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Chapter 0: Preliminaries

These are things Ulrich never said in his lectures. Probably more basic than needed. Some things
are stolen from Ben’s Bridge to Algebra Lectures, and some are stolen from Wikipedia.

Definition (Binary Operation). Let R be some set (informally a collection of objects). Then any
function f : RˆRÑ R is called a binary operation.

Definition (Magma). A magma structure on a set M is a binary operation ¨.

Definition (Semigroup). A semigroup structure on a set S is a binary operation ¨ satisfying the
following properties.

(a) (Associativity) For all a, b, c P S, we have a ¨ pb ¨ cq “ pa ¨ bq ¨ c.

Definition (Monoid). A monoid structure on a set M is a binary operation ¨ such that the following
properties are satisfied.

(a) (Associativity) For all a, b, c PM we have a ¨ pb ¨ cq “ pa ¨ bq ¨ c.

(b) (Identity element) There exists an element e PM such that for all a PM we have a¨e “ e¨a “ a.

Definition (Group). A group is a set, denoted by G, together with some operation, denoted by
¨, that combines any two elements a, b P G to form another element a ¨ b in G. To qualify, the set
along with the operation must satisfy four axioms.

(a) (Closure) For all a, b P G, the result of the operation a ¨ b is also in G.

(b) (Associativity) For all a, b, c P G, pa ¨ bq ¨ c “ a ¨ pb ¨ cq.

(c) (Identity element) There exists an element e P G such that for all a P G we have a ¨e “ e ¨a “ a.

(d) (Inverse element) For all a P G, there exists an element b P G such that a ¨ b “ b ¨ a “ e
(generally, this b is denoted by a´1q.

Definition (Abelian/Commutative Group). An abelian group is a set G with a binary operation
¨ such that it satisfies these five properties.

1. (Closure) For all a, b P G, the result of the operation a ¨ b is also in G.

2. (Associativity) For all a, b, c P G, pa ¨ bq ¨ c “ a ¨ pb ¨ cq.

3. (Identity element) There exists an element e P G such that for all a P G we have a¨e “ e¨a “ a.

4. (Inverse element) For all a P G, there exists an element b P G such that a ¨ b “ b ¨ a “ e
(generally, this b is denoted by a´1q.

5. (Commutativity) For all a, b P G we have that a ¨ b “ b ¨ a.

Theorem (Zorn’s Lemma). Suppose a partially ordered set P has the property that every chain
in P has an upper bound in P . Then the set P contains at least one maximal element.
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Theorem (Fundamental Theorem on Homomorphisms). Given two algebraic structures (monoids,
vector spaces, modules, rings, groups) G and H, and a homomorphism f : G Ñ H, let K be a
set with which we can quotient by (normal group, ideal, etc.) in G and φ the natural surjective
homomorphism φ : GÑ G{K. If K is a subset of ker f , then there exists a unique homomorphism
h : G{K Ñ H such that f “ h ˝ φ.

Definition (Monomorphism). A monomorphism is an injective homomorphism.

Definition (Epimorphism). An epimorphism is a surjective homomorphism.

Definition (Power Series Ring). The ring of formal power series in x with coefficients in R is
denoted by Rrrxss, and is defined as follows. The elements of Rrrxss are infinite expressions of the
form

fpxq “ a0 ` a1x` a2x
2 ` ¨ ¨ ¨

in which an P R for all n P N. Addition and multiplication are defined just as for the ring of
polynomials Rrxs. Notice that Rrrxss is commutative because R is.

Definition (Equivalence Relation). Let X be a set of objects. We define an equivalence relation
on X to be a subset of X ˆX; i.e., a collection R (not to be confused with ring) of ordered pairs
of elements X satisfying certain properties. These properties are

1. It is reflexive; px, xq P R for all x P X.

2. It is symmetric; px, yq P R implies py, xq P R for all x, y P X.

3. It is transitive; px, yq P R and py, zq P R implies px, zq P R.
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Chapter 1: Basics of Rings

Ideals

Definition (Ring). We say that R is a ring if

1. R is an abelian group with respect to addition.

2. R is commutative, associative, and has 1 with respect to multiplication. Multiplication is also
distributive.

Definition (Homomorphism). Let R and S be rings. We say ϕ : R Ñ S is a homomorphism if it
satisfies these three conditions:

1. ϕpx` yq “ ϕpxq ` ϕpyq.

2. ϕpxyq “ ϕpxqϕpyq.

3. ϕp1Rq “ 1S .

Definition (Subring). We say R is a subring of S if R Ď S, R is a ring with respect to the
operations of S, and 1R “ 1S . Equivalently, we say it is a subring if there is a homomorphism
ϕ : RÑ S which is injective.

Definition (Ideal). Let I Ď R be a subset of R. We say that I is an R-ideal if I is a subgroup
with respect to I and RI Ď I.

Fact (Fact 1). If ϕ : RÑ S is a homomorphism, then ImR is a subring of S and kerϕ is an ideal
of R.

Definition (Factor Ring). If I is an ideal, I Ď R : R{I “ tx` I : x P Ru is a ring. R{I called the
factor ring of R.

Fact (Natural Projection). Take π : RÑ R{I. This is called the natural projection. Then π is an
epimorphism, with kerπ “ I. Thus, we see every ideal is a kernel.

Theorem (Theorem 1.1). Given any ϕ : RÑ S, and choose any I Ď kerϕ, where I is an R ideal.
Then there is a unique homomorphism ϕ̄ : R{I Ñ S so that ϕ “ ϕ̄ ¨ π̄. Moreover, Im ϕ̄ “ Imϕ,
and ker ϕ̄ “ kerϕ{I. In particular, if you choose I “ kerϕ, then ϕ̄ is injective. Hence, there exists
a unique monomorphism ϕ̄ : R{ kerϕÑ S where the following diagram commutes.

R S

R{ kerϕ

ϕ

π
ϕ̄

Proof. Proof is left as an exercise. Q.E.D

Proposition (Proposition 1.2). Let π : R Ñ R{I be surjective. Then there is a one-to-one
correspondence with ideals of R containing I and ideals of R{I. Under this correspondence, factor

ideals are preserved, i.e., R{K –
pR{Iq
pK{Iq , where K is an ideal that contains I.
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Definition (Principle Ideal). (Principal Ideal) I Ď R is called a principal ideal if I “ Rx for some
x. Sometimes we denote this by I “ pxq.

Definition (Unit). We say that x P R is a unit if it has a multiplicative inverse, denoted by x´1.
Equivalently, we say that x is a unit if pxq “ R.

Definition (Zero Divisor). We say that x P R is a zero divisor if xy “ 0 for some y ‰ 0. Otherwise,
it’s a nonzero divisor.

Definition (Integral Domain). We say that R is an integral domain if R ‰ 0 and every x ‰ 0 in
R is a nonzero divisor.

Definition (Principle Ideal Domain). We say that R is a principal ideal domain (shortened to
PID) if R is a domain and every ideal is a principal ideal.

Proposition (Proposition 1.3). Suppose R ‰ 0 is a ring. Then the following are equivalent:

1. R is a field.

2. The only ideals in R are 0 and R.

3. Any homomorphism ϕ : RÑ S ‰ 0 is injective.

Proof. We show that 1 implies 2. Suppose we have an ideal I ‰ 0. Then there exists a nonzero
x P I. But a nonzero element in a field is a unit, and so we have xx´1 “ 1, and thus 1 P I. But
this means that I “ R.

We show that 2 implies 3. Notice that ϕ ‰ 0, because ϕp1Rq “ 1S , and since S ‰ 0 then
1S ‰ 0. Since ϕ ‰ 0, kerϕ ‰ R and since kerϕ is an ideal (Fact 1) then we must have kerϕ “ 0 by
assumption. Hence, kerϕ “ 0 implies ϕ is injective.

We show that 3 implies 1. Take x P R, x ‰ 0. look at π : RÑ R{pxq. Since x ‰ 0 and x P kerπ,
π is not injective. By assumption, this means that R{pxq “ 0. But for this to be true implies
pxq “ R, i.e. x is a unit. Since we chose arbitrary x ‰ 0 in our ring R, this means that every x ‰ 0
is a unit, and so this forces R to be a field. Q.E.D

Definition (Prime Ideal). Let I be an R-ideal. Then I is a prime ideal if I ‰ R and whenever
xy P I, either x P I or y P I.

Definition (Maximal Ideal). Let I be an R-ideal. Then I is a maximal ideal if, whenever J is an
ideal such that I Ď J Ď R, we have that either I “ J or J “ R.

Fact (Fact 2). We have that I is a prime ideal iff R{I is a domain, and I is a maximal ideal iff
R{I is a field.

Fact (Fact 3). We have that 0 is a prime ideal if and only if R is a domain.

Fact. Suppose ϕ : R Ñ S is a homomorphism of rings, and p is a prime ideal in S. Then if
ϕ̄ : R{ϕ´1ppq Ñ S{p is injective, we have that ϕ´1ppq is a prime ideal of R.

Theorem (Theorem 1.4). Every nonzero ring has a maximal ideal.
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Proof. Let Σ “ tI : I is an R-ideal, I ‰ Ru. This is a set which is partially ordered via inclusion.
We need to then show that Σ has a maximal element. First, notice that Σ ‰ ∅, since p0q P Σ. To
apply Zorn’s Lemma, we need to check that every totally ordered subset tIαu has an upper bound
in Σ. Let I “ YαIα, which is an ideal since the set is totally ordered. Notice that 1 R Iα for all α
since Iα ‰ R for all α. Thus, 1 cannot be in the union, and so 1 R I. Therefore, I P Σ. Clearly, we
have that this must be an upper bound, since Iα Ď I for all α. We apply Zorn’s Lemma, and so
there must be a maximal element. This must then be the maximal ideal. Q.E.D

Corollary (Corollary 1.5). If I ‰ R is an R-ideal, then R has a maximal ideal containing I.

Proof. Notice R{I ‰ 0, and so it must have a maximal ideal by Theorem 1.4. Denote this by
M̄ . By Proposition 1.2, there is a corresponding ideal M Ă R such that I Ď M Ă R. We now
establish that this ideal is maximal. Assume it were not; that is to say, there is an ideal M 1 such
that M ĹM 1 Ĺ R. Then we have that M 1{I “ M̄ 1 is an ideal in R{I. We chose M to be maximal,
however, and so M 1{I “M{I. This gives us the resulting contradiction, since M 1{I “M{I implies
M “M 1. So, M is maximal. Q.E.D

Corollary (Corollary 1.6). Let Rˆ denote the units of R. Then

RzRˆ “
ď

mPm´SpecpRq

m,

where m´ SpecpRq denotes the set of maximal ideals of R.

Proof. For notational reasons, denote

Y :“
ď

mPm´SpecpRq

m.

We show Y Ď RzRˆ. Let x P Y . Then x R Rˆ, since this contradicts the property of being a
maximal ideal. So x P R{Rˆ.

We now show RzRˆ Ď Y . By Corollary 1.5, every non-unit in R is contained in some maximal
ideal. Moreover, every non-unit is in the union of maximal ideals. Q.E.D

Example. (1) The prime ideals in a PID are the prime elements which are not equal to 0. The
maximal ideals are ppq, where p is a prime element, if R is not a field.

(2) Let 0 ‰ n P Z. Then the set of prime ideals of Z{Zn is equal to the set of maximal ideals
which is equal to the set ppq{pnq where p is a prime divisor of n, p ą 0, and this has a one to one
correspondence with the positive prime divisors of n.

(3) Suppose f P krx1, . . . , xns, k a field, and f irreducible. Then krx1, . . . , xns{pfq is a domain.

Definition (Local). A ring R is called local if R has exactly one maximal ideal, m.

Definition (Residue Field). Let R be a local ring with maximal ideal m. Then k “ R{m is called
the residue field of R.

Definition (Semilocal). A ring R is semilocal if it has at most finitely many maximal ideals.

Proposition (Proposition 1.7). A ring R is local if and only if RzRˆ is an ideal.
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Proof. We start with the implication. Since R is local, we have that m ´ SpecpRq “ tmu. By
Corollary 1.6, RzRˆ “ m, which is an ideal.

We show the converse. By Corollary 1.6 again, RzRˆ “ YmPm´SpecpRqm. Notice that this
cannot be the whole ring (if it were, this would mean that there are no units in R, but R has 1, a
contradiction), and so RzRˆ ‰ R. So, let RzRˆ “ I be an R ideal by assumption. By Corollary
1.6, I contains every maximal ideal. Therefore, I must be every maximal ideal, meaning that there’s
only one. Q.E.D

Definition (Operations on Ideals). Let I, J be R ideals. Then I ` J :“ tx` y : x P I, y P Ju, and
this is an ideal. Also IJ :“ t

ř

Finite sums xiyi : xi P I, yi P Ju is again an ideal. One can also take
intersections. Note that IJ Ď I X J . The union of two ideals is not necessarily an ideal.

Lemma (Lemma 1.8). Suppose p is an R-ideal, p ‰ R. Then p is a prime ideal if and only if
whenever there are ideals I, J Ă R such that IJ Ă p, then I Ă p or J Ă p.

Proof. We start with the implication. Suppose IJ Ă p, and suppose I Ć p and J Ć p. Then we can
pick x P I{p, y P J{p. Notice xy P p by definition, and xy P IJ . Since p is prime, we have either
x P p or y P p. But this grants us a contradiction; since if x P p then we have that I Ă p and vice
versa for y.

We show the converse. This follows by definition. Specifically, select arbitrary x, y P R so that
xy P p. If xy P p, we have pxqpyq Ă p. By assumption, this forces either pxq Ă p or pyq Ă p. If
pxq Ă p, then this implies x P p, and likewise for pyq. Thus, if xy P p, then either x P p or y P p,
and by definition this means p is prime. Q.E.D

Definition (Multiplicative Subset). Let S be a subset of a ring R. We say S is a multiplicative
subset if

1. a, b P S implies ab P S.

2. 1 P S.

Example. (1) If x P R, then txn : n ě 0u is a multiplicative subset of R.
(2) If p is a prime ideal of R, then we have that S “ Rzp is a multiplicative set. Not every

multiplicative set is the complement of a prime ideal. The case where this is true is if we let (i) be
if and only if.

Theorem (Theorem 1.9). Let I be an R-ideal, S a multiplicative subset of R with I X S ‰ ∅.
Then

1. There exists an ideal p which is maximal with respect to the property that I Ă p and pXS “ ∅.

2. Such a p is prime.

Proof. We prove 1. Let Σ be the set of all ideals J where I Ă J and J X S “ ∅. Notice that this
satisfies the assumption of Zorn’s Lemma (proof of Theorem 1.4). Let p be the maximal ideal of Σ.

We prove 2. In order to do this, we must show that p is prime. Notice that p ‰ R, since S ‰ ∅
and S X p “ ∅. Also notice that p ‰ 0. We must establish the primality condition. let x, y P R{p.
Then by the maximality of p in Σ, we get that pp, xq “ p`pxq is an ideal which is strictly larger than
p, along with pp, yq. Thus, pp, xqpp, yq X S ‰ ∅ since xy P S. Therefore, it follows pp, xqpp, yq Ć p.
Notice that pp, xqpp, yq “ p2 ` xp ` yp ` pxyq, and so in particular we get that xy R p. By the
contrapositive, we get what we desire. Q.E.D
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Corollary (1.10). Suppose I is an R-ideal, S a multiplicative set of R with S X I “ ∅, then there
is a prime ideal p with I X p and pX S “ ∅.

Definition (Radical Ideal). Let I be an R-ideal. Then
?
I “ tx P R : xn P I for some n ą 0u is

called a radical ideal.

Definition (Nilpotent Element). An element of a ring x P R is nilpotent if x P
?

0.

Definition (Nilradical). The nilradical of R is
?

0, or the set of nilpotent elements.

Definition (Reduced). We say that R is reduced if
?

0 “ 0.

Remark. Every domain is reduced.

Remark (Remark 1.11). 1.
?
I is an ideal and I Ď

?
I.

2.
a?

I “
?
I. (Think of it as a closure operation)

3.
?
IJ “

?
I X J “

?
I X

?
J

4.
?
I “ R iff I “ R.

5.
?
I ` J ‰

?
I `

?
J but rather

a?
I `

?
J .

6.
?
pn “ p if p is prime and n ą 0.

Proof. We first need a lemma.

Lemma. If I, J are R-ideals, and I Ď J , then
?
I Ď

?
J .

Proof. Let x P
?
I. Then xn P I. By assumption, xn P J . But this means x P

?
J . Thus,?

I Ď
?
J . Q.E.D

We show 1. Notice that we need to establish that
?
I is an ideal. Let x, y P

?
I. Then by

definition, we have xn P I for some n ą 0 and ym P I for some m ą 0. Assume without loss of
generality that n ď m. Then px ` yqm P I, m ą 0, by the binomial theorem, and so x ` y P

?
I.

We must then show R
?
I Ď

?
I. Let r P R, y P

?
I. Then yn P I for some n ą 0, and so pyrqn P I.

Hence, yr P
?
I. Since this applies for arbitrary y P

?
I, r P R, we have that R

?
I Ď

?
I. So,

?
I is

an ideal. We must then establish that I Ď
?
I. This, however, is clear (let x P I, then x1 P I and

so x P
?
I).

We show 2. From 1, it follows that
?
I Ď

a?
I. It remains to show that

a?
I Ď

?
I. Let

x P
a?

I. Then we have that xn P
?
I, n ą 0. But if xn P

?
I, this means pxnqm P I for m ą 0. In

other words, xmn P I. But this means that x P
?
I. So,

a?
I Ď

?
I, and we get equality.

We show 3. Let x P
?
IJ . Then we have xn P IJ . If xn P IJ , then xn P I X J by definition and

so we have
?
IJ Ă

?
I X J . Let x P

?
I X J . Then we have xn P I and xn P J . Therefore, we have

x2n P IJ , or in other words x P
?
IJ . Thus, we have

?
I X J “

?
IJ .

Next, we need to show
?
I X J “

?
I X

?
J . Let x P

?
I X J. Then we have xn P I and xn P J .

This means that x P
?
I X

?
J . Next, let x P

?
I X

?
J . Then xn P I and xn P J . This means that

x P
?
I X J . Thus,

?
I X J “

?
I X

?
J .

We show 4. We first show the implication. Assume
?
I “ R. Then we have that for all x P

?
I,

xn P I. However, this means that for all x P R, we have xn P I. More importantly, take 1 P R.
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Then we have 1n P I for some n ą 0. Hence, I “ R. The converse follows (if I “ R, then xn P I
for all x P R and so

?
I “ R).

We show 5. We show
a?

I `
?
J Ď

?
I ` J . Since I, J Ď I ` J (see Operations on Ideals),

we get that
?
I,
?
J Ď

?
I ` J by the lemma. Hence,

?
I `

?
J Ď

?
I ` J . By 1 and 2, we see

that
a?

I `
?
J Ď

a?
I ` J “

?
I ` J . We show

?
I ` J Ď

a?
I `

?
J . By 1, we have I Ď

?
I,

J Ď
?
J , and so I ` J Ď

?
I `

?
J . Using the lemma again, we get

?
I ` J Ď

a?
I `

?
J .

Combining these, we get
?
I ` J “

a?
I `

?
J .

We show 6. Assume p is prime and n ą 0. We show
?
pn Ď p. Let x P

?
pn. Then xn P pn.

Notice that pn Ď p, and so we have xn P p. Notice that p is prime, and so x P p. We show that
p Ď

?
pn. Let x P p. Then xn P pn Ď p. But this means that x P

?
pn. Thus,

?
pn “ p. Q.E.D

Theorem (Theorem 1.12). Let I be an ideal. Then

?
I “

č

pPSpecpP q
IĎp

p.

Proof. We show the inclusion first. Suppose I Ă p, then
?
I Ă

?
p “ p (1.11.6).

We show other inclusion. We must show that if an element is not in
?
I, then it’s not in Xp

(this is the contrapositive of what we want). In other words, we must show there exists a prime
ideal which contains I but it does not contain x. Let Σ “ txn : n ě 0u. Then S X I “ ∅, since x is
not in

?
I. By (1.10), there is a prime ideal pX S “ ∅, I Ď p. Notice as well x R p. Thus, we have

what we want. Q.E.D

Definition (Reduced Ring). If R is a ring, then Rred “ R{
?

0 is a reduced ring.

Definition (Jacobson Radical). We define the Jacobson Radical RadpRq to be the intersection of
all maximal ideals. Notice that by Theorem 1.12, we have

?
0 Ă RadpRq.

Proposition (Proposition 1.13). We have that x P RadpRq if and only if 1` pxq Ď Rˆ.

Proof. We show the implication. Assume that x P RadpRq. Then we have that x is in all maximal
ideals. Since x is in all maximal ideals, we get that pxq is in all maximal ideals as well. Hence,
1 ` pxq cannot be in any maximal ideals, so it must be a unit (by Corollary 1.6, since it’s not in
any maximal ideals, it’s not in the union, and since it’s not in the union it must lie in Rˆ).

We show the converse. Suppose for contradiction that x R m for some maximal ideal, and
assume 1 ` pxq Ď Rˆ. Then it follows that m ` pxq “ R, since m is maximal. Therefore, we get
that 1 “ n`ax for n P m and a P R. Thus, 1´ax “ n P m, or in other words we have 1`pxq Ď m.
But this is a contradiction, since we assumed that 1 ` pxq Ď Rˆ. Hence, x P m for all maximal
ideals. Q.E.D

Chinese Remainder Theorem

Definition (Comaximal). Let I and J be R-ideals. We say that I and J are comaximal if I`J “ R.
We equivalently call this coprime.

