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Most of the problems are derived from problems Dr. Gogolev sent us. Each problem should be
signed with who did it and with references (if needed). Any references to a proposition/theorem/etc
that are not linked and not explicitly stated are implied to be from [I].

As far as reading goes, we followed [I]. The focus was on part 1. Sections covered include 0.3,
0.4, all of chapter 1, 2.1, 2.2, 2.4, 2.5, 3.1 (just the part on topological entropy), 3.2, 3.3, 4.1. Typos
which are not in the proofs themselves are most likely by James.

1. PRELIMINARIES
Problems in this section are from the first two handwritten homeworks.

Problem 1 (James). Let R, : S' — S! denote the circle rotation R, (z) := 2+« (mod 1). Prove
that the special flow over R, is smoothly conjugate to a linear flow on T? = S' x S™.

Proof. Here, I'm interpreting it as a suspension flow (since we don’t have a roof function). We
examine the suspension manifold

Mg, =0,1] x [0,1]/ ~,

where (0,z) ~ (1,z) for all z and (z,1) ~ (r + « (mod 1),0). The special flow (or here the
suspension flow) is then the flow o, on the Mg, determined by the vertical vector field %. Note
that R, is a diffeomorphism, so we have that Mp  is diffeomorphic to the torus via h: Mg, — T2
given by affinely translating (x,1) to (x + « (mod 1), 1) and linearly interpolating the values (z,y)
between (z,0) and (z + o (mod 1),1) for 0 < y < 1. In essence, we are just twisting the torus.
Doing so, we see that the vertical flow is now shifted to a linear flow on the torus, and since affine

translations are diffeomorphisms, we see that R, is smoothly conjugate to a linear flow. U

Consider a measure space (X, M,u). We say that a map 7' : X — X is measure preserving
if p(T=Y(A)) = u(A). We say that T is ergodic with respect to the measure yu if the following
equivalent conditions hold:

(1) For every E € M with T~Y(E) = E, either u(E) =0 or u(E) = 1.
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(2) For every E € M with u(T~Y(E)AE) = 0, we have either u(E) =0 or u(E) = 1.
(3) For every E € M with u(E) > 0, we have

m (U T"(E)) =1.

(4) For every two sets E and H of positive measure, there exists an n > 0 such that u((77"(E))N
H) > 0.

(5) For every measurable function f : X — R with f o7 = f almost everywhere, we have that
f is constant almost everywhere.

(6) (When X compact?) For every f € L?(X, ) with f oT = f almost everywhere, we have f
is constant almost everywhere.

For the following exercise, the measure is Lebesgue.
Problem 2 (James). Prove that R, is ergodic using Fourier Analysis.

Proof. We prove ergodicity using property (6), since R/Z compact. Let f € L?(R/Z, ), where \ is
Lebesgue measure. Assume that fo R, = f. Since f is in L?, we have that it is almost everywhere
equal to it’s Fourier series,

oo
f(fL‘) = Z ane2m'nm,
— 0o
SO

oo 0o
f ° Ra(ilf) — § :an€2ﬂ'm(:p+a) — § :aneZﬂ'znaeQWmI'
—00 —00

We have that these Fourier series are equal almost everywhere, so we must have the coefficients are
equal almost everywhere. Hence,

a, = an€27rznoc VAN an(l _ eana) —0.

Notice that, since « is irrational, we have that 1 — e>™" = ( for n # 0, hence a,, = 0 for n # 0.
But this then forces f to be constant. U

Problem 3 (James). If a ¢ Q, prove that T(z,y) = (x + a,x + y) on T? is ergodic.

Proof. We first need to check that T' preserves measure with respect to Lebesgue measure. We can
equivalently show that, for all f : T? — R which are integrable, we have

/f(xjy)d(x Xy) = /fon(x X y).
Notice
/f oT(z,y)d(x x y) = /f(m—i— a,z+y)d(z X y).
Fubini/Tonelli applies to give
/ i flx 4+ a,z + y)dydz.
Let z = x + vy, dz = dy, we see that .
/ . flx + o,z +y)dyde = / - f(z + o, 2)dzdx,

and doing a change of variables u = x + «, we have

/T2 f(u, z)dzdu = /1r2 Fz,y)d(z x y).

Thus, it is measure preserving.



Next, we need to establish ergodicity. Let f € L?(T?2, \) be such that foT = f almost everywhere.
The goal is to establish that f is constant almost everywhere. We again use Fourier series. On the
torus, we note that

o0
f(:E, y) _ Z an627rin-(x,y) _ Z a(n17n2)627rm13:627rm2y

neZz? n1,M2=—00

almost everywhere. Note that
o
f o T(.’I), y) = f(g; + o,z + y) = Z a(nl,ng)e%”'nl (x+a)e27rin2(l‘+y)
n1,Ne=—00
o0

_ § : 2mi(ni1+na)z 2minia  2wingy
= a(mm)e (& e .

ni,ne=—00

Doing a shift in ny (since it ranges over all integers anyways), we rewrite the series to get
oo
2minyx 2mwi(ny—n2)a  2mTing
g A (ny—nz,m2)€ 2 Joe Y,

n1,m2=—00
The same trick as before applies. The coefficients of these series must be equal, so we have

_ 2mi(n1—n2)a
A(n1,m2) = A(ny—nam2)€ :

Notice that we have |a(y, ns)| = [@(n1—nona)| = [@(n—2noma)| =+ = |@(n,—knams)| = -+, Where
k is an integer. Riemann-Lebesgue forces a(,, n,) = 0 if na # 0. Thus, it suffices to examine the

case no = 0. Here, we have

_ 2minia
a(nho) = a(nho)e .

Notice that this is the same as

a(nho) [1 - €2ﬂmla] = 0,
so either a(,, gy = 0 or e?mime — 1. Like before, « is irrational, so this implies that for no
non-zero integer n; we have > = 1, so a(n,,0) = 0. Hence, the function is constant almost

everywhere. O
Remark. The above can be refined to if and only if.

Let 7 € Sym({0,...,n}) (i.e. a permutation of {1,...,n}), v = (v1,...,v,) a vector in the
interior of the unit simplex such that v; > 0 and ) v; = 1, and € = (e1,...,€,) a vector with
€, =+1. Let up =0, u; =vy +---+wv; fori =1,...,n, and A; = (uj—1,u;) for i = 1,...,n. The
interval exchange information (denoted IET) is a map I, » ¢ : [0,1] — [0, 1] such that it is continuous
and Lebesgue measure preserving on every interval A;. The way it works is that it rearranges the
intervals A; based on 7 and either reverses or preserves orientation depending on the sign of ¢;.

Problem 4 (Katok 4.1.4, James). Let (X, u) be a Lebesgue space, A C X a measurable set with
uw(A) > 0. Let T : X — X be a measure-preserving transformation, and p4 the conditional measure
defined by

_ u(BNA)

For x € A, let n(z) := min{n € Zs; : T"(x) € A}. Prove that the formula Tx(z) := T"® (z)
defines a transformation of A which preserves the measure pa. The map T4 is called the first
return map induced by T on the set A.

Proof. Recall the Poincare Recurrence Theorem.
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Theorem. Let T be a measure preserving transformation of a Lebesgue space (X, u) andlet A C X
be a measurable set. Then for any N € N,

pu{z e A {T"(x)}n>ny C X\ A}) =0.

We need to show that T4 defines a transformation of A, and this map preserves the measure
wa. Since T is a measure preserving transformation of a Lebesgue space, Poincare Recurrence says
that, for almost every x € A, there exists an n so that 7" (x) € A. So we can relabel the set A to
exclude a set of measure zero so that 74 maps A to A (I believe this is fine, but I haven’t read the
entirety of the chapter to know for sure).

Now, we need to establish that T4 is measure preserving. Recall (Folland Exercise 1.24) that
we can define a o-algebra for A by restricting; i.e., define

S4={BNnA:Bex}.

Then the conditional measure 4 is indeed a measure for this space. Let B C A be a measurable
set. The goal is to show that

-1
ua(TiN(B)) = pa(B) = 250
(T3 (B) = na(B) = 420
The map n : X — N defined by n(z) = min{n € Z>; : T"(z) € A} is measurable. Hence, define
A ={z € X :n(zx) =k}
We have that the Ay partition A, so that
A= |_| Ay
E>1
If B C A a measurable set, we have
B=BnA=| [(BnA.
k>1
Hence,
T,'(B)=| | AxnT~*(B).
k>1
Notice that

T B) =p | [ |AnTHB) | =) u(AenT*(B)).
k>1 k>1

It now suffices to show that u(B) is this sum. Let Fy = A, F1 = T7'(A)\ A, and recursively
Fj =T 7%1(A;_1) \ A. We then note that

Fj={rxecX:T/(zx)c A,T"(x) ¢ Afor 0 <k < j}.
We have the identity
u(Fy) = p(Fjp1) + n(Ajr),
since

THF)={recX:T(x)c Fj}={xc X : TI(T(2)) € A, T*(T(2)) ¢ Afor 0 <k < j}
—{zcA:T"Ya) e A, TF(x) ¢ Afor 1 <k<j+1}
Wz e A°: T9 Y z) e A, TF(x) ¢ Afor 1 <k<j+1}
= Ajp1 U Fjp,

(
(

~— ~—

SO

w(TH(Fy)) = w(Fy) = p(Ajp) + p(Fjipa).
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Hence,
u(B) = p(Fo N B) = p(Fy N T~\(B
= W(FaNT?(B)) + (A2 NT~*(B

since
F,NT*B)={zecX:TFx)e B,T/(z) ¢ Afor 0 <j <k}
= (Fepn N T 1(B)) U (App N T1(B)).

So

~1
() = MEA ) O )

This applies for all B C A measurable, so T4 is measure preserving. [l

Problem 5 (Katok 4.2.10, James). Let 0 < a < 8 < 1 and consider the following piecewise-
continuous transformation I, g of the interval [0, 1) to itself:

z+1l—q,if0<z<a,
Ing(z) =Coz—a+1-0, fa<z<p
r—p0,if f<x<1.

Prove that I, g is an injective map which preserves Lebesgue measure. Prove that I, g is ergodic
with respect to Lebesgue measure if and only if 5/(1 + 8 — «) is irrational.

Proof. The map is injective, since it’s just a piecewise linear map switching the intervals [3, 1) and
[0,«). The open intervals generate the o-algebra, so checking on those is sufficient. It’s clear that
it preserves the length of this interval, since it just rearranges parts of it.

To prove the latter part, we need to find an injective Lebesgue measure preserving correspondence
between I, 3 and the first return map on a certain rotation on a certain interval I C St =[0,1]/ ~.
Consider the interval

1
{0’ 145 - a)
and the associated rotation
Ria :S8"—Sh
1+8—a
Then if we scale our points a and 3, we have
' Q@
Ty B—a’
g B
+6—-a
We then claim that this switches the intervals [0, /) and [, 1 fgfa) and leaves the inner interval
in the center. Note that [0,a/) — [l}rgfa, M%OC)’ so the first interval indeed maps to the end.
For the inner interval, we see that
, 11—« 2—-«a

“ +1+B—a:1+5—0[

Notice 0 < a< <1, so

1<l+a<l1+8<21<1+8-a<2—a,
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SO

1 1
2—04<1—i-5—04<17
and
O<a<l]l,-1<—-a<0,1<2-a<?2,
SO )
-«
1<m<2,

and hence subtracting 1 gives us ngifa, which is in the desired interval. We see then that going

up to 3, we have that the second interval maps to Hﬁﬁa, 1J1r50‘

that 8’ — 0 and 1+é_a — 1+5 - So scaling this up by (1+ 3 —a), we get the desired IET. Hence,
the two dynamical systems are related by the scaling map, which we see is a measure invariant
mapping which is injective, so we get that I, g is induced by a circle rotation.

Next, we claim the induced rotation is ergodic iff 5/(1 + 8 — «) is irrational. O

) The same calculation shows

Problem 6 (James). Consider the interval exchange information F : [0,1) — [0,1) of 3 intervals:
for fixed a,b € [0,1), we have Ay = [0,a), Ay = [a,b), and A3 = [b,1). F is then the IET
determined by m = (13). Show that F' is induced by a circle rotation. Under which conditions on
the lengths of A; do we have that F' is minimal?

Proof. 1 paint most of the picture in a blog post on my website. See here. g

Problem 7 (James). Define
T:T? — T?
by
T(z,y) =2z +y,z+y) (mod1).
Prove that T is ergodic with respect to Lebesgue measure.
Prove that T is topologically mixing.
Prove that the periodic points of T are dense in T2.

Let T € SL(d,Z). Then T induces T : T — T¢. Assume \ is an eigenvalue of 7 and
A™ =1 for some m. Prove that T is not ergodic with respect to Lebesgue measure.

(1
(2
(3
(

— — — —

4

Remark. This is similar to future problems, but I included it as a reference since the approach
here may be different.

Before proceeding, we give a useful lemma on measure preserving transformations.

Lemma. Assume (X, X, ) is a o-finite measure space. A transformation 7" : (X, %, pu) — (X, 3, u)
is ¢ measure preserving iff for all f : X — R with f integrable, we have

/fdu:/fonu.

Proof (=) : Assume that T is measure preserving. Then for A € ¥ measurable, we have that
w(T7(A)) = u(A). In other words,

n(A) = /XAd,U = u(T~1(4)) = /le(A)du = /XAonu-
So for all characteristic functions, we have that it holds. Let ¢ be a simple function, i.e.

Y = Z an XA, -
6
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Then

pdp = [ (D anxa,)dn=>an [ xa,du =" anpu(A,)
Jete= [ (L) /

=Y a7 (A4) = Y an [ s, o T

= /Zanmn o Tdy = /gponu.

