent to aq(my,n) + az(mz,n) — a1 (M1 N pP) + az(M2@Np),
and so it’s linear in the first component. Linearity for the second component follows similarly. By
the universal property this induces a homomorphism f, : M ®g N — M ®r N ®g P. Consider
then the mapping of (a, p) — f,(a) of (M ®g N) x P into M @ N ®g P. Denote this mapping f.
It’s clear that this is well-defined, and bilinearity follows readily. Linearity in the first component is
clear, and we have f((m®mn),ap) = m® (M®ap) = mRa(n®@p) = a(m® (n®p)) = af(Mn,p)
and f(m®n, p+p) = m® (n® (p+1/)) = m® (n®p) + (M®F)) = (M@ (1®P)) + (M (n®p)) =
fm®mn,p) + f(m®n,p’). Thus bilinearity follows. Then by the universal property this induces
another homomorphism f: (M ®r N)®@r P > M ®r N ®g P, where f(m®n)Q®p) =m@nQ p.
Note that g is easier to construct; consider the mapping (m,n,p) — (M ®n)® p of M x N x P
into (M ®r N)®g P. This is clearly linear in each variable (and hence multilinear) and so we have
that by the universal property this induces a mapping g : M ® g N ®r P > (M ®r N) ®r P. On
the generators of (M ®r N) ®r P and M ®r N ®gr P we can clearly see that fog=go f =1,
and so it follows readily that f = ¢~' and so we have an isomorphism.

We must construct again isomorphisms f, g such that f : M ®g (N®r P) > M ®r N®pr P and
g: MOrN®rP > M®r(N®gP) where fog = gof = 1. Fix an element m € M. Then we have
(n,p) — m ® n ® p is bilinear by above (the argument is near identical), and so by the universal
property this induces a homomorphism f,, : N®r P — M ®gr N ®g P, where f,,(n,p) = m@n®p.
Consider the mapping (m, a) — f,,(a) of M x (N ®pg P) into M ® g N ®g P. Then by the universal
property this induces a homomorphism f : Mg (N®rP) > M®r N®g P, where f(m® (n®p)) =
m® n ® p. Note again g is easier; consider the mapping (m,n,p) — m® (n® p) of M x N x P
into M ®g (N ®g P). Then this induces a homomorphism g : M g N ®zr P —> M ®r (N ®r P)
where g(m®n®p) = m® (n® p). We have f and g are clearly inverses on the generators of these
modules, and so fog =go f =1, and so we have an isomorphism. Hence, the tensor product is
associative.

(c)Let f: (M@®N)x P— (M®pgrP)® (N ®g P) be the mapping defined by ((m,n),p) —
(m®p,n®p). Note that this is clearly well-defined. We must show that this is bilinear. Let r € R,
m,m’ € M, p,p’ € P and n,n’ € N. Then we have that

f(r(m,n),p) = f((rm,rn),p) = (rm @ p,rn ®p) =
(r(m®p),r(n®p)) = r(m@p,n@p) = rf((m,n),p),
f((m,n),rp) = (m@rp,n@rp) = (r(m@p),7(n@p)) =
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r(m@p,n®p) = rf((m,n),p),
f((m,n) + (m',n"),p) = f((m +m',n+n'),p) = ((m +m) ®p,(n+n') @p) =
(m®p,n@p) + (M @p,n' @p) = f((m,n),p) + f((m',n),p),
f((m,n),p+p)=m@p+p),n@@+p)=mp,n®p) + (Mmp ,n@p) =

f((m,n),p) + f((m,n),p").

So, we have that f is bilinear. By the universal property, this induces a linear mapping g :
(M®&N)®r P —> (M®g P)® (N ®g P), which can be defined as g((m,n) ® p) = (m® p,n ® p).
Now, we must find an inverse function from (M ®p P)® (N ®g P) > (M ® N)®pg P. Likewise, we
must use the universal property of direct sums to find the inverse. Let j; : M x P —» (M@®N)®gP be
defined by j1(m,p) = (m,0)®p, and jo : N x P —> (M @®N)®pg P be defined by ja(n,p) = (0,n)®p.
These are clearly well-defined. We then get the linear maps j; : M g P — (M @® N) ®g P and
J5  N®r P - (M @® N)®g P defined in the canonical fashion. We then have by the universal
property of direct sums a function j : (M ®gr P)® (N ®g P) —» (M ® N) ®gr P defined by
Jm®@p,n®p) = (m,0)®p+(0,n) ®p.
Let (m,n)®pe (M@ N)®gr P be a generator. We have then that

i(g((m,n) ®p)) = j(m@p,n®p) = (m,0)@p + (0,7) ®p = (m,n) p,

as required, and so j o g = 1 on the generators. Likewise, let (m ® p,0) and (0,n ® p) in (M ®g
P)® (N ®g P) be generators. We have

g(j<m®p70)) = g((m,O)@) = (m®p,0)

p

and likewise for (0, (n ® p). Thus, go j = 1, and so we have g and j are inverses and form an
isomorphism.

(d) Let f': Rx M — M be a homomorphism f(r, m) = rm. We must show that this is a bilinear
map. Notice f(air1 + agre,m) = (a17r1 + agra)m = arrim + agrom = ay f(r1,m) + as f (re, m). The
argument for the linearity of the second component is similar. Then we have that this is a bilinear
map from R x M — M, and so we have that this must induce a linear map f: RQr M — M
where f(r® m) = rm. Let g : M — R®gr M be the linear mapping g(m) = 1 ® m. This is clearly
linear, and so it suffices to show that these maps are inverses. Let m € M be a generator of M,
r € R. Then we have

flg(m)) = f(1®@m) =m

and

g(f(rem))=g(rm) =1 rm=r(1Qm) =r®@m.
Thus, we have that they are inverses and this creates an isomorphism from M — RQr M. Q.E.D

Definition (Bimodules). Suppose R and S are two rings. Then we say that N is an R-S bimodule
if it is an R-module and an S-module. Furthermore, r(sn) = s(rn) for all r in R, s in S, and n in
N.
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Proposition (Proposition 2.8). Let R and S be rings. Suppose M is an R-module, N is an R-S
bimodule, and P is an S-module. Then

(a) M ®g N is an R-S bimodule.

(b) (M ®r N)®p S =p-5s M ®r (N ®p S)

Proof. (a) We must show that M ®r N is an R — S bimodule. Fix some s € S. Let there be
amap M x N into M ®g N defined via (m,n) — m ® sn. We also have the natural map from
M x N into M ®g N defined via (m,n) — (m® n). Hence, by the universal property this induces
a unique and linear map from M ®r N to M ®r N via m Q@ n — m & sn. Hence, let M ®r N
be our module T, and so we want to show that T' x S — T is well-defined. If (¢,s) = (¥, ) then
we have ts = t's’ but (¢t,s) = (t,s') - s = &' since S is a ring. Hence, we have that our function
f:(M®rN)xS - M®pgN is well-defined, and is given essentially by our function above. Denote
this map ¢ : (M ®r N) x S - M @ N. Then we have (> m; ®n;) = > u(m; ®n;) = > m; ® sn;
as required. So, it follows that M ®g N is an R — S bimodule.

(b) Fix pe P. Then let f, : M x N - (M ®g N) ®s P be defined by (m,n) —» m® (n® p).
This is clearly well-defined. The biadditivity property is similar to Problem 4 (c) above, and so it
remains to show that this is bilinear by showing the scalar property. Let » € R. Then we have

fp(rm,n) =rm® (n®p) =r(m® (n®p)) =rfy(m,n)
and likewise

fo(m,rn) =m@ (rm®p) =mr(n®p) =r(m® (n®p)) =rf(m,n).

Hence, it is bilinear. By the universal property, we have that this induces a linear mapping f]; :
M ®gr N — M ®r (N ®s P) by taking f,(m®n) = m® (n®p). Let p vary. Then we have a
mapping f : (M ®r N) x P — M ®g (N ®g P) defined by f((m® n),p) = f,(m ® n). We must
show that this mapping is bilinear. It is clearly biadditive. It’s also R-linear in the first variable by
definition of f;,. Hence, it remains to show that it is S-bilinear. Let s € S. Then we have

f((m@n)s,p) = f(m@ns,p) =m® (ns@p) =

m® nep)s=(me(np))s=f(mn,p)s

and

fm®n,ps) =m @ (n@ps) =m® (n®p)s = (m® (n®p))s = f(mn,p)s.

By the universal property, we get that since this is bilinear, it induces a linear mapping f’ :
(M®r N)®s P —> M@g (N ®s P), where f'((m®rn)®sp) =mr (nQs D).

We now must find the inverse. Fix m € M. Then we define f,, : N x P > M ®g (N ®g P) by
taking (n,p) — (m ® n) ® p The biadditivity is clear, and it remains to show the scalar property.
Let s € S. Then we have

fm(ns,p) = (m@ns)@p = (m@n)s@p = (Mn) @p)s = fn(n,p)s

and likewise

fm(n,ps) = (m®@n) @ps = (M@n) @p)s = fm(n,p)s.
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Hence it is bilinear. By the universal property, we have that this induces a linear mapping f/, : N®gs
P — (M®RrN)®s P by taking f/. (n®p) = (m®n)®p. Let m vary now. Then we have the mapping
f:Mx(N®sP)— (M®grN)®s P defined by f(m,(n®p)) = f,,(n® p). The process is similar
to above to show that it is bilinear. It is clear that is also biadditive, and it’s S-linear in the second
variable by definition of f/ . Also by above, it’s clear to show that it’s R-bilinear. Then this induces
a linear mapping ¢’ : M ®r (N®s P) > (M ®g N)®s P, where ¢'(m®r (n®sp)) = (mOrn)Rsp.
Now we note that they’re inverses; f'(¢'(m ®r (n®s p))) = f'((MOrn) Qs p) = m g (n Qs p)
and likewise ¢'(f'(m®grn)®sp)) = ¢(MR®r (NQ®sp)) = (M®rn)Rsp. Thus, M ®r (N Qs P) =~
(M ®gr N)®g P. Q.E.D

Theorem (Theorem 2.9). Let R and S be rings, ¢ : R — S a homomorphism of rings, and M
an R-module. Then S ®pr M is an S-module by and p : M — S ®r M where
w(m) = 1 ®g m is an R-linear map. Furthermore, for every S-module N and any R-linear map
@ : M — N, there exists a unique S-linear map f : S®r M — N with ¢ = f o u. Thus, we have
the following commutative diagram.

M-y S@rM

lw 7
Tf

k

N

Proof. (It was unclear on what to do for this one, so I tried the best I could.)

We begin by construction a map from S x M into S®r M via (s,m) — s®m. We then construct
another map from S x M into S x N via (s,m) — (s,¢(n)). This is clearly bilinear, as was the
map before, and so we have an induced linear mapping from S®pg M into S x N. Next we have the
projection map of S x N into N via (s,n) — n. We then have a function from S x N into S ®g N
via (s,m) — s®g n. Denote this map g. This induces a unique S-linear mapping from S®g N into
N via s®n — n. Finally, we have the mapping S ®g M into S®s N via s@ m — s® 1»(m) by the
previous maps constructed. Denote this map h. Then we can define f = go h, and we have that it
makes the prior map commute and is unique. Note that it commutes since ©¥» = f o u since for all

m we have f(u(m)) = f(1® m) = ¥(m). Q.E.D

Definition (Algebra). Let ¢ : R — S be a homomorphism of rings, then S is an R-algebra. This
is equivalent to R and S being both rings, then S is an R-S bimodule. Equivalently, R and S are
rings, S is an R module, and r(sys2) = s1(rs2).

Proposition (Proposition 2.10). Suppose we have two R-algebras, S and T. Then S®zT is again
an R-algebra, via (s Qgr t)(s' Qrt') = (ss' Qg tt').

Proof. Recall that we define an R-algebra to be a ring S together with a ring homomorphism
f:R— S. In this case, let f: R — S be the corresponding homomorphism for S an R-module and
let g : R — T be the corresponding homomorphism for 7" an R-module. Then we have that S and T’
are R-algebras. Consider then the mapping SxT xS xT — S®gT defined by (s,t,s',t') — (ss',tt').
This is clearly R-linear in each factor, and therefore by the multilinear tensor product this induces
an R-module homomorphism S ®r T ®r SQ®r T — S ®r T. Using Problem 4 (b) we have then
that this is (S®rT)®r (S®rT) — (S®rT). By the universal property, this corresponds to some
R-bilinear mapping p: (S®rT) x (S®rT) > S®r T which is u(s®t,s ®t') = ss' ® tt'.
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We now show that this is a commmutative ring. First, note that this clearly forms an additive
abelian group by the properties of tensor products. Next, note that it’s closed under multiplication
clearly, and it has identity 1 ® 1, since (s ® )(1® 1) = s®t = (1® 1)(s ® t). Associativity
under multiplication is clear by properties of tensor products. Note that it’s also abelian under
multiplication: (s® t)(s' ® ') = ss' @ tt' = s t't = (s @ t')(s ®t). Finally, we show that it’s
distributive; let s1, 89,83 € S, t1,t2,t3 € T, then (s1 ® t1)((s2 ® t2) + (53 ® t3)) = (s1 ® t1)((s2 +
53) @ (ta +t3)) = (5152 + 5253) ® (tita + tits) = (s152 @ tite) + (5153 @ tatz) = (51 @ t1) (52 @ t2) +
(s1 ® t1)(s3 ® t3). The argument for the other direction of distributivity is similar. Hence, it’s a
commutative ring with identity.

Finally, to show it’s an R-algebra we need to show that there is a ring homomorphism A : R —
S®rT. Let h(a) = f(a) ® g(a), where f and g are defined above. The properties follow clearly;
h(a+b) = fla+b)®g(a+b) = fa) + f(b)®g(a) +g(b) = f(a)®g(a) + f(b) ® g(b) = h(a) + h(D),
h(ab) = f(ab) ® g(ab) = f(a)f(b) ® g(a)g(b) — (f(a) ® g(a))(f(b) ® g(b)) = h(a)h(b), and h(1) —
f(1)® g(1) = 1 ® 1 which is the identity in the ring, as we showed earlier. Hence, we have that
S ®r T is an R-algebra by definition. Q.E.D

Exact Sequences

Definition (Complex). Suppose we have §; : M; — M;_1 R-linear maps, where i € Z. Then we
can put them together as follows.

Oit2 dit1 85 di—1
o M S M S M

Such a sequence is called a complex of R modules if i 0 §;;17 = 0 for all . Notice that this is
equivalent to Im(d;+1) < ker(d;) for all 4.

Definition (Exact Sequences). If we have a complex of R-modules such that Im(d;11) = ker(d;)
for all 7, then we call it an exact sequence of R modules.

Definition (Short Exact Sequence). If you have a sequence
0> M —-M-—>M"—0.
it is called a short exact sequence.