Lemma (Comaximality Property). If I and J are R-ideals which are comaximal, then IXJ “ IJ .
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Proof. We show I X J Ď IJ . By Operations on Ideals, we have IJ Ď I X J . It remains to show
that I X J Ď IJ . Let x P I X J . Then x P I and x P J . To show that it’s in IJ , it suffices to show
that x “

řn
i“1 aibi for ai P I, bi P J . Since I and J are comaximal, we have that there is some

a P I and b P J such that a ` b “ 1. Multiply both sides by x to get ax ` bx “ x. Thus, we have
that I X J Ď IJ , and so we get I X J “ IJ . Q.E.D

Proposition (Product Comaximality). Let I, J , and K be R ideals. If I and J are comaximal,
and I and K are comaximal, then R “ RR “ pI ` JqpI ` Kq Ď I ` JK. Thus, I and JK are
comaximal.

Proof. The step R “ pI`JqpI`Kq is clear (since they are comaximal, pI`Jq “ R and pI`Kq “ R).
It’s also clear that pI`JqpI`Kq Ď I`JK. Since pI`JqpI`Kq “ R, and by Operations on Ideals
I ` JK is an R ideal, we get that I ` JK “ R. Hence, I and JK are comaximal as well. Q.E.D

Theorem (Theorem 1.14). Let I1, . . . , In be R ideals, and have Ii ` Ij “ R for all i ‰ j (they are
pairwise comaximal). Then I1 ¨ ¨ ¨ In “ X

n
i“1Ii.

Proof. We proceed by induction. The case n “ 1 is both clear and non-illuminating. We proceed
to the case n “ 2. Denote these ideals by I and J for notational simplicity. Then we have that
I ` J “ R, and by the Comaximality Property we get that IJ “ I X J . Assume it holds for n0.
We must show it holds for n0 ` 1. Since it holds for n0, we have I1 ¨ ¨ ¨ In0 “ X

n0
i“1Ii “ J , since by

Operations on Ideals this is an ideal. Then take In0`1, and assume it is pairwise comaximal with
I1, . . . , In0

. By Product Comaximality, it’s clear that In0`1 and J are comaximal. We then use

Comaximality Property again with In0`1 and J to get In0`1XJ “ In0`1J , or Xn0`1
i“1 Ii “

śn0`1
i“1 Ii.

Thus, our result follows by induction. Q.E.D

Corollary (Corollary 1.15). Suppose R is a semilocal ring with maximal ideals m1, . . . ,mn. Then
RadpRq “

śn
i“1mi.

Proof. Let mi,mj be two maximal ideals. Then we must show they are comaximal. Notice that
mi,mj Ď mi ` mj Ď R. If mi “ mi ` mj , then we have that mj “ 0 or mi, which contradicts
it being maximal and distinct from mi. Hence, mi `mj “ R, and so two maximal ideals which
are distinct must be comaximal. Since m1, . . . ,mn is a finite number of comaximal ideals, and
RadpRq “ Xni“1mi, applying Theorem 1.14 gives us the result. Q.E.D

Definition (Product of Rings). If R and A are two rings, we define RˆA “ tpa, bq : a P R, b P Au
to be the direct product of the rings.

Theorem (Theorem 1.16 (Chinese Remainder Theorem)). Let I1, . . . , In be R-ideals. Define a
homomorphism

φ : RÑ
n
ź

i“1

R{Ii

via φpxq “ px` I1, . . . , x` Inq. Then

1. We have that φ is surjective if and only if Ii ` Ij “ R for all i ‰ j.

2. We have that kerφ “ XIi. In particular, if I1, . . . , In are distinct maximal ideals, then
R{ kerφ – R{I1 ˆ ¨ ¨ ¨ ˆR{In.

11



Proof. We show 1. We first show the implication. Proceed by induction on n, the number of ideals.
For n “ 1, we clearly have that this is surjective. For illustration, we do n “ 2. Assume φ is
surjective. Then we have that there is an x in R so that φpxq “ p1, 0q. Notice that φp1´xq “ p0, 1q.
So, we have that x P I2, and 1 ´ x P I1. Adding these together grants us x ` p1 ´ xq “ 1, and so
I1`I2 are comaximal. Assume it holds for n, then we must show it holds for n`1. Denote R1 as the
ring

śn
i“1R{Ii. Denote n0 “ n` 1. Then examine the ring R1 ˆR{In0

, and assume φ is surjective
onto this. We have then that there is some x P R so that φpxq “ p1, 0q, and φp1 ´ xq “ p0, 1q.
Hence, we have p1´ xq P I1 X ¨ ¨ ¨ X In, x P In0 , and so I1 X ¨ ¨ ¨ X In ` In0 “ R. In other words, In0

is comaximal with each Ii (since we can find p1´ xq P Ii, x P In0
) and we are done.

We now show the converse. It suffices to show that we can find elements ri so that the ith place
is 1, that is, φpriq “ p0, . . . , 0, 1, 0, . . . , 0q. Since Ii`Ij “ R for all i ‰ j, choose Ii and notice that we
can find x P Ii so that p1´xq P Ij for all j ‰ i. Hence, we get that φp1´xq “ p0, . . . , 0, 1, 0, . . . , 0q,
and we’re done. Q.E.D

Theorem (Theorem 1.17 (Prime Avoidance)). Let p1, . . . , pn be prime ideals in R and let I be an
R-ideal contained in Yni“1pi. Then I Ď pi for some i.

Proof. We prove 1. We use induction on n in the form

I Ę pi Ñ I Ę Yni“1pi.

This is clear for n “ 1 by definition. For induction, assume it holds for n´ 1, and we want to show
it holds for n. If it holds for n ´ 1, then for each i there exists xi P I such that xi R pj whenever
j ‰ i. If for some i we have xi R pi, we are done. If not, then xi P pi for all i. Consider the element

y “
n
ÿ

i“1

x1 ¨ ¨ ¨xi´1xi`1 ¨ ¨ ¨xn;

we have y P I and y R pi. Hence, I Ę Yni“1pi. Q.E.D

Remark. I deviated from Ulrich’s proof because I really didn’t like it. This is from Atiyah Mac-
Donald, Proposition 1.11 (i).

Corollary (Corollary 1.18). Let S be a subset closed under addition and multiplication, let I be
an R-ideal, and assume S Ę I. Let p1, . . . , pn be finitely many prime ideals, n ´ 1 of which are
prime. If S{I Ď Yni“1, then S Ď pi for some i.

Proof. If S Ď I Yni“1 pi, then by the modified Theorem 1.17 (Prime Avoidance) (only n ´ 2 need
be prime by Ulrich’s version) S Ď I, which is impossible, or S Ď pi for some i, as desired. Q.E.D

Example. Notice that Rrrx1, . . . , xnss is the power series ring in n variables (see Power Series
Ring).

1. Rrrx1, . . . , xnss “ Rˆ ` px1, . . . , xnq.

2. If 1` px1, . . . , xnq Ď Rrrx1, . . . , xnss
ˆ then px1, . . . , xnq Ď RadpRrrx1, . . . , xnssq.

3. We have Rrrx1, . . . , xnss is a domain if and only if R is a domain.

12



Chapter 2: Modules

Operations on Modules

Definition (Module). Let R be a ring. We say that M is an R-module if

1. M is an abelian group with respect to addition.

2. The scalar multiplication operation ¨ : R ˆM Ñ M is associative, distributive, and it has
identity.

Example. If R is a ring, then R itself is an R-module.

Definition (Submodule). We say that a subset N ĎM is a submodule if it is closed under addition
and multiplication.

Definition (Quotient Module). The quotient of a module is a module.

Definition (Homomorphisms Of Modules). Let M,N be R-modules. A mapping f : M Ñ N is
an R-module homomorphism if

1. fpx` yq “ fpxq ` fpyq

2. fpaxq “ a ¨ fpxq

for all a P R and x, y PM . Notice that these maps are sometimes called R-linear maps.

Example. (1) R-submodules of R are the ideals.
(2) Z-modules are the abelian groups. If you have a homomorphism of groups, it’s naturally a

Z-linear map.
(3) krxs modules, where k is a field, are the k-vector spaces together with the fixed endomor-

phisms φ : V Ñ V .

Definition (Ideal Quotient). If I, J are R-ideals, then their ideal quotient is

pI : Jq “ tx P R : rJ Ď Iu

which is an ideal.

Definition (Annihilator). Let R be a ring, M a module. The annihilator of a module, denoted
AnnRpMq “ p0M :R Mq “ tx P R : rM “ 0u.

Definition (Faithful Module). Let R be a ring, M a module. We say M is faithful if AnnRpMq “ 0.

Definition (Operations on Modules). Suppose Mi : i P I is a family of R-modules. Then we can
define

ź

iPI

Mi “ tpxiqiPIu

à

iPI

Mi “ tpxiqiPI : almost all xi “ 0u.u

Notice that
à

iPI

Ď
ź

iPI

Mi.
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Definition (Free Module). Let R be a ring, M a module. Then M is a free module if M –
À

iPIR.
In other words, M is a free module if and only if M has a basis.

Definition (Finitely Generated). We say that M is finite, or finitely generated, if there are finitely
many elements in M such that M “ Rx1`¨ ¨ ¨`Rxn. In other words, we say M is finitely generated
if and only if there is a free module with n-basis elements Rn ÑM which surjects.

Lemma (Lemma 2.1). Suppose M is an R module, tx1, . . . , xnu ĎM , A is an nˆ n matrix with
entries in R. If

A

¨

˚

˝

x1

...
xn

˛

‹

‚

“ 0.

then pdetpAqqxi “ 0 for all i.

Proof. By assumption, we have

A

¨

˚

˝

x1

...
xn

˛

‹

‚

“ 0.

Multiplying both sides by adjpAq gives us

0 “ padjAqpA

¨

˚

˝

x1

...
xn

˛

‹

‚

q “ ppadjAqAq

¨

˚

˝

x1

...
xn

˛

‹

‚

.

Recall that ppadjAqAq “ detpAq, and so detpAqpx1, . . . , xnq
T “ 0. So for all i, we have detpAqxi “

0. Q.E.D

Theorem (Theorem 2.2 (Nakayama’s Lemma)). Suppose M is a finitely generated R-module, I is
an R-ideal, if M “ IM , then there exists a P 1` I so that aM “ 0.

Proof. We have that M is finitely generated, so we have that M “ Rx1 ` ¨ ¨ ¨ ` Rxn (see Finitely
Generated). So M “ IM gives us px1, . . . , xnq

T “ Apx1, . . . , xnq
T , where A is some n ˆ n matrix

with entries in I. This then gives us pI ´ Aqpx1, . . . , xnq
T “ 0. By Theorem 2.2 (Nakayama’s

Lemma), we get detpI´Aqxi “ 0 for all i (recall that the xi come from the generating set). Hence,
detpI ´Aqx1` ¨ ¨ ¨ ` detpI ´Aqxn “ 0` ¨ ¨ ¨ ` 0 “ 0. Thus, detpI ´Aq P 1` I, since detpI ´Aq ” I
pmod Iq. Q.E.D

Corollary (Corollary 2.3). Suppose N,M are R-modules with M{N finitely generated, and assume
I Ď RadpRq an ideal. IF M “ N ` IM , then N “M .

Proof. If M “ N`IM , pN`IMq{N “ tp
řn
i“1paimiq`N : n P N, ai P I,mi PMu “ t

řn
i“1 aipmi`

Nq : n P N, ai P I,mi P Mu “ IpM{Nq. Thus, M{N “ IpM{Nq, and using Theorem 2.2
(Nakayama’s Lemma) we get M{N “ 0. Since M{N “ 0, this implies M “ N . Q.E.D

Definition (Minimal Generating Set). W is called a minimal generating set of a module M if W
generates M , but no proper subset of W does generate M .
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Example. Let M “ R “ QˆQ. Then tp1, 1qu is a minimal generating set of M as an R-module.
On the other hand tp0, 1q, p1, 0qu is a minimal generating set. The reason is because R is not local.

Theorem (Theorem 2.4). Assume R is a local ring with maximal ideal m, M is a f.g. R-module,
M̄ “M{mM , k “ R{m. For an element x PM , write x̄ for its image in M̄ .

1. tx1, . . . , xnu is a minimal generating set of M if and only if tx̄1, . . . , x̄nu is a basis for M̄ as
a k-vector space. In particular, every minimal generating set of M has the same cardinality.
Furthermore, this cardinality is finite.

2. Suppose tx1, . . . , xnu and ty1, . . . , ynu are two minimal generating sets ofM . Then py1, . . . , ynq
T “

Apx1, . . . , xnq
T for some invertible nˆ n matrix A with entries in R.

Proof. We show 1. For the implication, we proceed by contradiction. We have to show tx̄1, . . . , x̄nu
is a minimal generating set of M̄ . Suppose not. Then we could take out one of the x̄i. Therefore,
tx1, . . . , xnu is not a minimal generating set, a contradiction.

We show the converse. In order to do that, we show that tx1, . . . , xnu is a generating set. Note
that it’s automatically minimal. We know M̄ “ kx̄1`¨ ¨ ¨`kx̄n, hence M “ Rx1`¨ ¨ ¨`Rxn`mM .
Since R is local with maximal ideal m, m “ RadpRq, and hence by Corollary 2.3 this implies
M “ Rx1 ` ¨ ¨ ¨ `Rxn. Thus tx,1 . . . , xnu is a generating set.

We show 2. There exists an n ˆ n matrix in A, with entries in R with py1, . . . , ynq
T “

Apx1, . . . , xnq
T . Now pȳ1, . . . , ȳnq

T “ Āpx̄1, . . . , x̄nq
T . By (a), tȳ1, . . . , ȳnu and tx̄1, . . . , x̄nu are

k-vector spaces bases of M̄ . So Ā has an inverse; in other words, detpĀq ‰ 0̄. Hence ¯detpAq ‰ 0̄.
Then detpAq R m and it’s a unit. Hence, the A is invertible, since 1

detpAqadjpAq is the inverse of

A. Q.E.D

Definition (Minimal Number of Generators). Let M be a finite module over a local ring R with
maximal ideal m and residue field k. Then the minimal number of generators of M , denote µpMq, is
the cardinality of any minimal generating set. Notice that µpMq “ dimkpM̄q, where M̄ “M{mM .
If M happens to be a vector space already, then µpMq “ dimkpMq. So we have a notion of dimension
of modules. In Noetherian rings, submodules of finitely generated modules will be finitely generated.

Theorem (Theorem 2.5). Let M be a finite R-module, ϕ P HomRpM,Mq. Suppose ϕ is surjective.
Then ϕ is injective, i.e. it’s an isomorphism. Furthermore, ϕ´1 “ fpϕq for some f P Rrxs.

Proof. M is an Rrxs-module via x ¨n “ ϕpnq. By extension, any polynomial f P Rrxs and fpxq ¨n “
pfpϕqqpnq. Notice that M is in particular a finite Rrxs-module. Since ϕ is surjective, ϕpMq “ M .
Recall ϕpMq “ xM then pxqM “ M . Applying Theorem 2.2 (Nakayama’s Lemma), we have that
p1`pxqqM “ 0. Thus, we have p1´xfqM . So p1´xfq ¨n “ 0 for all n PM . Thus, distributing, we
get n “ nxf for all n PM . Then we get that n “ pϕ ˝ fpϕqqpnq for all n in N , which is equivalent
to ϕ ˝ fpϕq “ 1M . Thus, fpϕq ˝ ϕ “ 1M . Since ϕ has an inverse and it’s surjective, it is a bijective
homomorphism (isomorphism). Q.E.D

Tensor Products

Theorem (Theorem 2.6 (Tensor Product)). There exists an R-module T “ T pM,Nq and an R-
bilinear map µ : M timesN Ñ T so that for any R-bilinear map ϕ : M ˆ N Ñ P there exists a
unique R-linear map f : T Ñ P so that ϕ “ f ˝ µ. Notice that it commutes. This is called the
tensor product.
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M ˆN T

P

µ

ϕ
f

Proof. Proof omitted. Q.E.D

Remark. Let T 1 and µ1 have the same property as T and µ, then there exists a unique R-linear
map g : T Ñ T 1 which is an isomorphism, and furthermore µ1 “ g ˝ µ.

Proof. (Proof of remark) We begin with uniqueness. Notice that we have the commutative diagram
below. For now, assume existence. Let the first dotted line be g and let the second dotted line be
g1. Then we get g ˝ g1 “ Id, and likewise g ˝ g1 “ Id, and so it is an isomorphism, as the remark
required.

M ˆN

T T 1 T

µ
µ1

µ

g g1

We now show existence. Using the universal property, we get the diagram below. The problem
is, however, that i is not bilinear, so T is a submodule generated by all elements of the form
pr1m1 ` r2m2, nq ´ r1pm1, nq ´ r2pm2, nq and pm, r1n1 ` r2n2q ´ r1pm,n1q ´ r2pm,n2q. Then µ is
bilinear. By the Fundamental Theorem on Homomorphisms, f exists if and only if D Ď kerpfq. It’s
enough to check this for the generators of D. Indeed, F ppr1m1`r2m2, nqq´r1pm1, nq´r2pm2, nqq “
F ppr1m1`r2m2, nq´r1F pm1, nqq´r2F ppm2, nqq “ φpr1m1`r2m2, nq´r1φpm1, nq´r2φpm2, nq “ 0,
since φ is bilinear. Finally, f is uniquely determined by φ, because T is generated as an R-module
by µpM ˆNq, and moreover the f is etermined uniquely on µpM ˆNq, and f is R-linear.

U – RMˆN “
À

MˆN R

M ˆN P U{D “ T

f
πi

ϕ

Q.E.D

Definition (Tensor Product). We call T “ T pM,Nq the tensor product of M and N , and we write
M bR N . We also write xbR y for µpx, yq.

Remark. If V andW are generating sets of M andN respectively, then MbRN “ t
ř

finite xibRyi :
xi PM,yi P Nu “ t

ř

finite ripvi bR wiq : vi P V,wi PW, ri P Ru.

Theorem (Theorem 2.7). Let M,N,P be R modules. The following properties hold.
(a) M bR N – N bRM .
(b) pM bR Nq bR P –M bR N bR P –M bR pN bR P q.
(c) pM ‘Nq bR P – pM bR P q ‘ pN bR P q.
(d) RbRM –M .

16



Proof. (a) Note that M ˆN – N ˆM via pm,nq ÞÑ pn,mq. We then have M ˆN Ñ N ˆM Ñ

N bR M is a bilinear mapping from M ˆ N into N bR M via pm,nq ÞÑ n b m. Note then by
the universal property we have that there is a unique linear mapping from M bR N to N bR M
by sending m b n ÞÑ n b m. There is an analogous argument for N bR M Ñ M bR N . Let
h : M bRN Ñ N bRM and h̄ : N bRM ÑM bRN . We must show that these are inverses on the
on the generators. This is, however, clear; if mbn is a generating element, then h̄phpmbnqq “ mbn
and likewise hph̄pnbmqq “ nbm. Hence, h´1 “ h̄, and we have M bRN – N bRM . Hence, the
tensor product is symmetric.

(b) We must construct homomorphisms f, g such that f : pM bR Nq bR P Ñ M bR N bR P
and g : M bR N bR P Ñ pM bR Nq bR P , and we will show that f ˝ g “ g ˝ f “ 1. Fixing an
element p P P , we must show that the homomorphism pm,nq ÞÑ mb nb p is bilinear. The function
is well-defined, since the selection of representatives is arbitrary. We have mb nb p “ m1b n1b p.
Notice that pa1m1`a2m1, nq ÞÑ pa1m1`a2m2qbnbp “ a1m1bnbp`a2m2bnbp “ a1pm1bnb
pq`a2pm2bnb pq which is equivalent to a1pm1, nq`a2pm2, nq ÞÑ a1pm1bnb pq`a2pm2bnb pq,
and so it’s linear in the first component. Linearity for the second component follows similarly. By
the universal property this induces a homomorphism fp : M bR N Ñ M bR N bR P . Consider
then the mapping of pα, pq ÞÑ fppαq of pM bRNq ˆP into M bRN bR P . Denote this mapping f̄ .
It’s clear that this is well-defined, and bilinearity follows readily. Linearity in the first component is
clear, and we have f̄ppmb nq, apq “ mb pnb apq “ mb apnb pq “ apmb pnb pqq “ af̄pmb n, pq
and f̄pmbn, p`p1q “ mbpnbpp`p1qq “ mbppnbpq`pnbp1qq “ pmbpnbpqq`pmbpnbp1qq “
f̄pm b n, pq ` f̄pm b n, p1q. Thus bilinearity follows. Then by the universal property this induces
another homomorphism f : pM bRNqbR P ÑM bRN bR P , where fppmb nqb pq “ mb nb p.
Note that g is easier to construct; consider the mapping pm,n, pq ÞÑ pm b nq b p of M ˆ N ˆ P
into pM bRNqbR P . This is clearly linear in each variable (and hence multilinear) and so we have
that by the universal property this induces a mapping g : M bR N bR P Ñ pM bR Nq bR P . On
the generators of pM bR Nq bR P and M bR N bR P we can clearly see that f ˝ g “ g ˝ f “ 1,
and so it follows readily that f “ g´1 and so we have an isomorphism.

We must construct again isomorphisms f, g such that f : M bR pN bR P q ÑM bRN bR P and
g : MbRNbRP ÑMbR pNbRP q where f ˝g “ g˝f “ 1. Fix an element m PM . Then we have
pn, pq ÞÑ m b n b p is bilinear by above (the argument is near identical), and so by the universal
property this induces a homomorphism fm : NbRP ÑMbRNbRP , where fmpn, pq “ mbnb p.
Consider the mapping pm,αq ÞÑ fmpαq of MˆpNbRP q into MbRNbRP . Then by the universal
property this induces a homomorphism f : MbRpNbRP q ÑMbRNbRP , where fpmbpnbpqq “
m b n b p. Note again g is easier; consider the mapping pm,n, pq ÞÑ m b pn b pq of M ˆ N ˆ P
into M bR pN bR P q. Then this induces a homomorphism g : M bR N bR P ÑM bR pN bR P q
where gpmb nb pq “ mb pnb pq. We have f and g are clearly inverses on the generators of these
modules, and so f ˝ g “ g ˝ f “ 1, and so we have an isomorphism. Hence, the tensor product is
associative.