It holds for simple functions then. Let f : X — R>q be such that f € LT (X, 3, u). Then we have
that we can construct a monotone sequence of simple functions ¢,, so that ¢, ' f. The monotone
convergence theorem implies that

/fd,u:/Jl_}n;ogondu:nll_{glo/gpnduzgggo/gononu:/Jl_}rgocpnonu:/fon,u.

For f € LY(X, %, ), write f = fi — f_, so it is a linear combination of its positive and negative

parts. Then
[ tin= [ redu [ s-dn.

Since fi, f- € LT(X,X, u), we have that

[ fedu= [ teomdn,
[ r-du= [ 1-oTdn,
/fdu_/f+onu—/f_onu_/fon,u.

Hence, it holds for all integrable functions.
( <= ): Assume the property holds for all integrable functions. Let A € ¥ be a measurable set
with finite measure. Then x4 is integrable, so

n() = [xadi= [xaoTdu= [ xa-sgadi=n(z ().

So it holds for all sets with finite measure. Assume A has infinite measure. Then we can write
A =JA;, where p1(A;) < oo. In particular, we can make this sequence increasing, so that

p(A) = lim p(Ay).

Note that the monotone convergence theorem says

SO

n(A) = /XAdM = nlggo/mndu = Jggo/xfxn oTdu = /XA o Tdp = (T~ (A)).
O

Remark. One question is whether the o-finite property is necessary. I couldn’t find a good reference
for this lemma (even though it’s used in different places) so I don’t know whether it was. My guess
is it is not necessary.

Proof.



(1) By the lemma above, it suffices to check that for f : T2 — R integrable, we have

/ f(p)d(z x y) = / f o T(z, y)d(z x ).

Lebesgue measure is o-finite, so it is fine to use the lemma. Note that by definition of T,
we have

foT(e.y)d(x x y) = / (22 4y, + y)d(e x y).
T2 T2

Note that Fubini-Tonelli works here, so it is fine to iterate the integral to get

//11'2 fQx 4y, z+ y)dzdy.

A change of variables u = ¢ + vy, 2 = x + u gives du = dy, dz = dx, and so we get the
integral is equal to

/’Jl‘2 f(z,u)dzdu = /T2 F(x,y)d(z X y).

Hence, T' is measure preserving.

We now need to show that T is ergodic with respect to Lebesgue measure. We invoke
the L? definition of ergodic, so T is ergodic iff for all f € L?(T?,\), we have that foT = f
implies f is constant almost everywhere. We have that f in L?(T2, \) implies that we can
express it almost everywhere in terms of its Fourier series,

f('l"v y) = Z a(nl7n2)62ﬂi(N17n2)~(zyy)

(n1,n2)€Z?
SO
— 2mi(n1,n2)-(2r+y,x4+y) _ 2ming (2z4y) 27 +
FoT(@mm) = 3 gy 00 Cotvats) _ 3 g amin2ik) 2rina o)
(nl,n2)€Z2 (7’L1,?’L2)€Z2
_ Z a(n17n2)62m':c(2nl +n2)627riy(n1+n2) )
(n1,n2)€Z?

Let kK = n1 4+ ng, then no = k — ny, so the series can be expressed as
2mix(ni1+k) 2mwiyk
Z A(ny k—n1)€ (n1+k) g2miyk
(n1,k)€Z2
Letting u = ny + k, we have ny = u — k, so
2mizu  2mwiyk
Z A(u—k,2k—u)€ e,
(u,k)€Z?
Relabeling u and k, we have that the series is equivalent to
2mixzny 2miyn
Z A(ny—ng,2na—n1)€ T STy 23
(n1,n2)€Z?

so since these are equal (almost everywhere), we have that the Fourier series agree, so

QA(n1,n2) = A(n1—ng,2na—n1)-

Fixing (n1,n9) € Z? non-trivial, we iterate to see that

A(n1,n2) = G(ny—na,2na—n1) = A(2n1—3n2,5n2—3n1) —
We see its equal to infinitely many distinct coefficients, so Riemann-Lebesgue says that it

must be 0. Hence, it’s constant almost everywhere, so T' is ergodic.
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(2) A dynamical system is said to be topologically mizing if, for every two non-empty open sets

U and V in X, there exists an N sufficiently large so that f*(U)NV # @ for all n > N.
A measure preserving transformation 7' : (X, %, u) — (X, X, 1) is mizing (with respect
to the measure ) if for any two measurable A, B C X, we have

w(T"(A)NB) = u(A) - u(B) as n — oo.

It follows that if a measure preserving transformation is mixing, then it is topologically
mixing (so long as the open subsets have positive measure). In this case, Lebesgue measure
is such that non-empty open sets have positive measure (take a point in the set, then you can
find an open interval contained in the open set, and the open interval has positive measure).
Hence, for U,V C T? open and non-empty, if T is mixing with respect to the Lebesgue
measure, then p(T7"(A) N B) > 0 for n large enough, implying that 7-"(A) N B # @ for
n large enough.

Let H be a Hilbert space. A family of functions F C H is said to be complete if there is
no function f € H so that (f,¢) = 0 for all ¢ € F. In other words, (f,p) =0 for all p € F
implies f = 0.

We have the following proposition from Katok.

Proposition 1. Consider a measure space (X,%,u). T is mixing (with respect to the
measure) if and only if for any complete system F C L?(X, ) of functions and any f,g € F,

we have
[ e @gtdn - ( / fdu> . ( / gd@ as s oo,

Proof. Step 1: We show that if condition (1) holds for a complete system F, then it holds
for linear combinations of elements in F.
To see this, note that the inner product in L? is given by

(t9) = [ rad.
So we rewrite condition (1) as
(foT" g)— (/ fdu> (gdp) -

Now, if condition (2) holds for all of the complete system, then it holds for linear com-
binations, since

2 2
((afr + azfa) o T", (Brgr + Baga)) = Y > aiBj(fi o T", g5),
i=1 j=1

9



and so

Jlim (e fi + azfo) o T, (B191 + P2ga)) = lim Zzazﬁg fioT™, g5)

I
']
g
2
S
=
=
@]
N
S

= (/ arfi + ozfzdu) : (/ Bigr + ﬂ292dﬂ>
using the linearity of integrals.

Step 2: It holds for linear combinations of elements in F, so in particular it holds for a
dense subset L(F) C L?(X, u). This follows, since the span of F will contain an orthonormal
basis, so will be dense (with respect to the topology generated by the norm || f|| = \/(f, )).
Step 3: We now wish to show condition (1) or (2) holds for all f,g € L?(X,u). Since
L(F) is dense, for ¢ > 0 and f,g € L*(x, ) we can find f', g’ € L(F) so that || f — f'|| <,
llg — ¢'|| < e. We see that (using the Schwarz inequality)

[(foT™ g) —(f,9)]
= ‘(foT”,g—g’> +((f=f)oT" g)+ (f 0T d)

(o) (Jom) o ([ o) ([ =)« (fir =) ( f o)

<NfoT"lllg =gl + I1(f = f) o T4

o\ [ g ( [ ra) ([7a)| +| [ ral-to- 1415 - 11| [0
<| [ rarang@a- ([ ran) ([7a)|+e(umeae | [ rad | [ou]).

If we take € — 0, we get the desired result, which is that condition (2) holds.

Step 4: We finish the proof. If 7' is mixing, then we note that the set F = {xa :
A is measurable} forms a complete system, so by Step 3 we have that condition (1) holds
for all L?(X, ). If condition (1) holds on a complete system, then by Step 3 we see that
it holds on all of L?(X, ), so in particular it holds on f = x4 and g = xp for A,B C X
measurable, and so 7' is mixing. O

We now show that T is topologically mixing by showing that T is mixing with respect
to Lebesgue measure, which means showing that condition (1) holds on a complete system.
The system F = {exp(27wi(m,n) - (z,y)) : (m,n) € Z?} forms a complete system (by
Stone-Weierstrass), so we just need to show condition (1) holds on this system. Let

X(m,n) (%, y) = exp(2mi(m, n) - (z,y)).

So we just need to show that

/ X () (T (@) XGRydr — ( / X(m,n)dﬂ> : < / X(j,k>du> -

10



Ifm=mn=j=k=0,we get that x(9,9) = 1, so both the left and right sides are 1. Assume
(m,n) # (0,0). We see that the right hand side of the equation is 0, so it suffices to show
that the left hand side converges to 0. Notice that

X(mn)(T'(2)) = exp(2mi(m, n) - 2z +y,x +y)).

We can correspond to the action of 7' on T? the matrix
~ 2 1
(1)

N (T (,)) = exp(2mi(m, n) - T (2,)) = exp(2mi - TN (m.n) - (2.9)) = X (g ()

so that

We can now rewrite the left hand side as

/ XTN (). BH-

Now, this is zero so long as TN (m,n)—(j, k) # 0, or TN (m,n) # (j, k). Since [|TN (m,n)|| —
00, there exists sufficiently large N so that TV (m,n) # (j, k). So we have that the integral
converges to 0.

(3) We now want to show that the space of periodic points are dense in T2. This follows by
showing that coordinates with rational components are periodic. Let = = (p/q, s/q) € T2,
P, q, s are integers. The goal is to show there exists an /N so that TN(a;) = x. Note that

2
T(z) = <p+'5p+5> _
q q

So this maps to a rational coordinate with denominator q. There are g ways of creating a
coordinate with denominator ¢ in the first component (since 0 < p/q < 1), and ¢ ways of
doing it for the second component, so in total there are ¢® ways of doing it. So Or(x) has
finite order, hence must repeat. So there is a m,n so that T"(x) = T™(z). The map T is
invertible, since it corresponds to a matrix with determinant non-zero, so if n > m we have
T™ ™ (x) = x. Hence, it is periodic. Thus, periodic points are dense.

(4) We have that T is a matrix

a1 a2 -+ Aaid
T = :
ad1 Q42 - Qqq

such that det(T") = £1, a;; € Z. Notice we have that the transformation corresponds to

T(x1,...,1q) = (Z auwz‘,zam‘wi, - -azadixi> (mod 1).

Consider the spectrum spec(T") = (A1,...,Aqg) (where there may be repeats). Assume that
A" =1 for some m. [TODO]

0

2. TOPOLOGICAL DYNAMICS

Problem 8 (Problem 1.1, James, Suxuan). Prove that an irrational circle rotation R, :  — x4+«
(mod 1), o ¢ Q, is minimal.
11



Proof. The dynamical system is minimal iff

() Or,(x) = X.

zeX

Assume for contradiction that it is not minimal. Then there is some x € X with A := Op_(z) C X.
Since A is closed, we have that A€ is open, and since the open intervals generate the topology of R we
get that there is an open interval I C A. We note that for intervals I = (a,b), Ro(I) = (a+a,b+a)
(mod 1), so A(R4(I)) = A(I) — that is, rotations preserve length. If we consider

F ={I an interval : I C A},

we get a partial ordering by containment. We note that the union of a chain of intervals is an
interval, so Zorn’s lemma says there is an interval of maximum length contained in A. Let I be
this interval.

First, we note that R[(I) C A°. If R(I) C A for some n, then since R, is invertible we get that
I C Og,(z), a contradiction.

Next, since {R2(I) : n € Z} is a collection of intervals in A°, we note that they partially cannot
overlap. If RZ(I) N Ry}(I) # @ for some n # m, then we have that R} (I) U R}}(I) C A€ is an
interval with size larger than I, contradicting maximality.

Finally, we claim that R} (I) # RJ'(I) for n # m. If it did hold, then by the invertibility of R,
we get that R'Z;(I ) = I for some integer k, so the endpoint a of I is mapped to a after k iterates,
implying that it is a periodic point. Thus, we have a + ka = a (mod 1), ka an integer, and so «
is rational, a contradiction.

So {RI(I) : n € Z} is an infinite collection of disjoint intervals in A€ of equal length. This is a
contradiction, since S! has finite length. 0

Suzuan’s Proof. First we show that for given N € N, there exists n,m € N such that |R™(0) —

R™(z)| < 4. Consider the partition 0 < 4 < 2 < -+ < &=L < 1 of the unit interval [0,1], then

we get N small subintervals. For n,m € N, n # m, suppose R"(z) = R™(z), then
r+nao=x+ma (modl),

so there exists b € Z such that na — ma = b, and so a = ﬁ, which contradicts to the condition

a € R\ Q, hence R*(x) # R™(z) if n # m. Then the N + 1 points R(x), R*(z),..., RN*1(z) are
N + 1 distinct points in the unit interval [0, 1], by pigeonhole principal, there exists 1 < n < m <
N + 1 such that R"(z) and R™(x) are in the same subinterval, so we have

1
< —.
- N
Since x + na = R™(z) (mod 1) and x + ma = R™(x) (mod 1), we then have
ma —na = R™(z) — R"(z) (mod1).
For k € N, RF(m=) () — RE=D(m=n)(3) = ma — na (mod 1), so
RE(=) () — RE=D(=m) (1) = R™(2) — R™(x) (mod1).
Without loss of generality, we assume R™(z) — R"(x) is positive. Then the intervals [z, RO~ (z)],

[R™=)(z), R*m=") ()], ..., form a cover [0,1), so for given 3 € [0,1), there exists K > 0 such
that y € [RE(™=)(z), REFDm=n) (1)) hence the orbit of z is dense. O

|R" () — R™ ()]

Problem 9 (Problem 1.2, James). Consider a translation T : T? — T? given by (x,y) — (v +

a,y + B). Classify all orbits Op(x,y).