Remark. Notice that 0 — M’ % M is exact if and only if ¢ is injective. Notice as well that

M % M” = 0is exact if and only if ¢ is surjective. Notice that M’ % M Ly M 0 is exact if
and only if ¢ induces an isomorphism between M/Im(p) and M”.

Definition (Cokernel). The cokernel of a map f: M’ — M is M /Im(f). This is generally denoted
Coker(f).

Theorem (Theorem 2.11 (Snake Lemma)). If we have the following commutative diagram, then
diagram following has induced mappings and they give a six term exact sequence. Moreover, if ¢
is injective, then so is @, and if 1 is surjective then so is ).
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M’ L M M” 0
I | I
0 N’ N Y N”

J{ﬂ'f/ J/Trf J{T(f//

Coker(f") —— Coker(f) SECEN Coker(f")

ker(f) ——— ker(f) —— ker(f")

5
L Coker(f") —— Coker(f) —— Coker(f")

Proof. Proof omitted. Q.E.D

Theorem (Five Lemma). If we have the following commutative diagram with exact rows, then f
is an isomorphism.

A B C D E
LYk
A’ B’ o D’ E'

Proof. Proof omitted. Q.E.D

Definition (Hom). Let M, M’ N be R-modules such that we have a map ¢ : M’ — M. Then we

define Hompg(p, N) : Hompg (N, N') — Hompg (N, M) via f — ¢ o f. Note that this is R-linear.
Define Homp(p, N) : Homgr(M, N) — Homp(M’, N) via f — f o . Note that this is R-linear.
Define p Qg N : M’ ®g N - M ®r N via m' @z n — p(m') Qg n.

Remark. Hompg(N, p¢’) = Hompg(N, ¢) o Hompg (N, ¢') is covariant, since the order of the maps
stay the same. Notice Hompg(¢¢’, N) = Hompg(¢’, N) o Hompg (¢, N). This is contravariant, since
the order of the maps is reversed. Notice that o’ g N = (¢ ®r N) o (¢’ ®g N). We have that
this is covariant.

Theorem (Theorem 2.12). (a) The following are equivalent.
(i) 0> M 5 M 2, M" is exact.

Hompg (N,¢) Homp (N,)
—_— —_—s

(ii) 0 > Homp (N, M') Homp(N, M) Homp(N, M") is exact for all N.
(b) The following are equivalent.

(i) M" % ML M” — 0 is exact.
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(ii) 0 > Homp(M", N) Home(#N), Hompg(M, N) Homalp,N), Hompg(M', N) is exact for all N.

(iil) M'®r N —— PN M ®r N —— ¥@rN M"®@r N — 0 is exact for all N

Proof. (a) Denote @ = Homg(N,¢) and ¢ = Hompg(N, ). We begin with (i) implies (ii). Since
the sequence in (i) is exact, we get that ¢ is injective. We want to then establish that @ is also
injective. Recall that by definition @ : Homg(N, M’) — Hompg (N, M) where f — ¢ o f. Assume
that this is not injective, then we get that the kernel is nontrivial. Notice that the kernel of ¢ are
the functions f € Hompg (N, M’) with ¢ o f = 0. But ¢ is injective, so if ¢(f(z)) =0 for all z € N,
then this must mean that f(x) = 0 for all z € N. In other words, the kernel is trivial, and we get
a contradiction. So @ is injective.

Next, we must show that Im(@) = ker(z), and thus the sequence will be exact. We begin with
Im(@) < ker(z)). Let f € Hompg(N, M’). Then @(f) = o f. Notice that ¢ (o f) = o (cpof). B
assumption, ¢ (p o f(x)) = 0 for all 2 € M and all f € Homg(N, M), since ker(y) = Im(yp). So,
we get that Im(¢) < ker(v)). Next, we show the other direction; that is, ker(y)) < Im(g). But this
also just follows since ker(y) = Im(t). Hence, we have (i) implies (ii).

For the other direction, notice that @ is injective. This means that if ¢(f1(x)) = ¢(f2(y)) then
fi(x) = f2(y). This automatically gives us that ¢ is injective then; for if we have ¢(x) = ¢(y) but
x # y, then we could construct homomorphisms f, g such that f(z) = z and ¢g(y) = y, and we have
then that ¢(f(z)) = ¢(g(y)), which results in a contradiction. Thus, ¢ must also be injective. We
again must check that Im(¢p) = ker(¢)). Notice that 1) o @ = 0 by assumption. Then this gives us
Yopof=0forall fe Homg(N,M'). Take f to be the identity function where N = M’, then
we have ¢ o ¢ = 0. Then we have that Im(¢)) < ker(¢)). Now, let N = M/Im(yp). Let w be the
projection map from M onto N. Then we have 7 € ker(¢)). Then we have k : M” — N such that
7 factors through, giving us the desired inequality. Thus, we have (i) if and only if (ii).

(b) We show that we have (i) if and only if (ii). Let ¢» = Hompg(1), N) and let ¢ = Hompg(¢, N)
for notational simplicity. First, we show that Hompg(M"”, N) is exact. In order to do so, we must
show that 1 is injective. Notice that the kernel of 1 consists of the functions f where f o = 0.
Notice as well that since we have (i) then v is surjective. Hence, we must show that (f ov)(z) =
for all x € M. Since v is surjective, we have that ¥(z) = m for some unique m € M”. Hence, we
must have all functions f such that for all m € M” we have f(m) = 0. We have that f must be the
zero mapping, and so we have that ker(y)) = {0}. Hence, the mapping is injective, as we required.

Next, we are given that 1) o ¢ = 0. We must then show that ¢ o) = 0. Notice that ¢(¢(f)) =
d(forp) = fopogforall fe Homp(M", N) per definition. Since we have ¢o ¢ = 0, then we have
fovop=fo0=0. Hence, we have ¢ o1) = 0, and so Im(¢)) < ker(¢).

Next, we show that ker(qﬁ) C Im(¢)) and hence we have equality, making the sequence exact.
If f € ker(¢), then we have f o ¢ = 0. By exactness of the first sequence and this, we have
Im(¢) = ker(¢) < ker(f). Hence we have that there is some function f in Hompg(M"”, N) where
f=fov =1(f) and so Im(z)) < ker(¢) and hence we have equality. Thus, the sequence is exact.

Next, we show that (ii) — (i). It’s clear that v is surjective, since we have that 1 is injective. So
we must show then that ker(/) = Im(¢). Notice that 1) o¢ = 0. Then it follows that ¢potpo f = 0 for
all f € hom M”. Let f be the identity function and N to be M” (we can do so since it holds for any
R-module N and any function) then it follows that ¢ o ¢ = 0. So, we have Im(¢) < ker(t)). Next,
let N = M/Im(¢). Let 7 be the projection from M onto N. Then it follows that we must have
7 € ker(¢); hence, there exists k : M” — N such that 7 factors through. Hence, Im(¢) = ker(1))
and so the sequence is exact. Thus, we have (i) < (ii).
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We now show (i) if and only if (iii). By (i) if and only if (ii), we have
M®P—-MQP—->M®P—0
R R R
is exact if and only if

0 —» Homg(M" ® P,N) — Homgr(M ® P, N) — Homg(M' ® P,N)
R R R

is exact for all V. Notice that this sequence is isomorphic to
0 — Hompg(M",Hompg (N, P)) — Homg (M, Hompg (N, P)) — Homg(M', Hompg(N, P))

for all N, since Homr(M ®g N, P) =~ Bil(M x N, P) (b y the universal property), and this is
isomorphic to Hompg (M, Hompg (N, P)). By (i) if and only if (ii), we get that this is true if and only
it M’ - M — M” — 0 is exact. Q.E.D

Corollary (Corollary 2.13). We have M ®r R/I =~ M/IM.

Proof. Notice that the sequence
0-I5RSR/II—0

is exact. We now tensor with M to get

M®I—>M®R—M®R/I—0
R R R

which is right exact by [[heorem 2.12] By |[T'heorem 2.7|d, we have M®pgr =~ R. Hence, this sequence
is
M@IHM%M@R/I—»O.
R R

By exactness, if f : M®grI — M, then M ®g R/I ~ Coker(f). We now must show that Coker(f) =~
M/IM. Moreover, it suffices to see that the kernel of f is IM (since Coker(f) = M/ker(f) by

(Cokernel)). But this follows since f(m ®g m’) = mm’ (see [Theorem 2.7|d). This completes the
proof. Q.E.D

Remark. Let M, N be R-modules. You can get exact sequences
0>USLF—M—0

and ‘
0-V5G—->N-—-0

where F' and G are free modules, F' has basis {e;} for some indexing set, and G has basis {y;} for
some indexing set. We tensor the first sequence with N to get

URXN-—->FQRN-—->MN —0
R R R

which is exact by Similarly, we tensor the second sequence with F' to get
R R R

We see then that
M®N=FQ®N/Im(U® N)
R R R

via the first sequence. We then need a lemma.
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Lemma.

MN=2FRG/(Im(FRV)+Imn(U®G))
R R R R
Proof. By the second sequence, we see that

FON=F®G/Im(F®V).
R R R

Q.E.D
Recall F ®pr G is a free module with basis {e; ®r ¢;}.

Definition (Split Exact). The following are equivalent for an exact sequence of R-modules

0— M &M% M -0
(1)

M/ ® M P

zl

M 0
b S
— M — 5 M oM 0

M//
(2) There exists an € : M — M’ where € o p = Id.
(3) There exists a p: M"” — M where ¢ o p = Idpr.

These maps are called splittings, and such a sequence is called split exact.

Definition (Projective Module). Let R be a ring and N an R-module. Then the following are

equivalent.
(i) N is projective.

(ii) If ¢ surjective, then Hompg(N, ) is surjective.

(iii) Hompg (NN, -) preserves exact sequences.
Definition (Injective Module). Let R be a ring and N an R-module. Then the following are
equivalent.

(i) N is injective.

(ii) If ¢ is injective, then Hompg(p, N) is surjective.

(iii) Hompg(-, N) preserves exact sequences.

Definition (Flat Module). Let R be a ring and N an R-module. Then the following are equivalent.
1. N is flat.

2. If o is injective, then ¢ ®p - is injective.

3. -®gr N preserves exact sequences.
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Proposition (Proposition 2.14). Let R be a ring.

(a) The following are equivalent.

(i) P is a projective module.
(ii) For all surjective ¢ : M — M” and f : P — M", there exists a g : P — M making the
following diagram commute.
M —— M"

K\
S fT
g NS
P

(iii) There exists an R-module M where P ® M is free.

(b) We have free — projective — flat.

Proof. We start with (a). Notice that (i) if and only if (ii) follows from the definition,
Modulel Next, we prove (ii) implies (iii). Using (ii), let M” be P and let M be F, a free module.
Then we have the following diagram.

We then use the equivalences of [Split Exact] We now prove (iii) implies (ii). Notice that every free
module is projective, and a direct summand of a projective module is projective, since Hompg(P @
M, ) = Hompg(P,v) ® Hompg(M,v). So 4 is surjective implies Hompg (P @ M, ) is surjective,
which implies Hompg (P, ), giving us the desired result.

We now prove (b). First, we establish free implies projective. Examine the following diagram.

ML M
K\
i
e
Let {e;} be the basis of R". Examine f(e;). For each 4, choose z; € ¥~1(f(e;)). Define g : F — M

by g(e;) = x;. Then by [Projective Module] we get that it’s projective. Since the projective is a
direct summand of free modules, it must also be flat, via [FTat Moduld Q.E.D

Remark. Notice that the arrows for [Proposition 2.14] b cannot be reversed.

Theorem (Theorem 2.15). Let (R,m, k) be a local ring, M a finite R-module. Then M is free if
and only if it is projective.

Proof. Let M be projective. Let n = u(M) (recall [Minimal Number of Generators|). Then we have
M = Rz +---+ Rx,. Let F = R". So we take

0->-K—>F—>M-—0.

26



(Here, K denotes the kernel of the mapping F' — M.) Notice that K € mF. Since Y, a;e; € k, then
> a;x; = 0 implies no a; can be a unit. Since R is local, a; € m. Since M is projective, we get the
following diagram.

F— M

N
~ —
< =
~
~
~

M

By we get F' =~ k@ M, and also K is finitely generated. So R" ~ k@® M. Tensor
this with k to get that k ® g R™ =~ k™, and so we have k" =~ (k ®gr k) ® (m ®g k). Notice that
m®gr k = k™, since
K—-F—-kRk—>F®Ek
R R

because k € mF. Thus
0-F®k—> MKk — 0,
R R

so M ®pk =~ k™. Thus, k" ~ (K ®r k) ® (k™) gives us K ®g k = 0, which gives us K/mK = 0. So
by [Theorem 2.2 (Nakayama’s Lemma)| we get K = 0. Hence,

0-K—->F—->M-—0

implies
0—-F—->M-—0

and hence F' =~ M, as desired. Q.E.D
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Chapter 3: Noetherian/Artinian Modules and Rings

Noetherian and Artinian Modules

Lemma (Lemma 3.1). Let I be a partially ordered set with respect to < (in other words, < is
transitive, (x < y) A (y < &) — & = y). Then the following are equivalent.

(i) Every increasing sequence 1 < 29 < 23 < --- is stationary or stabilizes. In other words,
there exists an n such that x, = x,4+1 =---.

(ii) Every nonempty subset of I' has a maximal element.

Proof. We show (i) implies (ii). We proceed by contradiction. Suppose IV € T' does not have a
maximal element, and IV # @. By induction on n, we construct elements z; < xo < -+ < x,, in I
which are all distinct. For n = 1, arbitrarily choose any. Suppose it holds for n — 1, i.e. we have
a chain 1 < .-+ < x,_1 which are distinct for all z;. Since z,,_1 cannot be a maximal element
(assuming (ii) is false), there must exists an z,, € I such that z,_1 < x,, and z,_1 < x,, (otherwise
Zn—1 would be maximal). Thus, by induction the case n holds. Since by induction we can increase
this chain to be arbitrarily long, we see that (i) does not hold, and so we have a contradiction.
Hence, we must have (ii) if we have (i).

We show (ii) implies (i). This, however, is clear. Let x1 < --- be an arbitrary chain, and let
them all be contained in I'. Then we apply (ii) to I to find an z,, such that 1 < --- < z,, and if
Tp < Tpyq then we must have z,, = x,.1 by the second property of partially ordered sets. Hence,
we have that this chain stabilizes, giving us (i) as desired. Q.E.D

Remark (Ascending Chain Condition). We call the above property (Lemma 3.1)) the Ascending
Chain Condition. If T" satisfies the properties above, then it has the Ascending Chain Condition.

Definition (Descending Chain Condition). If we have the properties in but with respect
to > as opposed to <, then we call it the Descending Chain Condition.

Definition (Noetherian Module). Let M be an R-module, R a ring. Then M is Noetherian if the
set of all submodules of M satisfies the ascending chain condition.

Definition (Artinian Ring). Let M be an R-module, R a ring. Then M is Artinian if the set of
all submodules of M satisfies the descending chain condition.