(c) Let f : pM ‘ Nq ˆ P Ñ pM bR P q ‘ pN bR P q be the mapping defined by ppm,nq, pq ÞÑ
pmb p, nb pq. Note that this is clearly well-defined. We must show that this is bilinear. Let r P R,
m,m1 PM , p, p1 P P and n, n1 P N . Then we have that

fprpm,nq, pq “ fpprm, rnq, pq “ prmb p, rnb pq “

prpmb pq, rpnb pqq “ rpmb p, nb pq “ rfppm,nq, pq,

fppm,nq, rpq “ pmb rp, nb rpq “ prpmb pq, rpnb pqq “
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rpmb p, nb pq “ rfppm,nq, pq,

fppm,nq ` pm1, n1q, pq “ fppm`m1, n` n1q, pq “ ppm`m1q b p, pn` n1q b pq “

pmb p, nb pq ` pm1 b p, n1 b pq “ fppm,nq, pq ` fppm1, n1q, pq,

fppm,nq, p` p1q “ pmb pp` p1q, nb pp` p1q “ pmb p, nb pq ` pmb p1, nb p1q “

fppm,nq, pq ` fppm,nq, p1q.

So, we have that f is bilinear. By the universal property, this induces a linear mapping g :
pM ‘Nq bR P Ñ pM bR P q ‘ pN bR P q, which can be defined as gppm,nq b pq “ pmb p, nb pq.
Now, we must find an inverse function from pM bR P q‘ pN bR P q Ñ pM ‘NqbR P . Likewise, we
must use the universal property of direct sums to find the inverse. Let j1 : MˆP Ñ pM‘NqbRP be
defined by j1pm, pq “ pm, 0qbp, and j2 : NˆP Ñ pM‘NqbRP be defined by j2pn, pq “ p0, nqbp.
These are clearly well-defined. We then get the linear maps j11 : M bR P Ñ pM ‘ Nq bR P and
j12 : N bR P Ñ pM ‘ Nq bR P defined in the canonical fashion. We then have by the universal
property of direct sums a function j : pM bR P q ‘ pN bR P q Ñ pM ‘ Nq bR P defined by
jpmb p, nb pq “ pm, 0q b p` p0, nq b p.

Let pm,nq b p P pM ‘Nq bR P be a generator. We have then that

jpgppm,nq b pqq “ jpmb p, nb pq “ pm, 0q b p` p0, nq b p “ pm,nq b p,

as required, and so j ˝ g “ 1 on the generators. Likewise, let pm b p, 0q and p0, n b pq in pM bR

P q ‘ pN bR P q be generators. We have

gpjpmb p, 0qq “ gppm, 0qb
p
q “ pmb p, 0q

and likewise for p0, pn b pq. Thus, g ˝ j “ 1, and so we have g and j are inverses and form an
isomorphism.

(d) Let f 1 : RˆM ÑM be a homomorphism fpr,mq “ rm. We must show that this is a bilinear
map. Notice fpa1r1`a2r2,mq “ pa1r1`a2r2qm “ a1r1m`a2r2m “ a1fpr1,mq`a2fpr2,mq. The
argument for the linearity of the second component is similar. Then we have that this is a bilinear
map from R ˆM Ñ M , and so we have that this must induce a linear map f : R bR M Ñ M
where fpr bmq “ rm. Let g : M Ñ RbRM be the linear mapping gpmq “ 1bm. This is clearly
linear, and so it suffices to show that these maps are inverses. Let m P M be a generator of M ,
r P R. Then we have

fpgpmqq “ fp1bmq “ m

and
gpfpr bmqq “ gprmq “ 1b rm “ rp1bmq “ r bm.

Thus, we have that they are inverses and this creates an isomorphism from M Ñ RbRM . Q.E.D

Definition (Bimodules). Suppose R and S are two rings. Then we say that N is an R-S bimodule
if it is an R-module and an S-module. Furthermore, rpsnq “ sprnq for all r in R, s in S, and n in
N .
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Proposition (Proposition 2.8). Let R and S be rings. Suppose M is an R-module, N is an R-S
bimodule, and P is an S-module. Then

(a) M bR N is an R-S bimodule.
(b) pM bR Nq bP S –R´S M bR pN bP Sq

Proof. (a) We must show that M bR N is an R ´ S bimodule. Fix some s P S. Let there be
a map M ˆ N into M bR N defined via pm,nq ÞÑ m b sn. We also have the natural map from
M ˆN into M bR N defined via pm,nq ÞÑ pmb nq. Hence, by the universal property this induces
a unique and linear map from M bR N to M bR N via m b n ÞÑ m b sn. Hence, let M bR N
be our module T , and so we want to show that T ˆ S Ñ T is well-defined. If pt, sq “ pt1, s1q then
we have ts “ t1s1 but pt, sq “ pt1, s1q Ñ s “ s1 since S is a ring. Hence, we have that our function
f : pMbRNqˆS ÑMbRN is well-defined, and is given essentially by our function above. Denote
this map φ : pM bRNqˆS ÑM bRN . Then we have µp

ř

mib niq “
ř

µpmib niq “
ř

mib sni
as required. So, it follows that M bR N is an R´ S bimodule.

(b) Fix p P P . Then let fp : M ˆN Ñ pM bR Nq bS P be defined by pm,nq ÞÑ m b pn b pq.
This is clearly well-defined. The biadditivity property is similar to Problem 4 (c) above, and so it
remains to show that this is bilinear by showing the scalar property. Let r P R. Then we have

fpprm, nq “ rmb pnb pq “ rpmb pnb pqq “ rfppm,nq

and likewise

fppm, rnq “ mb prnb pq “ mb rpnb pq “ rpmb pnb pqq “ rfppm,nq.

Hence, it is bilinear. By the universal property, we have that this induces a linear mapping f 1p :
M bR N Ñ M bR pN bS P q by taking f 1ppm b nq “ m b pn b pq. Let p vary. Then we have a
mapping f : pM bR Nq ˆ P Ñ M bR pN bS P q defined by fppm b nq, pq “ f 1ppm b nq. We must
show that this mapping is bilinear. It is clearly biadditive. It’s also R-linear in the first variable by
definition of f 1p. Hence, it remains to show that it is S-bilinear. Let s P S. Then we have

fppmb nqs, pq “ fpmb ns, pq “ mb pnsb pq “

mb pnb pqs “ pmb pnb pqqs “ fpmb n, pqs

and
fpmb n, psq “ mb pnb psq “ mb pnb pqs “ pmb pnb pqqs “ fpmb n, pqs.

By the universal property, we get that since this is bilinear, it induces a linear mapping f 1 :
pM bR Nq bS P ÑM bR pN bS P q, where f 1ppmbR nq bS pq “ mbR pnbS pq.

We now must find the inverse. Fix m PM . Then we define fm : N ˆ P ÑM bR pN bS P q by
taking pn, pq ÞÑ pm b nq b p The biadditivity is clear, and it remains to show the scalar property.
Let s P S. Then we have

fmpns, pq “ pmb nsq b p “ pmb nqsb p “ ppmb nq b pqs “ fmpn, pqs

and likewise
fmpn, psq “ pmb nq b ps “ ppmb nq b pqs “ fmpn, pqs.
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Hence it is bilinear. By the universal property, we have that this induces a linear mapping f 1m : NbS
P Ñ pMbRNqbSP by taking f 1mpnbpq “ pmbnqbp. Let m vary now. Then we have the mapping
f : M ˆpN bS P q Ñ pM bRNqbS P defined by fpm, pnb pqq “ f 1mpnb pq. The process is similar
to above to show that it is bilinear. It is clear that is also biadditive, and it’s S-linear in the second
variable by definition of f 1m. Also by above, it’s clear to show that it’s R-bilinear. Then this induces
a linear mapping g1 : MbR pNbS P q Ñ pMbRNqbS P , where g1pmbR pnbS pqq “ pmbRnqbS p.
Now we note that they’re inverses; f 1pg1pm bR pn bS pqqq “ f 1ppm bR nq bS pq “ m bR pn bS pq
and likewise g1pf 1ppmbR nqbS pqq “ g1pmbR pnbS pqq “ pmbR nqbS p. Thus, M bR pN bS P q –
pM bR Nq bS P . Q.E.D

Theorem (Theorem 2.9). Let R and S be rings, ϕ : R Ñ S a homomorphism of rings, and M
an R-module. Then S bR M is an S-module by Proposition 2.8, and µ : M Ñ S bR M where
µpmq “ 1 bR m is an R-linear map. Furthermore, for every S-module N and any R-linear map
ϕ : M Ñ N , there exists a unique S-linear map f : S bRM Ñ N with ϕ “ f ˝ µ. Thus, we have
the following commutative diagram.

M S bRM

N

µ

ϕ
f

Proof. (It was unclear on what to do for this one, so I tried the best I could.)
We begin by construction a map from SˆM into SbRM via ps,mq ÞÑ sbm. We then construct

another map from S ˆM into S ˆ N via ps,mq ÞÑ ps, φpnqq. This is clearly bilinear, as was the
map before, and so we have an induced linear mapping from SbRM into SˆN . Next we have the
projection map of S ˆN into N via ps, nq ÞÑ n. We then have a function from S ˆN into S bS N
via ps, nq ÞÑ sbS n. Denote this map g. This induces a unique S-linear mapping from SbS N into
N via sb n ÞÑ n. Finally, we have the mapping SbRM into SbS N via sbm ÞÑ sb ψpmq by the
previous maps constructed. Denote this map h. Then we can define f “ g ˝ h, and we have that it
makes the prior map commute and is unique. Note that it commutes since ψ “ f ˝ µ since for all
m we have fpµpmqq “ fp1b mq “ ψpmq. Q.E.D

Definition (Algebra). Let ψ : R Ñ S be a homomorphism of rings, then S is an R-algebra. This
is equivalent to R and S being both rings, then S is an R-S bimodule. Equivalently, R and S are
rings, S is an R module, and rps1s2q “ s1prs2q.

Proposition (Proposition 2.10). Suppose we have two R-algebras, S and T . Then SbR T is again
an R-algebra, via psbR tqps

1 bR t
1q “ pss1 bR tt

1q.

Proof. Recall that we define an R-algebra to be a ring S together with a ring homomorphism
f : RÑ S. In this case, let f : RÑ S be the corresponding homomorphism for S an R-module and
let g : RÑ T be the corresponding homomorphism for T an R-module. Then we have that S and T
are R-algebras. Consider then the mapping SˆTˆSˆT Ñ SbRT defined by ps, t, s1, t1q ÞÑ pss1, tt1q.
This is clearly R-linear in each factor, and therefore by the multilinear tensor product this induces
an R-module homomorphism S bR T bR S bR T Ñ S bR T . Using Problem 4 (b) we have then
that this is pSbR T qbR pSbR T q Ñ pSbR T q. By the universal property, this corresponds to some
R-bilinear mapping µ : pS bR T q ˆ pS bR T q Ñ S bR T which is µpsb t, s1 b t1q “ ss1 b tt1.
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We now show that this is a commmutative ring. First, note that this clearly forms an additive
abelian group by the properties of tensor products. Next, note that it’s closed under multiplication
clearly, and it has identity 1 b 1, since ps b tqp1 b 1q “ s b t “ p1 b 1qps b tq. Associativity
under multiplication is clear by properties of tensor products. Note that it’s also abelian under
multiplication: ps b tqps1 b t1q “ ss1 b tt1 “ s1s b t1t “ ps1 b t1qps b tq. Finally, we show that it’s
distributive; let s1, s2, s3 P S, t1, t2, t3 P T , then ps1 b t1qpps2 b t2q ` ps3 b t3qq “ ps1 b t1qpps2 `

s3q b pt2 ` t3qq “ ps1s2 ` s2s3q b pt1t2 ` t1t3q “ ps1s2 b t1t2q ` ps1s3 b t1t3q “ ps1 b t1qps2 b t2q `
ps1 b t1qps3 b t3q. The argument for the other direction of distributivity is similar. Hence, it’s a
commutative ring with identity.

Finally, to show it’s an R-algebra we need to show that there is a ring homomorphism h : RÑ
S bR T . Let hpaq “ fpaq b gpaq, where f and g are defined above. The properties follow clearly;
hpa` bq “ fpa` bqb gpa` bq “ fpaq` fpbqb gpaq` gpbq “ fpaqb gpaq` fpbqb gpbq “ hpaq`hpbq,
hpabq “ fpabq b gpabq “ fpaqfpbq b gpaqgpbq “ pfpaq b gpaqqpfpbq b gpbqq “ hpaqhpbq, and hp1q “
fp1q b gp1q “ 1 b 1 which is the identity in the ring, as we showed earlier. Hence, we have that
S bR T is an R-algebra by definition. Q.E.D

Exact Sequences

Definition (Complex). Suppose we have δi : Mi Ñ Mi´1 R-linear maps, where i P Z. Then we
can put them together as follows.

¨ ¨ ¨
δi`2
ÝÝÝÑMi`1

δi`1
ÝÝÝÑMi

δi
ÝÑMi´1

δi´1
ÝÝÝÑ ¨ ¨ ¨

Such a sequence is called a complex of R modules if δi ˝ δi`1 “ 0 for all i. Notice that this is
equivalent to Impδi`1q Ď kerpδiq for all i.

Definition (Exact Sequences). If we have a complex of R-modules such that Impδi`1q “ kerpδiq
for all i, then we call it an exact sequence of R modules.

Definition (Short Exact Sequence). If you have a sequence

0 ÑM 1 ÑM ÑM2 Ñ 0.

it is called a short exact sequence.

Remark. Notice that 0 Ñ M 1 ϕ
ÝÑ M is exact if and only if ϕ is injective. Notice as well that

M
ψ
ÝÑ M2 Ñ 0 is exact if and only if ψ is surjective. Notice that M 1 ϕ

ÝÑ M
ψ
ÝÑ M2 Ñ 0 is exact if

and only if ψ induces an isomorphism between M{ Impϕq and M2.

Definition (Cokernel). The cokernel of a map f : M 1 ÑM is M{ Impfq. This is generally denoted
Cokerpfq.

Theorem (Theorem 2.11 (Snake Lemma)). If we have the following commutative diagram, then
diagram following has induced mappings and they give a six term exact sequence. Moreover, if ϕ
is injective, then so is ϕ̄, and if ψ is surjective then so is ψ̄.
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kerpf 1q kerpfq kerpf2q

M 1 M M2 0

0 N 1 N N2

Cokerpf 1q Cokerpfq Cokerpf2q

if 1

ϕ̄

if if2

f 1

ϕ

f f2

πf 1 πf

ψ

πf2

ψ̄

kerpf 1q kerpfq kerpf2q

Cokerpf 1q Cokerpfq Cokerpf2q

δ

Proof. Proof omitted. Q.E.D

Theorem (Five Lemma). If we have the following commutative diagram with exact rows, then f
is an isomorphism.

A B C D E

A1 B1 C 1 D1 E1

– f –

Proof. Proof omitted. Q.E.D

Definition (Hom). Let M,M 1, N be R-modules such that we have a map ϕ : M 1 ÑM . Then we
define HomRpϕ,Nq : HomRpN,N

1q Ñ HomRpN,Mq via f ÞÑ ϕ ˝ f . Note that this is R-linear.
Define HomRpϕ,Nq : HomRpM,Nq Ñ HomRpM

1, Nq via f ÞÑ f ˝ ϕ. Note that this is R-linear.
Define ϕbR N : M 1 bR N ÑM bR N via m1 bR n ÞÑ ϕpm1q bR n.

Remark. HomRpN,ϕϕ
1q “ HomRpN,ϕq ˝ HomRpN,ϕ

1q is covariant, since the order of the maps
stay the same. Notice HomRpϕϕ

1, Nq “ HomRpϕ
1, Nq ˝ HomRpϕ,Nq. This is contravariant, since

the order of the maps is reversed. Notice that ϕϕ1 bR N “ pϕ bR Nq ˝ pϕ
1 bR Nq. We have that

this is covariant.

Theorem (Theorem 2.12). (a) The following are equivalent.

(i) 0 ÑM 1 ϕÝÑM
ψ
ÝÑM2 is exact.

(ii) 0 Ñ HomRpN,M
1q

HomRpN,ϕq
ÝÝÝÝÝÝÝÝÑ HomRpN,Mq

HomRpN,ψq
ÝÝÝÝÝÝÝÝÑ HomRpN,M

2q is exact for all N .

(b) The following are equivalent.

(i) M 1 ϕÝÑM
ψ
ÝÑM2 Ñ 0 is exact.
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(ii) 0 Ñ HomRpM
2, Nq

HomRpψ,Nq
ÝÝÝÝÝÝÝÝÑ HomRpM,Nq

HomRpϕ,Nq
ÝÝÝÝÝÝÝÝÑ HomRpM

1, Nq is exact for all N .

(iii) M 1 bR N
ϕbRN
ÝÝÝÝÑM bR N

ψbRN
ÝÝÝÝÑM2 bR N Ñ 0 is exact for all N .

Proof. (a) Denote ϕ̄ “ HomRpN,ϕq and ψ̄ “ HomRpN,ψq. We begin with (i) implies (ii). Since
the sequence in (i) is exact, we get that ϕ is injective. We want to then establish that ϕ̄ is also
injective. Recall that by definition ϕ̄ : HomRpN,M

1q Ñ HomRpN,Mq where f ÞÑ ϕ ˝ f . Assume
that this is not injective, then we get that the kernel is nontrivial. Notice that the kernel of ϕ̄ are
the functions f P HomRpN,M

1q with ϕ ˝ f “ 0. But ϕ is injective, so if ϕpfpxqq “ 0 for all x P N ,
then this must mean that fpxq “ 0 for all x P N . In other words, the kernel is trivial, and we get
a contradiction. So ϕ̄ is injective.

Next, we must show that Impϕ̄q “ kerpψ̄q, and thus the sequence will be exact. We begin with
Impϕ̄q Ď kerpψ̄q. Let f P HomRpN,M

1q. Then ϕ̄pfq “ ϕ ˝ f . Notice that ψ̄pϕ ˝ fq “ ψ ˝ pϕ ˝ fq. By
assumption, ψpϕ ˝ fpxqq “ 0 for all x P M 1 and all f P HomRpN,M

1q, since kerpψq “ Impϕq. So,
we get that Impϕ̄q Ď kerpψ̄q. Next, we show the other direction; that is, kerpψ̄q Ď Impϕ̄q. But this
also just follows since kerpϕq “ Impψq. Hence, we have (i) implies (ii).

For the other direction, notice that ϕ̄ is injective. This means that if ϕpf1pxqq “ ϕpf2pyqq then
f1pxq “ f2pyq. This automatically gives us that ϕ is injective then; for if we have ϕpxq “ ϕpyq but
x ‰ y, then we could construct homomorphisms f, g such that fpxq “ x and gpyq “ y, and we have
then that ϕpfpxqq “ ϕpgpyqq, which results in a contradiction. Thus, ϕ must also be injective. We
again must check that Impϕq “ kerpψq. Notice that ψ̄ ˝ ϕ̄ “ 0 by assumption. Then this gives us
ψ ˝ ϕ ˝ f “ 0 for all f P HomRpN,M

1q. Take f to be the identity function where N “ M 1, then
we have ψ ˝ ϕ “ 0. Then we have that Impψq Ď kerpψq. Now, let N “ M{ Impϕq. Let π be the
projection map from M onto N . Then we have π P kerpψ̄q. Then we have k : M2 Ñ N such that
π factors through, giving us the desired inequality. Thus, we have (i) if and only if (ii).

(b) We show that we have (i) if and only if (ii). Let ψ̄ “ HomRpψ,Nq and let φ̄ “ HomRpφ,Nq
for notational simplicity. First, we show that HomRpM

2, Nq is exact. In order to do so, we must
show that ψ̄ is injective. Notice that the kernel of ψ̄ consists of the functions f where f ˝ ψ “ 0.
Notice as well that since we have (i) then ψ is surjective. Hence, we must show that pf ˝ψqpxq “ 0
for all x P M . Since ψ is surjective, we have that ψpxq “ m for some unique m P M2. Hence, we
must have all functions f such that for all m PM2 we have fpmq “ 0. We have that f must be the
zero mapping, and so we have that kerpψ̄q “ t0u. Hence, the mapping is injective, as we required.

Next, we are given that ψ ˝ φ “ 0. We must then show that φ̄ ˝ ψ̄ “ 0. Notice that φ̄pψ̄pfqq “
φ̄pf ˝ψq “ f ˝ψ ˝φ for all f P HomRpM

2, Nq per definition. Since we have ψ ˝φ “ 0, then we have
f ˝ ψ ˝ φ “ f ˝ 0 “ 0. Hence, we have φ̄ ˝ ψ̄ “ 0, and so Impψ̄q Ď kerpφ̄q.

Next, we show that kerpφ̄q Ď Impψ̄q and hence we have equality, making the sequence exact.
If f P kerpφ̄q, then we have f ˝ φ “ 0. By exactness of the first sequence and this, we have
Impφq “ kerpψq Ď kerpfq. Hence we have that there is some function f̄ in HomRpM

2, Nq where
f “ f̄ ˝ ψ “ ψ̄pfq and so Impψ̄q Ď kerpφ̄q and hence we have equality. Thus, the sequence is exact.