Proof.
12



Case 1:

Case 2:

Case 3:

Case 4:

If «, B are rational numbers, say

k
azga /8:77 paq7k7l€Z> laq#oa
then we see that for all (z,y) € T? we have that Op(x,y) is periodic. This follows by
noting that if we choose m = lem(g, (), then we have

T"(x,y) = (x + ma,y + mB) = (z,y) (mod 1)

So Op(z,y) is a finite collection of points, and hence Orp(z,y) = Or(z,y).
If « is irrational, 8 rational, then we can write 3 in the reduced form

p
6:§7 p,QEZ, q?éo
We claim that Op(z,y) is a union of ¢ disjoint circles. We know that restricting to the
second coordinate, we have that the orbit with respect to T will be periodic with period

given by gq. We see that for 0 < j < q, j € Z, n € Z, we have that
T (2, y) = (2 + (j + ng)a,y + (7 + ng)B) = (v + (j + ng)a,y +jB)  (mod 1).

The second coordinate is then fixed for all n € Z, and we see that in the first coordinate we
have a rotation by (j 4+ ng)a which is still irrational. Iterating this and taking its closure,
we get that this corresponds to the circle S' x {y + j3}. This is disjoint from all of the
other circles as we look over the range of j, so we get ¢ distinct circles. Notice that this
partitions all of the orbit, and we use that the closure of the union is the union of the
closure to get
Or(z,y) = || " x{y+iB}.

0<j<q

JEL
Now we need to consider the case «, [ are irrational but rationally dependent. In other
words, there exists ki, ko, k € Z with

kla + k25 - k,

and at least one ki, ko non-zero. It turns out both must be non-zero, since otherwise this
implies that either a or S are rational, which contradicts the original assumption. Choosing
(z,y) € T?, we see that

T(z,y) =(x+a,y+F) (mod1).

We know this may not be topologically transitive by Katok Proposition 1.3.4 and
Katok Proposition 1.4.1. As noted in these propositions, it really suffices to look at the
orbit of 0. Doing so, we have that

kk
(na,nf) = (’,; - kjnﬂ,n/ﬁ) :
Since the y coordinate is such that y = nf3, we see that we have © = nk/k; — (k2/k1)y, or
y = nk/ks — (k1/k2)x. So the iterates of 0 lie along these lines. There are finitely many of
these lines in [0, 1] (varying over different n values modulo 1), and the orbits are dense on
these lines by irrationality, so we get a finite union of circles again.
Finally we consider the case a, 8 are irrational and rationally independent. Then as shown
in Katok 1.4.1, we see that T is minimal, so for all (z,y) we have Op(z,y) = T2

(|

13



Remark. Case 3 was the trickiest, and it relies on Lemma 5.1.10 in A First Course in Dy-
namics by Hasselblatt and Katok. However, the proof given in the book is incorrect, so I had to
mess around with things (see the errata).

Problem 10 (Problem 1.3, James, Hao). Let T : X — X be a homeomorphism of a compact
metric space. Prove that the following are equivalent:
(1) T is minimal.
(2) For all U C X open, there exists an n such that
n
U o) =x.
j=-n
Proof. (1) = (2): Let U C X be open and let x € X be arbitrary. Since T is minimal, this
implies that for all x € X we have a n € Z with T"(z) € U. In other words, for all x € X, there
exists n € Z with z € T"(U), so we have that

oo
xc | o).
Jj=—00
Since f is a homeomorphism, these sets are all open. By compactness there is a finite refinement,
so there exists sufficiently large n so that
n
x=|J .

j=—n

(2) = (1): (Hao’s Solution) First, we show the intersection property (see Katok Lemma
1.4.2). Since we have a metric space, there exists a countable base {U,}7° ;. By property (2), we
have that for each U; there exists an IV; so that

Nj
xX= |J ™).
n=—N;
Hence for each U, in the base, we have
N
Un = LJ (Tm(Uﬁ)len%
n=—N;j

so there exists an integer n so that 7"(U;) N U, # @. Now let U and V' be nonempty open sets.
Since we have a base, we have that there is a Uj;, U, so that U; C U, U,, C V. By what we’ve just
shown, we have T"(U) NV # @. The intersection property then holds.

Now fix z € X and let Uf' = By on (). For each n, we can construct a corresponding countable
base so that {U{",U},...} is a countable base. By the interscetion property, we see that there
is an integer N7 so that le(U{)) NUY # @, so we have a nonempty open set V,? so that V; C
U N =N (UY). Similarly, we have that there is an Ny so that fV2(V,?) N UY # @, so we can find

VY open so that VP ¢ V2N f~N2(UY). Repeating in this fashion, we have that
vO=Vo

is a closed compact set which is an intersection of nested compact sets, so it is nonempty. Similarly,
we construct {V, "} for each base {U]"}, and let

v = (Vi
14
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Note that the {V™} are closed, compact sets, and since U? C U,g for n > k, we get that these are
nested. Finally, let
V="

V' is an intersection of nested closed compact sets, so is nonempty. We have that = € V is the only
element which can be in here, since the balls are decreasing to . Hence x € V. Like in Katok
Lemma 1.4.2, we see that the elements in V™ for each m are such that they have dense orbit, so
2 must have dense orbit. The choice of z was arbitrary, so the system is minimal.

(2) = (1): (My Solution) Let x € X be arbitrary, U C X a nonempty open set. By assumption

2, we have
N

x- (U ro,

n=—N
so there is some integer m with |m| < N so that z € T™(U). In other words, we have T (z) € U
(since T a homeomorphism). Thus, for each open set U, there exists an integer m so that 7" (z) €
U, so the orbit intersects every nonempty open set nontrivially, so the orbit must be dense. ]

Problem 11 (Problem 1.6, James). Give an example of a transitive homeomorphism of a compact
manifold which is not topologically mixing.

Proof. Consider the rotation map on the circle f : z — z + « (mod 1). We claim that it is not
mixing regardless of what « is. Consider an nonempty proper interval I C S! whose length is
sufficiently small, say m(l) = € < 1/8, and set I = (0,¢). Let N be any integer. We wish to show
there is an & > N so that f¥(I) NI = @. We note that f preserves the length of the interval, so
m(f*(I)) = e. Consider the interval J = (1/2,¢+ 1/2). Since € < 1/8, we have that INJ = &
and the distance between I and J is 1/2. Assuming that f is topologically mixing, we can find a
sufficiently large integer k so that f*(I)NI # @, f*(I)NJ # @. Since the distance between I and
J is 1/2, the only way this could happen is if m(f*(I)) > 1/2, but this contradicts the fact that
iterates of f have the same length. Hence, there must be a k > N so that f*(I) NI = @, so that
f is not topologically mixing. O
Problem 12 (Problem 1.8, James). Let a be an irrational number and T : T? — T? is given by
T(z,y) = (r + o,y +z) (mod 1).
Prove that T is transitive.
Remark. T is, in fact, minimal, but this is harder to show.

Proof. We go by contradiction. We utilize Katok Corollary 1.4.3. Assume that T not topologi-

cally transitive. There exists two disjoint nonempty open sets U and V which are T-invariant; so

TWU)=U,T(V)=V,UNV =@. Let xy be a characteristic function. Invariance says
xv(T(z,y)) = Xr—1 (2, y) = xvu(z,y).

We are on a finite measure space, so with respect to Lebesgue measure this is going to be in L?. Tt
is fine, then, to take Fourier expansions. Doing so, we have

xu(@) =Y ane®™™?,
nez?
viewing x € R?/Z? now. Since the functions are equal, the Fourier expansions are also equal, so
XU(T(x)) _ Z an627rin-(x+a,z+y) _ Z an627ri[(n1x+n1a)-‘,—(nga:—l—ngy)]
nez? nez?

_ § 2mi(n1+n2)z+noy 2winia
= a(nl N2 ) e e .

nezZ?
15



Doing a change of variables, we get

XU (T(a:, y)) = Z an, 7n2’n2)€2ﬂin1x62ﬂin2y62ﬂ-i(nl7712)0‘

nez?
— Z a(n17n2)627rin130627rin2y'
nez?
Hence, a(nl_n%m)e%i(m*”?)o‘ = Q(ny,ns), SO0 We get infinitely many Fourier coefficients which are
equal in magnitude when no # 0. Riemann-Lebesgue says that these must all be zero. Thus, we
need only analyze the case where no = 0; here, we have

_ 2minio
A(n1,0) = 4(n1,0)€ ’

and the usual argument shows that if « is irrational we must have n; = 0. This forces xy to be a
constant function, meaning it must be either zero or one. Since U has positive measure and V' C U¢
has positive measure, we get that this is impossible. So there cannot be two disjoint nonempty
open sets U and V which are T-invariant, and this implies that 7" is topologically transitive. [

Problem 13 (Problem 1.9, James, Suxuan). Show that a factor of a topologically mixing system

is also topologically mixing.

Proof. Recall that a system f : X — X is topologically mixing if for all U, V nonempty open subsets
of X, there exists an N so that for all n > N we have

frU)NVv #£ 2.
Recall that a map g : Y — Y is said to be a factor of f if there exists a continuous surjective map
h:X — Y with

hof=goh.
For fixed n > 1, we see that
hof*=hofofr ' =goho

so iterating we get

hof*=g"oh.
The goal is to show that for any oepn U,V C Y nonempty, there exists an N so that for all n > N
with

g U)NV £ 2.
Since U, V are open, we have that h=1(U),h~*(V) C X are open sets. Hence, there exists an N so
that for n > N we have

AN O) NV # 2.
Applying h gives us
@ # h(f"(R"HO) hTHV)) C RS (WHU)) NR(RTH(V)) = g (U) N V.

This holds for all n > N, so we get that g is topologically mixing as well. O

Problem 14 (Problem 1.10, James). Prove that T : T? — T2 given by T'(z,y) = (2 +y,z +y) is
topologically mixing.

Remark. I showed this in a sort of indirect way initially. An easy way to see it is topologically
mixing is by noting that, since T is expanding along a (dense) eigenline on the torus, we eventually
must have T"(U) NV # & since U is eventually stretched enough to connect with V.

16



Technical Proof. A dynamical system is said to be topologically mixing if, for every two non-empty
open sets U and V in X, there exists an N sufficiently large so that f*(U)NV # @ for alln > N.

A measure preserving transformation 7' : (X, 3, u) — (X, X, u) is mizing (with respect to the
measure ) if for any two measurable A, B C X, we have

w(T"(A)NB) = u(A) - u(B) as n — oo.

It follows that if a measure preserving transformation is mixing, then it is topologically mixing (so
long as the open subsets have positive measure). In this case, Lebesgue measure is such that non-
empty open sets have positive measure (take a point in the set, then you can find an open interval
contained in the open set, and the open interval has positive measure). Hence, for U,V C T? open
and non-empty, if 7" is mixing with respect to the Lebesgue measure, then u(7-"(A) N B) > 0 for
n large enough, implying that 77" (A) N B # @ for n large enough.

Let H be a Hilbert space. A family of functions F C H is said to be complete if there is no
function f € H so that (f,p) = 0 for all ¢ € F. In other words, (f, ) = 0 for all ¢ € F implies

F=0.

We have the following proposition from Katok.

Proposition 2. Consider a measure space (X, X, u). T is mixing (with respect to the measure) if
and only if for any complete system F C L?(X, ) of functions and any f,g € F, we have

(3) /f (T"(x))g(x)dp — < fd,u) < gdp) as n — oo.

Proof. Step 1: We show that if condition (1) holds for a complete system F, then it holds for
linear combinations of elements in F.
To see this, note that the inner product in L? is given by

9) = / fgdp.
So we rewrite condition (1) as

(4) (foT" g) — (/fdu) (gdp) .

Now, if condition (2) holds for all of the complete system, then it holds for linear combinations,
since

2 2
((arfi +azf2) o T", (Brg1 + B2g2)) = ZZ aiBi{fioT", gj),
and so

2 2
Jim (a1 f1 + azfo) o T", (Brg1 + Baga)) = lim. Z Z i Bi(fioT", g;)
i=1 j=1
2

2
=Y aif; lim (fioT".gy)

i=1 j=1

- 30 (f)- ()
- ( [+ afzdﬂ> - ( / Mdu)
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using the linearity of integrals.

Step 2: It holds for linear combinations of elements in F, so in particular it holds for a dense
subset L(F) C L?(X,u). This follows, since the span of F will contain an orthonormal basis, so
will be dense (with respect to the topology generated by the norm ||f|| = \/{f, f))-

Step 3: We now wish to show condition (1) or (2) holds for all f,g € L?(X,u). Since L(F) is
dense, for € > 0 and f,g € L?(x, ) we can find f',¢g' € L(F) so that ||[f — f'|| <€, |lg—d| < e
We see that (using the Schwarz inequality)

[(foT™ g) —(f,9)]

- ‘<fOT"79—9’> H{(f = f) T g) +(f oT".d)

(o) (Jom) o ([ o) ([ =)« (fir =) ( f o)

<NfoT"lllg =gl + I1(F = ) o Tllg'

o[ @i ([ ras) ([7a)| | [ s -la=g1 1= 71| [ 30
<| [ rarang@a- ([ ran) ([7a)|+e(umeae | [ rad | [ou]).

If we take € — 0, we get the desired result, which is that condition (2) holds.

Step 4: We finish the proof. If 7" is mixing, then we note that the set F = {x4 : A is measurable}
forms a complete system, so by Step 3 we have that condition (1) holds for all L*(X,p). If
condition (1) holds on a complete system, then by Step 3 we see that it holds on all of L?(X, i),
so in particular it holds on f = x4 and g = xp for A, B C X measurable, and so T is mixing. [

We now show that 7' is topologically mixing by showing that 7" is mixing with respect to Lebesgue
measure, which means showing that condition (1) holds on a complete system. The system F =
{exp(2mi(m,n) - (z,y)) : (m,n) € Z?} forms a complete system (by Stone-Weierstrass), so we just
need to show condition (1) holds on this system. Let

X(m,n) (I‘, y) = eXp(Zﬂi(mv n) : (.’E, y))

So we just need to show that

/X(m,n)(Tl(iB))X(j,k)dM — </X(m,n)d:u> : (/X(xk)d/‘) '

If m=mn=j=Fk=0, we get that x( ) = 1, so both the left and right sides are 1. Assume
(m,n) # (0,0). We see that the right hand side of the equation is 0, so it suffices to show that the
left hand side converges to 0. Notice that

X(mn)(T(2)) = exp(2mi(m,n) - 2z +y,x +y)).