Definition (Noetherian/Artinian Ring). Let R be a ring. We say R is Noetherian as a ring
(respectively Artinian) if R is Noetherian (respectively Artinian) as an R-module.

Proposition (Proposition 3.2). Let R be a ring, M an R-module. We have that M is Noetherian
if and only if every submodule of M is finitely generated.

Proof. We start with the implication. Let N be a submodule of M. Let IV be the finitely generated
submodules of N. Note that I is nonempty (I” must contain at least N). By the Noetherian
property, I as a maximal element, M’. We would like to show that M’ = N. We proceed by
contradiction; assume that M’ # N. Then there exists an x € N such that x ¢ M’. Now, consider
M’ + Rx. This is a finitely generated N-module, and M’ < M’ + Rz, which contradicts the
maximality of M’. Thus, we have that N = M’, and N is finitely generated.
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We prove the converse. Let My € My < --- be a chain of submodules. Define

Then M’ is a submodule of M. Hence, M’ is a finitely generated module. By definition, M’ =
Rxy + -+ + Rxy. So x; € M;; for some 4;. Let r = max{i; : 1 < j < n}. Then x; € M, for all
Jj. Notice that M’ = Rxy + -+ + Rz, € M, € U2 M; S M’, hence we have that M’ = M,., and
therefore for all j greater than or equal to r, we have M, = M;. So it stabilizes. Q.E.D

Corollary (Corollary 3.2.1). A ring is Noetherian if and only if every R ideal is finitely generated.

Lemma (Lemma 3.3). Let R be a ring, M an R-module, M’ € M a submodule, and let N; <
Ny € M be submodules. Then we have N; = N if and only if Ny n M’ = Ny n M’ and
(N1 + M')/M'" = (Ny+ M'")/M’'. (Not an isomorphism, actual equality.)

Proof. For the implication, it follows clearly. If N1 = N, then it’s clear that Ny n M’ = No n M’,
since M’ is the same in both. It’s also clear that (Ny + M')/M' = (No + M')/M’ since N1 = Ns.
For the converse, there is more work. We know Ny € Ny (N1 +M') because Ny +M' = No+ M’
(since (N7 + M')/M' = (Ny + M’)/M'). Then Ny n (Ny + M') = (Non Ny) + (Non M) =
(N3 n N1) + (Ny n M') € Ny. Hence Ny € N;. By a symmetry argument, Ny & Na, and thus
Ny = Ns, as required. Q.E.D

Proposition (Proposition 3.4). If

0->M5SME M o
is an exact sequence, then
(a) M is Noetherian if and only if M’ and M" Noetherian.

(b) M is Artinian if and only if M’ and M"” are Artinian.

Proof. You may start with assuming M’ € M and M"” = M/M’, since the sequence is exact. We
start with the implication of (a) and (b). Let M] € M} < --- be any sequence in M’. Since we may
assume M’ < M, it’s clear that this is a sequence in M, and so it must eventually stabilize. We
can apply this same logic for (b). For M” let My € Mj < ---. Since M" = M /M’, we have that
this is My /M’ < My/M’' < --- for M; € M. But this stabilizes, since M; € My < - - - stabilizes by
assumption. Apply similar logic for (b).

We now prove the converse of (a) and (b). Assume M’ and M” are Noetherian (respectively
Artinian). Then select some arbitrary chain M; € My < --- in M. The corresponding chain in M’
is then My "M’ < --- in M’, and the corresponding chain in M" is (M +M")/M" < - --. We know
that both stabilize eventually (by assumption), and so we apply on these sequences to
get that they stabilize in M as well. Therefore, every chain eventually stabilizes in M. Q.E.D

Corollary (Corollary 3.5). M, ..., M, are Noetherian (respectively Artinian) if and only if M; @
-+ @ M, is Noetherian (respectively Artinian).
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Proof. We proceed via induction. The case where n = 1 is trivial. The case where n = 2 is more
illuminating. Notice that we have

0—>M2i>M1®M21>M1—>0

is a short exact sequence, where 7 indicates the natural injection and 7 indicates the natural
projection. We then apply and we get the result. We now assume that it holds for
no > 0. We want to then show that it holds for ng+ 1. Notice now we have the short exact sequence

) no
0— Mp,+1 — @Mi®Mno+1 L@Mz —0
i=1 i=1

where, once again, ¢ indicates the natural injection and 7 indicates the natural projection. Applying
Lemma 3.3| again, we get the result that we wish, and so it holds for all n € N5 ;. Q.E.D

Corollary (Corollary 3.6). Let R be a Noetherian ring (respectively Artinian), and let M be an
R-module. If M is finite, then M is Noetherian (respectively Artinian).

Proof. There exists a short exact sequence

0-USR"S M —0.

where U = ker (7) (this follows from |[Finitely Generated)). By |[Corollary 3.5] R™ is a Noethe-
rian (respectively Artinian) ring module. Applying [Proposition 3.4} we get that M is Noetherian
(respectively Artinian). Q.E.D

Corollary (Corollary 3.7). Let R and S be rings, and let R — S be a homomorphism of rings
which makes S a finite R-module. So if R is Noetherian (respectively Artinian) then S is Noetherian
(respectively Artinian) as a ring.

Proof. By|Corollary 3.6|we know S is a Noetherian (respectively Artinian) R-module. In particular,
it is a Noetherian (respectively Artinian) S-module. Q.E.D

Remark. The converse does not necessarily follow.

Example. (1) Notice that Z is a Noetherian ring. Notice, however, it is not an Artinian ring; take
(2%).

(2) We have that Z[+/—5] is Noetherian by |Corollary 3.7} but it is not Artinian.

(3) Let k be a field. It is both Artinian and Noetherian.

(4) Let k be a field. Then k[{z; : i € N}] is neither Noetherian nor Artinian. Take the ideals
generated by the generators — they never stabilize.

Proposition (Proposition 3.8). Suppose M is a Noetherian R-module. Then R/Anng(M) is a
Noetherian ring.

Remark. Over this ring, the module is faithful.
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Proof. Since M is a Noetherian R-module, it is finitely generated via Thus, we
can rewrite M as M = Rxi; + -+ + Rx,. Notice Rr; € M, and it is a cyclic module. Thus,

R/Anng(z;) = Rz;. By R/Anng(z;) is Noetherian, therefore, by [Corollary 3.5
we have R/Anng(z1) @ --- @ R/Anng(z,) is a Noetherian R-module. Hence, by [Lheorem 1.16
[(Chinese Remainder Theorem )| we get

R/(Anng(z1) n - - n Anng(x,)) — é—)R/AnnR(xi).

i=1

By R/(Anng(z1) n---nAnng(z,)) is Noetherian as an R-module, hence as a ring.
Therefore, this is just R/Anng(M). Q.E.D

Remark. This is not true if we replace Noetherian by Artinian.

Theorem (Theorem 3.9). Suppose R is a ring. We have that R is Noetherian if and only if every
prime ideal of R is finitely generated.

Proof. The implication follows via [Corollary 3.2.1} We now prove the converse. Let I' = {R-ideals

that are not finitely generated}. Suppose I' # @&. To apply we check that every
totally ordered subset has an upper bound. Let {I,} be our totally ordered set. Let I = uyl,,

which is an ideal. We need to show that I is not finitely generated. Suppose, for contradiction,
that it is finitely generated. Then I = Rx1 + -+ + Ry, x; € I,, for some «;. Let r = max{a;}.
Then «; < r and hence I,, € I,, and therefore x; € I, for all . This shows that the whole ideal
is in I, and thus I = I,.. Remember [, is in I', and all elements in I'" are not finitely generated,
and so I is not finitely generated, resulting in a contradiction. By I' has a maximal
element, denote it p. We need to show p is a prime ideal. It’s clear that p is proper, because R
is finitely generated. We need to then show that if o, 8 € p, then a € p or 8 € p. Suppose there
exist elements « € R/p, § € R/p with a8 € p. Look at p + Ra. This is an ideal, and is strictly
bigger than p. Likewise, p + RS is an ideal. Notice we also have p € p+ RS < (p : ). By the
maximality of p in T, we have p + Ra and (p : «) are both finitely generated. So we can write
p=(p+Ra)np={I+Ra)np=I+pnRa=1+{\€ R:\e p}a. By definition, this is just
I+ (p: a)a, and so we get p is finitely generated. Q.E.D

Definition (Composition Series). Let M be an R-module. Then a composition series of M is a
strictly decreasing chain of submodules 0 = M,, < --- & My & My = M which cannot be properly
refined. Equivalently, M;_1/M; are simple modules if and only if M;_;/M; =~ R/m;, m; some
maximal ideal.

Lemma (Lemma 3.10). Let M be a module with the composition series of length n. Then every
chain of submodules of M has length less than or equal to n.

Proof. We proceed via induction. It’s clear that this holds for n = 1. Assume M has a composition
series 0 = M, ¢ M, 1 < --- < My € My =M, and 0 = N, < --- < Ny & Ny = M. Let
M’ = N,_1. Then M/M' has a composition series of length n — 1. Hence, by the induction
hypothesis, the chain 0 = N,./(M' n N,) € --- < N1/(M' n N1) € No/(M' n Ny) = M/M'. This
chain has length at most n — 1. Since M’ is simple, M’ n N; = {M’or0}. Let ¢ be maximum with
M' ANy =M. Then N, & - & N;_1/0 € Ny/M' < --- < No/M' = M/M’'. The length of this
chain is at least » — 1. Via the induction hypothesis, r — 1 < n — 1, and hence r < n. Q.E.D
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Corollary (Corollary 3.11). Let M be a module with a composition series. Then every composition
series has the same length. Furthermore, every chain of submodules can be refined to a composition
series.

Proof. Folows directly from Q.E.D

Definition (Length of a Composition Series). Let R be a ring and M be an R-module. We define
(M) = lg(M) to be the length of the composition series of M if M has a composition series.
Otherwise, we define it to be infinite.

Proposition (Proposition 3.12). Let R be a ring, and M an R-module. Then /(M) < o if and
only if M is Noetherian and Artinian.

Proof. For the implication, we notice it follows directly from For the converse, let T’
be the set of submodules of M having finite length. Notice that this set is nonempty, clearly, and
must also contain 0. Since M is Noetherian, M has a maximal element, denote it by N. If N = M,
then we’re done (this sequence cannot be properly refined). Assume otherwise. Let A be the set
of submodules of M properly containing N. Notice this set contains M. Since M is Artinian, A
has a minimal element, call it M’. Now N < M’ and also M'/N is a simple module, since M’
is minimal. Hence, M’ has a composition series. This contradicts the maximality of N, and thus
N = M, completing the proof. Q.E.D

Remark (Remark 3.13). Let
0> M MM -0

be an exact sequence of R-modules. Then I(M) = I(M') + [(M").

Remark (Remark 3.14). Let M be a k-vector space. Then the following are equivalent.
(i) M is Noetherian.

(ii) M is Artinian.

(iii) M has finite length.
(iv)

We also have {(M) = Dimy(M).

M has finite dimension.

Proof. Tt suffices to prove (ii) implies (iv); this, however, follows from a simple generator argument.
Suppose Dimy (M) = oo; then this means that M has an infinite minimal generating set. Denote
itbW. So---c Wy € Wy = W. Then thre exists an infinite chain of submodules --- RWy <
RW1 < RWy = M because W is a minimal generating set. So by the contrapositive, we get what
we desire. Q.E.D

Lemma (Lemma 3.15). Suppose R is a ring which is Artinian or Noetherian. Let I be any ideal.
Then there exists N with 0 :g I™ = 0 :g I"*!. For this n, we write R = R/(0 :g I") and I for the
image of I in R. Then anng(l) =0=0:5 I.

Proof. Tt suffices to show that 0 :z I = 0. Equivalently, in R, (0:5 I") :g I =0 :x I". But notice
that (0: ") : T =0:(I"I)=0:1""'=0:1". Q.E.D
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Lemma (Lemma 3.16). Let R be an Artinian ring. Then there exists n with Rad(R)" = 0. In
particular, this gives us nil(R) = Rad(R).

Proof. Let I = Rad(R). By [Lemma 3.15| there exists an n so that anng(I) = 0, where R = R/(0 :
I™). We then show R = 0, since if R = 0 then 0 : I" = R if and only if I" = 0. Suppose for
contradiction R # 0. Since R is an Artinian ring, R has a simple submodule, call it N # 0 (see
Remark 3.14). In particular, N is a finite R-module. Notice IN = {0,N}. If IN = N, then

N =0.IfIN =0, then N =0, since annp (/) = 0. We get a contradiction either way, and so we're
done. Q.E.D

Theorem (Theorem 3.17). Every Artinian ring is Noetherian.

Proof. We will have a better proof in Chapter 7, so I will omit it here. Q.E.D

Hilbert’s Basis Theorem

Theorem (Theorem 3.18 (Hilbert’s Basis Theorem)). If R is a Noetherian ring, then so is
R[Xy,...,Xn]

Proof. Tt’s clear that once we show it holds for R[X;], it must hold for all n € N. Assume it
holds for n, then we must show it holds for n + 1. We have the ring R[X1,..., X, Xpnt1] =
R[X1,...,Xn][Xnt1]. Let R = R[z1,...,X,]. Then we may rewrite this as R'[X,+1]. Since it
holds for n, we have that R’ is Noetherian, and we use the case where n = 1 to establish that
R/[X,,+1] is Noetherian. Thus, by induction, it holds. It remains to show the case for n = 1.

For n = 1, we proceed via contradiction. Assume there is an ideal I of R[X] that is not finitely
generated (see[Proposition 3.2). Set Iy := (0). For each i > 1, choose inductively f; € I—I;_; of least
degree d;, and set I; = (f1,..., fi). Let I; be the leading coefficient of f;, and J the ideal generated
by all the I;. Since R is Noetherian, J = (I3,...,1,) for some n. Then I,,11 = r1I; +- -+ 1,1, for
r; € R.

By construction, d; < d;11 for all i. Set

fi= fopr — (mfiX o= h gy f, X e 7,
Then deg(f) < dn+1, so f € I,. Therefore, f, 11 € I, a contradiction. Q.E.D

Corollary (Corollary 3.19). Every finitely generated algebra over a Noetherian ring is a Noetherian
ring.

Proof. Let S be a finitely generated R-algebra, R a Noetherian ring. Then S ~ R[Xq,...,X,]/J,
and so we apply [Theorem 3.18 (Hilbert’s Basis Theorem )| Q.E.D

Theorem (Theorem 3.20). Let R be a ring, M an R-module, I' = {IM : I an R-module}. If M is
finitely generated and T" satisfies [Ascending Chain Condition] then M is Noetherian.

Proof. Suppose M is not Noetherian. We will get to the case where M /aM is Noetherian for all
0 # a € R, and M/M' is not faithful for all submodules 0 # M’ < M. In this case, we are done:
suppose 0 # M’ € M a submodule. Then M/M’ is not faithful. Hence, there exists 0 # a € R
with a(M/M') = 0. Hence, aM < M'. Now, M'/aM is a submodule of M /aM and by the first
assumption M /aM is Noetherian. Hence, M’/aM is finitely generated, and therefore M’ is finitely
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generated (since M is finitely generated) and so aM is finitely generated. Since every submodule
of M is finitely generated, M is Noetherian. Hence, by contradiction, we have the statement.