Next, we show that (ii) Ñ (i). It’s clear that ψ is surjective, since we have that ψ̄ is injective. So
we must show then that kerpψq “ Impφq. Notice that ψ̄˝ φ̄ “ 0. Then it follows that φ˝ψ˝f “ 0 for
all f P homM2. Let f be the identity function and N to be M2 (we can do so since it holds for any
R-module N and any function) then it follows that φ ˝ ψ “ 0. So, we have Impφq Ď kerpψq. Next,
let N “ M{Impφq. Let π be the projection from M onto N . Then it follows that we must have
π P kerpφ̄q; hence, there exists k : M2 Ñ N such that π factors through. Hence, Impφq “ kerpψq
and so the sequence is exact. Thus, we have (i) Ø (ii).
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We now show (i) if and only if (iii). By (i) if and only if (ii), we have

M 1 b
R
P ÑM b

R
P ÑM2 b

R
P Ñ 0

is exact if and only if

0 Ñ HomRpM
2 b
R
P,Nq Ñ HomRpM b

R
P,Nq Ñ HomRpM

1 b
R
P,Nq

is exact for all N . Notice that this sequence is isomorphic to

0 Ñ HomRpM
2,HomRpN,P qq Ñ HomRpM,HomRpN,P qq Ñ HomRpM

1,HomRpN,P qq

for all N , since HomRpM bR N,P q – BilpM ˆ N,P q (b y the universal property), and this is
isomorphic to HomRpM,HomRpN,P qq. By (i) if and only if (ii), we get that this is true if and only
if M 1 ÑM ÑM2 Ñ 0 is exact. Q.E.D

Corollary (Corollary 2.13). We have M bR R{I –M{IM .

Proof. Notice that the sequence

0 Ñ I
i
ÝÑ R

π
ÝÑ R{I Ñ 0

is exact. We now tensor with M to get

M b
R
I ÑM b

R
RÑM b

R
R{I Ñ 0

which is right exact by Theorem 2.12. By Theorem 2.7 d, we have MbR – R. Hence, this sequence
is

M b
R
I ÑM ÑM b

R
R{I Ñ 0.

By exactness, if f : MbR I ÑM , then MbRR{I – Cokerpfq. We now must show that Cokerpfq –
M{IM . Moreover, it suffices to see that the kernel of f is IM (since Cokerpfq “ M{ kerpfq by
Cokernel). But this follows since fpm bR m

1q “ mm1 (see Theorem 2.7 d). This completes the
proof. Q.E.D

Remark. Let M , N be R-modules. You can get exact sequences

0 Ñ U
i
ÝÑ F ÑM Ñ 0

and
0 Ñ V

i
ÝÑ GÑ N Ñ 0

where F and G are free modules, F has basis teiu for some indexing set, and G has basis tyju for
some indexing set. We tensor the first sequence with N to get

U b
R
N Ñ F b

R
N ÑM b

R
N Ñ 0

which is exact by Theorem 2.12. Similarly, we tensor the second sequence with F to get

F b
R
V Ñ F b

R
GÑ F b

R
N Ñ 0.

We see then that
M b

R
N – F b

R
N{ ImpU b

R
Nq

via the first sequence. We then need a lemma.
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Lemma.
M b

R
N – F b

R
G{pImpF b

R
V q ` ImpU b

R
Gqq

Proof. By the second sequence, we see that

F b
R
N – F b

R
G{ ImpF b

R
V q.

Q.E.D

Recall F bR G is a free module with basis tei bR giu.

Definition (Split Exact). The following are equivalent for an exact sequence of R-modules

0 ÑM 1 ϕÝÑM
ψ
ÝÑM2 Ñ 0

(1)

0 M 1 M M2 0

0 M 1 M 1 ‘M2 M2 0

“ “

ϕ ψ

– “ “

i π

(2) There exists an ε : M ÑM 1 where ε ˝ ϕ “ IdM 1 .
(3) There exists a µ : M2 ÑM where ψ ˝ µ “ IdM2 .
These maps are called splittings, and such a sequence is called split exact.

Definition (Projective Module). Let R be a ring and N an R-module. Then the following are
equivalent.

(i) N is projective.

(ii) If ψ surjective, then HomRpN,ψq is surjective.

(iii) HomRpN, ¨q preserves exact sequences.

Definition (Injective Module). Let R be a ring and N an R-module. Then the following are
equivalent.

(i) N is injective.

(ii) If ϕ is injective, then HomRpϕ,Nq is surjective.

(iii) HomRp¨, Nq preserves exact sequences.

Definition (Flat Module). Let R be a ring and N an R-module. Then the following are equivalent.

1. N is flat.

2. If ϕ is injective, then ϕbR ¨ is injective.

3. ¨ bR N preserves exact sequences.
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Proposition (Proposition 2.14). Let R be a ring.

(a) The following are equivalent.

(i) P is a projective module.

(ii) For all surjective ψ : M Ñ M2 and f : P Ñ M2, there exists a g : P Ñ M making the
following diagram commute.

M M2

P

g
f

(iii) There exists an R-module M where P ‘M is free.

(b) We have free Ñ projective Ñ flat.

Proof. We start with (a). Notice that (i) if and only if (ii) follows from the definition, Projective
Module. Next, we prove (ii) implies (iii). Using (ii), let M2 be P and let M be F , a free module.
Then we have the following diagram.

F P

P

“
g

We then use the equivalences of Split Exact. We now prove (iii) implies (ii). Notice that every free
module is projective, and a direct summand of a projective module is projective, since HomRpP ‘
M,ψq “ HomRpP,ψq ‘ HomRpM,ψq. So ψ is surjective implies HomRpP ‘M,ψq is surjective,
which implies HomRpP,ψq, giving us the desired result.

We now prove (b). First, we establish free implies projective. Examine the following diagram.

M M 1

Rn

ψ

f

Let teiu be the basis of Rn. Examine fpeiq. For each i, choose xi P ψ
´1pfpeiqq. Define g : F ÑM

by gpeiq “ xi. Then by Projective Module, we get that it’s projective. Since the projective is a
direct summand of free modules, it must also be flat, via Flat Module. Q.E.D

Remark. Notice that the arrows for Proposition 2.14 b cannot be reversed.

Theorem (Theorem 2.15). Let pR,m, kq be a local ring, M a finite R-module. Then M is free if
and only if it is projective.

Proof. Let M be projective. Let n “ µpMq (recall Minimal Number of Generators). Then we have
M “ Rx1 ` ¨ ¨ ¨ `Rxn. Let F “ Rn. So we take

0 Ñ K Ñ F ÑM Ñ 0.
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(Here, K denotes the kernel of the mapping F ÑM .) Notice that K Ď mF . Since
ř

aiei P k, then
ř

aixi “ 0 implies no ai can be a unit. Since R is local, ai P m. Since M is projective, we get the
following diagram.

F M

M

“

By Split Exact, we get F – k ‘M , and also K is finitely generated. So Rn – k ‘M . Tensor
this with k to get that k bR R

n – kn, and so we have kn – pk bR kq ‘ pm bR kq. Notice that
mbR k – kn, since

K Ñ F Ñ k b
R
k Ñ F b

R
k

because k Ď mF . Thus
0 Ñ F b

R
k ÑM b

R
k Ñ 0,

so M bR k – kn. Thus, kn – pK bR kq ‘ pk
nq gives us K bR k “ 0, which gives us K{mK “ 0. So

by Theorem 2.2 (Nakayama’s Lemma), we get K “ 0. Hence,

0 Ñ K Ñ F ÑM Ñ 0

implies
0 Ñ F ÑM Ñ 0

and hence F –M , as desired. Q.E.D
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Chapter 3: Noetherian/Artinian Modules and Rings

Noetherian and Artinian Modules

Lemma (Lemma 3.1). Let Γ be a partially ordered set with respect to ď (in other words, ď is
transitive, px ď yq ^ py ď xq Ñ x “ y). Then the following are equivalent.

(i) Every increasing sequence x1 ď x2 ď x3 ď ¨ ¨ ¨ is stationary or stabilizes. In other words,
there exists an n such that xn “ xn`1 “ ¨ ¨ ¨ .

(ii) Every nonempty subset of Γ has a maximal element.

Proof. We show (i) implies (ii). We proceed by contradiction. Suppose Γ1 Ď Γ does not have a
maximal element, and Γ1 ‰ ∅. By induction on n, we construct elements x1 ď x2 ď ¨ ¨ ¨ ď xn in Γ1

which are all distinct. For n “ 1, arbitrarily choose any. Suppose it holds for n ´ 1, i.e. we have
a chain x1 ď ¨ ¨ ¨ ď xn´1 which are distinct for all xi. Since xn´1 cannot be a maximal element
(assuming (ii) is false), there must exists an xn P Γ1 such that xn´1 ď xn, and xn´1 ď xn (otherwise
xn´1 would be maximal). Thus, by induction the case n holds. Since by induction we can increase
this chain to be arbitrarily long, we see that (i) does not hold, and so we have a contradiction.
Hence, we must have (ii) if we have (i).

We show (ii) implies (i). This, however, is clear. Let x1 ď ¨ ¨ ¨ be an arbitrary chain, and let
them all be contained in Γ1. Then we apply (ii) to Γ1 to find an xn such that x1 ď ¨ ¨ ¨ ď xn and if
xn ď xn`1 then we must have xn “ xn`1 by the second property of partially ordered sets. Hence,
we have that this chain stabilizes, giving us (i) as desired. Q.E.D

Remark (Ascending Chain Condition). We call the above property (Lemma 3.1) the Ascending
Chain Condition. If Γ satisfies the properties above, then it has the Ascending Chain Condition.

Definition (Descending Chain Condition). If we have the properties in Lemma 3.1 but with respect
to ě as opposed to ď, then we call it the Descending Chain Condition.

Definition (Noetherian Module). Let M be an R-module, R a ring. Then M is Noetherian if the
set of all submodules of M satisfies the ascending chain condition.

Definition (Artinian Ring). Let M be an R-module, R a ring. Then M is Artinian if the set of
all submodules of M satisfies the descending chain condition.

Definition (Noetherian/Artinian Ring). Let R be a ring. We say R is Noetherian as a ring
(respectively Artinian) if R is Noetherian (respectively Artinian) as an R-module.

Proposition (Proposition 3.2). Let R be a ring, M an R-module. We have that M is Noetherian
if and only if every submodule of M is finitely generated.

Proof. We start with the implication. Let N be a submodule of M . Let Γ1 be the finitely generated
submodules of N . Note that Γ1 is nonempty (Γ1 must contain at least N). By the Noetherian
property, Γ1 as a maximal element, M 1. We would like to show that M 1 “ N . We proceed by
contradiction; assume that M 1 ‰ N . Then there exists an x P N such that x RM 1. Now, consider
M 1 ` Rx. This is a finitely generated N -module, and M 1 Ď M 1 ` Rx, which contradicts the
maximality of M 1. Thus, we have that N “M 1, and N is finitely generated.
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We prove the converse. Let M1 ĎM2 Ď ¨ ¨ ¨ be a chain of submodules. Define

M 1 “

8
ď

i“1

Mi.

Then M 1 is a submodule of M . Hence, M 1 is a finitely generated module. By definition, M 1 “

Rx1 ` ¨ ¨ ¨ ` Rxn. So xj P Mij for some ij . Let r “ maxtij : 1 ď j ď nu. Then xj P Mr for all
j. Notice that M 1 “ Rx1 ` ¨ ¨ ¨ ` Rxn Ď Mr Ď Y

8
i“1Mi Ď M 1, hence we have that M 1 “ Mr, and

therefore for all j greater than or equal to r, we have Mr “Mj . So it stabilizes. Q.E.D

Corollary (Corollary 3.2.1). A ring is Noetherian if and only if every R ideal is finitely generated.

Lemma (Lemma 3.3). Let R be a ring, M an R-module, M 1 Ď M a submodule, and let N1 Ď

N2 Ď M be submodules. Then we have N1 “ N2 if and only if N1 X M 1 “ N2 X M 1 and
pN1 `M

1q{M 1 “ pN2 `M
1q{M 1. (Not an isomorphism, actual equality.)

Proof. For the implication, it follows clearly. If N1 “ N2, then it’s clear that N1 XM
1 “ N2 XM

1,
since M 1 is the same in both. It’s also clear that pN1 `M

1q{M 1 “ pN2 `M
1q{M 1 since N1 “ N2.

For the converse, there is more work. We know N2 Ď N2XpN1`M
1q because N1`M

1 “ N2`M
1

(since pN1 ` M 1q{M 1 “ pN2 ` M 1q{M 1). Then N2 X pN1 ` M 1q “ pN2 X N1q ` pN2 X M 1q “

pN2 X N1q ` pN1 XM 1q Ď N1. Hence N2 Ď N1. By a symmetry argument, N1 Ď N2, and thus
N1 “ N2, as required. Q.E.D

Proposition (Proposition 3.4). If

0 ÑM 1 αÝÑM
β
ÝÑM2 Ñ 0

is an exact sequence, then

(a) M is Noetherian if and only if M 1 and M2 Noetherian.

(b) M is Artinian if and only if M 1 and M2 are Artinian.

Proof. You may start with assuming M 1 Ď M and M2 “ M{M 1, since the sequence is exact. We
start with the implication of (a) and (b). Let M 1

1 ĎM 1
2 Ď ¨ ¨ ¨ be any sequence in M 1. Since we may

assume M 1 Ď M , it’s clear that this is a sequence in M , and so it must eventually stabilize. We
can apply this same logic for (b). For M2, let M2

1 Ď M2
2 Ď ¨ ¨ ¨ . Since M2 “ M{M 1, we have that

this is M1{M
1 ĎM2{M

1 Ď ¨ ¨ ¨ for Mi ĎM . But this stabilizes, since M1 ĎM2 Ď ¨ ¨ ¨ stabilizes by
assumption. Apply similar logic for (b).

We now prove the converse of (a) and (b). Assume M 1 and M2 are Noetherian (respectively
Artinian). Then select some arbitrary chain M1 ĎM2 Ď ¨ ¨ ¨ in M . The corresponding chain in M 1

is then M1XM
1 Ď ¨ ¨ ¨ in M 1, and the corresponding chain in M2 is pM1`M

2q{M2 Ď ¨ ¨ ¨ . We know
that both stabilize eventually (by assumption), and so we apply Lemma 3.3 on these sequences to
get that they stabilize in M as well. Therefore, every chain eventually stabilizes in M . Q.E.D

Corollary (Corollary 3.5). M1, . . . ,Mn are Noetherian (respectively Artinian) if and only if M1‘

¨ ¨ ¨ ‘Mn is Noetherian (respectively Artinian).
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Proof. We proceed via induction. The case where n “ 1 is trivial. The case where n “ 2 is more
illuminating. Notice that we have

0 ÑM2
i
ÝÑM1 ‘M2

π
ÝÑM1 Ñ 0

is a short exact sequence, where i indicates the natural injection and π indicates the natural
projection. We then apply Lemma 3.3, and we get the result. We now assume that it holds for
n0 ą 0. We want to then show that it holds for n0`1. Notice now we have the short exact sequence

0 ÑMn0`1
i
ÝÑ

n0
à

i“1

Mi ‘Mn0`1
π
ÝÑ

n0
à

i“1

Mi Ñ 0

where, once again, i indicates the natural injection and π indicates the natural projection. Applying
Lemma 3.3 again, we get the result that we wish, and so it holds for all n P Ně1. Q.E.D

Corollary (Corollary 3.6). Let R be a Noetherian ring (respectively Artinian), and let M be an
R-module. If M is finite, then M is Noetherian (respectively Artinian).

Proof. There exists a short exact sequence

0 Ñ U
i
ÝÑ Rn

π
ÝÑM Ñ 0.

where U “ ker pπq (this follows from Finitely Generated). By Corollary 3.5, Rn is a Noethe-
rian (respectively Artinian) ring module. Applying Proposition 3.4, we get that M is Noetherian
(respectively Artinian). Q.E.D

Corollary (Corollary 3.7). Let R and S be rings, and let R Ñ S be a homomorphism of rings
which makes S a finite R-module. So if R is Noetherian (respectively Artinian) then S is Noetherian
(respectively Artinian) as a ring.

Proof. By Corollary 3.6 we know S is a Noetherian (respectively Artinian) R-module. In particular,
it is a Noetherian (respectively Artinian) S-module. Q.E.D

Remark. The converse does not necessarily follow.

Example. (1) Notice that Z is a Noetherian ring. Notice, however, it is not an Artinian ring; take
p2kq.

(2) We have that Zr
?
´5s is Noetherian by Corollary 3.7, but it is not Artinian.

(3) Let k be a field. It is both Artinian and Noetherian.

(4) Let k be a field. Then krtxi : i P Nus is neither Noetherian nor Artinian. Take the ideals
generated by the generators – they never stabilize.

Proposition (Proposition 3.8). Suppose M is a Noetherian R-module. Then R{AnnRpMq is a
Noetherian ring.

Remark. Over this ring, the module is faithful.
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Proof. Since M is a Noetherian R-module, it is finitely generated via Proposition 3.2. Thus, we
can rewrite M as M “ Rx1 ` ¨ ¨ ¨ ` Rxn. Notice Rxi Ď M , and it is a cyclic module. Thus,
R{AnnRpxiq – Rxi. By Proposition 3.4, R{AnnRpxiq is Noetherian, therefore, by Corollary 3.5,
we have R{AnnRpx1q ‘ ¨ ¨ ¨ ‘ R{AnnRpxnq is a Noetherian R-module. Hence, by Theorem 1.16
(Chinese Remainder Theorem), we get

R{pAnnRpx1q X ¨ ¨ ¨ XAnnRpxnqq ãÑ

n
à

i“1

R{AnnRpxiq.

By Proposition 3.4, R{pAnnRpx1qX¨ ¨ ¨XAnnRpxnqq is Noetherian as an R-module, hence as a ring.
Therefore, this is just R{AnnRpMq. Q.E.D

Remark. This is not true if we replace Noetherian by Artinian.

Theorem (Theorem 3.9). Suppose R is a ring. We have that R is Noetherian if and only if every
prime ideal of R is finitely generated.

Proof. The implication follows via Corollary 3.2.1. We now prove the converse. Let Γ “ tR-ideals
that are not finitely generatedu. Suppose Γ ‰ ∅. To apply Zorn’s Lemma, we check that every
totally ordered subset has an upper bound. Let tIαu be our totally ordered set. Let I “ YαIα,
which is an ideal. We need to show that I is not finitely generated. Suppose, for contradiction,
that it is finitely generated. Then I “ Rx1 ` ¨ ¨ ¨ ` Rxn, xi P Iαi

for some αi. Let r “ maxtαiu.
Then αi ď r and hence Iαi

Ď Ir, and therefore xi P Ir for all i. This shows that the whole ideal
is in Ir, and thus I “ Ir. Remember Ir is in Γ, and all elements in Γ are not finitely generated,
and so I is not finitely generated, resulting in a contradiction. By Zorn’s Lemma, Γ has a maximal
element, denote it p. We need to show p is a prime ideal. It’s clear that p is proper, because R
is finitely generated. We need to then show that if α, β P p, then α P p or β P p. Suppose there
exist elements α P R{p, β P R{p with αβ P p. Look at p ` Rα. This is an ideal, and is strictly
bigger than p. Likewise, p ` Rβ is an ideal. Notice we also have p Ĺ p ` Rβ Ď pp : αq. By the
maximality of p in Γ, we have p ` Rα and pp : αq are both finitely generated. So we can write
p “ pp ` Rαq X p “ pI ` Rαq X p “ I ` p X Rα “ I ` tλ P R : λ P puα. By definition, this is just
I ` pp : αqα, and so we get p is finitely generated. Q.E.D

Definition (Composition Series). Let M be an R-module. Then a composition series of M is a
strictly decreasing chain of submodules 0 “ Mn Ĺ ¨ ¨ ¨ Ĺ M1 Ĺ M0 “ M which cannot be properly
refined. Equivalently, Mi´1{Mi are simple modules if and only if Mi´1{Mi – R{mi, mi some
maximal ideal.

Lemma (Lemma 3.10). Let M be a module with the composition series of length n. Then every
chain of submodules of M has length less than or equal to n.

Proof. We proceed via induction. It’s clear that this holds for n “ 1. Assume M has a composition
series 0 “ Mn Ĺ Mn´1 Ĺ ¨ ¨ ¨ Ĺ M1 Ĺ M0 “ M , and 0 “ Nr Ĺ ¨ ¨ ¨ Ĺ N1 Ĺ N0 “ M . Let
M 1 “ Nn´1. Then M{M 1 has a composition series of length n ´ 1. Hence, by the induction
hypothesis, the chain 0 “ Nr{pM

1 XNrq Ď ¨ ¨ ¨ Ď N1{pM
1 XN1q Ď N0{pM

1 XN0q “ M{M 1. This
chain has length at most n´ 1. Since M 1 is simple, M 1 XNi “ tM

1or0u. Let t be maximum with
M 1 X Nt “ M 1. Then Nr Ĺ ¨ ¨ ¨ Ĺ Nt´1{0 Ď Nt{M

1 Ď ¨ ¨ ¨ Ď N0{M
1 “ M{M 1. The length of this

chain is at least r ´ 1. Via the induction hypothesis, r ´ 1 ď n´ 1, and hence r ď n. Q.E.D
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Corollary (Corollary 3.11). Let M be a module with a composition series. Then every composition
series has the same length. Furthermore, every chain of submodules can be refined to a composition
series.

Proof. Folows directly from Lemma 3.10. Q.E.D

Definition (Length of a Composition Series). Let R be a ring and M be an R-module. We define
lpMq “ lRpMq to be the length of the composition series of M if M has a composition series.
Otherwise, we define it to be infinite.

Proposition (Proposition 3.12). Let R be a ring, and M an R-module. Then lpMq ă 8 if and
only if M is Noetherian and Artinian.

Proof. For the implication, we notice it follows directly from Lemma 3.10. For the converse, let Γ
be the set of submodules of M having finite length. Notice that this set is nonempty, clearly, and
must also contain 0. Since M is Noetherian, M has a maximal element, denote it by N . If N “M ,
then we’re done (this sequence cannot be properly refined). Assume otherwise. Let ∆ be the set
of submodules of M properly containing N . Notice this set contains M . Since M is Artinian, ∆
has a minimal element, call it M 1. Now N Ĺ M 1 and also M 1{N is a simple module, since M 1

is minimal. Hence, M 1 has a composition series. This contradicts the maximality of N , and thus
N “M , completing the proof. Q.E.D

Remark (Remark 3.13). Let
0 ÑM 1 ÑM ÑM2 Ñ 0

be an exact sequence of R-modules. Then lpMq “ lpM 1q ` lpM2q.

Remark (Remark 3.14). Let M be a k-vector space. Then the following are equivalent.