We can correspond to the action of 7" on T? the matrix
~ 2 1
(1)

X(m,n) (TN(xa y)) - exp(27ri(m, n) ) TN(x7 y)) = exp(2m' ) TN(m7 77,) : (x7 y)) = Xf“N(mm) (.Z', Z/)

so that

We can now rewrite the left hand side as

/ XN (). BH-
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Now, this is zero so long as TV (m,n) — (j,k) # 0, or TN (m,n) # (j, k). Since | TN (m,n)| — oo,
there exists sufficiently large N so that 7% (m,n) # (j,k). So we have that the integral converges
to 0. U

Problem 15 (Problem 1.10, James). Let (x,) be a subadditive sequence of non-negative real
numbers. That is,
Tntm < T + T

Show that
. T . T
lim — = inf —.
n—oo N n>0 N
Proof. Let
T
R=inf =%
n>0 n

For € > 0, there exists an n > 0 so that

@<R+6¢>xn<n(R+e)
n

For m > n, write m = qn 4+ r, 0 < r < n. Notice that

Tm = Tagntr < Tgn + Tr,
and

Tgn = Tni(g-1)n < Tn + T(g-1)n
so that recursively applying gives us
Tan < qTp.
Hence,
T < Ty + Tp.

Let

T =max{z; :0<1i<n}.
This then says that

Tm < qup +T.
Thus,
x Tn+ T T T n T
Im B TE gy~ TR+
m m m m m m

So taking the limit, we have
T
limsup == < R+,
m—oo 1M

noting that

m:qn—l—r(:)l:@%—iﬁlz lim 2%
m m m—oo M,
This holds for all € > 0, so we can take ¢ — 0 to get
limsupx—m < inf In.
m—oo 1M n>0 N
Now we have that
inf = < liminf == < limsup == < inf =%
n>0 N n—oo n n—oco N n>0 N
SO .
lim =% = inf =&
n—oco M, n>0 N
O
Problem 16 (Problem 1.11, James). Show that if S : Y — Y is a factor of T : X — X, then
h(T) > h(S).
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Proof. Recall that S is a factor of T if we have that there is a surjective continuous map h : X — Y
with

hoT =Soh.
Assuming we’re on (compact) metric spaces (Y, dy) and (X, dx), we recall

1
h(T) = lim lim sup — log(S4(T, €,n)),

e—0 n—oo N
where Sy(T,¢e,n) is the cardinality of the minimal (n,€)-spanning set. The idea is to use this
definition to show the inequality.
Since h is continuous (notice uniformly continuous since we’re on a compact metric space), for
all € > 0 there is a (€) > 0 so that

dx(z,y) <d(e) = dy(h(z),h(y)) <e.
In other words,
h(Bj(x)) C BY (h(x)).
Let E C X be an (n, €)-spanning set.
Recall we define
dgn(aj,y) = max{dx(T%(z), T(y)) : 0 < i < n}.

By the observation above, for € > 0 fixed and for each iterate 0 < i < n, there exists a d(e,7) > 0
with

dx (T (@), TH(y)) < 8(e,i) = dy (W(T*(x)), h(T(y))) < e.
Notice

hoT'=hoToT" 1 =8SohoT !,
so iterating we get 4 ‘
hoT'"=5"oh.

In other words, ' ' _ '

Ax (T (2), Ti(y)) < 8(e,i) — dy (S'(h(a)), S'(h(y)) < e.
It’s a finite collection, so taking d(e) = min{d(e,7) : 0 < i < n} gives us that for fixed ¢ > 0 and for
all 0 < i <n, A ‘ A ‘

dx(T"(2), T"(y)) < 0(e) = dy(S'(h(z)),S"(h(y))) <.
Translating this to be in terms of the Bowen-Dinaburg metric,

dgn(x,y) < do(e) = d;n(h(x),h(y)) < €.
Taking balls with respect to the Bown-Dinaburg metrics, we have
h(Bj((x)) C BY (h(x)).

Now consider an (n, d(¢))-spanning set for X. The above observation and surjectivity says taking
the image of this gives us a (n,€)-spanning set for Y. So the minimal cardinality for a (n,d(€))-
spanning set for X will be at least the minimal cardinality for a (n, €)-spanning set for Y. In terms
of the Sy, we have

de (S) € n) < de (Tv 5(6)7 n)

The monotonicity of logarithms and the independence of n tells us

lim sup ! log(Sqy (S,€,n)) < limsup 1 log(Sqy (T, 6(€),n)).

n—oo N n—soco N
Taking € — 0 gives
1
h(S) < lim limsup — log(Sa, (T, 6(€),n)) = h(T),
n

€0 pooo

as desired. ]
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Remark. See Proposition 3.1.6.

Problem 17 (Problem 1.13, James, Suxuan). Calculate the topological entropy of T : T? — T?
defined by
T(z,y) = (z,z+y) (mod1).

Proof. Examining the lines
Ay ={(z,y) :y € S*}.
Note that
T(Az) C Ay,

since T on each of these vertical lines acts just like a rotation. Notice as well that the speed of
the rotation depends on the location of the circle on the torus (when viewing T? as a quotient of
[0,1] x [0,1]). As x goes further right, the circle rotates faster under 7. However, on the line T is
just a rotation, so a continuous isometry.

We will use this interpretation of things to determined an upper bound on Sy(T', €, n), the minimal
number of point so that

X C UBT(x, €,1n).

We will do so by cleverly choosing candidate points based on how T is going to act. Vertically, we
uniformly choose points distance e apart, since T acts as an isometry. Notice that the d distance
between two points lie along the same horziontal line which are d distance ¢ apart increases by a
factor of € for every rotation. So uniformly spread points horizontally across by a d distance of €/n.
Then the dX balls of radius € cover the torus. The number of points which covers the torus in this
fashion will be n/e?, so Sq(T, e,n) < n/e?. Taking the logarithm of this, we have

) < log(n) — 210g(e).

n

1
—log(S4(T,€,n
n
Taking the limsup as n — oo, limit as € — 0 of both sides gives
hT) = 0.

Remark.
e If you can show the fact that

X UA”E = h(T) = sup h(Ty),

you’ll get the same calculation (see Exercise 8.2.5 in A First Course in Dynamics
With a Panorama of Recent Developments by Katok & Hasselblatt.) I could
prove such a relation for countable unions, but didn’t see how to extend it for uncountable
unions, and couldn’t find a reference either way.

e The inspiration for the solution comes from Section 8.2.3 in A First Course in Dynam-
ics With a Panorama of Recent Developments by Katok & Hasselblatt though
the details they give are lacking and I think there’s a typo.

Problem 18 (Problem 1.14, Hao). Let f : S' — S! be a degree 2 map. Show that h(f) > log(2).
Proof. We first need a lemma.

Lemma. Let x € S'. Define m, as m, =y — x, where z < y, f(z) = f(y), and y is the smallest
value for which

f|[r,y] : [x,y]/(x ~ y) = Sl - Sl
is of degree 1. Then

inf m, > 0.
zeS!
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Proof of Lemma. We proceed by contradiction. Suppose inf,cg1 m, < 0. Since S! compact, we
can find a sequence (z,) C S! with =, — z and with My, = Yn — Tn — 0 as n — oo. Taking a
subsequence, we may assume x,, \, . Let y > = be the smallest value for which f \[x’y] is of degree
1. By definition of our sequence, there is an ny € N with

T < Tp; <Yn, <Y,

and an ny € N with

T < Tpy < Yny < Ty < Yny <Y
Proceeding in this manner, we can find a subsequence (x,, ) with

[xnk>ynk] N [xnj7ynj] = 9.
Notice that for all £ € N, we have
f([Zng Yni)) = St

So for every k € N, we can find ag, by € [zn,,Yn,] With f(ax) = 0 and f(br) = 1/2. Since
Yn, — T as k — oo, we have that ap,by — x as well. On the other hand, the sequence

{f(a1), f(b1), f(az2), f(b2),...} is a sequence that does not converge. This contradicts the conti-
nuity of f. g

As before, this inf,c g1 m, gives us a nice way of bounding the distance between preimages. The
goal is to then use (n,€) separated sets to prove our result. Let 0 < ¢ < inf, g1 m,. The goal is to

show
2"

Nd(fa €, TL) > —.
€
Going by induction, we have that for the base case we can simply take 27 /¢ points on S! which
are evenly spaced distance e apart. So

2
Na(fre,1) > ==
€

Now, for the induction step, we use the fact that f has degree 2. Let S be an (n, €)-separated set
of size 2"m/e. For each y € S, we can find z¥, 2§ € S with 2§ < 2% which satisfies

o f(z) = f(z3) =y,
* fliav ey St — ST has degree 1.
Let E C S* be given by
E={z!:1=1,2,y € S}.
Notice that given y1,y2 € S distinct, we have

f Y1 Y2y ki u1y gk(02\) > ke y1y gk Y2
dn-ﬁ-l(xz ?x] ) Orgnk‘agxnd(f (:Uz )?f (:C] )) - 1I§n]?§Xnd(f (:Cz )7f (x] ))

N Osrl?gf—ld(fk(yl)’ Fya)) > e

For y € S, we see that
d£+1(a:31/,$g) > d(2Y,2Y) > e.

So E is an (n + 1, ¢)-separated set, giving us
2n+1 T

Nd(f767n+1) >
]

Problem 19 (Problem 1.15, Suxuan). Let f : T?> — T2 be a map and let A = f, be the induced
matrix on the first homology (or the fundamental group). Prove that hyp(f) > log A, where A is

the spectral radius of A i.e., the biggest absolute value of the eigenvalues of A.
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Proof. Firse we consider the case where f(x,y) = (ax+by, cx+dz) (mod 1) with a, b, ¢,d € Z, then

A= Z Z . We assume that A is diagonalizable. Now let us calculate P,(f). Let f™(x,y) =

(anx + bpy, cnx + dpy) (mod 1). If f*(x,y) = (x,y), then (a, — 1)z + by and cpx + (d,, — 1)y are
integers, and the map f, —id : (z,y) — ((an, — 1) + by, cpx + (d,, — 1)y) is a noninvertible map
of the torus onto itself. Let A\; and Ao be the eigenvalues of A and let D be the orthogonal matrix
such that DAD™! is diagonal. Then the number of preimages of (0,0) is

| det(f" —id)| = [det((DAD™)" —id)| = |(A] = 1)(A; — 1)].
O

Problem 20 (Problem 1.16, Hao). Give an example of a degree 2 map f : S? — S? with zero
topological entropy.

Remark. A slight modification from here, page 149. Credit to Hao for finding it.
Proof. Identify S? with the Riemann sphere C=Cu {oc}. Define the map
f: C—C

ﬂ@:{Qaﬁz#O

by

0if z=0.

on C , we see that f pushes all of the points towards co. Since 0 and oo are fixed, and otherwise all
open neighborhoods are eventually pushed far away from a point, we see NW(f) = {0,00}. This is
a finite set, so h(f) = h(f|nw()) = 0. It follows this map has degree 2. O

3. ONE DIMENSIONAL DYNAMICS
Problem 21 (Problem 2.1, James, Suxuan). Consider the tent map
f:10,1] —[0,1], flx)y=1-]1-2x].
Prove that for any n > 1, there exists a periodic point p € [0, 1] whose smallest period is n.

Remark. This proof is long and technical. Suxuan gave a great geometric proof of this, which is
just draw what the tent map looks like at each iteration and then draw the line f(z) = z, and note
that points of intersection give points whose period is at most n. Deduce that one of them must
have period n.

Proof. We design an algorithm which will find a periodic point of period n.
We can write
20if 0 <z <1
flx) = N
2—2x1f§§1‘§1.
Consider the dyadic rational endpoints,
Then we see that if we iterate f, we have

drif0<az<i

2—4zif I <z <

4—dzifj<az<

dz—2if 3 <z <1,
23
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or

4z if 89 <z < S}

2 — 4z if S} <z < S3
4—A4zxif S5 <z < S3
dr —2if S5 <z < S3.
Let g(z) = 2z and h(x) = 2 — 2z. We can then rewrite this as

z)if $Y <x < S3
flay = 90 E TS
h(z)if Sy <x < S5

g*(z) if 8§ <z < S}
h(g(x)) if S <z < S2
h?(z) if S2 <z < S3
g(h(x)) if S5 <z < 53,

We now move on to the case n = 3 to get

3(x) if SY <z < S}
(¢*(x)) if S3 <z < 532
2g(z))if S3 <z <S5
(g(x))) if S3 < o < 54
h%(x)) if 83 <x < S}
R3(z) if S5 <z < S
h(g(h(x))) if S§ <o < 83
¢ (h()) if ST < o < S5

> Q

>

9
(9
h

~
w
—~
8
~
I
e

(
(
3

We see a g — h — h — g pattern. The argument is a simple induction argument, noticing that we
have a tent map and so we decompose it in the corresponding way. The above discussion tells us
that

P(f) <27,
where P,(f) = [{z € [0,1] : f*(z) = z}|.