We must now get to the assumptions. Let A = {IM : I is an ideal with M /IM not Noetherian}.
A is nonempty, since 0 € A. By [Ascending Chain Condition] A has a maximal element, denote it
by IoM. Replace M by M/IyM and R by R/anng(M/IM). Let a # 0 € R’, then aM # 0, since
M is faithful now. Therefore, in the old module, [yM < (Iy,a)M. By the maximality of IoM in
A, M/(Iy,a)M is Noetherian. For the new module, this is simply M /aM. Hence, we have the first
assumption. Notice M is still not Noetherian, because Iy € A.

We now must show the second assumption. Consider 0 € ¥ = {N : N submodule of M, M /N is faithful}.
Hence, ¥ is nonempty. Let {N,} be a chain of ¥. Let N = uU,N,. Then N is a submodule. We
claim M/N is faithful. Let M = Rmq + --- + Rm,, since M is finitely generated. Let a € R
which annihilates the module. This means that aM < N. Therefore am; € N for all . So there
exists a; so that am; € N, for all i. So let 8 = max{e;}. Then N,, < Ng for all ;. Therefore
a € ann(M/NfB) = 0. Hence a = 0, and our module N is faithful. By we have
there is a maximal element in ¥; call it N. Replace M by M/N. By the maximality of N € 3,
then M /M’ is not faithful for all M’ # 0 a submodule of M. So we need to check that our new
module is not Noetherian. Suppose it is Noetherian. Recall this M is M/N, N € X. Therefore,
this M /N is faithful, and so this gives us that the ring is Noetherian . If the ring
is Noetherian, then since the old M is finitely generated, M would be Noetherian, which gives us
a contradiction. So we have all of our assumptions, as we wanted. Q.E.D

Corollary (Corollary 3.21 (Eakin’s Theorem)). Suppose R € S is a ring extension making S a
finitely generated R-module. If S is Noetherian, then R is Noetherian.

Proof. Examine I' = {SI : I an R-ideal} < {S-ideals}. Since S is Noetherian, then {S-ideals}
satisfies [Ascending Chain Condition} and so any subset satisfies [Ascending Chain Condition| In
particular, this means that I satisfies [Ascending Chain Conditionl Hence by we get
that S is a Noetherian R-module. Since R < S, S is a fiathful R-module (i.e. the annihilator is 0).

Hence, R is a Noetherian ring by Q.E.D
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Chapter 4: Localization and Spectrum

Definition (Localization). Let R be a commutative ring, and let S be a|Multiplicative Subset| On
S x R we define ~: (s,z) ~ (s',2') if and only if t(s2’ — s'z) = 0 for some t € S. Notice that this
is an [Equivalence Relation] We define ST'R = Ry = S x R/ ~={(s,z):s€ S,xe R} = {Z}. We
can define multiplication and addition in the obvious way. These operations are well-defined. With

these operations, S™'R is a commutative ring with 0 = % and 1 = %

Remark (Remark 4.1). S7!R is a ring, ¢ is a homomorphism of rings, ¢(S) < (S~1R)*.
Proof. Let s € S. We want to show s/1 is invertible in S~ R. The inverse is s/1-1/s = 1/1. Q.E.D

Definition (Quotient Ring). Let S~'R be as above. We call S™!R the quotient ring, or the ring
of fractions.

Proposition (Proposition 4.2). Let ¢» : R — T be a homomorphism of rings with ¥(S) < T*.
Then there exists a unique homomorphism of rings f : ST'R — T so that 1 = f o .

R —*5 SR

Remark. This property determines S™!'R and ¢ up to canonical isomorphism.

Proof. We define f : ST'R — T via £ — 4(2)¥(s)"'. So we must check f is well-defined.
We need to show that £ = 2 then ¢(2)y(s)~" = ¢(2)y(s))~". By definition ,
ts'c = tsa’ for some t € S. Apply Y to get Y(t)yY (s’) () = Y()¥(s)y(z'). This then gives us
P(s)Y(x) = (s)y(z"), which then implies 1 (2')(s") ™! = ¢ (x)h(s) ™1, as required. Q.E.D

Definition (Localization at a Prime) Let p be a prime ideal of R. Then S = R/p is a multiplicative
set, which we generally denote by R, := S™!R. This is called the localization of R at p.

Definition (Localization at an Element). Let x € R, S = {«™ : n = 0}. Then S is a multiplicatively
closed set, and R, := S™!R.

Definition (Total Ring of Quotients). Let S be the set of all nonzerodivisors in R. We then get
Quot(R) = STIR or the total ring of quotients.

Definition (Quotient Field). If R is a domain, then the|Total Ring of Quotients|is a field, and we
call it the quotient field.

Remark (Remark 4.3). Let ¢ : R — S™!R be the map such that x — /1. Then notice that
ker(p) ={re R:z/1=0/1} ={r e R: sz =0,s € S}. We get the following.

(a) @ is injective if and only if S consists of nonzerodivisors. In particular, ¢ : R — Quot(R) is
always injective.

(b) ST'R = 0 if and only if ¢ = 0 if and only if 0 € S if and only if S contains a nilpotent element.
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Definition (Inverse of a Module). Let R be a ring, and let M be an R-module. Let S € R is a
multiplicative subset. We define S™'M = M; = S x M/ ~ where (s,m) ~ (s',m’) if and only if
t(sm' — s'm) = 0 for some ¢ € S. We define addition and scalar multiplication in the obvious way.
We check that this is well-defined and that this new object is a module. It turn out S™'M is an
S~1R-module, hence an R-module via R — S~!R. Define M, and M,, as before, where p is a prime
ideal and z is an element. We also get a map ¢ : M — S~'M via m — m/1. It can only be an
R-linear map, with ker(p) = {me M :sm =0,s e S}.

Proposition (Proposition 4.4). Let M be an R-module, N an S™'R module. Then for every R
linear map v : M — N, there exists a unique S~!R-linear map f: S™'M — N so that ¢ = f o ¢.

M —2— S~'M
NP

N

Proof. Proof omitted. Q.E.D

Corollary (Corollary 4.5). ST'R®pr M has exactly the same property. So ST'R®r M =~ S~1M
via r/s ®g m — rm/s.

Proof. Tt follows from [Theorem 2.9 and [Proposition 4.4} Q.E.D

Corollary (Corollary 4.6). S—1R is flat as an R-module.

Proof. In order to show that it is flat, we need to show that if p : M — N is an injective R-linear
map, then ST!R®gr ¢ : ST'R®r M — ST'R®g N is injective. Notice that ST'R®pr M =~ S~ M
and ST'TR®r N ~ S7IN via Then we must show that ¢ : SIM — S7IN is
injective, where ¥(m/s) = 1 (m)/s. Let m/s € S™'M with ¢(m/s) = 0. Then ¢)(m)/s = 0 in
S—LN. Hence, t1)(m) = 0 for some t € S. Notice if ¢ is R-linear, then we have p(tm) = 0 and since
¢ is injective we have tm = 0 in N. But then ¢tm/ts = 0 implies m/s = 0 in S~'M, which means
that the kernel is trivial and so the mapping is injective. Q.E.D

Example. Every quotient field of a domain R is flat as an R module.

Corollary (Corollary 4.7). Let N be a submodule of an R-module M. Then S~ N is a submodule
of ST'M and S™!M/STIN =~ S~Y(M/N).

Proof. Since N is a submodule of M, we have the short exact sequence
0—>N-—->M-—>M/N—QO.
Tensor this with S~ R to get

0-S'R ® N-S'R ® M—-S'R ® M/N-—D0.
S—1R S—1R S—1R

This is exact via |Corollary 4.6] By [Corollary 4.5] we’re granted the short exact sequence

0—-S'N—-S'M—-SHM/N)—-0

which also gives us STIN/S™IM ~ S~1(M/N). Q.E.D
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Corollary (Corollary 4.8). Let N and P be submodules of an R-module M. Then we have the
following

(a) STY(N + P) = S7!N + S~ P as submodules of S~ M.
(b

(c
(d) S~tanng(M) = anng-1(S~tM if M is finitely generated.

YYNAP)=S"INnSIP.
“I(N:P)=S"IN:S71Pif P is finitely generated.

) S
) S
) S
)

Proof. For now, we omit the proof of (a).
We prove (b). Notice that we have the short exact sequence

0>NAPLN@®P—>N+P 0.

By [Corollary 4.5| and [Corollary 4.6| we get that the following sequence is also exact

0->S ' NnP)->S'NeS'P-S'N+S'P—o0.

Notice S~YH(N n P) = ST'N n S~1P. This completes it.

We skip (¢) and show (d). Since M is finitely generated, we have M = Rxy + --- + Rx,. We
proceed via induction on n, the number of generators. For n = 1, we have M = Rx; =~ R/anng(x).
Let I = anng(z). Then M =~ R/I. We then get that S™'M =~ S~ (R/I). So anng-1x(S™'M) =
S~'anng(M), since anng-1 gygt_1 M) = S~ anng(z).

For the general case, we have that, by (a), ST'M = ST R(x1/1)+- -+ S™'R(2,/1). Therefore,
we have anngi p(S™M) = njanng-1z(S71R(z;/1)) = n;S~tanng(Rz;) = S~ (nanng(Rx;)) =
S~lanng(M).

Notice that (c) follows immediately from (d).

Q.E.D

Theorem (Theorem 4.9 (Local to Global Principle)). Suppose M is an R-module, then the fol-
lowing are equivalent.

(i) M =0.
(ii) M, = 0 for all p a prime ideal.
(iii) M,, = 0 for all m a maximal ideal.

Proof. Notice that (i) implies (ii) and (iii) clearly. We show (iii) implies (i), and we’re done, since (ii)
implies (iii) as well. For (iii) implies (i), suppose M is not equal to 0. Then there exists y € M — {0}.
Notice that I = ann(y) is not the whole ring. Hence, I < m for some m. We choose this m. For
this m, 0/1 = y/1 < 0 = M,, implies that in M, ay = 0 for some a € R —m < R — ann(y). So
a ¢ ann(y) but also a € ann(y), so we have a contradiction. Q.E.D
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Contraction and Extension of Ideals

Definition (Extension of an Ideal). Let ¢ : R — T be a homomorphism of rings (a typical example
is the inclusion map). Let I be an R-ideal. Then I¢ = IT = ¢(I)T is a T-ideal. This is called the
extension of I.

Definition (Contraction of an Ideal). Let ¢ : R — T be a homomorphism of rings. Let J be an
T-ideal. Then J¢ = J n R = ¢ (J)T is called the contraction of .J, and it is a T-ideal.

Remark (Remark 4.10). Suppose I an R-ideal and J is a T-ideal.
(a) I¢ = I°°. In particular, every extended ideal is extended from its own contraction.

(b) J€ = Jee. In particular, every contracted ideal is contracted from its own extension.

Proof. We show (a). Since I < I°¢, we get I¢ < I°°®. On the other hand, I¢ = (I¢)% < I°. Hence,
I°¢ = J°°¢. The proof of (b) is similar. Q.E.D

Remark (Remark 4.11). Assume T is a flat R-module, I is an R-ideal. Then I¢ = I @ T via
i Qrt— (i)t

Proof. 0 —» I LN R,and so 0 > I ®g T — R®pg T remains exact. Remember RQr T =~ T, so we
have 0 > IQr T — T. Take i ®g t — i -t via multiplication in T" as an R-module, and i -t = ¢(i)t.
Therefore, the image of I g T in T is I°, and so I Qg T = I°. Q.E.D

Definition (Primary Ideal). Let I be an R-ideal. An ideal I is called primary if and only if I # R,
xy € I implies x € I or y™ € I for some n. This is equivalent to saying that [ # R and if xzy € [
then z € I or y € I and = and y are in v/I. This is equivalent to saying that R/I # 0 and every
zero divisor in nilpotent in R/I.

Remark (Remark 4.12). Suppose J is a T-ideal, then if J is prime (resp. primary) then so is J¢.

Proof. Notice that ¢ : R — T induces an embedding and R 4 T/J is injective, and the kernel is
Je. Q.E.D

Remark. Notice this is not true if you replace contraction with extension.

Theorem (Theorem 4.13). Let S be a multiplicatively closed set, ¢ : R — S™1R, I an R-ideal.
(a) I* 2 T®rS™'R =~ ST and S~'R/I° = S~Y(R/I) as rings, where S is the image of S in R/I.
(b) Every ideal of S~ R is extended from R.

(c) I*® ={x € R: sz € I,s € S}. In particular, we know exactly when the extension of the ideal
becomes the whole ring; I¢ = S™'R if and only if I n S # @, and for p a prime ideal IR, # R,
if and only if I < p.

Proof. We prove (a). This follows from [Corollary 4.5] [Corollary 4.6} [Corollary 4.7} [Remark 4.11]
We prove (b). Let J be an S™'R ideal. We just need to show J = J. From [Remark 4.10]

we know that all we need to show is J € J. Let x = r/s € J. Hence s/1-x = r/1 € J, hence

re o (J)=J Hence, 1/s-1/1 =z € J. Q.E.D
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Lemma (Lemma 4.13). I is an R-ideal.
(a) I°>~T® S 'R= S as S™'R modules, and S~'R/I¢ ~ S~Y(R/I) as rings.
(b) Every ideal from S™!R is extended.

(c) I°¢ = {re R:sre I, se S} In particular, I° = S~ R if and only if I n S = &, and for a prime
ideal p, IR, # R, if and only if I < p.

(d) There is a one-to-one correspondence between {p : p a prime ideal of R with S np = &} <
{prime ideals of ST1R}.

(e) Same as (d) for primary.

Proof. We skip (a) and (b) and proceed to (c). Notice S~'R/I¢ =~ S~1(R/I). Notice ¢ induces
a map from R/I — S~Y(R/I). WE then know that the kernel is ker(¢) = {Z € R/I : Is €
S such that sz = 0 € R/I}. Alternatively, this is just {Z € R/I : 3s € S with sz € I in R}. Notice
that the kernel I¢¢/I, and so I¢¢/I, and so [°¢ = {x € R : 3s € S with sz € I in R}, since both
contain I.

We show the first part of (d). We have eoc = id holds, because every ideal in S~ R is extended
by (b), and by we have it’s the identity. Also the map is well-defined, since for all
q a prime ideal in ST'R, ¢° is a prime ideal in R, and hence ¢° N S = @.