(i) M is Noetherian.

(ii) M is Artinian.

(iii) M has finite length.

(iv) M has finite dimension.

We also have lpMq “ DimkpMq.

Proof. It suffices to prove (ii) implies (iv); this, however, follows from a simple generator argument.
Suppose DimkpMq “ 8; then this means that M has an infinite minimal generating set. Denote
it b W . So ¨ ¨ ¨ Ĺ W1 Ĺ W0 “ W . Then thre exists an infinite chain of submodules ¨ ¨ ¨RW2 Ĺ

RW1 Ĺ RW0 “ M because W is a minimal generating set. So by the contrapositive, we get what
we desire. Q.E.D

Lemma (Lemma 3.15). Suppose R is a ring which is Artinian or Noetherian. Let I be any ideal.
Then there exists N with 0 :R I

n “ 0 :R I
n`1. For this n, we write R̄ “ R{p0 :R I

nq and Ī for the
image of I in R̄. Then annRpĪq “ 0̄ “ 0̄ :R̄ Ī.

Proof. It suffices to show that 0̄ :R̄ Ī “ 0̄. Equivalently, in R, p0 :R Inq :R I “ 0 :R In. But notice
that p0 : Inq : I “ 0 : pInIq “ 0 : In`1 “ 0 : In. Q.E.D
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Lemma (Lemma 3.16). Let R be an Artinian ring. Then there exists n with RadpRqn “ 0. In
particular, this gives us nilpRq “ RadpRq.

Proof. Let I “ RadpRq. By Lemma 3.15, there exists an n so that annRpĪq “ 0, where R̄ “ R{p0 :
Inq. We then show R̄ “ 0̄, since if R̄ “ 0̄ then 0 : In “ R if and only if In “ 0. Suppose for
contradiction R̄ ‰ 0̄. Since R̄ is an Artinian ring, R̄ has a simple submodule, call it N ‰ 0 (see
Remark 3.14). In particular, N is a finite R-module. Notice IN “ t0, Nu. If IN “ N , then
N “ 0. If IN “ 0, then N “ 0, since annR̄pĪq “ 0. We get a contradiction either way, and so we’re
done. Q.E.D

Theorem (Theorem 3.17). Every Artinian ring is Noetherian.

Proof. We will have a better proof in Chapter 7, so I will omit it here. Q.E.D

Hilbert’s Basis Theorem

Theorem (Theorem 3.18 (Hilbert’s Basis Theorem)). If R is a Noetherian ring, then so is
RrX1, . . . , Xns.

Proof. It’s clear that once we show it holds for RrX1s, it must hold for all n P N. Assume it
holds for n, then we must show it holds for n ` 1. We have the ring RrX1, . . . , Xn, Xn`1s “

RrX1, . . . , XnsrXn`1s. Let R1 “ Rrx1, . . . , Xns. Then we may rewrite this as R1rXn`1s. Since it
holds for n, we have that R1 is Noetherian, and we use the case where n “ 1 to establish that
R1rXn`1s is Noetherian. Thus, by induction, it holds. It remains to show the case for n “ 1.

For n “ 1, we proceed via contradiction. Assume there is an ideal I of RrXs that is not finitely
generated (see Proposition 3.2). Set I0 :“ p0q. For each i ě 1, choose inductively fi P I´Ii´1 of least
degree di, and set Ii “ pf1, . . . , fiq. Let Ii be the leading coefficient of fi, and J the ideal generated
by all the Ii. Since R is Noetherian, J “ pI1, . . . , Inq for some n. Then In`1 “ r1I1` ¨ ¨ ¨ ` rnIn for
ri P R.

By construction, di ď di`1 for all i. Set

f :“ fn`1 ´ pr1f1X
dn`1´d1 ` ¨ ¨ ¨ ` rnfnX

dn`1´dnq.

Then degpfq ă dn`1, so f P In. Therefore, fn`1 P In, a contradiction. Q.E.D

Corollary (Corollary 3.19). Every finitely generated algebra over a Noetherian ring is a Noetherian
ring.

Proof. Let S be a finitely generated R-algebra, R a Noetherian ring. Then S – RrX1, . . . , Xns{J ,
and so we apply Theorem 3.18 (Hilbert’s Basis Theorem). Q.E.D

Theorem (Theorem 3.20). Let R be a ring, M an R-module, Γ “ tIM : I an R-moduleu. If M is
finitely generated and Γ satisfies Ascending Chain Condition, then M is Noetherian.

Proof. Suppose M is not Noetherian. We will get to the case where M{aM is Noetherian for all
0 ‰ a P R, and M{M 1 is not faithful for all submodules 0 ‰ M 1 Ď M . In this case, we are done:
suppose 0 ‰ M 1 Ď M a submodule. Then M{M 1 is not faithful. Hence, there exists 0 ‰ a P R
with apM{M 1q “ 0. Hence, aM Ď M 1. Now, M 1{aM is a submodule of M{aM and by the first
assumption M{aM is Noetherian. Hence, M 1{aM is finitely generated, and therefore M 1 is finitely
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generated (since M is finitely generated) and so aM is finitely generated. Since every submodule
of M is finitely generated, M is Noetherian. Hence, by contradiction, we have the statement.

We must now get to the assumptions. Let ∆ “ tIM : I is an ideal with M{IM not Noetherianu.
∆ is nonempty, since 0 P ∆. By Ascending Chain Condition, ∆ has a maximal element, denote it
by I0M . Replace M by M{I0M and R by R{annRpM{IMq. Let a ‰ 0 P R1, then aM ‰ 0, since
M is faithful now. Therefore, in the old module, I0M Ĺ pI0, aqM . By the maximality of I0M in
∆, M{pI0, aqM is Noetherian. For the new module, this is simply M{aM . Hence, we have the first
assumption. Notice M is still not Noetherian, because I0 P ∆.

We now must show the second assumption. Consider 0 P Σ “ tN : N submodule of M , M{N is faithfulu.
Hence, Σ is nonempty. Let tNαu be a chain of Σ. Let N “ YαNα. Then N is a submodule. We
claim M{N is faithful. Let M “ Rm1 ` ¨ ¨ ¨ ` Rmn since M is finitely generated. Let a P R
which annihilates the module. This means that aM Ď N . Therefore ami P N for all i. So there
exists αi so that ami P Nαi for all i. So let β “ maxtαiu. Then Nαi Ď Nβ for all αi. Therefore
a P annpM{Nβq “ 0. Hence a “ 0, and our module N is faithful. By Zorn’s Lemma, we have
there is a maximal element in Σ; call it N . Replace M by M{N . By the maximality of N P Σ,
then M{M 1 is not faithful for all M 1 ‰ 0 a submodule of M . So we need to check that our new
module is not Noetherian. Suppose it is Noetherian. Recall this M is M{N , N P Σ. Therefore,
this M{N is faithful, and so this gives us that the ring is Noetherian (Proposition 3.8). If the ring
is Noetherian, then since the old M is finitely generated, M would be Noetherian, which gives us
a contradiction. So we have all of our assumptions, as we wanted. Q.E.D

Corollary (Corollary 3.21 (Eakin’s Theorem)). Suppose R Ď S is a ring extension making S a
finitely generated R-module. If S is Noetherian, then R is Noetherian.

Proof. Examine Γ “ tSI : I an R-idealu Ď tS-idealsu. Since S is Noetherian, then tS-idealsu
satisfies Ascending Chain Condition, and so any subset satisfies Ascending Chain Condition. In
particular, this means that Γ satisfies Ascending Chain Condition. Hence by Theorem 3.20, we get
that S is a Noetherian R-module. Since R Ď S, S is a fiathful R-module (i.e. the annihilator is 0).
Hence, R is a Noetherian ring by Proposition 3.8. Q.E.D
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Chapter 4: Localization and Spectrum

Definition (Localization). Let R be a commutative ring, and let S be a Multiplicative Subset. On
S ˆ R we define „: ps, xq „ ps1, x1q if and only if tpsx1 ´ s1xq “ 0 for some t P S. Notice that this
is an Equivalence Relation. We define S´1R “ Rs “ S ˆ R{ „“ t ¯ps, xq : s P S, x P Ru “ txs u. We
can define multiplication and addition in the obvious way. These operations are well-defined. With
these operations, S´1R is a commutative ring with 0 “ 0

1 and 1 “ 1
1 .

Remark (Remark 4.1). S´1R is a ring, ϕ is a homomorphism of rings, ϕpSq Ď pS´1Rqˆ.

Proof. Let s P S. We want to show s{1 is invertible in S´1R. The inverse is s{1¨1{s “ 1{1. Q.E.D

Definition (Quotient Ring). Let S´1R be as above. We call S´1R the quotient ring, or the ring
of fractions.

Proposition (Proposition 4.2). Let ψ : R Ñ T be a homomorphism of rings with ψpSq Ď Tˆ.
Then there exists a unique homomorphism of rings f : S´1RÑ T so that ψ “ f ˝ ϕ.

R S´1R

T

ϕ

ψ
f

Remark. This property determines S´1R and ϕ up to canonical isomorphism.

Proof. We define f : S´1R Ñ T via x
s ÞÑ ψpxqψpsq´1. So we must check f is well-defined.

We need to show that x
s “

x1

s1 then ψpxqψpsq´1 “ ψpx1qψps1q´1. By definition (Localization),
ts1x “ tsx1 for some t P S. Apply ψ to get ψptqψps1qψpxq “ ψptqψpsqψpx1q. This then gives us
ψps1qψpxq “ ψpsqψpx1q, which then implies ψpx1qψps1q´1 “ ψpxqψpsq´1, as required. Q.E.D

Definition (Localization at a Prime). Let p be a prime ideal of R. Then S “ R{p is a multiplicative
set, which we generally denote by Rp :“ S´1R. This is called the localization of R at p.

Definition (Localization at an Element). Let x P R, S “ txn : n ě 0u. Then S is a multiplicatively
closed set, and Rx :“ S´1R.

Definition (Total Ring of Quotients). Let S be the set of all nonzerodivisors in R. We then get
QuotpRq “ S´1R or the total ring of quotients.

Definition (Quotient Field). If R is a domain, then the Total Ring of Quotients is a field, and we
call it the quotient field.

Remark (Remark 4.3). Let ϕ : R Ñ S´1R be the map such that x ÞÑ x{1. Then notice that
kerpϕq “ tx P R : x{1 “ 0{1u “ tx P R : sx “ 0, s P Su. We get the following.

(a) ϕ is injective if and only if S consists of nonzerodivisors. In particular, ϕ : R Ñ QuotpRq is
always injective.

(b) S´1R “ 0 if and only if ϕ “ 0 if and only if 0 P S if and only if S contains a nilpotent element.
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Definition (Inverse of a Module). Let R be a ring, and let M be an R-module. Let S Ď R is a
multiplicative subset. We define S´1M “ Ms “ S ˆM{ „ where ps,mq „ ps1,m1q if and only if
tpsm1 ´ s1mq “ 0 for some t P S. We define addition and scalar multiplication in the obvious way.
We check that this is well-defined and that this new object is a module. It turn out S´1M is an
S´1R-module, hence an R-module via RÑ S´1R. Define Mp and Mx as before, where p is a prime
ideal and x is an element. We also get a map ϕ : M Ñ S´1M via m ÞÑ m{1. It can only be an
R-linear map, with kerpϕq “ tm PM : sm “ 0, s P Su.

Proposition (Proposition 4.4). Let M be an R-module, N an S´1R module. Then for every R
linear map ψ : M Ñ N , there exists a unique S´1R-linear map f : S´1M Ñ N so that ψ “ f ˝ ϕ.

M S´1M

N

ϕ

ψ
f

Proof. Proof omitted. Q.E.D

Corollary (Corollary 4.5). S´1RbRM has exactly the same property. So S´1RbRM – S´1M
via r{sbR m ÞÑ rm{s.

Proof. It follows from Theorem 2.9 and Proposition 4.4. Q.E.D

Corollary (Corollary 4.6). S´1R is flat as an R-module.

Proof. In order to show that it is flat, we need to show that if ϕ : M Ñ N is an injective R-linear
map, then S´1RbR ϕ : S´1RbRM Ñ S´1RbRN is injective. Notice that S´1RbRM – S´1M
and S´1R bR N – S´1N via Corollary 4.5. Then we must show that ϕ : S´1M Ñ S´1N is
injective, where ψpm{sq “ ψpmq{s. Let m{s P S´1M with ψpm{sq “ 0. Then ψpmq{s “ 0 in
S´1N. Hence, tψpmq “ 0 for some t P S. Notice if ϕ is R-linear, then we have ϕptmq “ 0 and since
ϕ is injective we have tm “ 0 in N . But then tm{ts “ 0 implies m{s “ 0 in S´1M , which means
that the kernel is trivial and so the mapping is injective. Q.E.D

Example. Every quotient field of a domain R is flat as an R module.

Corollary (Corollary 4.7). Let N be a submodule of an R-module M . Then S´1N is a submodule
of S´1M and S´1M{S´1N – S´1pM{Nq.

Proof. Since N is a submodule of M , we have the short exact sequence

0 Ñ N ÑM ÑM{N Ñ 0.

Tensor this with S´1R to get

0 Ñ S´1R b
S´1R

N Ñ S´1R b
S´1R

M Ñ S´1R b
S´1R

M{N Ñ 0.

This is exact via Corollary 4.6. By Corollary 4.5, we’re granted the short exact sequence

0 Ñ S´1N Ñ S´1M Ñ S´1pM{Nq Ñ 0

which also gives us S´1N{S´1M – S´1pM{Nq. Q.E.D
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Corollary (Corollary 4.8). Let N and P be submodules of an R-module M . Then we have the
following

(a) S´1pN ` P q “ S´1N ` S´1P as submodules of S´1M .

(b) S´1pN X P q “ S´1N X S´1P .

(c) S´1pN : P q “ S´1N : S´1P if P is finitely generated.

(d) S´1annRpMq “ annS´1RpS
´1M if M is finitely generated.

Proof. For now, we omit the proof of (a).
We prove (b). Notice that we have the short exact sequence

0 Ñ N X P
δ
ÝÑ N ‘ P Ñ N ` P Ñ 0.

By Corollary 4.5 and Corollary 4.6 we get that the following sequence is also exact

0 Ñ S´1pN X P q Ñ S´1N ‘ S´1P Ñ S´1N ` S´1P Ñ 0.

Notice S´1pN X P q “ S´1N X S´1P . This completes it.
We skip (c) and show (d). Since M is finitely generated, we have M “ Rx1 ` ¨ ¨ ¨ ` Rxn. We

proceed via induction on n, the number of generators. For n “ 1, we have M “ Rx1 – R{annRpxq.
Let I “ annRpxq. Then M – R{I. We then get that S´1M – S´1pR{Iq. So annS´1RpS

´1Mq “
S´1annRpMq, since annS´1RqpSr´1Mq “ S´1annRpxq.

For the general case, we have that, by (a), S´1M “ S´1Rpx1{1q`¨ ¨ ¨`S
´1Rpxn{1q. Therefore,

we have annS1RpS
´1Mq “ XiannS´1RpS

´1Rpxi{1qq “ XiS
´1annRpRxiq “ S´1pXiannRpRxiqq “

S´1annRpMq.
Notice that (c) follows immediately from (d).

Q.E.D

Theorem (Theorem 4.9 (Local to Global Principle)). Suppose M is an R-module, then the fol-
lowing are equivalent.

(i) M “ 0.

(ii) Mp “ 0 for all p a prime ideal.

(iii) Mm “ 0 for all m a maximal ideal.

Proof. Notice that (i) implies (ii) and (iii) clearly. We show (iii) implies (i), and we’re done, since (ii)
implies (iii) as well. For (iii) implies (i), suppose M is not equal to 0. Then there exists y PM´t0u.
Notice that I “ annpyq is not the whole ring. Hence, I Ď m for some m. We choose this m. For
this m, 0{1 “ y{1 Ď 0 “ Mm implies that in M , ay “ 0 for some a P R ´m Ď R ´ annpyq. So
a R annpyq but also a P annpyq, so we have a contradiction. Q.E.D
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Contraction and Extension of Ideals

Definition (Extension of an Ideal). Let ϕ : RÑ T be a homomorphism of rings (a typical example
is the inclusion map). Let I be an R-ideal. Then Ie “ IT “ ϕpIqT is a T -ideal. This is called the
extension of I.

Definition (Contraction of an Ideal). Let ϕ : R Ñ T be a homomorphism of rings. Let J be an
T -ideal. Then Jc “ J XR “ ϕ´1pJqT is called the contraction of J , and it is a T -ideal.

Remark (Remark 4.10). Suppose I an R-ideal and J is a T -ideal.

(a) Ie “ Iece. In particular, every extended ideal is extended from its own contraction.

(b) Jc “ Jcec. In particular, every contracted ideal is contracted from its own extension.

Proof. We show (a). Since I Ď Iec, we get Ie Ď Iece. On the other hand, Ie “ pIeqce Ď Ie. Hence,
Ie “ Iece. The proof of (b) is similar. Q.E.D

Remark (Remark 4.11). Assume T is a flat R-module, I is an R-ideal. Then Ie – I bR T via
ibR t ÞÑ ϕpiqt.

Proof. 0 Ñ I
i
ÝÑ R, and so 0 Ñ I bR T Ñ R bR T remains exact. Remember R bR T – T , so we

have 0 Ñ I bR T Ñ T . Take ibR t ÞÑ i ¨ t via multiplication in T as an R-module, and i ¨ t “ ϕpiqt.
Therefore, the image of I bR T in T is Ie, and so I bR T – Ie. Q.E.D

Definition (Primary Ideal). Let I be an R-ideal. An ideal I is called primary if and only if I ‰ R,
xy P I implies x P I or yn P I for some n. This is equivalent to saying that I ‰ R and if xy P I
then x P I or y P I and x and y are in

?
I. This is equivalent to saying that R{I ‰ 0 and every

zero divisor in nilpotent in R{I.

Remark (Remark 4.12). Suppose J is a T -ideal, then if J is prime (resp. primary) then so is Jc.

Proof. Notice that ϕ : R Ñ T induces an embedding and R
i
ÝÑ T {J is injective, and the kernel is

Jc. Q.E.D

Remark. Notice this is not true if you replace contraction with extension.

Theorem (Theorem 4.13). Let S be a multiplicatively closed set, ϕ : RÑ S´1R, I an R-ideal.

(a) Ie – I bR S
´1R – S´1I and S´1R{Ie – S̄´1pR{Iq as rings, where S̄ is the image of S in R{I.

(b) Every ideal of S´1R is extended from R.

(c) Iec “ tx P R : sx P I, s P Su. In particular, we know exactly when the extension of the ideal
becomes the whole ring; Ie “ S´1R if and only if I XS ‰ ∅, and for p a prime ideal IRp ‰ Rp
if and only if I Ď p.

Proof. We prove (a). This follows from Corollary 4.5, Corollary 4.6, Corollary 4.7, Remark 4.11.
We prove (b). Let J be an S´1R ideal. We just need to show J “ Jce. From Remark 4.10,

we know that all we need to show is J Ď Jce. Let x “ r{s P J . Hence s{1 ¨ x “ r{1 P J , hence
r P ϕ´1pJq “ Jc. Hence, 1{s ¨ r{1 “ x P Jce. Q.E.D
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Lemma (Lemma 4.13). I is an R-ideal.

(a) Ie – I b S´1R – S´1I as S´1R modules, and S´1R{Ie – S̄´1pR{Iq as rings.

(b) Every ideal from S´1R is extended.

(c) Iec “ tr P R : sr P I, s P Su. In particular, Ie “ S´1R if and only if I XS “ ∅, and for a prime
ideal p, IRp ‰ Rp if and only if I Ď p.

(d) There is a one-to-one correspondence between tp : p a prime ideal of R with S X p “ ∅u Ø
tprime ideals of S´1Ru.

(e) Same as (d) for primary.

Proof. We skip (a) and (b) and proceed to (c). Notice S´1R{Ie – S´1pR{Iq. Notice ϕ induces
a map from R{I Ñ S´1pR{Iq. WE then know that the kernel is kerpϕq “ tx̄ P R{I : Ds P
S such that sx̄ “ 0 P R{Iu. Alternatively, this is just tx̄ P R{I : Ds P S with sx P I in Ru. Notice
that the kernel Iec{I, and so Iec{I, and so Iec “ tx P R : Ds P S with sx P I in Ru, since both
contain I.

We show the first part of (d). We have e˝ c “ id holds, because every ideal in S´1R is extended
by (b), and by Proposition 4.2 we have it’s the identity. Also the map is well-defined, since for all
q a prime ideal in S´1R, qc is a prime ideal in R, and hence qc X S “ ∅.

We show the second part of (d). We need to show that c ˝ e “ id. Let p be in the left hand side.
We need to show pec “ p. By (c), we know pec “ tx P R : sx P p, s P Su “ p, since p is prime and
s can never be in p. We need to show that this map is well-defined. Hence, if p is a prime ideal,
then pe is a prime ideal of S´1R. We know pe “ S´1R by (c), since S X p “ ∅. Let x, y P S´1R
so that xy P pe. We need to show x P pe or y P pe. Write x “ r{s, y “ r1{s1. Since xy P pe “ S´1p,
we have rr1{ss1 “ a{t for a P p, t P S. Then in R we have t1prr1t´ ss1aq “ 0 for some t1 P S. Notice
tss1a P p and tt1 P S, and since p is prime we have either r or r1 is in p. This forces either x or y to
be in pe. Q.E.D

Corollary (Corollary 4.14). Suppose R is a Noetherian or Arterian ring, then so is S´1R.

Proof. This follows from Lemma 4.13 (b) and Remark 4.10. Hence every chain of ideals is extended
from its contraction to R. Q.E.D

Corollary (Corollary 4.15). If P is a prime ideal in R. then Rp is a local ring. The unique maximal
ideal is pRp, and Rp{pRp – pR{pq0̄ – Quotient field. This motivates the term ’localization.’