Note that

_9\n+1
P =2e, 1) =T oy

We can use the above to calculate the elements of period at most 2:

2 4 2
0,,,
{’5’5’3}

and the elements with period at most 3:

and the elements with period at most 4:
{24681012142 16}
"157157 157157157157 157 177" 17
We notice that there is a pattern of two common denominators; for period 3, we have 7 and 9, for

period 2 we have 5 and 3, for period 4 we have 15 and 17.
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We claim that the collection of points

{ 2k :0§/<:§2"—1—1}u{ 2k :0§k§2”_1}

2n—1 2n+1
are the points so that f"(x) = z. Notice that this will establish that P, (z) = 2.

Taking this set, we order it in increasing order, and then we claim that the ¢th point x in this
set is the unique point in [S4~!, SY) which satisfies f"(x) = 2. We go by induction, noting it holds
in the first 3 steps. So we assume that it holds for n, and we wish to show it holds for n + 1. Let
kx be the combinations of gs and hs which agree with f™ on [SK~1 S¥]. If k is odd, then we have

that
2 (551) k-1 k—1
”’“(271—1 _’i’“<2n—1>_2n—1’
and if k is even then we have
k k
K = .
Flong 2n + 1

Notice that xj is going to be a line with slope 42", where for k even we have slope —2" and for k
odd we have slope 2". We can determine what the line is based on this information. We have that
for k even

kip(z) = 2"z — k,
and for k£ odd we have
kip(x) =2"z+k— 1.
If k is odd, we have that g(k)) = f"+! on the interval [S2% %, S2* 1] and h(ky) = f**! on the

n+1

interval [S2571, 52 ). If k is even, we have h(ky) = f"*1 on [S257%, 524! and g(ky) = f"! on

[5’721’_“[11, S2k.]. If k is even, we claim that the fixed point for h(ky) is
2 (252) ok -2
[ (22 e (22
2k—2\ 2"t —k
R on+l _ 1) ont+l _ 71’

h 2k — 2 o 2"t —k\ 2k -2
Kk on+1l _ 1 - on+l _q - on+l _ 1
as desired.

The remaining cases follow a similar pattern, and so we omit them.
This gives us P,(f) = 2". Notice that the number of points with period n is at least P,(f) —
> o<icn Pi(f). We calculate

Notice that

and so

n—1
=0

0<i<n

so there is at least one point with period n for every n > 1. ]
We need two lemmas before moving on.

Lemma (Preimage Lemma). Suppose I and J are closed intervals and J C f(I). Then there exists
a closed subinterval K C I with J = f(K).
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Proof. Write J = [by,ba]. Since J C f(I), there exists ¢, co with f(c1) = b1, f(c2) = be. Without
loss of generality, assume ¢; < c2 (the other direction is the same, it just flips the interval). We
can define

z1 =sup{z € [c1,co] : f(x) = b1}
Then f(x1) = by by continuity, and if « € [c1, o] is such that x > z1, then f(z) > f(x1). Define
xo = inf{x € [x1,co] : f(x) = ba}.
Then f(z2) = by by continuity, and if z € [x1,a2] is such that x < x9, then f(z) < b2. So
K = [z1,22] C I is an interval with f(K) = J. O
Remark.
e Adapted from Lemma 7.3 here.

e Note if the containment J C f([I) is strict, we can make K C I strict.

Lemma (Fixed Point Lemma). Suppose I and J are closed intervals such that I C J. If J C f(I),
then f has a fixed point in I.

Proof. By the Preimage Lemma, we see that there is a K C I with f(K) = I. Write K = [c1,¢2] C
I = [a1,a2]. Note that a1 < ¢1 < ¢2 < ag. We have f(¢1) = a1, so f(c1) < ¢1, f(c2) = ag so
f(ea) > e, so taking f(x) — = we see there must be a g € J C I with f(z¢) — z¢ = 0, i.e. there
must be a fixed point in [. O

Problem 22 (Problem 2.2, James). Prove that if f : [0,1] — [0, 1] has a point of period 4, then it
also has a point of period 2.

Proof. Let x¢ be the point of period 4. We have
Of(zo) = {0, f(x0), f*(x0), > (x0)}-
Notice that there must be ¢, d with
fld) <e<d< f(e).

Without loss of generality, we can assume x¢ is the smallest value in Oy (zo) (otherwise relabel so
xo is the smallest). We have a few cases to consider.

Case 1: f(w0) < f*(x0) < f3(x0): Let ¢ = f2(z0), d = f*(x0), then f(d) =z and f(c) = f*(x0).

Case 2: f(xg) < f3(x0) < f?(x0): Let ¢ = f(x0), d = f3(x0), then f(c) = f? ( 0) and f(d) = xg.

Case 3: f2(z0) < f(x0) < f3(x0): Let ¢ = f(x0), d = f(xo), then f(d) = f*(x0), f(c) = f3(x0).

Case 4: f(z0) < f3(w0) < ( 0): Let ¢ = xo, d = f(x0), then f(c) = f(xo) and f(d) = f(z0).

Case 5: ;2Ex0% < flzg) < f?(x0): Let ¢ = f(x0), d = f?(x0), then f(c) = f%(z0) and f(d) =
fify)

Case 6: f3(x0) < f?(z0) < f(z0): Let ¢ = zo, d = f*(z0), then f(c) = f(xo) and f(d) = f3(x0).

This enumerates all cases, so we see that we must have this property.

Let w =min{c <z < d: f(z) = x}. Notice the interval [¢,w] # @, since f(c) # ¢ so w > c. Let
v € [¢,w] be such that f(v) = d. Notice there must be such a v, since w = f(w) < d < f(c) and f
is continuous. Then f2?(v) = f(d) < ¢ < wv. If f has no fixed points in [a, c], then in particular it
doesn’t fix points of [a,v]. Since f?(a) > a, the intermediate value theorem says that there exists
a point with period 2 in this interval.

If f does have a fixed point in [a, |, let ¢ = max{a < x < c¢: f(z) = z}. Since t < ¢ < v (where
the first inequality is strict since f(c) # c¢), we have that the interval (¢,v] is non-trivial. Notice
that f doesn’t fix any points in (¢,v] by construction. Let uw be a point in [¢,c] with f(u) = ¢
(the existence of such a u follows since f(t) =t < ¢, f(¢) > d > ¢, so intermediate value theorem
applies). Then f2(u) = f(c) > d > u, and since f?(v) < v we have f?(y) = y for some point in

26


http://www2.math.ou.edu/~cremling/teaching/lecturenotes/ln-dyn.pdf

[u,v]. Because f doesn’t fix any points in [u,v], we get that f admits a point with period at least
2. ]

Remark. Adapted from Lemma 2 |here.

Adaption of Hao’s Proof. Let a,b,c,d € Of(xg) be fixed, a — b+ ¢ — d — a. We show just one
case (the rest of the cases are the same and there’s a lot to do).

Assume a < b < ¢ < d. Consider I} = [a,b], I = [b,c], I3 = [c¢,d]. We have Iy C f([1),
Is C f(I3), 1 UI;UI3 C f(I3). Since I3 C f(I3), we get by the Preimage Lemma that there is a
Ky C Iy with f(K3) = I3. Now Iy C f(I3), so Ky C I C f?(K3). By the Fixed Point Lemma,
there exists a fixed point in Ko with respect to f2. Notice f(K2) N K2 C {c}, and this is a point
of period 4, so it is impossible for this point to have period 1. We’ve thus found a point of period
2. O

Problem 23 (Problem 2.3, James). Suppose a continuous map f : [0,1] — [0,1] has a periodic
point of (smallest) period 3. Prove that for any n > 1 there exists a periodic point p € [0, 1] whose
smallest period is n.

Proof. Assume z¢ € [0,1] is a point with period 3. Then we have

Oy (o) = {0, f(x0), f*(x0)}.
Let a,b,c € Of(xo) be distinct so that a < b < ¢. Then we can write Iy = [a, b], I2 = [b, ¢]. Without
loss of generality, assume that under f we have a — b — ¢+ a. The other cases are similar.

Since b — ¢, a — b, we have Iy C f(I;) (using here that intervals map to intervals). Note that
L UIy C f(Ia), since f(b) = ¢, f(c) =a,so [a,c] C f(I2). Now, Io C f(I2), so by the Fixed Point
Lemma we get there is a fixed point in s. Since Iy C f(I1), the Preimage Lemma says there is
a K1 C I with f(Ky) = I. Since I; C f(I3), this implies K1 C I; C f2(K3), so the Fixed Point
Lemma says there is a fixed point for f? in K;. Note that this cannot have period 1, since the
only point that K and f(K) could possibly share is {b}, which has period 4.

Note that if we have a point with period 2, we get for free a point of period 1 by the intermediate
value theorem. So it suffices to show that for n > 3, we can find a point with (minimal) period n.
The idea is to iterate the strategy we’ve just done.

We have Is C f(I2), so the Preimage Lemma says that there is a K7 C I with f(K;) = Is.
Since K1 C f(K1), we can find a closed interval Ko C K; with f(K3) = K, so f2(K3) = I.
Continue in this fashion up to n — 2, so K,,_s C K,,_1 is a closed interval with f”_Q(Kn,Q) = Is.
Since K, o C Iy C f(I1), there is a closed interval K,y C I; with f(K,—1) = K,—2. Since
K,—1 C I) C f(I2), there is a closed interval K,, C Iy with f(K,) = K,_1. Since K,, C f"(K,),
there is a fixed point for f™ in K,. Let x be this point.

Note that f(x) € I; while z, f*(x) € I, for 1 < k < n. Clearly f cannot have period 1, since the
only point shared between I; and I» has period 3. For the other cases, we utilize the remark after
the Preimage Lemma which says that we can make these sets strictly decreasing. O

Remark. See Sharkovskii’s Theorem.

Problem 24 (Problem 2.4, James). Let f : S — S! be the “times 2” map x — 2z (mod 1). Let
e > 0 be small and (z,,) be a sequence of points such that

d(@n+1, f(zn)) <e
(1) Prove that there exists an orbit f"(z) such that

d(f"(z), zy) < 2e.
(2) Prove that such a z is unique.

We need two claims.
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Claim. For n > 1, if d(z,y) < 2= then d(f(z), f(y)) < 27"
Proof. If d(x,y) < 2=+ then we have
lz—y| < 27D or 1 — |z —y| < 27D,
If ,y < 1/2, then f(z) = 2z, f(y) = 2y, and d(z,y) = |z — y| < 2-"*D. So
(@) = f(y)l =2z —y| <2-270FD = 27" — d(f(2), f(y)) <27

If ,y > 1/2, then f(x) =2z — 1, f(y) =2y — 1, and d(z,y) = |x —y| < 2=V, So

[f (@) = f(y)l = 2[x —y[ <27" = d(f(2), f(y)) <27
If 2 <1/2,y > 1/2, then f(x) =2z, f(y) =2y — 1. Notice

d(f(z), f(y)) <1—=1f(z) = fy)| =1 - 22— (2y — 1),

d(f(x), f(y)) < 1f(@) = fy)] = [22 = (2y — 1)|.
If d(x,y) = |x — y|, then this implies that x € [1/4,1/2), y € [1/2,3/4]. So f(x) € [1/2,1) and
f(y) €10,1/2]. In other words, f(z) > f(y), so |f(z) — f(y)| = f(x) — f(y). Hence,
d(f(x), f(y)) <1—=Q2z -2y —1)) =22 -2y <2z —y[ <27
If d(z,y) = 1 — |z — y|, then this implies z € [0,2~"*D) and y € (1 —2-*D 1), 50 f(z) € [0,27"]
and f(y) € (1 —27",1), forcing d(f(x), f(y)) <27 O
Remark.
e As a corollary, we have that if € < 1/2, then

dw,y) < e = d(f(x), f(y)) < 2e.

One can refine this to say that for sufficiently close points, the distance between them
doubles for iterates of f.

e As a reference, the contents of this claim can be found in the proof of Katok & Hassel-
blatt, Proposition 3.2.3.

Claim. For 0 < § < 1/16 we have that
d(f(x),y) <26 = Bs(x)N [~ (y) # 2.
In other words, there is a z with d(x,z) < § and f(z) = y.

Proof. This follows by using the fact that ¢ is sufficiently small and we’re dealing with an expanding
map. By the observation above, this implies

f(Bs(x)) = Bas(f(z)),

so y € f(Bs(x)), meaning there is a z € Bs(z) with f(z) = y. O

Remark. Though not directly related, the inspiration for the solution came from Proposition 1
found here.

Solution of Problem. We break it up into steps. Throughout, fix 0 < € < 1/32. Note that in
particular 2e¢ < 1/16.
Step 1: Let
Api={z€8": fi(z) € Be(m;) for 0<i<n}, A=) A
n>0
The idea is to show that each of these A,, are nonempty and closed. This implies that they
are compact, and since A,, C A, for m > n we get that the FIP implies A # &. The

layout is as follows:
28


https://core.ac.uk/download/pdf/82334468.pdf

e Step 2 will show each A,, is nonempty.
e Step 3 will show each A, is closed. From here, we deduce A is nonempty.
e Step 4 will then show that A is just one point.

Step 2: By assumption, we have

d(f (), ri11) < €
for 0 <. For j > 1 set

AL =1, )\j:7]71+1
2
Solving this recursion, we get
A =221,

By assumption, for fixed n we have

d(f(zp-1),zn) <e.

The goal is to build a sequence z](-”) where each z](”) satisfies our desired property. Set

() (71)1 € B ja(wn—1) with f(zq(ﬁ)l) =z,. We

n . . .
Zn ' = Tp. Using our above claim, there exists a z,,
see that

d(f(@n-2),2")) < d(f(@n-2), @n1) + d(@n-1,2",)

1 3
<6<1—|—2>:)\26:26<26.

We now iterate. Notice that there is a 2", € By, e/2(xn—2) with f(zé”_)Q) = >™ and

n—2 n—1
(n) (n) A2 7
d(f(zn-3), 2, 9) < d(f(xn—3),2n—2) + d(Tn—2, 2, 9) <€ > +1)=2Xe= 1€ < 2e.