We show the second part of (d). We need to show that coe = id. Let p be in the left hand side.
We need to show p°© = p. By (c), we know p°“ = {x € R: sx € p,s € S} = p, since p is prime and
s can never be in p. We need to show that this map is well-defined. Hence, if p is a prime ideal,
then p° is a prime ideal of ST'R. We know p¢ = S™!R by (c), since S np = @. Let z,y € S7'R
so that zy € p®. We need to show x € p°® or y € p¢. Write x = r/s, y = r'/s’. Since xy € p¢ = S~ 1p,
we have rr’/ss’ = a/t for a € p, t € S. Then in R we have t/(rr't — ss’a) = 0 for some ¢’ € S. Notice
tss'a € p and tt' € S, and since p is prime we have either r or 7’ is in p. This forces either z or y to
be in p°. Q.E.D

Corollary (Corollary 4.14). Suppose R is a Noetherian or Arterian ring, then so is S™!R.

Proof. This follows from [Lemma 4.13| (b) and [Remark 4.10] Hence every chain of ideals is extended

from its contraction to R. Q.E.D

Corollary (Corollary 4.15). If P is a prime ideal in R. then R, is a local ring. The unique maximal
ideal is pR,,, and R,/pR, = (R/p)s = Quotient ficld. This motivates the term ’localization.’

Proof. |Lemma 4.13| (d) and [Lemma 4.13| (a). Q.E.D

Definition (Spectrum of Rings). We define Spec(R) = spectrum of R = {p : p a prime ideal of R}
This contains m-spec = maximal spectrum = {m : m a maximal ideal of R }

Proposition (Proposition 4.16). Suppose Si, Se are multiplicative sets such that S; = S3. We
have ¢ : R — S;'R. Then o(S2)"*(S;'R) = S;'R.
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Proof. By the universal property we have the following diagram, and it’s clear that
fog=gof=id

and it’s clear that fog =go f =id. Q.E.D
Corollary (Corollary 4.17).

p € Spec(R),p ns = 2. Then pS~'R e Spec(S™'R) and (S™'R),5-1z = R,.
In particular, if p € ¢ are two prime ideals of Ry then pR, € Spec(R;)

Definition (Saturated). Suppose S is a multiplicative set of R. Then we say S is saturated if and
only if we have that xy € S if and only if x € S and y € S. Equivalently we have that S is saturated
if and only if

S=R- UpeSpec(R),p( S=2DP-

Definition (Saturation). The saturation of S is denoted by S = {z inR : zy € S,y € R}. It is the
smallest saturated set containing S.

Proposition (Proposition 4.18). Let ¢ be the map ¢ : R — S~!R. Then S is the unique smallest
saturated multiplicative set containing S.

Proof. Proof omitted. Q.E.D

Theorem (Theorem 4.19). Let R be a domain, and S € R a multiplicative set which doesn’t con-
tain 0. Then we may consider R < ST'!R < (S71R)g = Ry = Quot(R). With these identifications,
we have R = Nyem—spec(Rr) fim-

Proof. Tt’s sufficient to show N, Ry S R. Let 2z € npp Ry, © Quot(R). Consider I = {x € R\0: z =
y/z,ye R}u{0} = {x e R:xz€ R} = (R: Z) is an R-ideal. We want to show that I = R. Suppose
I # R. Then we have I  m, m a maximal ideal. Now I,, # R,, by (c). Notice
I, = (R : z)m, by |Corollary 4.8| (c), and (R : z)py = Ry, : (2/1) = R,,, which is a contradiction.
Hence, I = R. Q.E.D
Remark (Remark 4.20 (Zariski Topology)). (a) V(0) = Spec(R).

(b) V(R) = @.

() Vlin-n L) = V(L) = V(- 1,).

(d) VX L) = niV (L)

Then T' = {V(I) : I an R-ideal} induces a topology on Spec(R), where T is the closed sets of
Spec(R). This is called the Zariski Topology. The topology induced on the maximal ideals is also
called the Zariski topology.

Example. m-Spec(R)(C[z]) = {(x —a) : a € C} < C. The closed sets are: &, C, and finite subsets
of points. Notice that the topology is not Hausdorff.
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Remark (Notice). V(I) = V(J) if and only if v/T = v/.J. So there is a one-to-one correspondence
with T and the set of all the radical ideals.

Remark (Remark 4.21). 1. V(I) < Spec(R/I) (they have a one-to-one correspondence), and
they are homeomorphic.

2. D, <> Spec(R,) (see|Lemma 4.13|(d)), and they are homeomorphic.

3. {D, : x € R} form a basis of the topology.
4. Spec(R) is quasicompact (compact, but not Hausdorff).
5. If R is Noetherian, then every open set is quasicompact.

Proof. The only nontrivial remark is (d). We must show @ = n;V(1;). This means @ = V(I1) N
-+ nV(I,). Now V(R) = V(> I;), which implies R = 4/, I;. This then gives us R = >, I;, or
L= fi +---+ fi, for fi, € I;;, which gives us @V (I1) n---n V(). Q.E.D

R
Remark. Suppose ¢ : R — T is a homomorphism of rings, then we have ¢* : Spec(T') — Spec(R)

which sends p — p°. This should be a homomorphism of topological spaces.

*

Remark (Remark 4.22 (Contravariant Functor)). (a) ¢* is continuous

(b) (Yp)* = p* oyp*

(c) id* =1id
This is called a contravariant functor.

Definition (Support of a Module). If M is an R-module, then the support of M is defined by
Supp(M) := {p € Spec(R) : M, # 0}.

Remark (Remark 4.23). If M is a finitely generated module, then Supp(M) = V(anng(M)). In
particular, Supp(M) is closed (topologically).

Proof. Since M is finitely generated, we can rewrite it as M = Rxy + --- + Rxz,. In particular,
Suppgr(M) = UM, Suppg(Rz;) = U, Supp(R/anng(z;)) = U,V (anng(z;)) = V(A ,anng(z;)) =
V(anng(M)), as required. Q.E.D

Remark. Suppose p € Spec(R), and look at k(p) := residue field of p = R,,/pR, = Quot(R/p).

Proposition (Proposition 4.24). Suppose M is a finite module. Then M=0 iff M ®g k(m) =
0, for all m in m-Spec(R).

Proof. We prove the converse (the implication is clear). We have 0 = M ®g k(m) by assumption,
which gives us M ®r Ry/mRym = M Qg (Rimy, Or Rin/mRy) = (M Qg Ry, ) ®r Rin/mRy, =
M, ®r Rin/mRy, = M, M,,, hence M,,, = mR,,, M,,, implies M,,, = 0 by[Theorem 2.2 (Nakayama’s|
and since this applies for all m we get M = 0. Q.E.D
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Chapter 5: Associated Primes and Primary Decomposition

Definition (Associated Prime). If M is an R-Module, we say p is an associated prime of M if p is
prime and there exists an x in M such that p = ann(x). Ass(M) = Assg M = {associated primes of M}

Theorem (Theorem 5.1). Suppose R is a Noetherian ring, and M is a nonzero R-module. Then

(a) A = {ann(z) : 0 # = € M}. Every maximal element in A is an associated prime of M. In
particular, there are associated primes. (Ass(M) # 0)

(b) {zero divisors on M} = Upeass(ar)P-
Notice in particular (a) says that if R is Noetherian, then M = 0 if and only if Ass(M) = &.

Proof. (a) Let p € A be a maximal element. We need to prove it is prime. It’s clear that p # R.
Next, if 2y € p, then we must show either z € p or y € p. Let p = ann(z),z € M. If zy € p then
zy € ann(x). If b ¢ ann(x) = py then br # 0. Hence ann(bx) € A. Hence ann(z) < ann(bz).
But by maximality, we get ann(x) = ann(bx). Hence, a € ann(xz) = p. So we are done.

(b) We only need to prove the inclusion. A zero divisor is an element which annihilates some nonzero

divisors, and so by definition {zero divisors on M} = Useal = Upeamaximal S UpeAss(M)D-
Q.E.D

Theorem (Theorem 5.2). Let S be any multiplicative set of R, identify Spec(S~!R) with a subset

o SpectF) by o 119

(a) Suppose N is an S~'R module. Then it’s also an R-module, and so Assg-1z(N) = Assg(N).
(b) If R is Noetherian and M is an R-module, then Assg-15(S™1M) = Assr(M) n Spec(S™1R).

Proof. We show (a). Let p € Assg(N). Then p = anng(z), x € N, and = ;é 0. Hence, z € S~ 1N
Therefore, anng-1(z/1) # S~ R. Notice this is equivalent to S~!(anng(x)) by [Corollary 4.8

So this is really S~'p and since it’s not the whole ring, this gives us S~!p is prime by emmg]
413l So pSTIR € Assg-1(N). Hence, Assgp(N) S Assg-1z(N). Suppose q € Assg-15(N), say
q = anng-1p(x), where z € N. Let p = ¢° = ¢n R. Then p = ¢n R = anng(X). Also p € Spec(R),
so p € Assp(N).

We show (b). Let P € Assr(M) n Spec(S™'R). So pn S = @. Then S~!p is, again, a prime
ideal. Also, p € Assg(M), p = Anng(z) for some z. So by (c), we have S™1p =
pST'R = Anng 1(x/1). Hence, p € Assg-1z(S™M). Let p € Assg-1z(S~M). We only need to
show that p € Assg(M). By (a), Assg-1xz(S™1M) = Assg(S~'M). We then have p = Anng(z/t),
x € M and t € S. Since R is Noetherian, p is finitely generated, say p = Raj + --- + Ra,. Now
ag-z/t = 0in S~1M for all . Hence, there exists s; € S with s;a;z = 0 in M. Since there are finitely
many a;, then there exists s € S such that sa;z = 0. Since the a;’s generate p, we have psx = 0 in
M. So we get p € Anng(sz) € Anng(sz/1) = Anng(z/t) = p. This forces p = Anng(sz). So p is
an associated prime of M; p € Assr(M). Q.E.D

Corollary (Corollary 5.3). If M is an R-module, R a Noetherian ring, then p € Assg(M) if and
only if pR, € Assg, (M,).

Remark (Remark 5.4). Suppose M is an R-module, then Assg(M) S Suppg(M).

42



Proof. Suppose p € Assg(M). Then R/p ~ R/Anng(z) =~ Rz < M. This gives p € Suppg(Rz) S
Supp g (M). Q.E.D

Theorem (Theorem 5.5). Suppose we have the following exact sequence of R-modules
0>M —>M-—>M"—D0.

Then

(a) Suppg(M) = Suppgr(M’) U Suppg(M").

(b) (i) Assg(M’) < Assr(M).

(ii) Assp(M) < Assr(M') U Assp(M").

Proof. We prove (a). Let P € Spec(R). Then we have

0— M, - M, - M —0

is exact. Hence M, # 0 if and only if M} # 0 or M # 0.

We prove (b). Part (i) is clear. For (ii), let p be in Assgp(M). Say p = Anng(x), x € M. Assume
M < M and M" = M/M’'. Let N = Rz < M. Then Assr(N) = Assgr(R/p) = {p}. We then
have two cases. In the first case, we have that N n M’ = 0. In this case, N/N n M’ = N which
injects into M /M’ = M". Therefore, p € Assp(M"), and moreover Assg(N) € Assgr(M”). In the
second case, M’ n N % 0, and so N n M’ < R/p. Therefore, taking any x # 0 in N n M’, we have
Anng(x) = p. Therefore, p € Assg(M’'). Q.E.D

Theorem (Theorem 5.6). Let R be a Noetherian ring and M # 0 a finite R-module. Then there is
a chain of submodules 0 = My € My € --- € M,, = M so that M;/M,_1 =~ R/p; with p; € Spec(R)
for all 1 < i < n. Moreover, Assg(M) < {p;}.

Proof. Examine A = {N # 0 : N a submodule of M with a prime filtration}. We first prove A # &.
Since R is Noetherian and M # 0, there exists a p € Assgp(M) by Hence, there exists
an x € M with Anng(z) = p € Spec(R). Let N = Rx. Clearly, this is nonzero and since this is a
generator, we get N € A and N =~ R/p. Thus, A # &. Since M is a Noetherian module, we get
A has a maximal element in N. Suppose N & M. Then M/N # 0. So by the first step of the
proof, M /N has a submodule N' with N’ =~ R/p for some p € Spec(R). The preimage of N' in M
contains N properly, and furthermore it is in A. This contradicts the maximality of N. For the
additional claim, we use induction on n. If n = 1, then M = M; = R/p for some p € Spec(R).
Then Assp(M) = {p}. Assume it holds for n — 1. Then we get

0— M,_1 — M, — R/p" — 0.

Hence, by (b), Assp(N) € Assp(Ma1) U Assa(R/p™) € {por-...par} U {pu).
Q.E.D

Theorem (Theorem 5.7). Let R be a Noetherian ring and M a finitely generated R-module. Then
(a) Assr(M) is finite.

(b) The minimal elements of Assr(M) and Suppg(M) coincides. Furthermore, there are only
finitely many elements, and they exist if M # 0; moreover, every element in the support
contains a minimal element.
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Proof. Notice that (a) follows from [Theorem 5.6 We prove (b). We already know Assgp(M) <
Suppr(M) and Assg(M) # @ if M # @&. The only thing we need to show is that for all p €

Supp (M), there exists g € Assg(M) with ¢ € p. Now Assg(M) n {prime ideals contained in p} =
Asspr(M) n Spec(R,,) = Assp(M),) # @ because R), is Noetherian and p € Suppz(M). Q.E.D

Corollary (Corollary 5.8). Suppose R is a Noetherian ring.
(a) If M is a finite R-module, then {zero divisors on M} is a finite union of prime ideals.

(b) R has only finitely many minimal primes.

Proof. We prove (a). By [Theorem 5.1} {zero divisors on M} = Upeassy(ar)p- By this

is a finite set of primes. We prove (b). Notice Spec(R) = V(0) = Suppgr(R). The result then

follows by (b). Q.E.D

Remark. Recall that I € R is primary if and only if for every zero divisor a in the ring R/I, we
have @ € nil(R) if and only if for every zero divisor a € R on the R-module R/I, we have that there
exists n with o™ € Anng(R/I). Saying it this way generalizes it to modules.

Definition (Primary Submodule). Let N be a submodule of a module M, N € M. We say N is
a primary submodule of M if and only if for every zero divisor a € R on M /N, there exists n with
a"™ € Annr(M/N).

Proposition (Proposition 5.9). Suppose R is a Noetherian ring, M a finite R-module, and N is
a proper submodule N € M. Then N is the primary submodule of M if and only if Assgp(M/N)
consists of exactly one element. If this happens, we write I = Anng(M/N) and p for the unique
element in Assgp(M/n). Then I is a primary ideal and /T = p.