Proof. Lemma 4.13 (d) and Lemma 4.13 (a). Q.E.D

Definition (Spectrum of Rings). We define Spec(R) = spectrum of R = tp : p a prime ideal of Ru
This contains m-spec = maximal spectrum = tm : m a maximal ideal of R u

Proposition (Proposition 4.16). Suppose S1, S2 are multiplicative sets such that S1 Ď S2. We
have ϕ : RÑ S´1

1 R. Then ϕpS2q
´1pS´1

1 Rq – S´1
2 R.
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Proof. By the universal property Proposition 4.2, we have the following diagram, and it’s clear that
f ˝ g “ g ˝ f “ id.

R S´1R ϕpS2q
´1pS´1

1 Rq

S´1
2 R

ϕ

D!g

D!f

and it’s clear that f ˝ g “ g ˝ f “ id. Q.E.D

Corollary (Corollary 4.17).

p P SpecpRq, pX s “ ∅. Then pS´1R P SpecpS´1Rq and pS´1RqpS´1R – Rp.

In particular, if p Ď q are two prime ideals of R1 then pRq P SpecpRqq

Definition (Saturated). Suppose S is a multiplicative set of R. Then we say S is saturated if and
only if we have that xy P S if and only if x P S and y P S. Equivalently we have that S is saturated
if and only if

S “ R´YpPSpecpRq,p
Ş

S“∅p.

Definition (Saturation). The saturation of S is denoted by rS “ tx inR : xy P S, y P Ru. It is the
smallest saturated set containing S.

Proposition (Proposition 4.18). Let ϕ be the map ϕ : RÑ S´1R. Then rS is the unique smallest
saturated multiplicative set containing S.

Proof. Proof omitted. Q.E.D

Theorem (Theorem 4.19). Let R be a domain, and S Ď R a multiplicative set which doesn’t con-
tain 0. Then we may consider R Ď S´1R Ď pS´1Rq0 “ R0 “ QuotpRq. With these identifications,
we have R “ XmPm´SpecpRqRm.

Proof. It’s sufficient to show XmRm Ď R. Let z P XmRm Ď QuotpRq. Consider I “ tx P Rz0 : z “
y{x, y P RuYt0u “ tx P R : xz P Ru “ pR : Zq is an R-ideal. We want to show that I “ R. Suppose
I ‰ R. Then we have I Ď m, m a maximal ideal. Now Im ‰ Rm by Lemma 4.13 (c). Notice
Im “ pR : zqm by Corollary 4.8 (c), and pR : zqm “ Rm : pz{1q “ Rm, which is a contradiction.
Hence, I “ R. Q.E.D

Remark (Remark 4.20 (Zariski Topology)). (a) V p0q “ SpecpRq.

(b) V pRq “ ∅.

(c) V pI1 X ¨ ¨ ¨ X Inq “
Ťn
i“1 V pIiq “ V pIi ¨ ¨ ¨ Inq.

(d) V p
ř

Iiq “ XiV pIiq.
Then T “ tV pIq : I an R-idealu induces a topology on SpecpRq, where T is the closed sets of

SpecpRq. This is called the Zariski Topology. The topology induced on the maximal ideals is also
called the Zariski topology.

Example. m-Spec(R)pCrxsq “ tpx´aq : a P Cu Ø C. The closed sets are: ∅, C, and finite subsets
of points. Notice that the topology is not Hausdorff.
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Remark (Notice). V pIq “ V pJq if and only if
?
I “

?
J . So there is a one-to-one correspondence

with T and the set of all the radical ideals.

Remark (Remark 4.21). 1. V pIq Ø SpecpR{Iq (they have a one-to-one correspondence), and
they are homeomorphic.

2. Dx Ø SpecpRxq (see Lemma 4.13 (d)), and they are homeomorphic.

3. tDx : x P Ru form a basis of the topology.

4. SpecpRq is quasicompact (compact, but not Hausdorff).

5. If R is Noetherian, then every open set is quasicompact.

Proof. The only nontrivial remark is (d). We must show ∅ “ XiV pIiq. This means ∅ “ V pI1q X
¨ ¨ ¨ X V pInq. Now V pRq “ V p

ř

Iiq, which implies R “
a

ř

Ii. This then gives us R “
ř

Ii, or
1 “ fi1 ` ¨ ¨ ¨ ` fin for fij P Iij , which gives us ∅V pI1q X ¨ ¨ ¨ X V pInq. Q.E.D

Remark. Suppose ϕ : RÑ T is a homomorphism of rings, then we have ϕ˚ : SpecpT q Ñ SpecpRq
which sends p ÞÑ pc. This should be a homomorphism of topological spaces.

Remark (Remark 4.22 (Contravariant Functor)). (a) ϕ˚ is continuous

(b) pψϕq˚ “ ϕ˚ ˝ ψ˚

(c) id˚ “ id
This is called a contravariant functor.

Definition (Support of a Module). If M is an R-module, then the support of M is defined by
SupppMq :“ tp P SpecpRq : Mp ‰ 0u.

Remark (Remark 4.23). If M is a finitely generated module, then SupppMq “ V pannRpMqq. In
particular, SupppMq is closed (topologically).

Proof. Since M is finitely generated, we can rewrite it as M “ Rx1 ` ¨ ¨ ¨ ` Rxn. In particular,
SuppRpMq “ Y

M
i“1SuppRpRxiq “ Y

n
i“1SupppR{annRpxiqq “ Y

n
i“1V pannRpxiqq “ V pXni“1annRpxiqq “

V pannRpMqq, as required. Q.E.D

Remark. Suppose p P SpecpRq, and look at kppq :“ residue field of p “ Rp{pRp “ QuotpR{pq.

Proposition (Proposition 4.24). Suppose M is a finite module. Then M=0 iff M bR kpmq “
0, for all m in m-Spec(R).

Proof. We prove the converse (the implication is clear). We have 0 “ M bR kpmq by assumption,
which gives us M bR Rm{mRm –M bR pRmRm

bR Rm{mRmq – pM bR RmRm
q bR Rm{mRm –

MmbRRm{mRm –MmMm, hence Mm “ mRmMm implies Mm “ 0 by Theorem 2.2 (Nakayama’s
Lemma), and since this applies for all m we get M “ 0. Q.E.D
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Chapter 5: Associated Primes and Primary Decomposition

Definition (Associated Prime). If M is an R-Module, we say p is an associated prime of M if p is
prime and there exists an x in M such that p = ann(x). AsspMq “ AssRM “ tassociated primes of Mu

Theorem (Theorem 5.1). Suppose R is a Noetherian ring, and M is a nonzero R-module. Then

(a) Λ “ tannpxq : 0 ‰ x P Mu. Every maximal element in Λ is an associated prime of M . In
particular, there are associated primes. (AsspMq ‰ 0)

(b) tzero divisors on Mu “ YpPAsspMqp.

Notice in particular (a) says that if R is Noetherian, then M “ 0 if and only if AsspMq “ ∅.

Proof. (a) Let p P Λ be a maximal element. We need to prove it is prime. It’s clear that p ‰ R.
Next, if xy P p, then we must show either x P p or y P p. Let p “ annpxq, x PM . If xy P p then
xy P annpxq. If b R annpxq “ p1 then bx ‰ 0. Hence annpbxq P Λ. Hence annpxq Ď annpbxq.
But by maximality, we get annpxq “ annpbxq. Hence, a P annpxq “ p. So we are done.

(b) We only need to prove the inclusion. A zero divisor is an element which annihilates some nonzero
divisors, and so by definition tzero divisors on Mu “ YIPΛI “ YpPΛmaximal Ď YpPAsspMqp.

Q.E.D

Theorem (Theorem 5.2). Let S be any multiplicative set of R, identify SpecpS´1Rq with a subset
of SpecpRq by Lemma 4.13 (d).

(a) Suppose N is an S´1R module. Then it’s also an R-module, and so AssS´1RpNq “ AssRpNq.

(b) If R is Noetherian and M is an R-module, then AssS´1RpS
´1Mq “ AssRpMq X SpecpS´1Rq.

Proof. We show (a). Let p P AssRpNq. Then p “ annRpxq, x P N , and x ‰ 0. Hence, x P S´1N .
Therefore, annS´1Rpx{1q ‰ S´1R. Notice this is equivalent to S´1pannRpxqq by Corollary 4.8 (c).
So this is really S´1p and since it’s not the whole ring, this gives us S´1p is prime by Lemma
4.13. So pS´1R P AssS´1RpNq. Hence, AssRpNq Ď AssS´1RpNq. Suppose q P AssS´1RpNq, say
q “ annS´1Rpxq, where x P N . Let p “ qc “ qXR. Then p “ qXR “ annRpXq. Also p P SpecpRq,
so p P AssRpNq.

We show (b). Let P P AssRpMq X SpecpS´1Rq. So p X S “ ∅. Then S´1p is, again, a prime
ideal. Also, p P AssRpMq, p “ AnnRpxq for some x. So by Corollary 4.8 (c), we have S´1p “
pS´1R “ AnnS´1Rpx{1q. Hence, p P AssS´1RpS

´1Mq. Let p P AssS´1RpS
´1Mq. We only need to

show that p P AssRpMq. By (a), AssS´1RpS
´1Mq “ AssRpS

´1Mq. We then have p “ AnnRpx{tq,
x P M and t P S. Since R is Noetherian, p is finitely generated, say p “ Ra1 ` ¨ ¨ ¨ ` Ran. Now
a0 ¨x{t “ 0 in S´1M for all i. Hence, there exists si P S with siaix “ 0 in M . Since there are finitely
many ai, then there exists s P S such that saix “ 0. Since the ai’s generate p, we have psx “ 0 in
M . So we get p Ď AnnRpsxq Ď AnnRpsx{1q “ AnnRpx{tq “ p. This forces p “ AnnRpsxq. So p is
an associated prime of M ; p P AssRpMq. Q.E.D

Corollary (Corollary 5.3). If M is an R-module, R a Noetherian ring, then p P AssRpMq if and
only if pRp P AssRp

pMpq.

Remark (Remark 5.4). Suppose M is an R-module, then AssRpMq Ď SuppRpMq.
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Proof. Suppose p P AssRpMq. Then R{p – R{AnnRpxq – Rx Ď M . This gives p P SuppRpRxq Ď
SuppRpMq. Q.E.D

Theorem (Theorem 5.5). Suppose we have the following exact sequence of R-modules

0 ÑM 1 ÑM ÑM2 Ñ 0.

Then

(a) SuppRpMq “ SuppRpM
1q Y SuppRpM

2q.

(b) (i) AssRpM
1q Ď AssRpMq.

(ii) AssRpMq Ď AssRpM
1q YAssRpM

2q.

Proof. We prove (a). Let P P SpecpRq. Then we have

0 ÑM 1
p ÑMp ÑM2

p Ñ 0

is exact. Hence Mp ‰ 0 if and only if M 1
p ‰ 0 or M2

p ‰ 0.
We prove (b). Part (i) is clear. For (ii), let p be in AssRpMq. Say p “ AnnRpxq, x PM . Assume

M 1 Ď M and M2 “ M{M 1. Let N “ Rx Ď M . Then AssRpNq “ AssRpR{pq “ tpu. We then
have two cases. In the first case, we have that N XM 1 “ 0. In this case, N{N XM 1 “ N which
injects into M{M 1 “ M2. Therefore, p P AssRpM

2q, and moreover AssRpNq Ď AssRpM
2q. In the

second case, M 1 XN ‰ 0, and so N XM 1 Ď R{p. Therefore, taking any x ‰ 0 in N XM 1, we have
AnnRpxq “ p. Therefore, p P AssRpM

1q. Q.E.D

Theorem (Theorem 5.6). Let R be a Noetherian ring and M ‰ 0 a finite R-module. Then there is
a chain of submodules 0 “M0 ĎM1 Ď ¨ ¨ ¨ ĎMn “M so that Mi{Mi´1 – R{pi with pi P SpecpRq
for all 1 ď i ď n. Moreover, AssRpMq Ď tpiu.

Proof. Examine Λ “ tN ‰ 0 : N a submodule of M with a prime filtrationu. We first prove Λ ‰ ∅.
Since R is Noetherian and M ‰ 0, there exists a p P AssRpMq by Theorem 5.1. Hence, there exists
an x P M with AnnRpxq “ p P SpecpRq. Let N “ Rx. Clearly, this is nonzero and since this is a
generator, we get N P Λ and N – R{p. Thus, Λ ‰ ∅. Since M is a Noetherian module, we get
Λ has a maximal element in N . Suppose N Ĺ M . Then M{N ‰ 0. So by the first step of the
proof, M{N has a submodule N 1 with N 1 – R{p for some p P SpecpRq. The preimage of N 1 in M
contains N properly, and furthermore it is in Λ. This contradicts the maximality of N . For the
additional claim, we use induction on n. If n “ 1, then M “ M1 “ R{p for some p P SpecpRq.
Then AssRpMq “ tpu. Assume it holds for n´ 1. Then we get

0 ÑMn´1 ÑMn Ñ R{pn Ñ 0.

Hence, by Theorem 5.5 (b), AssRpNq Ď AssRpMn´1q Y AssRpR{p
nq Ď tp0, . . . , pn´1u Y tpnu.

Q.E.D

Theorem (Theorem 5.7). Let R be a Noetherian ring and M a finitely generated R-module. Then

(a) AssRpMq is finite.

(b) The minimal elements of AssRpMq and SuppRpMq coincides. Furthermore, there are only
finitely many elements, and they exist if M ‰ 0; moreover, every element in the support
contains a minimal element.

43



Proof. Notice that (a) follows from Theorem 5.6 We prove (b). We already know AssRpMq Ď
SuppRpMq and AssRpMq ‰ ∅ if M ‰ ∅. The only thing we need to show is that for all p P
SuppRpMq, there exists q P AssRpMq with q Ď p. Now AssRpMqX tprime ideals contained in pu “
AssRpMq X SpecpRpq “ AssRpMpq ‰ ∅ because Rp is Noetherian and p P SuppRpMq. Q.E.D

Corollary (Corollary 5.8). Suppose R is a Noetherian ring.

(a) If M is a finite R-module, then tzero divisors on Mu is a finite union of prime ideals.

(b) R has only finitely many minimal primes.

Proof. We prove (a). By Theorem 5.1, tzero divisors on Mu “ YpPAssRpMqp. By Theorem 5.7, this
is a finite set of primes. We prove (b). Notice SpecpRq “ V p0q “ SuppRpRq. The result then
follows by Theorem 5.7 (b). Q.E.D

Remark. Recall that I Ĺ R is primary if and only if for every zero divisor ā in the ring R{I, we
have ā P nilpRq if and only if for every zero divisor a P R on the R-module R{I, we have that there
exists n with an P AnnRpR{Iq. Saying it this way generalizes it to modules.

Definition (Primary Submodule). Let N be a submodule of a module M , N Ĺ M . We say N is
a primary submodule of M if and only if for every zero divisor a P R on M{N , there exists n with
an P AnnRpM{Nq.

Proposition (Proposition 5.9). Suppose R is a Noetherian ring, M a finite R-module, and N is
a proper submodule N Ĺ M . Then N is the primary submodule of M if and only if AssRpM{Nq
consists of exactly one element. If this happens, we write I “ AnnRpM{Nq and p for the unique
element in AssRpM{nq. Then I is a primary ideal and

?
I “ p.

Proof. IFN is primary inM , thenYpPAssRpM{Nqp “
a

AnnRpM{Nq soYpPAssRpM{Nqp “ XpPSuppRpM{Nq
p

since V pAnnRpM{Nqq “ SuppRpM{Nq and
?
I “ XpPV pIqp. Now we use Theorem 5.7 to note

that the intersection over all primes is equivalent to the intersection over the minimal primes,
and every minimal prime is in the associated primes. So YpPAssRpM{Nqp “ XpPAssRpM{Nqp then
|AssRpM{Nq| “ 1. Write M{N “ Rx1 ` ¨ ¨ ¨ ` Rxn, then R{I “ R{ Xni“1 AnnRpxiq. By Theorem
1.16 (Chinese Remainder Theorem), we have R{Xni“1 AnnRpxiq ãÑ

Àn
i“1R{AnnRpxiq “

Àn
i“1Rxi.

Hence, AssRpR{Iq Ď AssRp
Àn

i“1Rxiq Ď Yni“1AssRxi
pĎqAssRpM{Nq. Hence, AssRpR{Iq “ tpu,

and we immediately see I is primary. Furthermore, p is the unique minimal prime of I (Theorem
5.7) and hence

?
I “ p. Q.E.D

Definition (P-Primary Submodule of M). If there is only one associated prime in M{N , we say
N is a p-primary submodule of M .

Proposition (Proposition 5.10). Suppose R is a Noetherian ring, M is a finite R-module, and N
and N 1 are p-primary submodules of M . Then N XN 1 is p-primary.

Proof. We have M{N XN 1 ãÑM{N ‘M{N 1. Hence AssRpM{N XN
1q Ď AssRpM{N ‘M{N

1q Ď

AssRpM{Nq Y AssRpM{N
1q “ tpu. Notice M{N X N 1 ‰ 0, and so AssRpM{N X N 1q “ tpu.

Therefore, N XN 1 is a p-primary submodule of M , per definition. Q.E.D

Definition (Irreducible Submodule). If N is a submodule of M ¡ N ĹM , then N is an irreducible
submodule of M if, whenever N “ N1XN2 with N1, N2 submodules of M , then N1 “ N or N2 “ N .
It’s called reducible otherwise.
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Remark. N is an irreducible submodule of M if and only if 0 is an irreducible submodule of M{N .

Theorem (Theorem 5.11). Let R be a Noetherian ring, M a finite R-module, and N Ĺ M a
submodule. If N is an irreducible submodule of M , then N is a primary submodule of M .

Proof. Suppose otherwise for contradiction. Then M{N has at least two associated primes, denote
them by p and q. Let M “ M{N , we may assume N “ 0. Now p ‰ q are in AssRpMq. Then
there are cyclic submodules N1, N2 of M where N1 – R{p and N2 – R{q. We now examine
AssRpN1XN2q Ď AssRpN1qXAssRpN2q “ AssRpR{pqXAssRpR{qq “ tpuXtqu “ ∅. So this means
that N1 XN2 “ 0. But N1, N2 ‰ 0, so 0 is not an irreducible submodule of M . This completes the
proof. Q.E.D

Proposition (Proposition 5.12). Suppose R Noetherian, M finite R-module. Then any proper
submodule N ĹM is a finite intersection of irreducible submodules of M .

Proof. Let Γ “ tN ĹM : N submodule and N is not a finite intersection of irreducible submodulesu.
Suppose Γ ‰ ∅. Then by the Noetherian property of M , Γ has a maximal element; denote it by
N . Notice N cannot be irreducible. Since it’s not irreducible, N “ N1 XN2 for some submodules
N Ĺ N1 and N Ĺ N2. Notice both N1 and N2 must be proper. By the maximality of N , we have
both N1 and N2 are the finite intersection of irreducible submodules, then so is N , a contradiction.
Then Γ “ ∅ and the statement follows. Q.E.D

Theorem (Theorem 5.13). Suppose R is a Noetherian ring, M a finite R-module, N Ĺ M sub-
module. Then N “ N1 X ¨ ¨ ¨ X Nn with Ni pi-primary submodules of M and pi’s are pairwise
distinct.

Proof. Follows by Proposition 5.12, Theorem 5.11, Proposition 5.10. Q.E.D

Definition (Primary Decomposition). Suppose N “ N1 X ¨ ¨ ¨ XNn with Ni primary submodules
of M , then we call this the primary decomposition of N . The primary decomposition is irreducible;
i.e. none of the Ni can be dropped. In other words, N1 X ¨ ¨ ¨ XNi´1 XNi`1 X ¨ ¨ ¨ XNn Ć Ni for
all i. A primary decomposition is called the shortest if it is irredundant and the pi’s are pairwise
distinct. If N “ N1 X ¨ ¨ ¨ XNn is a shortest primary decomposition with Ni as before, then Ni is
called a pi-primary component of N .

Theorem (Theorem 5.14). R is a Noetherian ring, M a finite R-module, and N ĹM a submodule.
Suppose there is a primary decomposition, and suppose it’s irredundant.

(a) tp1, . . . , pnu is unique, and it’s exactly the set of associated primes, AssRpM{Nq.

(b) Let S be any multiplicative set, ϕ : M Ñ S´1M . Then XpiXS“∅Ni “ ϕ´1pS´1Nq. In
particular, this is uniquely determined by N .

Proof. We begin with (a). We prove the inclusion. Replace M by M{N , we may assume N “ 0.
Now we have 0 “ N1 X ¨ ¨ ¨ X Nn irredundant, Ni pi-primary. We need to show p1 P AssRpMq.
By irredundancy of the decomposition, 0 ‰ N2 X ¨ ¨ ¨ X Nn ãÑ M{N1. So AssRpMq contains
AssRpN2 X ¨ ¨ ¨ XNnq is contained in AssRpM{N1q “ tp1u. Hence AssRpN2 X ¨ ¨ ¨ XNnq “ tp1u and
so tp1u Ď AssRpMq. We prove the reverse inclusion. Notice that M{N “ M{N1 X ¨ ¨ ¨ X Nn ãÑ

M{N1‘¨ ¨ ¨‘M{Nn implies that AssRpM{Nq Ď AssRpM{N1‘¨ ¨ ¨‘M{Nnq “ Y
n
i“1AssRpM{Niq “

tp1, . . . , pnu.
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We prove (b). We start with ϕ´1pS´1Mq “ ϕ´1pS´1N1 X ¨ ¨ ¨ X S´1Nnq “ ϕ´1pS´1Nq X
¨ ¨ ¨ X ϕ´1pS´1Nnq. It remains to show that if we let N 1 be a p-primary submodule of M , then

ϕ´1pS´1N 1q “

#

M if pX S ‰ ∅
N 1 if pX S “ ∅

. If p X S ‰ ∅, then S´1p “ S´1R “ S´1
a

AnnRpM{N 1q “

a

AnnRpS´1M{S´1Nq then S´1R “ AnnRpS
´1M{S´1Nq which implies S´1M “ S´1N 1, which

finally gives us ϕ´1pS´1N 1q “M . If pX S “ ∅, then S consists of only nonzerodivisors of M{N 1,
since p is the only associated prime of this module and tzerodivisors of M{N 1u “ p. This means
the natural map M{N 1 ãÑ S´1pM{N 1q is injective. This is the same as S´1M{S´1N 1. The kernel
of the map is ϕ´1pS´1N 1q{N 1. Since this is zero, ϕ´1pS´1N 1q “ N 1. Hence, we have the two cases,
as required. Q.E.D

Corollary (Corollary 5.15). With the same setting as in Theorem 5.14, let P be a minimal element
in AssRpM{Nq. Then the p-primary component in any shortest primary decomposition of N is
uniquely determined.