We can find a 27(:1_)3 € Byye/2(Tn-3) with f(zfln_)?)) = z,(Ln_)2 and

A(f(xn-s), 25) < d(f(2n-1), Tn3) + d(zn_3,25) < € (23 + 1) = hie= e < 2.

(n)

Continuing inductively, we see that for 2 < ¢ < n, we can find z,

i € B)\Z.E/Q(xn_i) with

P = 2 and d(f(2n—io1),207%) < Nipre = (2 - 2177 N)e < 2.

n—u
Notice z(()n) satisfies f7 (zén)) = z](ﬂ) for 0 < j < n by construction. We see then

n—

d(f" (), 20 j) = d(z(n)jaxn*j) < %6 Sefor0<j=<n

So A, is nonempty for each n.

Step 3: Fix n > 0. We now show A,, is closed by taking sequences. Let (z,,) C A, be a sequence
of points with z,, — z. The goal is to show z € A,, as well. Since z,, — z, we get that for
all kK > 0 there exists sufficiently large N with

d(zm,2) < K
for m > N. So
d(.%'o’ Z) S d([]fo, Zm) + d(Zm’ Z) <e€ + K.
This is for all k > 0, so taking kK — 0 we get

d(xo,z) < e.
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For 0 <7 < n, we see

d(f'(2), ) < d(f'(2), [ (zm)) + d(f* (2m), ).

Since f! is continuous on the circle, we can take m sufficiently large so that for all x > 0

d(f'(2),2i) < d(f'(2), F(2m) + d(f'(2m), 2i) < K+ e
Taking x — 0, we have
d(fi(z),a:i) <e.

So it holds for all 0 < ¢ < n. This shows that A, is a closed set, so in particular it is
compact. Putting everything together, there exists a z € A so that

d(fl(z)v xl) <e€

for all 3.
Step 4: Suppose yg,y1 € A. Then for all n, we have

d(f*(yo), i) < e.
This coupled with the triangle inequality implies

d(f'(yo). f'(y1)) < 2¢
for all 4. Since e < 1/32, this says that

(o), £o) <

for all ¢ > 0. We claim that this is impossible unless yg = y;.
If yo # y1, then we have d(yo,y1) = 6 > 0. By an earlier observation, the distance
between two points doubles until it passes 1/4. So we have

. 1
20 < —
4

for all i. But this is impossible, since this implies § = 0, a contradiction. Hence A is a
single point.

So we have that there is a z so that

d(f(2),z;) < € < 2.

Remark. A slight modification will give you that this property holds for all expanding maps.

4. ErRGoDIC THEORY

Problem 25 (Problem 3.1, James). Let T": (X, ) — (X, 1) be a measure preserving transforma-
tion. Prove that the following are equivalent.
(1) T is ergodic.
(2) If f is measurable and f o7 = f, then f is constant almost everywhere.
(3) If f is measurable and foT = f almost everywhere, then f is constant almost everywhere.
(4) If f € L?>(X,pu) and foT = f, then f is constant almost everywhere.
(5) If f € L?(X, ) and f oT = f almost everywhere, then f is constant almost everywhere.

Remark. Recall that T : (X, u) — (X, u) is ergodic if and only if for any measurable set A C X
with T71(A) = A, we have either u(A) = 0 or u(A°) = 0.
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Proof. (1) == (2): Let f : X — R be a measurable function, 7" : X — X ergodic, and
suppose foT = f on all of X. For ¢ € R, consider the sets A, = {z € X : f(x) > ¢} and
B.={x € X : f(x) <c}. Since foT = f, we have

A, =T A)={r e X: foT(x)>c}.

By ergodicity, this implies u(A.) = 0 or u(B.) = 0. If f were not constant almost everywhere, then
we have that there is some ¢ € R with u(A.), u(B.) # 0, contradicting the above property. Hence
f is constant almost everywhere.
(2) = (3): Suppose that f: X — R is measurable and foT = f almost everywhere, say on a set
A C X. We can define a new function ¢g : X — R such that g = f almost everywhere and goT = g
everywhere. We have that g is a measurable function (assuming the measure is complete) being
almost everywhere equal to a measurable function, and by (2) we see that g is constant almost
everywhere, so this forces f to be constant almost everywhere.
(3) = (4): Suppose f € L*(X,u) with foT = f everywhere. In particular f is measurable, and
we see that f o7 = f almost everywhere, so f is constant almost everywhere.
(4) = (5): The same trick for (2) = (3) applies here.
(3) = (1): Let A C X be a measurable set with T~}(A4) C A. We have that x4 : X — Ris a
measurable function and we note that x4 o7 = xp-1(4) = xa. Hence property (3) says that x4 is
constant almost everywhere, implying that either u(A) = 0 or u(A€) = 0.

I believe (3) <= (4) <= (5) depends on whether the space has finite measure, but I cannot
find a reference for this. O

Problem 26 (Problem 3.2, James). Let R : x — = + a be the rotation map on the circle.

(1) Prove that R is ergodic.
(2) Prove that R is uniquely ergodic.

Proof.

(1) First, we show that a rotation is measure preserving. Note that the measurable sets w.r.t.
Lebesgue measure are generated by open intervals, so it suffices to show that for any interval
(a,b) C [0,1], we have m(R~1((a,b))) = m((a,b)). We note that

R '((a,b)) ={zx €[0,1]: R(z) =z +a (mod1)E (a,b)}
=(a—a,b—a) (mod1).

If b— a < 0, then we get that this is mapped to (a — a + 1,b — a4+ 1), and the measure
of this is b — a. If there exists a ¢ € (a,b) with ¢ — a = 0, then this is mapped to
(a—a+1l,c—a+1]U[c— a,b— «a), which has measure b — a again. Finally, if a —a > 0,
then this is mapped to (a—«, b—«a), which has measure b—a. Hence it is measure preserving
on the generators for the o-algebra, so measure preserving.

Now we need to show ergodicity. We use Problem 2.1. This is a finite measure space
so the equivalence of all the properties holds. In particular, let f : X — R be in L?(St, m),
and suppose that f o R = f almost everywhere. Since f is in L?, we can write it in terms
of its Fourier series;

f(x) _ Z an€27r7jn:c’
nez
f o R(l’) _ Z an€27rin(x+a) _ Z an€27rin:r:627rinoz’
neL nez
where a,, are the Fourier coefficients. Since these are equal almost everywhere, their Fourier
coefficients are equal, so
an€27rinoz =a, = a [1 _ eQTrina] —0.
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Notice

Thus either a,, = 0 or 2™ = 1. The latter only happens if na is an integer. Since « is

irrational, this only happens if n = 0. Thus, we have that f(z) = ap almost everywhere, so
f is constant almost everywhere. This tells us that R is ergodic.

A map is uniquely ergodic iff it has one ergodic Borel probability measure. Let m denote
Lebesgue measure. Let i be a measure such that R is ergodic with respect to p. The goal
is to show that for any f € C(T) we have

/ fdm = / fdp.

Riesz-Representation then says that m = u as measures, and we can conclude uniqueness.
Let

an:/f<$)e—27rinxdm

be the Fourier coefficients with respect to Lebesgue measure. For f € C(X), we denote the
partial sums as

N
on(z) = Z an >,
-N

Notice that we have

/ on(z)dp = / <§]; ane2mm> dp = ag = / fdm.

To see this explicitly, we have

/€2ﬂikxdﬂz /e?m’k(r-&-a)du:627rika/627rika:du

using the fact that p is T-invariant. Since « is irrational we see that this integral must be
zero for k # 0. Proceeding by linearity gives the above result.
Using Fourier, we see that oy — f uniformly, so that

/ fdm = lim / opdp = / fdp.

This gives us the desired result.
O

Problem 27 (Problem 3.3, James). Give an example of a uniquely ergodic homeomorphism of a
compact metric space which is not minimal.

Proof. See this blog postl. ]

Problem 28 (Problem 3.4, James, Suxuan). Prove that T : T2 — T2 given by T'(z,y) = (z +
a,y + x) for a ¢ Q is ergodic.

Proof. We first need to check that T preserves measure with respect to Lebesgue measure. We can
equivalently show that, for all f : T? — R which are integrable, we have

/J"(a?,y)d(aC X y) = /f o Td(z x y).

/ f o T(w,y)d(x x y) = / f(@+ vz +y)d(z x y).

Fubini/Tonelli applies to give

/ . flx 4+ a,z + y)dydz.
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Let z =2 +y, dz = dy, we see that

/ f(z+ o,z + y)dydx —/ f(z+ a, z)dzdz,
T2 T2

and doing a change of variables u = x + «, we have

/m F(u, 2)dzdu = /TQ Fle (e x ).

Thus, it is measure preserving.

Next, we need to establish ergodicity. Let f € L?(T?, \) be such that foT = f almost everywhere.
The goal is to establish that f is constant almost everywhere. We again use Fourier series. On the
torus, we note that

o
= Z an627rin~(x7y) = Z a(nhnz)eZTrinlermngy
nez? ni,ne=—00
almost everywhere. Note that
x
f 0 T(:E? y) = f(x + o, T + y) = Z a(n17n2)6277in1 ($+a)627rin2($+y)

ni,na=—00
0

_ E : 2mi(ni+ng)r 2minia  2wingy

= a(m 777‘2)6 (& (& .

ni,ne=—00
Doing a shift in n; (since it ranges over all integers anyways), we rewrite the series to get
(o)
Z - _n2’n2)627rin1x62m'(n1 —ng)ae27rin2y.
n1,nm2=—00
The same trick as before applies. The coefficients of these series must be equal, so we have

_ 2mi(n1—n2)a
G(n1,n2) = A(n1—n2,n2)€ :

Notice that we have ’a(nl,nz)‘ = ’a(n1—n2,n2)‘ = ’a(n1—2n2,n2)’ == ’a(n1—l~m2,n2)’ = -+, where
k is an integer. Riemann-Lebesgue forces a y = 0if ng # 0. Thus, it suffices to examine the
case no = 0. Here, we have

ni,n2

_ 2minia
a(nljo) = a(nho)e e,

Notice that this is the same as

oy (1 1% =0,
so either a(,, gy = 0 or e?mma — 1. Like before, « is irrational, so this implies that for no
non-zero integer n; we have e?™™"® = 1, so a(n,,0) = 0. Hence, the function is constant almost

everywhere. 0
Suzuan’s Proof. For f € L*(T?), since m(T?) = 1 < oo, by Hélder’s inequality, we have
1
£l < [Im(T?)2 || fl2 < oo,
so f € LY(T?). Let f(x,y) = > (mn)ez2 a(m,n)e%i(mﬁr”y) be the Fourier series of f, then

f( Z (mm) e2mi (m(z+a)+n(y+z))

Z 627r2ma 27rz((m+n)z+ny)
(m,n)

m)EL
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Suppose f(z,y) = f(T(z,y)), then we have

Z Amm) 627ri(mm+ny) — Z a(mm)e?wima62ﬂ—i((m+n)m+ny) ’

(m,n)€Z? (m,n)€Z?

so the coefficients of the term e2™i(kz+y) (k,l) € Z are the same, so

_ 2mima
(m+n,n) = € (m,n)-

Set n =0, then
A(m,0)) = € Um0,

and since a ¢ Q, e*™m* =£ () for m € Z \ {0}, so A(m,0) = 0 for nonzero integers m.
For n # 0, we have

__—2mima _ __—2mimra _
A(m,n) = € A(m4nm) =" =€ A(m4rnmn) = " -

By the Riemann-Lebesgue lemma, a4y ) — 0 asr — oo, and since |e=2mimra) < e_%imma(mwn’n)—)

0 as 7 — 00, 80 A(p ) = 0 for n # 0. Then we obtain f(z,y) = a( ) a.e. Hence T is ergodic. ~ [J

Problem 29 (Problem 3.5, James, Suxuan). Prove that T : T2 — T? given by T(x,y) = (2x +
y,x +y) is ergodic.

Proof. Tt suffices to check that for f : T? — R integrable, we have

/f(x,y)d(x Xy) = /f o T'(z,y)d(z x y).

Lebesgue measure is o-finite, so it is fine to use the lemma. Note that by definition of T', we have

/ foT(z,y)d(x xy) = / f@x+y,xz+y)d(x xy).
T2 ']1'2

Note that Fubini-Tonelli works here, so it is fine to iterate the integral to get

/ . fQx 4+ y,z + y)dzdy.

A change of variables u = x + y, 2 = & + u gives du = dy, dz = dx, and so we get the integral is
equal to

/W f(z,u)dzdu = /11'2 Fz,y)d(z x y).

Hence, T' is measure preserving.