Proof. IF N is primary in M, then Upeassy(m/nP = /AR (M /N) 80 Upeass , (M/N)P = NpeSupp s (M/N)P
since V(Anng(M/N)) = Suppr(M/N) and VI = npey(p. Now we use [Theorem 5.7| to note
that the intersection over all primes is equivalent to the intersection over the minimal primes,
and every minimal prime is in the associated primes. S0 Upeassp(m/N)P = NpeAssy(M/N)P then
|Assp(M/N)| = 1. Write M/N = Rxy + --- + Rxy, then R/I = R/ NI, Anng(x;). By
[1.16 (Chinese Remainder Theorem), we have R/ ", Anng(z;) — @, R/Anng(x;) = @,_, Rz;.
Hence, Assg(R/I) € Assgp(@D,;_; Rx;) S Ul Assgy,(S)Assg(M/N). Hence, Assg(R/I) = {p},
and we immediately see [ is primary. Furthermore, p is the unique minimal prime of I
and hence VT = p. Q.E.D

Definition (P-Primary Submodule of M). If there is only one associated prime in M /N, we say
N is a p-primary submodule of M.

Proposition (Proposition 5.10). Suppose R is a Noetherian ring, M is a finite R-module, and N
and N’ are p-primary submodules of M. Then N n N’ is p-primary.

Proof. We have M/N nN' — M/N @ M/N’. Hence Assr(M/N n N') € Assgp(M/N@®M/N') c
Assp(M/N) U Assgr(M/N’) = {p}. Notice M/N n N’ # 0, and so Assg(M/N n N') = {p}.
Therefore, N n N’ is a p-primary submodule of M, per definition. Q.E.D

Definition (Irreducible Submodule). If N is a submodule of M| N & M, then N is an irreducible
submodule of M if, whenever N = N1 Ny with Ny, Ny submodules of M, then Ny = N or N, = N.
It’s called reducible otherwise.
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Remark. N is an irreducible submodule of M if and only if 0 is an irreducible submodule of M/N.

Theorem (Theorem 5.11). Let R be a Noetherian ring, M a finite R-module, and N ¢ M a
submodule. If N is an irreducible submodule of M, then N is a primary submodule of M.

Proof. Suppose otherwise for contradiction. Then M /N has at least two associated primes, denote
them by p and ¢q. Let M = M/N, we may assume N = 0. Now p # ¢ are in Assg(M). Then
there are cyclic submodules Ny, Ny of M where Ny ~ R/p and Ny =~ R/q. We now examine
Assp(N1 N N3) € Assgp(Ny) nAssp(N2) = Assg(R/p) nAssg(R/q) = {p} n{¢} = . So this means
that N7y n No = 0. But Ny, No # 0, so 0 is not an irreducible submodule of M. This completes the
proof. Q.E.D

Proposition (Proposition 5.12). Suppose R Noetherian, M finite R-module. Then any proper
submodule N & M is a finite intersection of irreducible submodules of M.

Proof. LetT' = {N < M : N submodule and N is not a finite intersection of irreducible submodules}.
Suppose I' # @. Then by the Noetherian property of M, I' has a maximal element; denote it by
N. Notice N cannot be irreducible. Since it’s not irreducible, N = N1 n Ny for some submodules
N < Ny and N € N,. Notice both N7 and Ny must be proper. By the maximality of N, we have
both Ny and N, are the finite intersection of irreducible submodules, then so is N, a contradiction.
Then I' = & and the statement follows. Q.E.D

Theorem (Theorem 5.13). Suppose R is a Noetherian ring, M a finite R-module, N & M sub-
module. Then N = N; n---n N, with N; p;-primary submodules of M and p;’s are pairwise
distinct.

Proof. Follows by [Proposition 5.12] [TTheorem 5.11} [Proposition 5.10} Q.E.D

Definition (Primary Decomposition). Suppose N = N; n -+ n N,, with N; primary submodules
of M, then we call this the primary decomposition of N. The primary decomposition is irreducible;
i.e. none of the N; can be dropped. In other words, Ny n--- N N;_1 n N;p1 n---n N, & N; for
all i. A primary decomposition is called the shortest if it is irredundant and the p;’s are pairwise
distinct. If N = Ny n--- n N, is a shortest primary decomposition with N; as before, then NN; is
called a p;-primary component of N.

Theorem (Theorem 5.14). R is a Noetherian ring, M a finite R-module, and N € M a submodule.
Suppose there is a primary decomposition, and suppose it’s irredundant.

(a) {p1,...,pn} is unique, and it’s exactly the set of associated primes, Assg(M/N).

(b) Let S be any multiplicative set, ¢ : M — S™'M. Then ny,~s—aN; = ¢ (S7'N). In
particular, this is uniquely determined by N.

Proof. We begin with (a). We prove the inclusion. Replace M by M /N, we may assume N = 0.
Now we have 0 = Ny n -+ n N,, irredundant, N; p;-primary. We need to show p; € Assp(M).
By irredundancy of the decomposition, 0 # No n -+ " N, — M/N;. So Assg(M) contains
Assp(N2 n -+ N,) is contained in Assp(M/Ny) = {p1}. Hence Assg(Na n---n N,,) = {p1} and
so {p1} < Assgr(M). We prove the reverse inclusion. Notice that M/N = M/Ny n---n N, —
M/N1®---@®M/N, implies that Assgr(M/N) € Assg(M/N1®---®M/N,,) = U Assp(M/N;) =
{plv cee vpn}
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We prove (b). We start with ¢ 1(S7IM) = ¢ 1Y(STINy n - n S7IN,) = ¢ }H(S7IN) n
“n @ Y (STIN,). It remains to show that if we let N’ be a p-primary submodule of M, then

MifpnS#0 1 a-lp _1\/7/_
N'ifpns—o .IfpnS # @, then ST'p=S"R=1S5 Anng(M/N")

A/Anng(S—1M/S~IN) then S7'R = Anng(S~1M/S~'N) which implies S~'M = S~!N’, which
finally gives us ¢ }(S7IN’') = M. If pn S = &, then S consists of only nonzerodivisors of M /N,
since p is the only associated prime of this module and {zerodivisors of M/N’} = p. This means
the natural map M /N’ < S~1(M/N’) is injective. This is the same as S~'M/S~!N’. The kernel
of the map is ¢~} (S™IN’)/N’. Since this is zero, ¢ 1 (S7!N’) = N’. Hence, we have the two cases,
as required. Q.E.D

Corollary (Corollary 5.15). With the same setting as in[Theorem 5.14] let P be a minimal element
in Assg(M/N). Then the p-primary component in any shortest primary decomposition of N is
uniquely determined.

P (STINY) =

Proof. By [Theorem 5.14] using the notation from there, and taking S := R\p : ¢7}(N,) =
Np;cpN)i. But p is minimal, so ¢~!(N,) = p-primary component. Q.E.D
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Chapter 6: Dimension and Hilbert’s Nullstellensatz

Dimension

Definition (Krull Dimension). We define dim(R) = sup{n : I3pg & p1 & -+ & p, with p; €
Spec(R)}. We call this the Krull Dimension of R.

Theorem (Theorem 6.1). A ring R is Artinian if and only if it is Noetherian and dim(R) = 0.

Proof. We show the implication. We know that R is Noetherian and so R is semilocal. Say
m-Spec(R) = {my,...,my}. Furthermore, Rad(R) = +/0. To show dim(0) = 0, we show m-
Spec(R) = Spec(R). Let p € Spec(R). Then we know /0 < p, since Rad(R) = /0, we have
mi N - N my, € p implies p = m; for some 4, and so p is maximal.

We show the converse. By assumption, dim(R) = 0, and so every maximal ideal is minimal.
Hence, Rad(R) = +/0. Furthermore, since R is Noetherian, 1/0 is finitely generated, hence (1/0)" = 0
for some r, and hence (Rad(R))" = 0. Every maximal ideal of R is the minimal prime ideal, hence
an associated prime. But there are only finitely many associated primes since R is Noetherian.
Hence, R is semilocal. The rest follows as in proof of since R is semilocal and
(Rad(R)))" = 0, thus we have R Artinian if and only if R is Noetherian. Q.E.D

Example. If R is a PID which is not a field, then dim(R) = 1.

Definition (Height of a Prime). Suppose we have a p € Spec(R), then ht(p) = height(p) =
dim(R,) = sup{n : Ipo & -+ & pn, & pwith p; € Spec(R)}.

Definition (Dimension of a Prime). We have that dim(p) = dimension of p = dim(R/p) = sup{n :
PSPo% - & Pn,Di € Spec(R)}.

Remark. Notice that ht(p) + dim(p) < dim(R) for all p € Spec(R).

Definition (Height of an Ideal). Let I be any R-ideal: ht(I) = height of I = inf{ht(p) : p €
V(I)} = inf{ht(p) : p minimal prime in V(I)}. Obviously, ht(I) + dim(R/I) < dim(R).

Definition (Catenary). A ring R is called catenary if for any two prime ideals p < ¢, there exists
a chain of prime ideals p = pg S p1 S - -+ S pn = ¢ which cannot be refined any further, and every
such chain has the same length.

Remark. It is, in fact, extremely hard to find rings which are not catenary.

Remark (Remark 6.2). Suppose R is a local catenary domain. Then for any every ideal I, ht(I) +
dim(R/I) = dim(R).

Hilbert’s Nullstellensatz

Proposition (Proposition 6.3). Suppose k is a field, k € K a field extension, aq,...,q, € K are
algebraic over k. Then k(aq,...,a,) = klag,...,a,] = k[X1,..., Xn]/(f1,-.., fn). Furthermore,
fi € k[X4,...,X,] are monic in X;.

Proof. We will prove this via induction on n. For n = 1, we have k[a] = k[X]/I, where I is an
ideal and I # 0. Also k[a] € K, so I is a prime ideal, hence I is a maximal ideal. So k[a] =
E[X]/I is a field, hence k[a] = Quot(k[a]) = k(). Notice I = (f) for some nonzero polynomial,
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which we can assume is monic. Thus, the first step is complete. By the induction hypothesis,
Elag,...,on—1) = k[oa,...;an—1] = k[ X1,..., Xn_1]/(f1,..., fn_1), with f; monic. Call this field
ko. By the result for n = 1, ko(ay,) = k[a,] = ko[Xn]/(9), g a monic polynomial. Now we have
natural surjections k[X1, ..., X,—1][Xn] = ko[X,] via projection. Let f, € k[X1,..., Xn_1][Xn]
be monic and the preimage of g. Now k(aq,...,an) = ko(an) = kolan] = klaa,. .., an-_1, 0] =
kolan] = (K[ X1, Xn—1l/(f1, - s foma D[ Xnl/g = k[ X1, - X0/ (f1y -5 fn)- Q.E.D

Theorem (Theorem 6.4). k € T < R rings, k Noetherian, R is a finite 7-module. If R is a finitely
generated k-algebra, then so is T'.

Proof. We'll construct a finitely generated k-algebra, call it kg with kg < T such that R is a finite
ko-module. Then kg is a Noetherian ring (Corollary 3.19)), hence R is a Noetherian kg-module
(Corollary 3.6[), hence its kp-submodule T is finitely generated as a kg-module (Proposition 3.2)).

Hence, T is a finitely generated k-algebra. To obtain kg, write R = k[aq, ..., an| =TB1+- - +T Bm,
where we may assume 3; = 1. We have that for all 4,7 «;8; = >, i, B with {a;; } a finite
subset of T'. Now ko = k[{a;; }] = T, which is a finitely generated k-algebra in 7. So we need to
establish R is a finite kop-module, because R = koS1 +- - - +koBm, where ka1, ..., a,] = R. We show
this by induction on the degree that monomials in a4, ..., «, are in the right hand side. Q.E.D

Theorem (Theorem 6.5). Suppose k ia field, R a finitely generated k-algebra that is a field. Then
k € R is algebraic.

Proof. Suppose not. Then there is a purely transcendental extension k € T = k(Y7,...,Y}) inside
R, and t > 0, so that T" < R is algebraic. Notice R is a finite T-module, since T' € R is algebraic
and finitely generated field extension. So by the prior theorem T is a finitely generated k-algebra.
Now T = k(Y1,...,Y:) = Quot(k[Y3,...,Y:]) with ¢ > 0 and Y3,...,Y}) indeterminates is finitely
generated as a k-algebra. Hence, T = k[g—i, cee %] and not all of the g; arein k. Let h = [ [, g;+1.
Then h is not a constant, h ¢ k. Then % € k[%’ cel, %] and hence in k[Y7,...,Ys] we have that
h divides a product of the powers of gi,...,¢9,. This is impossible, because h is not a unit, and
furthermore ged(h, g;) ~ 1. Q.E.D

Remark. Using [Proposition 6.3| and [['heorem 6.5| we can show that if k£ € K a finitely generated
field extension, then k € K algebraic if and only if K is a finitely generated k-algebra.

Theorem (Theorem 6.6 (Hilbert’s Nullstellensatz (Part 1))). Suppose k is a field, and m € m-
Spec(k[X1,...,X,). Since k — Ek[Xy,...,X,]/m is an algebraically closed, then we get k =
k[Xy,...,X,]/m. Furthermore, m = (x1 — a1,...,z, — a,) where a; € k.

Proof. We use[Theorem 6.5|and [Proposition 6.3 If k is algebraically closed, then k = k[ X1, ..., X,]/m,
hence for all i, there exists a; € k so that z; = a; (mod m). Hence (1 —a1,...,T, —a,) S m, but
both are max ideals, and so they must be equal. Q.E.D

Theorem (Theorem 6.7 (Hilbert’s Nullstellensatz (Part 2))). Suppose k is a field, R is a finitely
generated k-algebra, I an R-ideal. Then

Vi- 1 m

Icm
mem-Spec(R)
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Proof. Use |Theorem 6.5| and [Proposition 6.3} Assume I = 0 via replacing R by R/I. Then we
just need to show that v/0 = Rad(R). Let f € R, f ¢ +/0. We need to show f ¢ Rad(R). So
we must show that there exists a m € m-Spec(R) with f ¢ m. Since f ¢ /0, we know Ry, which
is ST'R,S = {1, f, f2,...}, is not equal to 0. Then we can see R; has a maximal ideal, n. Let
m = n°. We know that f ¢ m, and m is prime. Now k € R/m = R/n® < Ry/n. Now Ry = cp(R)[%]
is a finitely generated k-algebra. Therefore, Ry/n is still finitely generated, and it’s a field. Then

R/m is algebraic, and so ti is a field by So m is a maximal ideal in R, and we're
done. Q.E.D

Remark. Let k be any field, R = k[Xi,...,X,], A} = k™. Suppose A € R a subset, then
V(A) = {(a1,...,an) € A} : p(ai,...,a,) = OVf € A}. This is obviously a subset of A}'. Conversely,
X < A} a subset, then I(X) = {f e R: f(a1,...,a,) = O0Va; € X}. This is, in fact, an ideal of R.
We call X € A} is algebraic if X = V(A) for some A € R.

Remark (Remark 6.8). Suppose A € R, X < A} subsets.
(a) V(a) =V(RA) =V (Rfi+--+Rfm) =V{f1,..., fm} = 02,V (f;). (Every algebraic set is

a finite intersection of hypersurfaces.)

(b) A € I(V(A)) and X < V(I(X)); furthermore, I and V are order reversing (or inclusion
reversing).