Proof. By Theorem 5.14, using the notation from there, and taking S :“ Rzp : ϕ´1pNpq “
XpiĎpNqi. But p is minimal, so ϕ´1pNpq “ p-primary component. Q.E.D
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Chapter 6: Dimension and Hilbert’s Nullstellensatz

Dimension

Definition (Krull Dimension). We define dimpRq “ suptn : Dp0 Ĺ p1 Ĺ ¨ ¨ ¨ Ĺ pn with pi P
SpecpRqu. We call this the Krull Dimension of R.

Theorem (Theorem 6.1). A ring R is Artinian if and only if it is Noetherian and dimpRq “ 0.

Proof. We show the implication. We know that R is Noetherian and so R is semilocal. Say
m-SpecpRq “ tm1, . . . ,mnu. Furthermore, RadpRq “

?
0. To show dimp0q “ 0, we show m-

SpecpRq “ SpecpRq. Let p P SpecpRq. Then we know
?

0 Ď p, since RadpRq “
?

0, we have
m1 X ¨ ¨ ¨ Xmn Ď p implies p “ mi for some i, and so p is maximal.

We show the converse. By assumption, dimpRq “ 0, and so every maximal ideal is minimal.
Hence, RadpRq “

?
0. Furthermore, since R is Noetherian,

?
0 is finitely generated, hence p

?
0qr “ 0

for some r, and hence pRadpRqqr “ 0. Every maximal ideal of R is the minimal prime ideal, hence
an associated prime. But there are only finitely many associated primes since R is Noetherian.
Hence, R is semilocal. The rest follows as in proof of Theorem 3.17, since R is semilocal and
pRadpRqqqr “ 0, thus we have R Artinian if and only if R is Noetherian. Q.E.D

Example. If R is a PID which is not a field, then dimpRq “ 1.

Definition (Height of a Prime). Suppose we have a p P SpecpRq, then htppq “ heightppq “
dimpRpq “ suptn : Dp0 Ĺ ¨ ¨ ¨ Ĺ pn Ĺ pwith pi P SpecpRqu.

Definition (Dimension of a Prime). We have that dimppq “ dimension of p “ dimpR{pq “ suptn :
p Ď p0 Ĺ ¨ ¨ ¨ Ĺ pn, pi P SpecpRqu.

Remark. Notice that htppq ` dimppq ď dimpRq for all p P SpecpRq.

Definition (Height of an Ideal). Let I be any R-ideal: htpIq “ height of I “ infthtppq : p P
V pIqu “ infthtppq : p minimal prime in V pIqu. Obviously, htpIq ` dimpR{Iq ď dimpRq.

Definition (Catenary). A ring R is called catenary if for any two prime ideals p Ď q, there exists
a chain of prime ideals p “ p0 Ĺ p1 Ĺ ¨ ¨ ¨ Ĺ pn “ q which cannot be refined any further, and every
such chain has the same length.

Remark. It is, in fact, extremely hard to find rings which are not catenary.

Remark (Remark 6.2). Suppose R is a local catenary domain. Then for any every ideal I, htpIq`
dimpR{Iq “ dimpRq.

Hilbert’s Nullstellensatz

Proposition (Proposition 6.3). Suppose k is a field, k Ď K a field extension, α1, . . . , αn P K are
algebraic over k. Then kpα1, . . . , αnq “ krα1, . . . , αns – krX1, . . . , Xns{pf1, . . . , fnq. Furthermore,
fi P krX1, . . . , Xns are monic in Xi.

Proof. We will prove this via induction on n. For n “ 1, we have krαs “ krXs{I, where I is an
ideal and I ‰ 0. Also krαs Ď K, so I is a prime ideal, hence I is a maximal ideal. So krαs –
krXs{I is a field, hence krαs “ Quotpkrαsq “ kpαq. Notice I “ pfq for some nonzero polynomial,
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which we can assume is monic. Thus, the first step is complete. By the induction hypothesis,
kpα1, . . . , αn´1q “ krα1, . . . , αn´1s – krX1, . . . , Xn´1s{pf1, . . . , fn´1q, with fi monic. Call this field
k0. By the result for n “ 1, k0pαnq “ krαns – k0rXns{pgq, g a monic polynomial. Now we have
natural surjections krX1, . . . , Xn´1srXns � k0rXns via projection. Let fn P krX1, . . . , Xn´1srXns

be monic and the preimage of g. Now kpα1, . . . , αnq “ k0pαnq “ k0rαns “ krα1, . . . , αn´1, αns –
k0rαns – pkrX1, . . . , Xn´1s{pf1, . . . , fn´1qqrXns{g – krX1, . . . , Xns{pf1, . . . , fnq. Q.E.D

Theorem (Theorem 6.4). k Ď T Ď R rings, k Noetherian, R is a finite T -module. If R is a finitely
generated k-algebra, then so is T .

Proof. We’ll construct a finitely generated k-algebra, call it k0 with k0 Ď T such that R is a finite
k0-module. Then k0 is a Noetherian ring (Corollary 3.19), hence R is a Noetherian k0-module
(Corollary 3.6), hence its k0-submodule T is finitely generated as a k0-module (Proposition 3.2).
Hence, T is a finitely generated k-algebra. To obtain k0, write R “ krα1, . . . , αns “ Tβ1`¨ ¨ ¨`Tβm,
where we may assume β1 “ 1. We have that for all i, j αiβj “

řm
k“1 αijkβk with tαijk u a finite

subset of T . Now k0 “ krtαijk us Ď T , which is a finitely generated k-algebra in T . So we need to
establish R is a finite k0-module, because R “ k0β1`¨ ¨ ¨`k0βm, where krα1, . . . , αns “ R. We show
this by induction on the degree that monomials in α1, . . . , αn are in the right hand side. Q.E.D

Theorem (Theorem 6.5). Suppose k ia field, R a finitely generated k-algebra that is a field. Then
k Ď R is algebraic.

Proof. Suppose not. Then there is a purely transcendental extension k Ď T “ kpY1, . . . , Ykq inside
R, and t ą 0, so that T Ď R is algebraic. Notice R is a finite T -module, since T Ď R is algebraic
and finitely generated field extension. So by the prior theorem T is a finitely generated k-algebra.
Now T “ kpY1, . . . , Ykq “ QuotpkrY1, . . . , Yksq with t ą 0 and Y1, . . . , Yk indeterminates is finitely
generated as a k-algebra. Hence, T “ kr f1g1 , . . . ,

fn
gn
s and not all of the gi are in k. Let h “

śn
i“1 gi`1.

Then h is not a constant, h R k. Then 1
h P kr

f1
g1
, . . . , fngn s and hence in krY1, . . . , Yks we have that

h divides a product of the powers of g1, . . . , gn. This is impossible, because h is not a unit, and
furthermore gcdph, giq „ 1. Q.E.D

Remark. Using Proposition 6.3 and Theorem 6.5 we can show that if k Ď K a finitely generated
field extension, then k Ď K algebraic if and only if K is a finitely generated k-algebra.

Theorem (Theorem 6.6 (Hilbert’s Nullstellensatz (Part 1))). Suppose k is a field, and m P m-
SpecpkrX1, . . . , Xnq. Since k ãÑ krX1, . . . , Xns{m is an algebraically closed, then we get k “
krX1, . . . , Xns{m. Furthermore, m “ px1 ´ a1, . . . , xn ´ anq where ai P k.

Proof. We use Theorem 6.5 and Proposition 6.3. If k is algebraically closed, then k “ krX1, . . . , Xns{m,
hence for all i, there exists ai P k so that xi ” ai pmod mq. Hence px1 ´ a1, . . . , xn ´ anq Ď m, but
both are max ideals, and so they must be equal. Q.E.D

Theorem (Theorem 6.7 (Hilbert’s Nullstellensatz (Part 2))). Suppose k is a field, R is a finitely
generated k-algebra, I an R-ideal. Then

?
I “

č

IĎm
mPm-SpecpRq

m.
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Proof. Use Theorem 6.5 and Proposition 6.3. Assume I “ 0 via replacing R by R{I. Then we
just need to show that

?
0 “ RadpRq. Let f P R, f R

?
0. We need to show f R RadpRq. So

we must show that there exists a m P m-SpecpRq with f R m. Since f R
?

0, we know Rf , which
is S´1R,S “ t1, f, f2, . . .u, is not equal to 0. Then we can see Rf has a maximal ideal, n. Let
m “ nc. We know that f R m, and m is prime. Now k Ď R{m “ R{nc Ď Rf {n. Now Rf “ ϕpRqr 1

f s

is a finitely generated k-algebra. Therefore, Rf {n is still finitely generated, and it’s a field. Then
R{m is algebraic, and so ti is a field by Proposition 6.3. So m is a maximal ideal in R, and we’re
done. Q.E.D

Remark. Let k be any field, R “ krX1, . . . , Xns, Ank “ kn. Suppose A Ď R a subset, then
V pAq “ tpa1, . . . , anq P Ank : ϕpa1, . . . , anq “ 0@f P Au. This is obviously a subset of Ank . Conversely,
X Ď Ank a subset, then IpXq “ tf P R : fpa1, . . . , anq “ 0@ai P Xu. This is, in fact, an ideal of R.
We call X Ď Ank is algebraic if X “ V pAq for some A Ď R.

Remark (Remark 6.8). Suppose A Ď R, X Ď Ank subsets.

(a) V paq “ V pRAq “ V pRf1 ` ¨ ¨ ¨ ` Rfmq “ V ptf1, . . . , fmu “ X
m
i“1V pfiq. (Every algebraic set is

a finite intersection of hypersurfaces.)

(b) A Ď IpV pAqq and X Ď V pIpXqq; furthermore, I and V are order reversing (or inclusion
reversing).

(c) V pq “ V pIpV pAqqq and IpXq “ IpV pIpXqqq, like in Galois theory. In particular, for every
algebraic set X, we have V pIpXqq “ X.

Theorem (Theorem 6.9 (Hilbert’s Nullstellensatz)). Suppose k is an algebraically closed field,
R “ krX1, . . . , Xns, and I is an ideal. Then IpV pIqq “

?
I.

Remark. Notice this gives us a one-to-one correspondence.

Proof. Let J “ IpV pIqq. By Remark 6.8 (c), we know V pJq “ V pIq. Notice that V pIq “ V p
?
Iq.

This then gives us IpV pIqq “ IpV p
?
Iqq, which contains

?
I, and so we have

?
I Ď J . For the

converse, recall V pJq “ V pIq Ď Ank . This says a point is in V pJq if and only if it’s in V pIq.
This is equivalent to J Ď px1 ´ a1, . . . , xn ´ anq and this means I Ď px1 ´ a1, . . . , xn ´ anq.
This then gives us tpx1 ´ a1, . . . , xn ´ anq : J Ď px1 ´ a1, . . . , xn ´ anqu “ tpx1 ´ a1, . . . , xn ´
anq : I Ď px1 ´ a1, . . . , xn ´ anqu. Therefore, by Theorem 6.6 (Hilbert’s Nullstellensatz (Part 1)),
tm P m-SpecpRq : J Ď mu “ tm P mSpecpRq : I Ď mu. This gives us that the intersections are the
same, and so moreover by Theorem 6.7 (Hilbert’s Nullstellensatz (Part 2)) we have

?
I “

?
J and

so J Ď
?
I. This then gives us the result. Q.E.D

Definition (Affine Coordinate Ring of X). Suppose X Ď Ank is an algebraic set. Then Apxq “ tf :
xÑ k : f a polynomialu “ R{IpXq. This is called the affine coordinate ring of X.

Definition (Local Ring of X at p). Suppose you had a point p P X, then p “ pa1, . . . , anq. Then
there is a maximal ideal corresponding to it via Ippq “ px1 ´ a1, . . . , xn ´ anq “ m P m-SpecpRq.
Hence, Ipxq Ď Ippq. So m̄ “ Ippq{Ipxq Ď Ipaq is a maximal ideal. Then we can localize Apxqm̄ “
Oppxq. This is called the local ring of X at p. The element in Oppxq “ t

f
g : f, g polynomials, g R

m̄u “ trational functions defined at pu.
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Definition (Transcendence Degree of a Field). Suppose k is a field, and R is a domain which is
finitely generated as a k-algebra, K “ QuotpRq. Then K is a finitely generated field extension of K.
Hence, k Ď kpY1, . . . , Ynq Ď K with k Ď kpY1, . . . , Ynq purely transcendental, and kpY1, . . . , Ynq Ď K
is algebraic, and n does not depend on any choice. Set trdegRpKq “ r.

Theorem (Theorem 6.10). The Krull dimension dimpRq “ trdegkpRq, where R is a domain and a
finitely generated k-algebra.

Proof. We omit the proof for now, and will return in Chapter 7. Q.E.D

Corollary (Corollary 6.11). Let k be a field. Then dimpkrX1, . . . , Xnsq “ n.

Proof. Proof omitted. Will return in Chapter 7. Corollary 7.21 Q.E.D

Definition (Forster Number of M). Suppose R is any ring, and M is a finitely generated module.
We define

bpMq “

#

0 if M “ 0

suptµRppMpq ` dimpR{pq : p P SuppRpMqu if M ‰ 0
.

We call this number the Forster number of M .

Definition (Basic). Suppose R is any ring, M a finite R-module, p P SuppRpMq, x P M . The
following are equivalent.

(i.) x is basic at p.

(ii.) µRppM{Rpxq ă µpMpq.

(iii.) dimpkppq bRM{kppqp1bR x̄qq ă dimpkppq bRMq.

(iv.) 0̄ ‰ x P kppq bRM .

(v.) x is part of a minimal generating set of Mp.

Lemma (Lemma 6.13). Suppose M is a finite R-module, tp1, . . . , pnu a finite subset of SuppRpMq.
Then there exists an x PM that is basic at p1, . . . , pn.

Proof. It follows by induction on n. For the case n “ 1, p “ p1 P SuppRpMq, hence Mp ‰ 0. By
Theorem 2.2 (Nakayama’s Lemma), we get 0 ‰Mp{pMp – kppq bRM . So there exists an element
x P M so that x̄ ‰ 0̄ P kppq bR M . Now assume it holds for n ´ 1. After rearranging, we may
assume pn is minimal in tp1, . . . , pnu. Hence, pi Ĺ pn for all 1 ď i ď n ´ 1. Since pn is prime, it
follows that p1 ¨ ¨ ¨ pn´1 Ĺ pn. So there exists an x P p1 ¨ ¨ ¨ pn´1 such that x R pn. By induction,
there exists an x1 P M that is basic at p1, . . . , pn´1. If x1 is basic at pn, then we win. Otherwise,
notice x̄1 P kppnq bR M such that x̄1 “ 0̄. By the case n “ 1, we know there exists a y P M
with ȳ “ 1 bR y P kppnq bR M , where ȳ ‰ 0̄. Now take x “ x1 ` ay P M . If 1 ď i ď n ´ 1,
x̄ “ 1bR x P kppiq bRM , then x̄ “ x̄1` āȳ “ x̄1 ‰ 0̄. If i “ n, then x̄ “ 1bR x P kppnq bRM gives
x̄1 ` āȳ, but remember x̄1 “ 0, so x̄ “ āȳ ‰ 0̄, because ȳ ‰ 0̄ and ā ‰ 0̄ in kppnq. Q.E.D

Example. If M is a finite module over a semilocal ring R, and µRm
pMmq ď n for all m P

m-SpecpRq, then M can be generated by n elements.
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Proof. We induct on n. If N “ 0, this result trivially follows. Otherwise, assume it holds for
n ´ 1. Since m-SpecpRq X SuppRpMq “ tm1, . . . ,mnu is finite. By Lemma 6.13, there exists an
x P M which is basic simultaneously at all of the ideals. So µppM{Rxqmq ď µpMmq ´ 1 ď n ´ 1.
Hence, by induction, M{Rx can be generated by n ´ 1 elements, hence M can be generated by n
elements. Q.E.D

Theorem (Theorem 6.14 (Forster’s Theorem)). Let R be a Noetherian ring, and M a finite R-
module. Then M can be generated by bpMq elements.

Proof. Proof omitted. Q.E.D

Example (Applications (Determining if a Module is Free)). Suppose R is a domain, K “ QuotpRq,
M a finite module. Then rankpMq “ dimpJq bM . Generally, the rank is a lower bound for µpMq.
If equality holds, then the module is free.

Corollary (Corollary 6.15). SupposeR is a Noetherian domain of dimension d, M a finite projective
module of rank Γ. Then M can be generated by d` r elements.

Proof. For all p P SuppRpMq, we know that if we localize Mp then we get a projective module
(since M is projective, and localizing preserves projectiveness). Hence Mp is a free Rp module by
Theorem 2.15, since Rp is local. This means Mp – Rsp. So K bMp – Ks. On the left hand side,
we can rewrite this as K bRp

pRp bRMq – pK bRp
Rpq bRM – K bRM – Kr. Hence, we have

Kr –K̄ Ks, so this tells us that s “ r. So µpMpq “ r “ rankpMq. Hence bpMq ď r ` d. By
Theorem 6.14 (Forster’s Theorem), we get the result. Q.E.D

Corollary (Corollary 6.16). Suppose R is a Noetherian ring, and I Ĺ R an ideal. Then n “
suptµRppIP q`dimpRpq : p P V pIqu, and let d “ dimpRq. Then I can be generated by maxtn, d`1u
elements.

Proof. If p P SpecpRqzV pIq, then µRp
pIpq “ µRp

pRpq “ 1. Therefore, V pIq ď maxtn, d ` 1u.
Q.E.D

Corollary (Corollary 6.17). In a Dedekind domain, every ideal can be generated by at most 2
elements.

Proof. Follows from Corollary 6.16, since n ď 1 and d ď 1. Q.E.D
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Chapter 7: Integral Extensions

Definition (Integral). Let R Ď S be an extension of fields, x P S. We say x is integral over R
if there exists a monic polynomial expression with coefficients in R so that if you evaluate this
polynomial at x, you get 0.

Proposition (Proposition 7.1). Suppose R Ď S, and x P S, then the following are equivalent.

(a) We have that x is integral over R.

(b) Rrxs is a finitely generated R-module.

(c) Rrxs Ď T Ď S, T a ring and a finite R-module.

(d) There exists a Rrxs-module M which is faithful as an Rrxs-module, and is finite as an R-module.

Proof. We show that (a) implies (b). It follows since xn`an´1x
n´1`¨ ¨ ¨`an “ 0, for some ai P R.

So rrxs “ R`Rx`Rx2 ` ¨ ¨ ¨ `Rxn´1.
Notice that (b) implies (c) is clear, since we can just take T “ Rrxs.
For (c) implies (d), we can just take M “ T .
Finally, we show (d) implies (a). WE have that M “ Ra1 ` ¨ ¨ ¨ `Ran and xM ĎM . So there

exists an nˆn matrix A with coefficients in R such that

¨

˚

˝

xa1

...
xan

˛

‹

‚

“ A

¨

˚

˝

a1

...
an

˛

‹

‚

. So px1nˆn´Aq

¨

˚

˝

a1

...
an

˛

‹

‚

“

¨

˚

˝

0
...
0

˛

‹

‚

. Hence, by Lemma 2.1, we know that detpx1nˆn ´ Aq ´ ai “ 0 for all i. So therefore

detpx1nˆn ´ Aq P AnnRrxspMq “ 0. So we get that detpx1nˆn ´ Aq “ 0 in Rrxs. Expanding this
gives us a monic polynomial expression in x with coefficients in R. Q.E.D

Definition (Integral Closure). Suppose we have an extension of rings R Ď S. Then we denote by
R̄ “ R̄S “ tx P S : Df P Rrxs, fpxq “ 0u the integral closure of a ring R.

Corollary (Corollary 7.2). R̄ is a subring of S containing R.

Proof. Let x, y P R̄. If we show Rrx, ys Ď R̄, then we’re done. By Proposition 7.1, we know
that Rrxs is a finite R-module, and we also know that Rrxsrys “ Rrx, ys is a finite Rrxs module.
So clearly Rrx, ys is a finite R module, since both steps are finite. By Proposition 7.1, we get
Rrx, ys Ď R̄. Q.E.D

Definition (Integrally Closed). Suppose R Ď S is an extension of rings. We say R is integrally
closed if R “ R̄.

Proposition (Proposition 7.3). Suppose R Ď S Ď T are rings, where T is integral over S and S is
integral over R. Then T is integral over R.

Proof. Proof omitted. It is an easy result to derive. Q.E.D

Corollary (Corollary 7.4). The integral closure is integrally closed.
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Proof. Proof omitted. It is an easy result to derive. Q.E.D

Proposition (Proposition 7.5). Suppose R Ď S are rings, W Ď R is a mutliplicatively closed
subset, then in W´1S, W´1pR̄q “ ¯W´1R.

Proof. For the inclusion, we need to show that x P R̄ localized is in ¯W´1R. We have xn `
a1X

n1 ` ¨ ¨ ¨ ` an “ 0 for some ai P R. Let w P W . Divide our equation by wn. This gives us
px{wqn ` a1{wpx{wq

n´1 ` ¨ ¨ ¨ ` an{w
n “ 0. This is our equation, and so we get that px{wq is

integral, and so it’s in the right hand side. For the other relation, we have an element in ¯W´1R.
Take x P S, and w PW so that x{w P ¯W´1R. This means px{wqn`a1{wpx{wq

n´1`¨ ¨ ¨`an{w
n “ 0.