We now need to show that T is ergodic with respect to Lebesgue measure. We invoke the L2
definition of ergodic, so T is ergodic iff for all f € L?(T?,\), we have that f o T = f implies f is
constant almost everywhere. We have that f in L?(T?, \) implies that we can express it almost
everywhere in terms of its Fourier series,

f(xa y) — Z a(nl,n2)€2ﬂ—i(nl’n2).(z’y)

(n1,n2)€Z2
SO
_ 2mi(n1,n2)-2z+y,x+y) __ 2ming (2z+ 2ming (x+
f o T(gj‘7y) = E a(nl,ng)e (n1,n2)-( y,2+Yy) — § a(nth)@ 1( y)e 2(z+y)
(n17n2)€ZQ (nl,ng)GZQ
_ E Ay e27rzm(2n1+n2)e27rzy(n1+n2)‘
(n1,n2)€Z?
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Let k = ny + n9, then no = k — nq, so the series can be expressed as
2mwix(ni+k) 2mwiyk
E A (ny k—n1)€ (n1+k) g2miyk
(nl,k)622
Letting w = nq + k, we have ny = u — k, so
2mizu  2mwiyk
E A(u—k,2k—u)€ e,
(u,k)€Z2
Relabeling v and k, we have that the series is equivalent to
2mizny 2miyn
§ a(n1fn2,2n27n1)e Les™ 27
(n1,n2)€Z?
so since these are equal (almost everywhere), we have that the Fourier series agree, so
A(n1,n2) = A(n1—ng2,2na—n1)-
Fixing (n1,n2) € Z% non-trivial, we iterate to see that
A(n1,n2) = A(ny—na,2ne—n1) = A(2n1—3n2,5n2—3n1) —

We see its equal to infinitely many distinct coefficients, so Riemann-Lebesgue says that it must be
0. Hence, it’s constant almost everywhere, so T is ergodic. O

Suzuan’s Proof. We use the same setting as problem 3.4. f(z,y) = Z(m,n)EZQ a(m’n)e%i(mgﬁny) be
the Fourier series of f, and

FT(@y) = 3 apuemmEetvin@y)

(m,n)€Z?
_ Z a(mm)e?ﬂ'i((?m—i—n)x-ﬁ-(m—‘rn)y) )
(m,n)ez?
Suppose f(z,y) = f(T'(z,y)), then
Z a(m7n)e27ri(mm+ny) _ a(m’n)627ri((2m+n)x+(m+n)y)’
(m,n)€Z? (m,n)€z?

345 5 1 and 355 < 1,

. . (2 .
SO A(2mtnmtn) = G(mpn)- The eigenvalues of the matrix <1 1] s

so for (m,n) € Z*\ {(0,0)}, (m,n) is not an eigenvector of the matrix <? }) Let <zk> =
k

k
2 1 m .
(1 1) (n) , then |pg| + [gx| — oo as k —. Then by the Riemann-Lebesgue lemma, a(, q.) — 0
as k — o0. Since a(nn) = Ap,q)> We then obtain ag, ) = 0 for (m,n) # (0,0), therefore

f(z,y) = a(yp) a.e. It follows that T is ergodic. O

Problem 30 (Problem 3.6, James). Let A € SL(d,Z) and let A : T — T¢ be the induced
automorphisms. Prove that A is ergodic if and only if A has no roots of unity among its eigenvalues.

Proof. Note that A will always be measure preserving, since det(A) =1 (use one of the equivalent
definitions for measure preserving).

(<= ): Assume for all A\ € Spec(A), |\| # 1. We wish to show that A is ergodic. Let f € L?(T4)
be such that f o A = f almost everywhere. Using Fourier series, we see that

- . - At
f: § :an€2ﬂ'znm: § :an62mnAx: § :an€27rznA z

nezd nezd nezd
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By a shift, we get that the Fourier coefficients are such that.
QAp = A Aty

A and A! share the same eigenvalues. The significance of the fact that for all A € Spec(A),|\| # 1
is that the orbit of any non-zero vector n € Z? is either going to be infinite under A. In other
words, we get infinitely many coefficients, all equal to each other, or we get that it contracts to
0, meaning all the coefficients are equal to 0. In the first case, Riemann-Lebesgue says that these
must all be zero. Combining the cases, we have that only the zero vector is non-trivial, telling us
that f is constant almost everywhere.

( = ): We go by contrapositive. Assume that A has a root of unity among its eigenvalues; say
it is an nth root of unity. This implies that there is a vector v € R? with A"v = v. The map
A" —1d : R? — R? is going to have non-trivial kernel then, and so similarly the transpose of the
induced map on Z? will have a non-trivial kernel (A")! —1d : Z? — Z%, so there is some 0 # m € Z¢
with (A™)'m = m. Hence, it cannot be ergodic; we can construct a function f so that fo A = f
almost everywhere but f is not constant. O

Problem 31 (Katok & Hasselblatt 4.1.5, James). Suppose f : X — X is a topologically transitive
continuous map of a compact space X and for every continuous function ¢ the averages

—_

n—

o(f*(z))

k=0

SEE

converge uniformly; i.e. for all ¢ € C(X)

ll-lloo
An(p) — Ale).
Prove that f is uniquely ergodic.

Proof. Since f is topologically transitive, there exists x with O(z) dense in X. By definition, we
have uniform convergence

‘ 1 n—1 i
An(p) = Alp) = lim ~ 3 o f~.
k=0
The goal is to show
Atg) = [ o
is constant. Doing so implies that for any other invariant ergodic measure v,
/gpdl/:/god,uforallgoeC(X) = pu=u.

So p is uniquely ergodic. To do so, we show that for all other y € X, A(p)(y) = A(p)(x). We
claim that for all y € Of(x), we have A(p)(y) = A(¢)(x). To see this, notice y € Of(x) implies
y = fI(z) for some j. Hence

n—1 n—1
Al)0) = Jim 3 el () = lim > o (@) = [0 fdn = [ edu = Al) (o),
k=0 k=0

using f-invariance of dyi,,. Hence A(¢p) is constant on a dense subset Of(x). By uniform convergence
we have that A(p) is constant everywhere, giving us that the measure is unique. (|
36



5. SYMBOLIC DYNAMICS
Problem 32 (Problem 4.1, James). Let
Y, ={1,2,...,n}%
be the space of sequences and let
d((wn), (yn)) = 27 mintllwuil,
Prove that d is a metric and that it generates the product topology.

Proof. The first step is to show that this is a metric. There are four properties to show:

(1) d(xn,yn) > 0 by construction.
(2) If d(zpn,yn) = 0, then this implies that for each n, x,, = y,, since otherwise we have an n
so that x, # yn, and so

d(xn, yn) > 271"l > 0,
a contradiction. Likewise, if 2, = y,, then d(z,,y,) = 0.
(3) Notice
(T, yn) =27 min{|il:ziFy} _ o—min{|il:yiFei} _ Ad(Yn, ).
(4) Let (zp), (yn), (2n) be three sequences. Then we claim that
d(Tpn,yn) < d(Tp, 2n) + d(2n, Yn)-
By definition,
d($n, Zn) — 2—min{|i|:mi7$zi},
d(yna Zn) =27 min{‘i‘:yi;é%h
d(xn, Zn) + d(yn7 Zn) _ 2—min{\i|::{:i7ézi} +92- min{\i\:yi#zi}.
Let a = min{|i| : x; # y;}, b = min{|i| : x; # z;}, c=min{|i| : y; # z;}. U b<aorc<a,

then
20 <90 — 9@ < ob
or
270 < 27¢,
SO

270 <27 4270
Now, we claim that it is impossible for b > a and ¢ > a. If b > a and ¢ > a, then this
says that the smallest integer (in magnitude) where (z,) disagrees with (x,) is b, which is
farther out than a, and the smallest integer where (z,) disagrees with (y,) is ¢, which is
farther out than a. But this means that at index a, z, agrees with both z,, and y,, which
is impossible since x,, doesn’t agree with y,. So the triangle inequality holds.

Now we need to show that it generates the product topology. On Z/NZ, we just take the discrete
topology, and so we equip €2 with the product topology from this. Consider the open ball

Be(afn) = {yn : d(xnayn) < 6}'

Notice that for € > 0 there exists an n large enough so that 27" < e. Let n be the smallest such
integer. Then this says that d(x,,y,) < 27", so that this is the collection of all sequences which
agree with x,, up to the nth index. So in other words, the open balls are just

By (xn) = {(yn) : yj = z; for [j| < N}.
The basic open sets with respect to the product topology are generated by the cylinders of rank k;

M1, ,ME

Cartan (Yn) : Ym,; = aj}.
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Let 7 be the product topology, 74 be the topology generated by d. We see that every open ball
corresponds to a cylinder of rank 2N + 1, so 7y C 7. It suffices to show that we can construct
arbitrary cylinders from open balls.

For any m, we need to show that we can construct

Cq' =A{Wn) 1 ym = a}
from open balls. Finite intersections will give us arbitrary cylinders, completing the proof. We can
clearly do this for m = 0, so assume m # 0. Let R = {(x,,) € Qn} be the collection of sequences
with z,, = a. Then
U Busrlen) = {n) : ym = a} = O
(zn)ER

Problem 33 (Problem 4.2, James, Hao).
(1) Prove that the full shift on n symbols is topologically mixing.
(2) Give an example of an uncountable transitive subshift of finite type on 2 symbols which is
not topologically mixing.

Proof.
(1) We collect some definitions and thoughts first.
e We define
Qn ={w = (wi)ijez : w; € Z/NZL}.
e We define a cylinder of rank k to be the set
Ch=Calaki={w € QN 1wy, = g for 1 <i <k},

where a = (o, ...,a1) and n = (n1,...,ng). The topology on Qy is generated by the
base

B:={C":keZnecZFk ac (Z/NZ)* 1}
o A symmetric cylinder of rank 2m+1 is defined by

Sm.— C—m,—m—i—l,...,m
a Ay X—m4-15--,0m

One thing to remark is that for every cylinder C7, there exist a symmetric cylinder
Sg' so that SE C CF. Hence, we can refine our base to be

B={S":m¢cZac (Z/NZ)*"}.

e The left shift oy : Qn — Qn given by on(w) = W', where w; = w;;1. As noted in
Katok, this is a homeomorphism on 2.

e A 0-1 matrix A is said to be transitive if there exists a positive integer m so that the
entries of A™ are all greater than 0.

e Let m = min{k : afj > 0 for all 4, 7}. We call m the transitive power of A.

e If m is the transitive power of A, then we claim that for all n > m and all vertices 4
and j we have aj; > 0. To prove this, we go by induction. Note that it holds for m by
construction, so the base case holds. Assume it holds for some n — 1 > m, we wish to
show it holds for n.

Note that we can interpret the entries a%_l in A"~ as indicating whether there is a

path of length n connecting vertex i to vertex j. If a;; >0 for all vertices 7 and j, we

get that there is a path of length n connecting every vertex to every vertex. The claim

then is that for any vertex j, there is a path ¢ = g — -+ — i,41 = j connecting ¢ to j.

If not, this means that for any choice of vertex i, there is no edge connecting i, to j.

But this means that there is no edge connecting any vertex k to vertex j, contradicting
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the fact that we have a path connecting ¢ to j of length n. Thus, we have some vertex
k so that there is an edge (kj), and we have a path of length n — 1 connecting 7 to k,
so adding this vertex gives a path of length n connecting ¢ to j. The choice of vertices
@ and j were arbitrary, so we get that a;; > 1 for all vertices 4,j. (Note that Katok
offers an analytic approach instead, see Lemma 1.9.7).

o Let A:= (aij)%_:lo be a matrix where a;; € {0,1}. We call this a 0-1 matriz.

o Let

Qg :={w €Oy :av,w,, =1 forneZ}.

Consider the directed graph G4 = (V, E), where V = {0,...,N — 1} and (ij) € E iff
a;; = 1. We note that A is then the transition matrix for G 4. Note that we can then
interpret €24 to be the space of infinite admissible closed paths on the graph G 4.
e The restriction o4 := on|q, is the subshift of finite type.
o A full n-shift is 04 where A = (a;j) is such that a;; = 1.
e The symmetric cylinder of rank 2k+1 on €4 is defined to be
SF L i=Qan Sk

Q,

Equipping 24 with the subspace topology, we have that the base
B :={Sk ,:k€Zac(Z/NZ)*}

generates the topology on €24.

e Recall that a topological dynamical system f : X — X is said to be topologically
mixing if, for every U,V open and nonempty, there exists an N so that for all n > N
we have f"(U)NV # @.

e If the topology of X admits a base By, then to show that f: X — X is topologically
mixing it suffices to show that for every U,V € B, there exists an N so that for all
n > N we have f"(U)NV # @. This follows since By is a base, so for every nonempty
U and V there is A,B € Bx so that A C U, B C V, and we get the result.

e To show that o4 is topologically mixing, we can reduce the problem even further. Let
S’;’A, SELA be two symmetric cylinders. Letting s = min{k,m} we have that we can

project o and 8 to the middle 2s + 1 coordinates. Denote these projections by o/, 5’
respectively. Then we have that 55, 4 C Sk aand S5 4 C S - 1f we show it for these
new cylinders, then we get the result holds for the larger cyhnders Hence it suffices
to check that the mapping is topologically mixing on cylinders of the same rank.
Utilizing the above definitions and remarks, it suffices to show that if S* o, and Sﬁ 4 are
two symmetric cylinders, then there exists an N so that for n > N we have

Tk (Saa) N SE A # 2.
To simplify notation, denote
Sa =8k A, Spi=Sha-

Since o4 is a full shift, let N = 2k + 1 and take n > N. We have that n is of the form
n =2k + 1+ j for j > 0 an integer. Since ay, f_j are in Z/NZ, we see that aflkﬁ_k > 0;
in other words, there is a closed path of length j connecting the vertex aj to S_i. Hence,
we can construct an admissible path of length (2k + 1) + (2k + 1) + j = 4k + 2 + j, where
the first 2k + 1 coordinates are the vector « and the last 2k + 1 coordinates are the vector
B, and the middle j coordinates are the ones which connect aj to B_p. Setting the rest
of the coordinates to whatever we wish, we see that this will be in the intersection so that

04 (Sa) N Sp # @. Hence, the full n shift is topologically mixing.
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(2) It’s on two symbols, so we're looking at
Qs ={we D aw,w,,, =1fornecZ}

for some matrix A. For the subshift to be transitive, we need the matrix A to also be
transitive. By the same sort of argument as in (1), I believe that if the matriz is transitive,
then we always get o4 is topologically mixing (see Katok Proposition 1.9.9). However,
we can construct a topologically transitive subshift which is not topologically mixing. Let

()

if n is even,

Then

)

A" =
if n is odd.