(¢) V() = V(I(V(A))) and I(X) = I[(V(I(X))), like in Galois theory. In particular, for every
algebraic set X, we have V(I(X)) = X.

Theorem (Theorem 6.9 (Hilbert’s Nullstellensatz)). Suppose k is an algebraically closed field,
R =k[X1,...,X,], and I is an ideal. Then I(V(I)) = +/T.

Remark. Notice this gives us a one-to-one correspondence.

Proof. Let J = I(V(I)). By (c), we know V(J) = V(I). Notice that V(I) = V(+/I).
This then gives us I(V(I)) = I(V(v/1)), which contains /T, and so we have v/I < J. For the
converse, recall V(J) = V(I) < A}. This says a point is in V(J) if and only if it’s in V(I).
This is equivalent to J < (z1 — a1,...,Z, — ay) and this means I S (x1 — a1,...,&, — ap)-
This then gives us {(z1 —a1,...,2np —an) : J € (x1 —a1,..., 2y —ap)} = {(x1 —a1,..., 2y —
ap): I < (21 —ay,...,z, —ay)}. Therefore, by [Theorem 6.6 (Hilbert’s Nullstellensatz (Part 1))]
{m € m-Spec(R) : J € m} = {m € mSpec(R) : I < m}. This gives us that the intersections are the
same, and so moreover by [Theorem 6.7 (Hilbert’s Nullstellensatz (Part 2))| we have /T = v/J and
so J < /1. This then gives us the result. Q.E.D

Definition (Affine Coordinate Ring of X). Suppose X < A} is an algebraic set. Then A(z) = {f :
x — k: f a polynomial} = R/I(X). This is called the affine coordinate ring of X.

Definition (Local Ring of X at p). Suppose you had a point p € X, then p = (a1,...,a,). Then
there is a maximal ideal corresponding to it via I(p) = (z1 — a1,...,&, — a,) = m € m-Spec(R).
Hence, I(z) < I(p). So m = I(p)/I(z) < I(a) is a maximal ideal. Then we can localize A(z)s =
Op(z). This is called the local ring of X at p. The element in O,(x) = {5 : f,g polynomials, g ¢
m} = {rational functions defined at p}.
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Definition (Transcendence Degree of a Field). Suppose k is a field, and R is a domain which is
finitely generated as a k-algebra, K = Quot(R). Then K is a finitely generated field extension of K.
Hence, k € k(Y7,...,Y,) € K with k < k(Y1,...,Y,) purely transcendental, and k(Y7,...,Y,) € K
is algebraic, and n does not depend on any choice. Set trdegp(K) = r.

Theorem (Theorem 6.10). The Krull dimension dim(R) = trdeg, (R), where R is a domain and a
finitely generated k-algebra.

Proof. We omit the proof for now, and will return in Chapter 7. Q.E.D
Corollary (Corollary 6.11). Let k be a field. Then dim(k[X;,...,X,]) =n.
Proof. Proof omitted. Will return in Chapter 7. Q.E.D

Definition (Forster Number of M). Suppose R is any ring, and M is a finitely generated module.
We define

if M =
(M :{01 0

sup{1r, (Mp) + dim(R/p) : p € Suppg (M)} if M # 0
We call this number the Forster number of M.

Definition (Basic). Suppose R is any ring, M a finite R-module, p € Suppr(M), x € M. The
following are equivalent.

(i.

z is basic at p.

)
(i) pr, (M/Ryx) < p(M,).

(i) dim(k(p) ®r M/k(p)(1 ®r 7)) < dim(k(p) @ M).
(iv) 0#2ek(p) @g M

(v.) x is part of a minimal generating set of M,

Lemma (Lemma 6.13). Suppose M is a finite R-module, {p1,...,p,} a finite subset of Suppz(M).
Then there exists an x € M that is basic at p1,...,pn.

Proof. It follows by induction on n. For the case n = 1, p = p1 € Suppz(M), hence M, # 0. By
[Theorem 2.2 (Nakayama’s Lemma), we get 0 # M,/pM, = k(p) ®r M. So there exists an element
x € M so that £ # 0 € k(p) ®z M. Now assume it holds for n — 1. After rearranging, we may

assume p,, is minimal in {p1,...,p,}. Hence, p; S p, for all 1 < i < n — 1. Since p, is prime, it
follows that p1---pp—1 S pn. So there exists an x € p; -+ -p,—1 such that z ¢ p,. By induction,
there exists an ©’ € M that is basic at p1,...,pn—1. If 2’ is basic at p,,, then we win. Otherwise,

notice ¥’ € k(p,) ®r M such that ¥ = 0. By the case n = 1, we know there exists a y € M
with § = 1®r y € k(pn) ®r M, where § # 0. Now take v = 2’ +aye M. If 1 <i <n—1,
T=1Qrxre€k(p)@rM,thenZ =7"+ay=2'#0. If i =n, then T = 1Qgrz € k(p,) ®r M gives
7’ + ay, but remember ¥’ = 0, so T = ay # 0, because § # 0 and @ # 0 in k(p,). Q.E.D

Example. If M is a finite module over a semilocal ring R, and pg, (M) < n for all m €
m-Spec(R), then M can be generated by n elements.
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Proof. We induct on n. If N = 0, this result trivially follows. Otherwise, assume it holds for
n — 1. Since m-Spec(R) n Suppr(M) = {m1,...,m,} is finite. By there exists an
x € M which is basic simultaneously at all of the ideals. So u((M/Rx)m) < u(My,) —1<n—1.
Hence, by induction, M /Rx can be generated by n — 1 elements, hence M can be generated by n
elements. Q.E.D

Theorem (Theorem 6.14 (Forster’s Theorem)). Let R be a Noetherian ring, and M a finite R-
module. Then M can be generated by b(M) elements.

Proof. Proof omitted. Q.E.D

Example (Applications (Determining if a Module is Free)). Suppose R is a domain, K = Quot(R),
M a finite module. Then rank(M) = dim(J) ® M. Generally, the rank is a lower bound for u(M).
If equality holds, then the module is free.

Corollary (Corollary 6.15). Suppose R is a Noetherian domain of dimension d, M a finite projective
module of rank I'. Then M can be generated by d + r elements.

Proof. For all p € Suppp(M), we know that if we localize M, then we get a projective module
(since M is projective, and localizing preserves projectiveness). Hence M, is a free R, module by
since R, is local. This means M, = R>. So K ® M, =~ K°. On the left hand side,
we can rewrite this as K ®g, (R, ®r M) = (K ®g, Ry,) ®r M =~ K ®z M = K". Hence, we have
K" =i K°*, so this tells us that s = r. So u(M,) = r = rank(M). Hence b(M) < r +d. By
[Theorem 6.14 (Forster’s Theorem)| we get the result. Q.E.D

Corollary (Corollary 6.16). Suppose R is a Noetherian ring, and I & R an ideal. Then n =
sup{pr,(Ip) +dim(R,) : p€ V(I)}, and let d = dim(R). Then I can be generated by max{n,d+ 1}
elements.

Proof. If p € Spec(R)\V (1), then pg, (I,) = pr,(Rp) = 1. Therefore, V(I) < max{n,d + 1}.
Q.E.D

Corollary (Corollary 6.17). In a Dedekind domain, every ideal can be generated by at most 2
elements.

Proof. Follows from sincen <1landd<1. Q.E.D
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Chapter 7: Integral Extensions

Definition (Integral). Let R < S be an extension of fields, z € S. We say z is integral over R
if there exists a monic polynomial expression with coefficients in R so that if you evaluate this
polynomial at z, you get O.

Proposition (Proposition 7.1). Suppose R € S, and x € S, then the following are equivalent.
(a) We have that z is integral over R.
(b

(c

(d) There exists a R[x]-module M which is faithful as an R[z]-module, and is finite as an R-module.

[z] is a finitely generated R-module.

)

) R
) Rlz] €T < S, T aring and a finite R-module.

)

Proof. We show that (a) implies (b). It follows since 2" + a,,_12" ! + -+ +a, = 0, for some a; € R.
Sor[z] = R+ Rz + Rz? + - + Ra" L.

Notice that (b) implies (c) is clear, since we can just take T' = R[z].

For (c) implies (d), we can just take M = T.
Finally, we show (d) implies (a). WE have that M = Raj + - -+ + Ra,, and M < M. So there

Trag ai a1
exists an n x n matrix A with coefficients in R such that E =A| | So(zlyxn—A)| : |=
Ty (o7 Qnp
0
: Hence, by [Lemma 2.1} we know that det(zl,xn, — A) —a; = 0 for all i. So therefore
0
det(zl,xn — A) € Anngp,)(M) = 0. So we get that det(zl,x, — A) = 0 in R[x]. Expanding this
gives us a monic polynomial expression in z with coefficients in R. Q.E.D

Definition (Integral Closure). Suppose we have an extension of rings R € S. Then we denote by
R=R%={xeS:3f € R[z], f(x) = 0} the integral closure of a ring R.

Corollary (Corollary 7.2). R is a subring of S containing R.

Proof. Let x,y € R. If we show R[r,y] € R, then we're done. By [Proposition 7.1l we know

that R[xz] is a finite R-module, and we also know that R[z][y] = R[z,y] is a finite R[z] module.

So clearly R[x,y] is a finite R module, since both steps are finite. By [Proposition 7.1} we get

R[z,y] < R. Q.E.D

Definition (Integrally Closed). Suppose R < S is an extension of rings. We say R is integrally
closed if R = R.

Proposition (Proposition 7.3). Suppose R € S < T are rings, where 7T is integral over S and S is
integral over R. Then T is integral over R.

Proof. Proof omitted. It is an easy result to derive. Q.E.D

Corollary (Corollary 7.4). The integral closure is integrally closed.
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Proof. Proof omitted. It is an easy result to derive. Q.E.D

Proposition (Proposition 7.5). Suppose R < S are rings, W < R is a mutliplicatively closed
subset, then in W=15, W=} R) = W-1R.

Proof. For the inclusion, we need to show that # € R localized is in W—1R. We have z" +
a1 X™ + .-+ a, = 0 for some a; € R. Let w € W. Divide our equation by w™. This gives us
(x/w)" + ar/w(z/w)* L + -+ + a,/w™ = 0. This is our equation, and so we get that (z/w) is
integral, and so it’s in the right hand side. For the other relation, we have an element in W~!R.
Take x € S, and w € W so that z/w € W—1R. This means (z/w)™+a; /w(z/w)" " +- - - +a,/w™ = 0.
Let v = w™ [[;_, w;s. Then we get vz™ + vz -+ v, v e W. Multiply by v" ! to get a
monic polynomial which satisfies our conditions, and so we get the other inclusion. Hence, we have
equality. Q.E.D

Corollary (Corollary 7.6). R is an integrally closed ring in S and R < S if and only if it is so
locally.

Proof. R = Rifand only if R/R = 0. But R/R = 0 if and only if (R/R),, = 0 for all m € m-Spec(R).
This was by [Theorem 4.9 (Local to Global Principle)l This is the same as R,,/R,, = 0 for all
m € m-Spec(R). This is the same as (R\m)~'R/R,, = 0, and by this is the same

as Ry,/Ry,, = 0. Q.E.D

Definition (Normal Domain). R is a normal domain if it is a domain and R is integrally closed in
it’s own quotient field.

Definition (Normal Ring). Let R be a ring. The following are equivalent.
(a) R is a normal ring.

(b) Ry, is a normal domain for all m € m-Spec(R).

(¢) R, is a normal domain for all p € Spec(R).

Proposition (Proposition 7.7). Every UFD is a normal domain.

Proof. Let R be a UFD, k = Quot(R). Take x € R. This means that 2™ +a,_12" ' +--- +ag = 0,
a; € R. We can write z = a/b, a,b€ R, b # 0, gcd(a,b) ~ 1. Then multiply the above equation by
b™, and you see b/a™ but ged(b,a™) ~ 1. But if b/a™ exists then ged(b,a™) ~ b, which implies that
b is a unit and we get = € R. Q.E.D

Theorem. Let R be a normal domain, K = Quot(R), K S L an algebraic field extension, o € L.
Then (R\0)"!R = L. In particular, Quot(R) = L. Furthermore, o € R if and only if the minimal
polynomial of « over K has all of its coefficients in R.

Proof. By (R\0O)™'R = (R\0O)R = K = L. For the if and only if statement, notice
that the converse is trivial. For the implication, we have that if & € R then the coefficients of the
minimal polynomial are in R, denoted by f(z) € R[x]. Replace L by the splitting field of f over
L. Then f =[[;_,(z — a;), where o; € L, a; = . Replace L by K(a1,...,a,). Then K € L is
finite and normal. Therefore, all of the «; are conjugates, since f is irreducible. Now notice that
« is integral over R by assumption, hence §;(«) is integral over R, §; € Autyx (L), and hence all of
the «; are integral over R. But f = [[;_,(z — «;) € R[z] € (R n K)[z] = (R)[z] = R[], since R is
normal. Q.E.D
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Proposition (Proposition 7.9). Let R be a UFD with 2 € R*, and suppose a € R is square free,
K = Quot(R), K ¢ L = K(y/a) is a quadratic extension, and we examine R. Then R = R[\/a].
Furthermore, R =~ R[z]/(z? — a) is a normal domain.

Proof. Proof omitted. Q.E.D

Proposition (Proposition 7.10). Suppose R € S domains, and suppose S is integral over R. Then
R is a field if and only if S is a field.

Proof. Proof omitted. Q.E.D

Corollary (Corollary 7.11). Suppose R < S rings so that S is integral over R. Let ¢ € S be a
prime ideal, and let p = ¢ n R. Then p is a maximal ideal of R if and only if ¢ is a maximal ideal

of S.

Proof. Notice that the extension of domains R/p < S/q is integral, and then apply
7.10) Q.E.D

Definition (Lying Over). Suppose we have ¢ : R — S a homomorphism of rings, then we have an
induced map ¢* : Spec(S) — Spec(R). We say that ¢ satisfies lying over if, for all p € Spec(R),
there exists a ¢ € Spec(S) with p = ¢°.

Definition (Going Up). Suppose we have ¢ : R — S a homomorphism of rings, then we have an
induced map ¢* : Spec(S) — Spec(R). We say that ¢ satisfies going up if, for every chain of prime
ideals in R, po € p1 € -+ < pn, and every qo € Spec(S), ¢§ = po. There also exists a chain of prime
ideals gog1 < - -+ < ¢y, such that ¢f = p; for all ¢.

Definition (Going Down). Suppose we have ¢ : R — S a homomorphism of rings, then we have
an induced map ¢* : Spec(S) — Spec(R). We say that ¢ satisfies going down if for every chain of
prime ideals p,, S --- S pg in R and every ¢g € Spec(S) lying over o, there exists a chain of prime
ideals gy, - -+ < go in S so that ¢f = p; for all <.

Theorem (Theorem 7.12). Let R < S be an integral extension of rings. Then we have the following.
(a) R < S satisfies lying over.
(b) If go € q1 are in Spec(S) and ¢§ = ¢f, then g9 = ¢1.