Let v “ wn
śn
i“1 wis. Then we get vxn ` v1x

n´1 ` ¨ ¨ ¨ ` vn, v P W . Multiply by vn´1 to get a
monic polynomial which satisfies our conditions, and so we get the other inclusion. Hence, we have
equality. Q.E.D

Corollary (Corollary 7.6). R is an integrally closed ring in S and R Ď S if and only if it is so
locally.

Proof. R “ R̄ if and only if R̄{R “ 0. But R̄{R “ 0 if and only if pR̄{Rqm “ 0 for allm P m-SpecpRq.
This was by Theorem 4.9 (Local to Global Principle). This is the same as R̄m{Rm “ 0 for all
m P m-SpecpRq. This is the same as pRzmq´1R̄{Rm “ 0, and by Proposition 7.5 this is the same
as R̄m{Rm “ 0. Q.E.D

Definition (Normal Domain). R is a normal domain if it is a domain and R is integrally closed in
it’s own quotient field.

Definition (Normal Ring). Let R be a ring. The following are equivalent.

(a) R is a normal ring.

(b) Rm is a normal domain for all m P m-SpecpRq.

(c) Rp is a normal domain for all p P SpecpRq.

Proposition (Proposition 7.7). Every UFD is a normal domain.

Proof. Let R be a UFD, k “ QuotpRq. Take x P R̄. This means that xn`an´1x
n´1`¨ ¨ ¨`a0 “ 0,

ai P R. We can write x “ a{b, a, b P R, b ‰ 0, gcdpa, bq „ 1. Then multiply the above equation by
bn, and you see b{an but gcdpb, anq „ 1. But if b{an exists then gcdpb, anq „ b, which implies that
b is a unit and we get x P R. Q.E.D

Theorem. Let R be a normal domain, K “ QuotpRq, K Ď L an algebraic field extension, α P L.
Then pRz0q´1R̄ “ L. In particular, QuotpR̄q “ L. Furthermore, α P R̄ if and only if the minimal
polynomial of α over K has all of its coefficients in R.

Proof. By Proposition 7.5, pRz0q´1R̄ “ ĞpRz0qR “ K̄ “ L. For the if and only if statement, notice
that the converse is trivial. For the implication, we have that if α P R̄ then the coefficients of the
minimal polynomial are in R, denoted by fpxq P Rrxs. Replace L by the splitting field of f over
L. Then f “

śn
i“1px ´ αiq, where αi P L, α1 “ α. Replace L by Kpα1, . . . , αnq. Then K Ď L is

finite and normal. Therefore, all of the αi are conjugates, since f is irreducible. Now notice that
α is integral over R by assumption, hence δipαq is integral over R, δi P AutKpLq, and hence all of
the αi are integral over R. But f “

śn
i“1px´ αiq P R̄rxs P pR̄XKqrxs “ pR̄qrxs “ Rrxs, since R is

normal. Q.E.D
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Proposition (Proposition 7.9). Let R be a UFD with 2 P Rˆ, and suppose a P R is square free,
K “ QuotpRq, K Ĺ L “ Kp

?
aq is a quadratic extension, and we examine R̄. Then R̄ “ Rr

?
as.

Furthermore, R̄ – Rrxs{px2 ´ aq is a normal domain.

Proof. Proof omitted. Q.E.D

Proposition (Proposition 7.10). Suppose R Ď S domains, and suppose S is integral over R. Then
R is a field if and only if S is a field.

Proof. Proof omitted. Q.E.D

Corollary (Corollary 7.11). Suppose R Ď S rings so that S is integral over R. Let q P S be a
prime ideal, and let p “ q X R. Then p is a maximal ideal of R if and only if q is a maximal ideal
of S.

Proof. Notice that the extension of domains R{p ãÑ S{q is integral, and then apply Proposition
7.10. Q.E.D

Definition (Lying Over). Suppose we have ϕ : RÑ S a homomorphism of rings, then we have an
induced map ϕ˚ : SpecpSq Ñ SpecpRq. We say that ϕ satisfies lying over if, for all p P SpecpRq,
there exists a q P SpecpSq with p “ qc.

Definition (Going Up). Suppose we have ϕ : R Ñ S a homomorphism of rings, then we have an
induced map ϕ˚ : SpecpSq Ñ SpecpRq. We say that ϕ satisfies going up if, for every chain of prime
ideals in R, p0 Ď p1 Ď ¨ ¨ ¨ Ď pn, and every q0 P SpecpSq, qc0 “ p0. There also exists a chain of prime
ideals q0q1 Ď ¨ ¨ ¨ Ď qn such that qci “ pi for all i.

Definition (Going Down). Suppose we have ϕ : R Ñ S a homomorphism of rings, then we have
an induced map ϕ˚ : SpecpSq Ñ SpecpRq. We say that ϕ satisfies going down if for every chain of
prime ideals pn Ď ¨ ¨ ¨ Ď p0 in R and every q0 P SpecpSq lying over o0, there exists a chain of prime
ideals qn ¨ ¨ ¨ Ď q0 in S so that qci “ pi for all i.

Theorem (Theorem 7.12). Let R Ď S be an integral extension of rings. Then we have the following.

(a) R Ď S satisfies lying over.

(b) If q0 Ď q1 are in SpecpSq and qc0 “ qc1, then q0 “ q1.

(c) R Ď S satisfies going up.

Proof. Proof omitted. Q.E.D

Corollary (Corollary 7.13). Suppose R Ď S is an integral extension of rings. Then dimpRq “
dimpSq.

Proof. This readily follows from Theorem 7.12. Q.E.D

Lemma (Lemma 7.14). Suppose ϕ : RÑ S is a homomorphism of rings, p P SpecpRq. Then there
exists a q P SpecpSq with qc “ p if and only if pec “ p.

Proof. Proof omitted. Q.E.D
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Lemma (Lemma 7.15). Suppose R Ď S is an integral extension of domains, where R is normal,
let K “ QuotpRq, let p P R, α P pe “ pS, and let fpxq be the minimal polynomial of α over K.
Then all coefficients of f , except for the leading coefficients, are in p.

Proof. Proof omitted. Q.E.D

Theorem (Theorem 7.16). Suppose R Ď S is an integral extension of domains, where R is normal.
Then going down holds.

Proof. Proof omitted. Q.E.D

Theorem (Theorem 7.17). Suppose R is a normal domain, K “ QuotpRq, K Ď L is a finite
separable field extension, and S Ď L a subring so that S is integral over R. Then there exists a
K-basis of L so that S Ď Rx1 ‘ ¨ ¨ ¨ ‘ Rxn. In particular, if R is Noetherian, then S is finitely
generated as an R-module. Thus, S is a Noetherian ring.

Proof. Proof omitted. Q.E.D

Theorem (Theorem 7.18 (Noether Normalization)). Let k be a field, and R a finitely generated
K-algebra, I1 Ď ¨ ¨ ¨ Ď In Ĺ R a finite chain of R ideals, then there exists a polynomial ring
kry1, . . . , yds Ď R o that R is integral over kry1, . . . , yds and Ij X kry1, . . . , yds “ kpy1, . . . , yhpjqq.

Proof. Proof omitted. Q.E.D

Corollary (Corollary 7.19). We have that dimpkrX1, . . . , Xdsq “ d.

Proof. Proof omitted. Q.E.D

Corollary (Corollary 7.20). If R is a domain (Theorem 7.18 (Noether Normalization)), then hpjq
is simply the height of the ideal I. Furthermore, dimpRq “ htpIiq ` dimpR{Ijq.

Proof. Proof omitted. Q.E.D

Corollary (Corollary 7.21). Let k be a field, and R a finitely generated k-algebra. Then R is
integral over the polynomial ring in d variables, where d is the Krull dimension of R. If R is a
domain, then dimpRq “ trdegkpRq.

Proof. This follows readily from Theorem 7.18 (Noether Normalization), Corollary 7.13, and Corol-
lary 7.19 Q.E.D

Corollary (Corollary 7.22). Let k be a field and let R be a finitely generated k-algebra. Then the
following are equivalent.

(a) If R is a domain and I is an R-ideal, then htpIq ` dimpR{Iq “ dimpRq.

(b) R is catenary.

Proof. Proof omitted. Q.E.D
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Chapter 8: DVR and Dedekind Domains

Definition (Discrete Valuation). Let K be a field. A discrete valuation on K is a surjective map
v : Kˆ � Z with the following.

(i) We have vpxyq “ vpxq ` vpyq.

(ii) We havevpx` yq ě mintvpxq, vpyqu.

Remark. Sometimes, one extends v to v : K Ñ ZY t8u by vp0q “ 8.

Remark. Given a discrete valuation v on l, one obtains an absolute value on k by | ¨ | : k Ñ Rě0

by |x| “ e´vpxq. This is an absolute value since

(i) |xy| “ e´vpxyq “ e´vpxq´vpyq “ e´vpxqe´vpyq “ |x||y|.

(ii) |x` y| “ e´vpx`yq ď maxte´vpxq, e´vpyqu “ maxt|x|, |y|u.

This also gives you the triangle inequality. Notice |x| “ 0 if and only if x “ 0. If you replace e with
p, you get the p-adic absolute value.

Definition. We define Rv :“ tx P K : vpxq ě 0u, mv :“ tx P K : vpxq ą 0u, and Uv “ tx P K :
vpxq “ 0u.

Remark (Remark 8.2). (a) Rv is a local domain with max ideal mv and Rˆv “ Uv.

(b) Let x and y be elements in Rv. Then x|y if and only if vpxq ď vpyq; x „ y if and only if
vpxq “ vpyq. Either x|y or y|x.
Note also that the group of units in the ring is the set of elements with vpxq “ 1.

Definition (Uniformizing Parameter). Notice that there exists a π P K such that vpπq “ 1. This
π is called the uniformizing parameter of Rv. This value is unique up to units.

Remark (Remark 8.3). Every x P Kˆ can be written uniquely as x “ uπn, where u P Uv and
n P Z¿ Depends on the choice of π, but once we know π exists then this representation is unique.
In particular, this shows K “ QuotpRvq “ Rvr

1
π s.

Remark. Notice that Rv is a Euclidean domain.

Definition (DVR). Suppose R is any ring. Then we say R is a DVR if R is Rv for some discrete
valuation v on the field K. One can define valuation rings more generally by changing Z to any
totally ordered abelian group.

Lemma (Lemma 8.4). Suppose R is a Noetherian ring, x P RadpRq. Then XnPNpx
nq “ 0.

Proof. Let y P XnPNpx
nq. Now pyq : pxnq is a non-decreasing chain of ideals by the Noetherian

property, the chain must stabilize. In particular, there exists i ą 0 with pyq : pxi´1q “ pyq : pxiq.
Now y P XnPNpx

nq Ď pxiq so that y “ λxi “ λxxi´1. Notice λ P pyq : pxiq “ pyq : pxi´1q. Hence
λxi´1 P pyq, hence λxi´1 “ µy. So y “ µyx, hence p1´ µxqy “ 0. Hence y “ 0, since x P RadppqRq
and so 1´ µx P Rˆ. Q.E.D

Theorem (Theorem 8.5). The following are equivalent for a ring R.
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(i) R is a DVR.

(ii) R is a local PID which is not a field.

(iii) R is a Noetherian local ring with principal max ideal and dimpRq ą 0.

(iv) R is a Noetherian local normal ring with dimpRq “ 1.

Proof. We show (i) implies (ii). Every DVR is Euclidean, so it follows. Notice that (ii) implies (iii)
is trivial, along with (ii) implies (iv). Remember that PID implies UFD implies Normal.

We show that (iii) implies (i). Let m be the maximal ideal. By assumption, m is principal, and
so m “ pxq. We first show that, for every nonzero y P m, y „ xn for some n ą 0. By Lemma 8.4, we
know there exists a maximal ideal n P Ną0 with y P pxnq. Thus y “ xn for some u. If u P m “ pxq,
then y P pxn`1q, contradicting maximality of n. Thus, U P R ´m “ Rˆ. Therefore, y „ xn. We
now show R is a domain. Take y, x P R, so that they’re non-zero. By what we’ve just shown y „ xn,
z „ xl for somen, l. Thus yz „ xn`l ‰ 0, since otherwise m “ pxq Ď

?
0, hence dimpRq “ 0. But

since (iii) assumes dimpRq ą 0, this is a contradiction. Hence, R is a domain, x ‰ 0, x  1. Let
K “ QuotpRq. Now every 0 ‰ y P K can be written uniquely as y “ uxn, u P Rˆ, n P Z. Set
vpyq “ n. Then v : Kˆ Ñ Z is a discrete valuation on K with Rv “ R.

We now show that (iv) implies (iii). Essentially, we just need to show the maximal ideal is
principal. First, notice R is a domain, since R is normal and local. Let M be the maximal ideal of R.
We show M is principal. Since R is Noetherian, and m ‰ 0, m ‰ m2 by Theorem 2.2 (Nakayama’s
Lemma). Let x P mzm2. We will show m “ pxq. Write m´1 “ R : m “ tz P K : mz Ď Ru,
and K “ QuotpRq. Now notice R Ď m´1. Multiplying both sides by m gives us m Ď mm´1 Ď R.
Hence mm´1 “ m. So let a P m´1, then am Ď m´1m “ m. Hence anm Ď m for all n. Hence, m
is an Rras-module, and m is finite as an R-module. Hence, a is integral over R (Proposition 7.1).
But now R is normal, so a P R, and therefore m´1 Ď R. Thus, m´1 “ R Now, R “ m´1 “ R : m.
Multiplying both sides by x gives us xR Ď xR : m Ď xpR : mq “ xR : m “ xR. Thus, xR : m “ xR.
Hence, m is not an associated prime of pR{xRq. But this is impossible, since m is an associated
prime of R{xR, because R is a 1-dimensional Noetherian local ring (so SpecpRq “ t0,muq but x ‰ 0.
It must have one associated prime. Therefore, mm´1 “ R. So now xm´1 is an R ideal. Suppose
xm´1 Ď m. Then x P xR “ xm´1m Ď m2. This contradicts our choice of x (recall x R m2q. Thus
xm´1 “ R. Hence, xR “ xm´1m “ Rm “ m. Q.E.D

Definition (Fractional Ideal). Let R be a domain, K “ QuotpRq. I is a fractional ideal of R if I
is an R submodule of K, I ‰ 0, and Dx P Rz0, such that xI Ď R.

Assume I is a fractional ideal. We define I´1 “ tx P K : xI Ď Ru “ R : I is again a fractional
ideal. Notice I Ď pI´1q´1 and II´1 is an R-ideal.

Definition (Invertible Ideal). We say that I is invertible if II´1 “ R.

Theorem (Theorem 8.6). Let R be a domain, and I a fractional ideal of R. Then the following
are equivalent.

(a) I is invertible.

(b) I is projective (as an R-module).

(c) I is finitely generated with Im principle for all m P m-SpecpRq.
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Proof. We show (a) implies (b). We have II´1 “ R, so
řn
i“1 aibi “ 1 for some ai P I, bi P I

´1. Now
ϕ : Rn Ñ I with ϕpr1, . . . , rnq “

řn
i“1 riai P I. This map is R-linear, and we define ψ : I Ñ Rn

with ψptq “ ptb1, . . . , tbnq P R
n is also R-linear. Furthermore, 9ϕ ˝ ψqptq “ p

řn
i“1 aibiqt “ t. So by

pϕ ˝ ψq “ idI . Thus I is a direct summand of Rn. This is equivalent to being projective.
We show (b) implies (c). We first show I is finitely generated. Let F “ ‘iPIRei be a free

module. We have ϕ : F Ñ I and ψ : I Ñ F with ϕ ˝ ψ “ IdI . Let K “ QuotpRq. Now
ψ b K : I b K – IK “ K Ñ F b K “ ‘iPIKei. Since I b K is a finite K-module, we have
impψbKq Ď Kei1‘¨ ¨ ¨‘Kein . Hence impψq Ď ‘iPIReiXpKei1‘¨ ¨ ¨‘Keinq “ Rei1‘¨ ¨ ¨‘Rein “ 0.
Hence ϕ|G ˝ ψ “ idI , so ϕ|G is surjective. So G is surjective onto I, G is finitely generated, hence
I is finitely generated. Now Im is a finite projective module over the local ring Rm, and so Im is
Rm-free (Theorem 2.15).

We finally show (c) implies (a). Since I is finitely generated, I´1
m “ pR : Iqm “ Rm : Im “

pImq
´1. So inverting commutes with localization. So 0 ‰ Im is principle, hence invertible, hence

Rm “ Im ¨ I
´1
m “ ImpI

´1qm “ pII
´1qm for all m P m-SpecpRq. Hence II´1 “ R by the local-to-

global principle. Q.E.D

Theorem (Theorem 8.7). Let R be a Noetherian domain, p a nonzero prime ideal. If p is invertible,
then htppq “ 1 and Rp is a DVR.

Proof. By Theorem 8.6, pRp is a principal ideal. Also Rp is Noetherian, local, and dimpRpq ą 0,
with principal maximal ideal, pRp. So Rp is a DVR (Theorem 8.5), hence dimpRpq “ 1, i.e.
htppq “ 1. Q.E.D

Theorem (Theorem 8.8). Let R be a Noetherian normal domain. Then

(a) 0 ‰ x R Rˆ, p P AssRpR{pxqq then htppq “ 1.

(b) R “ Xhtppq“1Rp, and furthermore the Rp are DVR’s.

Proof. We show (a). Localizing at p, we may assume R is a normal, Noetherian, local domain
(Corollary 7.6) with maximal ideal m. We may now assume m P AssRpR{pxqq, 0 ‰ x P Rˆ.
Notice R is now Rp. We need to show that dimpRq “ 1. To do so, we show that m is invertible
(we are then done by the previous theorem). Now m Ď mm´1. By definition, mm´1 Ď R.
If m is not invertible, m “ mm´1, since M is maximal. If we have such an equation, every
element in m´1 is integral. As in the proof of Theorem 8.5, this tells us that m´1 “ R. Now
pRx :R mq Ď pRx :K mq “ xpR :K mq “ xm´1 “ pxq. So pRx :R mq “ pxq. So m cannot be an
associated prime. This gives us a contradiction.

We show (b). We have R Ď Xhtppq“1Rp trivially. Take y
x P Rp for every p P SpecpRq with

htppq “ 1. This means that y P xRp if and only if pyRqp Ď pxRqp for all p P SpecpRq with
htppq “ 1. By (a), we get that all p P AssRpR{Rxq. Then it follows yR Ď xR by Homework 6.3.
Then y

x P R. Finally, Rp is a DVR for any such p by Theorem 8.5. Q.E.D

Corollary (Corollary 8.9). Suppose R is a Noetherian domain. Then the following are equivalent.

(i) R is normal.

(ii) (a) (Serre’s Condition on R1) Rp is a DVR for all p P SpecpRq, htppq “ 1.

(b) (Serre’s Condition S2) For every 0 ‰ x R Rˆ, htppq “ 1 for all p P AssRpR{xRq.
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Proof. (i) implies (ii) follows from Theorem 8.8. We show (ii) implies (i). By the proof of Theorem
8.8, R “ Xhtppq“1Rp, by (b). By condition (a), Rp is a DVR, and hence it’s normal. Therefore, R
must be normal, since it’s an intersection of normal domains. Q.E.D

Definition (Dedekind Domain). R is a Dedekind domain if R is a Noetherian domain, not a field,
and Rp is a DVR for all p P SpecpRq.

Theorem (Theorem 8.10). Let R be a domain, not a field. Then the following are equivalent.

(i) R is a Dedekind domain.

(ii) R is Noetherian and locally a DVR.

(iii) R is Noetherian, normal, and dimpRq “ 1.

(iv) Every ideal is invertible, so long as it’s not 0.

(v) Every ideal is projective.

(vi) R is Noetherian, and every ideal not equal to R is the product of prime ideals.

Proof. Proof omitted. Q.E.D

Remark (Remark 8.11). Let R be a Dedekind domain. Then the prime factorization in Theorem
8.10 (vi) is unique (up to order of the factors).

Proof. Suppose 0 ‰ I ‰ R, and I “ pe11 ¨ ¨ ¨ p
en
n , pi prime, and actually piecewise maximal, and

ei ą 0. Now Ipi “ peii Rpi “ ppiRpiq
ei . Notice that ei is uniquely determined, so it determines it in

the extension as well. Q.E.D

Theorem (Theorem 8.12). Suppose R is a Noetherian domain, dimpRq “ 1, K “ QuotpRq, K Ď L
finite field extensions (not necessarily separable). Then R̄ is a Dedekind domain.

Proof. Proof omitted. Q.E.D

Theorem (Theorem 8.13 (Krull - Akizuki)). Let R be a Noetherian domain, K “ QuotpRq,
dimpRq “ 1, K Ď L a finite field extension, S is any ring R Ď S Ď L. Then

(i) S is a Noetherian ring.

(ii) dimpSq ď 1.

(iii) lRpS{Jq ă 8 for all ideals J ‰ 0 in S.

Proof. Proof omitted. Q.E.D

Lemma (Lemma 8.14). R is a Noetherian domain, dimpRq “ 1, M a torsion free R-module of
finite rank, suppose we have 0 ‰ a P R. Then lRpM{aMq ď rankpMq ¨ lRpR{aRq ă 8.

Proof. Proof omitted. Q.E.D
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Saturation, 40
Semigroup, 3
Semilocal, 7
Short Exact Sequence, 21

Snake Lemma, 21
Spectrum of Rings, 39
Split Exact Sequences, 25
Submodule, 13
Subring, 5
Support of a Module, 41

Tensor Product, 16
Total Ring of Quotients, 35
Transcendence Degree of a Field, 50

Uniformizing Parameter, 56
Unit, 6

Zariski Topology, 40
Zero Divisor, 6
Zorn’s Lemma, 3
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