_ o O =
[—

so A is not transitive. €4 is the set of sequences which alternate 0 and 1. A is irreducible
since we can always find a path connecting two vertices. Since every sequence maps to
every sequence under o4, we get that the system is actually minimal. It is not mixing,
since it will not stay in any symmetric cylinder, as it is alternating. Hao has the less trivial
counterexample.

TODO: FIND HAOS EXAMPLE

6. SMOOTH DYNAMICS

Problem 34 (Problem 5.1). Prove that the topological entropy of a diffecomorphism of a compact
manifold is finite.

Remark. Result can be found here. The problem says solved on the website but I (James) must
have missed this week.

Problem 35 (Problem 5.3, James). Let f : S' — S! be the map f(z) = 2z (mod 1) and let
g:S"— S' be a C' map which commutes with f. Prove that g is a times m map for some m.

Proof. We have fog=go fon S!. In particular, 29(0) = g(0), so g(0) = 0. Next, notice that
(f(g(2))) = f(g(x)g'(x) = g'(f(2)) f'(x) = (9(f(2)))".

Hence, we have
2¢'(z) = 2¢'(22) = ¢'(z) = ¢'(22).
Taking x:/2, we see that this equivalently says
g'(x/2) = g'(x).
Iterating this, we see
J@)=g(2"2)=- =42 ")
for all n. By the continuity of the derivative, we can take the limit as n — oo to get
g'(z) =4'(0)
for all x € S'. Hence, we have ¢’(z) is constant on S!, which forces g(x) = ma (mod 1) for

m = ¢'(0). O

Remark. This is similar to Lemma 2.1.4.
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Problem 36 (Problem 5.4, Hao). Let M be a Riemannian manifold. Let f : M — M be an
expanding map. That is, there is a A > 1, C' > 0 such that for all v € TM and n > 1, we have

1D f ]| = CA™[|v]].

Let € > 0 be small and (z;);>0 be a sequence of points such that d(z;y1, f(x;)) < e. Prove that
there exists an orbit f*(z) such that d(f"(z),z;) < Ce, where C' is a constant depending only on .
Prove that such a z is unique.

We introduce two lemmas first.

Lemma (Lemma 1). Let M be a compact manifold, f : M — M a local diffecomorphism. Then f
is a covering map onto its image.

Proof of Lemma 1. We break this up into parts.

Step 1: We need to show that for all y € M, f~!(y) is finite. To do so, notice that {y} is closed in
M, so f~1(y) is a closed subset of M. Since M is compact, this implies f~!(y) is compact.
For each = € f~!(y), take a neighborhood U, of z such that f is a local diffeomorphism
on U. Notice that {Uy},c¢-1(y) is an open cover of f~(y), and so by compactness there
are finitely many of these sets; label them U; for 1 < i < n. Restricted to each Uj;, f is a
diffeomorphism, so in particular injective, and hence U; consists of exactly one point. Let
x; € Uy, then {z1,...,2,} = f1(y).

Step 2: Keep the {U;}!" ; which are neighborhoods around each z;. After slightly shrinking them,
we can consider these all pairwise disjoint (here we utilize the Hausdorff property). Let

Then {f~1(V) N U;} is a disjoint collection of open neighborhoods homeomorphic to V
under f. So V is evenly covered neighborhood of y.

Step 2 tells us that this is a covering map. O
Before proving the next lemma, we recall the Lebesgue number lemma.

Theorem (Lebesgue Number Lemma). If (z,d) is a compact metric space, {U,} is an open cover
of X, then there is a number § > 0 such that every subset of X having diameter less than § is
contained in some member of the cover.

Lemma (Lemma 2). Let M be a compact Riemannian manifold, f : M — M expanding. Then
there exists an € > 0 such that for all y = f(z) € M, there is a U C M open and x € U with

(1) f(U) = Be(y),

(2) flv : U — f(U) is a diffeomorphism,

(3) flu is strictly expanding.

Proof of Lemma 2. Since the map is expanding, we claim there is an ¢y sufficiently small for which
f‘Beo(I) is strictly expanding for any x (see Proposition 2.4.2; this utilizes the Implicit Function
Theorem and compactness). Let y € f(M) (the image of M). Choose a neighborhood V; of y
which satisfies two properties:

1) f4(Vv,) = Uzef-1(y) Uz, With Uz a neighborhood of z.

(2) For each z € f~(y), diam(U,) < €o so that f is strictly expanding on U,.
Property (1) is by Lemma 1, and property (2) is by the remark earlier. Notice the collection

of Vy cover M. We can invoke the Lebesgue number lemma to find an € > 0 such that for any
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y' = f(2) € f(M), there is a B(y') C V,, for some y. Using property (1), we see
f_l(Be(y,)) - f_l(vy) = |_| Us.

zef~(y)

Intersecting gives us “slices,” S, = f~1(B(y’)) N Uy. One of these slices must contain 2’ (where
again, f(z') = y'). Notice this slice satisfies the properties of the lemma. O

With this, we have enough to prove the problem.

Proof of Problem. Let € > 0 be given as in Lemma 2. Let ¢ < ¢//2. The goal is to define a
sequence (yi). in the first step, we set yo = xg. We move on to the inductive step. Given y; such
that f*(y;) = x;, we construct y;;+1 as follows. Since

d(f (), wiv1) = d(f (i), miv1) <€,

there exists ;11 such that f*(y;11) = x;41, and ;41 in the slice of f~(B.(f*(y:))) = [~ (Be(xs))
containing v;. To do so, we need to iteratively apply f1.

Throughout the next paragraph, assume we choose things sufficiently small so that we can ignore
any C factor as being problematic.

Lemma 1 says that f is a covering map onto its image. So since € small, we take f~1(Bc(xi11))
and it divides up into finitely different open sets (we refer to these as “slices”). Since f*1(y;) is
in Be(z;), there is a slice U containing f*(y;). Take z; € U with the property that f(z;) = ;1.
Notice that ) )

d(zi, f*(yi)) < Xd(f(zz-),f”l(yi)) = Xd($i+1ﬂf’+1(yz')) < é
Since A > 1, this is smaller than ¢/C (which, taking e small, we can ignore as being problematic).
We can now take the ball of radius ¢/C\ around z;. We see fi(y;) is in this, so there is a slice such

that f~1(y;) is in that slice. In that slice, we choose z;_1 so that f(z;_1) = z;. Notice
- 1 ; €
d(zie1, N wi) < 14 F1(00) < F3a
This tells us that we can keep iterating this process, so we can continue until we get zy which

satisfies the property that fi*!(z9) = x;11, and which lives in the same slice as y;. Label y;11 = 2.
Notice by the locally contracting property, we have

€
d(yi, yiv1) < N

We note this implies the sequence is Cauchy, hence converging. To see this, take ¢, j arbitrary, and

notice (assuming wlog j > 1)

j—i—1

€. i _
d(yi,yj) < dyj, yj-1) + -+ d(yir1, 4i) < ZA YA
k=0

€ 1= )\i7J
< 7)\—7,-&-17
C 1—-A
Taking i, j arbitrarily large makes this arbitrarily small as desired. So there is some z € M with

Yi — Z.
The goal now is to show

d(fl(z)v fl(yz)) = d(fl(z)vmz) < Clﬁa

where C” is a constant depending only on A. To do this, we will show

A ) f ) < g
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If we show this, we have lim;_,o0 f*(y;) = f(2) implies

o0

d(f*(2), f' (i) Z fiyj)) < m

Setting C' = 1/(C(1 — 1/X)) gives the desired result. ' ' 4
To see this, notice we have 71 (y;) = (z;) € Belaz1), f153) = F1(55) € Beyonr—s(F(y51)),

and fIH17(f (y;)) = fa;) € Be(wjr).
Uniqueness is the usual argument; that is,

d(f'(2), ['(w)) < 2,
and then use the contracting property to get that
d(z,w) < 2¢/(CAY).
Taking ¢ — oo gives the result. O

Problem 37 (Problem 5.5, James). Assume that M is a compact Riemannian manifold. Assume

f: M — M is an expanding map with respect to a Riemannian metric || - || and let || - || be some
other Riemannian metric. Prove that f is also expanding with respect to || - ||".
Proof. Take || - ||, || - || to be two Riemannian metrics on M. The goal is to show that they are

equivalent in the sense that there are constants ¢, C' > 0 so that
cdl-l<l-1"=cl-l.

If this can be shown, then since f is expansive with respect to || - || we have that there are constants
A>1, K >0 so that
D f ]| = KA [|v]].

Utilizing the above gives us
Dl > e Df"o]| > eKA"|Jo] > © A”H I"

So f is expansive with respect to || - || as well. Moreover, the expansive constant A is the same
(though the other constant varies with the metric).
To prove the above claim, we note that since M is compact, UT'M is compact (where UT M is
the unit tangent bundle). We can then define a function v: UTM — R by
]l

7O = o

This functions is continuous and strictly positive (since we’re on the unit tangent bundle with
respect to the metric || - ||). By compactness, there must be a minimum and a maximum, so
constants ¢, C' > 0 with

c<y<C = d-I'<l-I<Cl-|.

Remark. Credit to Thomas Richard for the compactness result. See here.

Problem 38 (2.6.1 Katok and Hasselblatt, James). Show that the proof of C! structural stability
for hyperbolic linear automorphisms can be generalized to any hyperbolic linear automorphism of
the m-torus for m > 2.

Proof. We start by recalling some of the key definitions from this section.
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e Recall the definition of structural stability. We say a C' map is C! structurally stable
if there exists a neighborhood U of f in the C' topology such that every map g € U is
topologically conjugate to f; that is, for every g € U, there is a homeomorphism A so that
hof=goh.

e Recall that a hyperbolic linear automorphism is given in the form £y, : T™ — T™, where
L denotes the matrix on R™ and Fr, =T (mod 1). A hyperbolic linear automorphism is a
linear map on the torus with L € GL,(R), |det(L)| = 1, and for all A € o(L), |A| # 1 (that
is, the spectra is disjoint from S!).

e A map on R™, say g, is doubly periodic if g(x +m) = g(z) for m € Z™, x € R™.

The goal is to use the contraction mapping principle to find a homeomorphism which conjugates
g and Fp,, where g is “sufficiently close” to F, (the closeness to be determined). The equivalent
proposition would be Proposition 2.6.2, which we reiterate now.

Proposition 3. Any C' map g sufficiently close to Fy, in the C! topology is a factor of FJ,.

Alift of Fy, is L. A lift of g to R™ is given by g+ L, g doubly periodic. A lift of h to R™ is given
by Id + h, h doubly periodic.
The relation
goh=holFy,
can be rewritten as
(L+§)o(dd+h)=(Id+h)oL
s LAd+h)+gId+h)=L+hol
& L+Loh+gdd+h)=L+holL
& gd+h)=hoL—Loh.
We define two operators on the space of doubly periodic functions on R™. The first is given by
ﬁ(ﬁ) =hoL—Loh.
The second is given by B B
T(h) =go (Id+ h).
We can again rewrite the above relation as
L(h) = T(h).
The first claim is that £ is an invertible operator. To show this, we need to use the expanding/-

contracting subspaces of R™.
For a real eigenvalue A, we denote by E) the subspace

Eyx={veR™: (A— \d)*v = 0 for some k}.
For two conjugate complex eigenvalues A and A, we denote by E, 5 the intersection of R™ with the

sum of root spaces corresponding to Ey, E5 in the complexiﬁcation of L. We can then denote by
E~ the contracting subspace; i.e. the subspace

E-=E ()= Exo P E\x

[Al<1 [Al<1
Similarly,
ET=EYL)= @ Exo P E, .
[A|>1 [Al>1

Recall for a hyperbolic linear map we have R™ = E* @ E~. So every v € R™ can be decomposed
as v = vt + v, where v" € ET and v~ € E~. Denote by )\ the eigenvalue which is largest in
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modulus; that is, A € o(L) is such that |[A| > |y| for all v € o(L). We can express L = L; X Lo,
where L; are linear maps with L1 : ET — E* and Lo : E~ — E~ satisfying the property that for
all v e R™,

L(w)=Lw"+v7)=Llw") + Lv") = Li(v") + La(v7).
If we denote by 7 : R™ — ET, 1 : R™ — E—, we can write

h =71 (h) + ma(h).
Write h; = 7;(h), and likewise g; = 7;(§). Then
L(h)=hoL—Loh=(hi+hy)oL— (L + Ly)o (hy + hy)
=hioL+hgoL —Liohy— Lyohs.
We can then write new operators
Ly(h1) =hioL — Lqohy,

EQ(hQ) - h2 o L - L2 o hQ,
so that

E(h) = ﬁl(hl) + ﬁg(hg).
The claim is that £;(h;) are invertible for each 7. Once we show this, it implies £ is invertible as
well. Write -
£l (h) == L " omoLr,

n=0

then

N N
LioLit(h) = lim |~ L7V ohioL™ 43 Li"ohyo L"

N—oo
=hy— lim LV Toh ol 1=pn
N—o0

using Proposition 1.2.8. A similar argument shows El_l o L1(h1) = hi1, and a similar argument
also shows
o0
L3 (hy) =Y Ly ohgoL
n=0
is true inverse. Since these are invertible, so £ is invertible, we can write rewrite the relation
L(h)=T(h)=h=L"oT(h).
So h satisfies the criteria if it is a fixed point of the operator £71 o T. Like before, we see
17 (h) = T (W) = [lg(Id + h) — g(Id + h)[|oc < IDGlss [l = h' oo,
and so
L7571 = llgllen 1271,
where we note ||[£7!|| depends only on L. So if we have that ||g[lc1 < [[£7!]|7!, then £71T is a

contracting operator, and we can apply the contraction mapping principle to get a unique fixed
point. Project this fixed point Id + A onto the Torus to get a solution. O
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