(¢) R < S satisfies going up.

Proof. Proof omitted. Q.E.D
Corollary (Corollary 7.13). Suppose R < S is an integral extension of rings. Then dim(R) =
dim(S).

Proof. This readily follows from [[heorem 7.12 Q.E.D

Lemma (Lemma 7.14). Suppose ¢ : R — S is a homomorphism of rings, p € Spec(R). Then there
exists a ¢ € Spec(S) with ¢¢ = p if and ouly if p*¢ = p.

Proof. Proof omitted. Q.E.D
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Lemma (Lemma 7.15). Suppose R € S is an integral extension of domains, where R is normal,
let K = Quot(R), let p € R, a € p¢ = pS, and let f(x) be the minimal polynomial of o over K.
Then all coefficients of f, except for the leading coefficients, are in p.

Proof. Proof omitted. Q.E.D

Theorem (Theorem 7.16). Suppose R € S is an integral extension of domains, where R is normal.
Then going down holds.

Proof. Proof omitted. Q.E.D

Theorem (Theorem 7.17). Suppose R is a normal domain, K = Quot(R), K < L is a finite
separable field extension, and S € L a subring so that S is integral over R. Then there exists a
K-basis of L so that S € Rx1 @ --- ® Rx,. In particular, if R is Noetherian, then S is finitely
generated as an R-module. Thus, S is a Noetherian ring.

Proof. Proof omitted. Q.E.D

Theorem (Theorem 7.18 (Noether Normalization)). Let k be a field, and R a finitely generated
K-algebra, Iy < --- < I, & R a finite chain of R ideals, then there exists a polynomial ring
klyi,...,ya] © R o that R is integral over k[y1,...,ya] and I; 0 k[y1,...,ya]l = kY1, -, Yn;))-

Proof. Proof omitted. Q.E.D
Corollary (Corollary 7.19). We have that dim(k[ X7, ..., X4]) = d.
Proof. Proof omitted. Q.E.D

Corollary (Corollary 7.20). If R is a domain (Theorem 7.18 (Noether Normalization))), then h(j)
is simply the height of the ideal I. Furthermore, dim(R) = ht(l;) + dim(R/I;).

Proof. Proof omitted. Q.E.D

Corollary (Corollary 7.21). Let k be a field, and R a finitely generated k-algebra. Then R is
integral over the polynomial ring in d variables, where d is the Krull dimension of R. If R is a
domain, then dim(R) = trdeg;(R).

Proof. This follows readily from [Theorem 7.18 (Noether Normalization)) [Corollary 7.13] and [Corol-|
Q.E.D

Corollary (Corollary 7.22). Let k be a field and let R be a finitely generated k-algebra. Then the
following are equivalent.

(a) If R is a domain and I is an R-ideal, then ht([) + dim(R/I) = dim(R).
(b) R is catenary.
Proof. Proof omitted. Q.E.D
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Chapter 8: DVR and Dedekind Domains

Definition (Discrete Valuation). Let K be a field. A discrete valuation on K is a surjective map
v: K* — Z with the following.

(i) We have v(xy) = v(x) + v(y).
(ii) We havev(z + y) = min{v(z),v(y)}.
Remark. Sometimes, one extends v to v : K — Z u {0} by v(0) = o.

Remark. Given a discrete valuation v on I, one obtains an absolute value on k by |- | : K — Rxg
by |x| = e~¥(*). This is an absolute value since

() |zy| = e~ v(zy) — e—v(@)—v(Y) = g—v(z)p—v(y) = || |y|.
(i) [o+y| = e < max{e(), =@} — max{|z], |y|}.

This also gives you the triangle inequality. Notice |z| = 0 if and only if z = 0. If you replace e with
p, you get the p-adic absolute value.

Definition. We define R, := {x € K : v(z) = 0}, m, :={z € K :v(z) >0}, and U, = {x € K :
v(z) = 0}.

Remark (Remark 8.2). (a) R, is a local domain with max ideal m,, and R} = U,.

(b) Let = and y be elements in R,. Then z|y if and only if v(z) < v(y); © ~ y if and only if
v(z) = v(y). Either z|y or y|z.
Note also that the group of units in the ring is the set of elements with v(z) = 1.

Definition (Uniformizing Parameter). Notice that there exists a m € K such that v(m) = 1. This
7 is called the uniformizing parameter of R,. This value is unique up to units.

Remark (Remark 8.3). Every x € K* can be written uniquely as z = un”, where u € U, and
n € Z;, Depends on the choice of 7, but once we know 7 exists then this representation is unique.
In particular, this shows K = Quot(R,) = R,[%].

™

Remark. Notice that R, is a Euclidean domain.

Definition (DVR). Suppose R is any ring. Then we say R is a DVR if R is R, for some discrete
valuation v on the field K. One can define valuation rings more generally by changing Z to any
totally ordered abelian group.

Lemma (Lemma 8.4). Suppose R is a Noetherian ring, € Rad(R). Then npen(z™) = 0.

Proof. Let y € Npen(2™). Now (y) : (™) is a non-decreasing chain of ideals by the Noetherian
property, the chain must stabilize. In particular, there exists i > 0 with (y) : (z°~!) = (y) : (a%).
Now y € Npen(2™) S (2¢) so that y = Az' = Azz'~1. Notice A € (y) : (z*) = (y) : (z°~!). Hence
Az'~1 € (y), hence Ax*~! = puy. So y = pyx, hence (1 — pux)y = 0. Hence y = 0, since = € Rad(()R)
and so 1 — ux € R*. Q.E.D

Theorem (Theorem 8.5). The following are equivalent for a ring R.
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(i) Risa DVR.

)

(ii) R is a local PID which is not a field.

ii) R is a Noetherian local ring with principal max ideal and dim(R) > 0.
)

(i
(iv) R is a Noetherian local normal ring with dim(R) = 1.

Proof. We show (i) implies (ii). Every DVR is Euclidean, so it follows. Notice that (ii) implies (iii)
is trivial, along with (ii) implies (iv). Remember that PID implies UFD implies Normal.

We show that (iii) implies (i). Let m be the maximal ideal. By assumption, m is principal, and
som = (z). We first show that, for every nonzero y € m, y ~ z" for some n > 0. By [Lemma 8.4] we
know there exists a maximal ideal n € N5g with y € (2™). Thus y = 2™ for some u. If u e m = (),
then y € (z"*1), contradicting maximality of n. Thus, U € R — m = R*. Therefore, y ~ 2". We
now show R is a domain. Take y, z € R, so that they’re non-zero. By what we’ve just shown y ~ z™,
z ~ 2! for somen,l. Thus yz ~ 2™*! # 0, since otherwise m = () < 1/0, hence dim(R) = 0. But
since (iii) assumes dim(R) > 0, this is a contradiction. Hence, R is a domain, x # 0, x »# 1. Let
K = Quot(R). Now every 0 # y € K can be written uniquely as y = uz™,u € R*,n € Z. Set
v(y) =n. Then v : K* — Z is a discrete valuation on K with R, = R.

We now show that (iv) implies (iii). Essentially, we just need to show the maximal ideal is
principal. First, notice R is a domain, since R is normal and local. Let M be the maximal ideal of R.
We show M is principal. Since R is Noetherian, and m # 0, m # m? by [Theorem 2.2 (Nakayama’s|
Let z € m\m?. We will show m = (x). Write m™! = R:m = {z € K : mz € R},
and K = Quot(R). Now notice R € m~!. Multiplying both sides by m gives us m < mm~! < R.
Hence mm™' = m. So let a € m™!, then am < m~'m = m. Hence a™m < m for all n. Hence, m
is an R[a]-module, and m is finite as an R-module. Hence, a is integral over R (Proposition 7.1).
But now R is normal, so a € R, and therefore m~' < R. Thus, m~! = R Now, R=m~! = R :m.
Multiplying both sides by z givesus tR € 2R: m € (R : m) = 2R : m = zR. Thus, xR : m = zR.
Hence, m is not an associated prime of (R/xR). But this is impossible, since m is an associated
prime of R/z R, because R is a 1-dimensional Noetherian local ring (so Spec(R) = {0,m}) but = # 0.
It must have one associated prime. Therefore, mm ™' = R. So now xm ™! is an R ideal. Suppose
xm~! < m. Then x € xR = xm~'m < m?. This contradicts our choice of x (recall z ¢ m?). Thus
xm~ ' = R. Hence, zR = 2m~'m = Rm = m. Q.E.D

Definition (Fractional Ideal). Let R be a domain, K = Quot(R). I is a fractional ideal of R if T
is an R submodule of K, I # 0, and 3z € R\0, such that I < R.

Assume I is a fractional ideal. We define ™! = {x € K : 2 € R} = R : I is again a fractional
ideal. Notice I < (I7!)~! and 77! is an R-ideal.

Definition (Invertible Ideal). We say that [ is invertible if 1= = R.

Theorem (Theorem 8.6). Let R be a domain, and I a fractional ideal of R. Then the following
are equivalent.

(a) I is invertible.
(b) I is projective (as an R-module).

(c) I is finitely generated with I,,, principle for all m € m-Spec(R).
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Proof. We show (a) implies (b). We have II~! = R, s0o >, a;b; = 1 for some a; € I, b; € I"'. Now
¢+ R" — I with p(r1,...,r,) = > r;a; € I. This map is R-linear, and we define ¢) : I — R"
with () = (tby,...,tb,) € R™ is also R-linear. Furthermore, 9p o ¥)(t) = (3!, a;b;)t = t. So by
(p o) =ids. Thus I is a direct summand of R™. This is equivalent to being projective.

We show (b) implies (c¢). We first show I is finitely generated. Let F' = @;erRe; be a free
module. We have ¢ : F — J and ¢ : I — F with pot¢ = Id;. Let K = Quot(R). Now
YK : IQK 21K =K > FQ K = ®ic;Ke;. Since I ® K is a finite K-module, we have
1m(1/)®K) c Keh@' . '@K@in. Hence 1m(w) = C—BieIReim(Keh@- . -@Kein) = Reh@- . @Reln =0.
Hence ¢|g o9 = idy, so ¢|g is surjective. So G is surjective onto I, G is finitely generated, hence
I is finitely generated. Now I,,, is a finite projective module over the local ring R,,, and so I, is
Rpfree (Teorem Z.19)

We finally show (c) implies (a). Since I is finitely generated, I,,)} = (R: )y = Ry ¢ Iy =
(I,)~!. So inverting commutes with localization. So 0 # I,,, is principle, hence invertible, hence
Ry =1, - IV = 1,,(I7Y),, = (IT71),, for all m € m-Spec(R). Hence II~! = R by the local-to-
global principle. Q.E.D

Theorem (Theorem 8.7). Let R be a Noetherian domain, p a nonzero prime ideal. If p is invertible,
then ht(p) = 1 and R, is a DVR.

Proof. By [Theorem 8.6, pR, is a principal ideal. Also R, is Noetherian, local, and dim(R,) > 0,
with principal maximal ideal, pR,. So R, is a DVR (Theorem 8.5)), hence dim(R,) = 1, ie

ht(p) = 1. Q.E.D
Theorem (Theorem 8.8). Let R be a Noetherian normal domain. Then

(a) 0 # x ¢ R*, pe Assg(R/(x)) then ht(p) = 1.

(b) R = Npy(py—1 Ry, and furthermore the R, are DVR’s.

Proof. We show (a). Localizing at p, we may assume R is a normal, Noetherian, local domain
(Corollary 7.6)) with maximal ideal m. We may now assume m € Assg(R/(z)), 0 # = € R*.
Notice R is now R,. We need to show that dim(R) = 1. To do so, we show that m is invertible
(we are then done by the previous theorem). Now m < mm~!. By definition, mm~! < R.
If m is not invertible, m = mm™"', since M is maximal. If we have such an equation, every
element in m™' is integral. As in the proof of this tells us that m~' = R. Now
(Rx :g m) € (Rz :x m) = (R :x m) = am~! = (x). So (Rx :gp m) = (z). So m cannot be an
associated prime. This gives us a contradiction.

We show (b). We have R & N1 R, trivially. Take £ € R, for every p € Spec(R) with
ht(p) = 1. This means that y € zR, if and only if (yR), < (zR), for all p € Spec(R) with
ht(p) = 1. By (a), we get that all p € Assg(R/Rz). Then it follows yR < xR by Homework 6.3.

Then £ € R. Finally, R, is a DVR for any such p by Q.E.D

Corollary (Corollary 8.9). Suppose R is a Noetherian domain. Then the following are equivalent.
(i) R is normal.

(ii) (a) (Serre’s Condition on R;) R, is a DVR for all p € Spec(R), ht(p) = 1.
(b) (Serre’s Condition S3) For every 0 # x ¢ R*, ht(p) = 1 for all p € Assr(R/xR).
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Proof. (i) implies (ii) follows from [Theorem 8.8f We show (ii) implies (i). By the proof of
R = npypy=1 Ry, by (b). By condition (a), R, is a DVR, and hence it’s normal. Therefore, R
must be normal, since it’s an intersection of normal domains. Q.E.D

Definition (Dedekind Domain). R is a Dedekind domain if R is a Noetherian domain, not a field,
and R, is a DVR for all p € Spec(R).

Theorem (Theorem 8.10). Let R be a domain, not a field. Then the following are equivalent.
(i) R is a Dedekind domain.
(ii) R is Noetherian and locally a DVR.

(iii) R is Noetherian, normal, and dim(R) = 1.

(iv) Every ideal is invertible, so long as it’s not 0.

(v) Every ideal is projective.

(vi) R is Noetherian, and every ideal not equal to R is the product of prime ideals.

Proof. Proof omitted. Q.E.D

Remark (Remark 8.11). Let R be a Dedekind domain. Then the prime factorization in
[B-10] (vi) is unique (up to order of the factors).

Proof. Suppose 0 # I # R, and I = pi'---pS, p; prime, and actually piecewise maximal, and

e; > 0. Now I, = p{'Rp, = (p;Rp,)". Notice that e; is uniquely determined, so it determines it in

the extension as well. Q.E.D

Theorem (Theorem 8.12). Suppose R is a Noetherian domain, dim(R) = 1, K = Quot(R), K < L
finite field extensions (not necessarily separable). Then R is a Dedekind domain.

Proof. Proof omitted. Q.E.D

Theorem (Theorem 8.13 (Krull - Akizuki)). Let R be a Noetherian domain, K = Quot(R),
dim(R) =1, K € L a finite field extension, S is any ring R € S € L. Then

(i) S is a Noetherian ring.
(i) dim(S) < 1.
(iii) 1g(S/J) < oo for all ideals J # 0 in S.
Proof. Proof omitted. Q.E.D

Lemma (Lemma 8.14). R is a Noetherian domain, dim(R) = 1, M a torsion free R-module of
finite rank, suppose we have 0 # a € R. Then Igr(M/aM) < rank(M) - lgr(R/aR) < .

Proof. Proof omitted. Q.E.D
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