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As far as reading goes, we followed [3]. We covered chapters 1-4, 10, and part of 11. There was
a week where we covered fixed points theorems (Thomas covered Kakutani and Markov-Kakutani,
James covered Ryll-Nardzewski).

This document was compiled by James. Any typos or major mistakes are James’ fault.

1. Rudin Solutions

1.1. Chapter 1.

Problem 1 (Rudin 1.1, James). Suppose X is a vector space. All sets mentioned below are
understood to be subsets of X. Prove the following statements from the following axioms:

(i) To every pair of vectors x and y corresponds a vector x+ y in such a way that

x+ y = y + x, and x+ (y + z) = (x+ y) + z.

(ii) X contains a unique vector 0 such that x+ 0 = x for all x ∈ X.
(iii) For all x ∈ X, there exists a unique vector −x so that x+ (−x) = 0.
(iv) For every α ∈ Φ and x ∈ X there is a vector αx such that

1x = x, and α(βx) = (αβx)

and such that the two distributive laws

α(x+ y) = αx+ αy and (α+ β)x = αx+ βx.

(1) If x ∈ X and y ∈ X there is a unique z ∈ X so that x+ z = y.
(2) 0x = 0 = α0 if x ∈ X and α a scalar.
(3) 2A ⊂ A+A.
(4) A is convex if and only if (s+ t)A = sA+ tA for all positive scalars s and t.
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(5) Every union (and intersection) of balanced sets is balanced.
(6) Every intersection of convex sets is convex.
(7) If Γ is a collection of convex sets that is totally ordered by set inclusion, then the union of

all members of Γ is convex.
(8) If A and B are convex, then so is A+B.
(9) If A and B are balanced, so is A+B.

(10) Show that (6), (7), and (8) hold with subspaces in place of convex sets.

Proof. (1) We first establish existence. We claim that z = y − x is such a vector. This follows,
since

x+ z = x+ (y − x) = (x+ y)− x = (y + x)− x = y + (x− x) = y + 0 = y.

We claim that this z is unique. If there is another such z′, we have that

x+z = x+z′ =⇒ (−x)+(x+z) = (−x)+(x+z′) =⇒ ((−x)+x)+z = ((−x)+x)+z′ =⇒ z = z′.

(2) First we note that 0x = 0. This follows, since

x = (0 + 1)x = 0x+ 1x = 0x+ x,

so

0 = x+ (−x) = (0x+ x) + (−x) = 0x+ (x+ (−x)) = 0x+ 0 = 0x.

Next, we claim that α0 = 0. This follows, since for some x ∈ X, we have

α0 = α(x+ (−x)) = αx+ α(−x) = αx+ (−α)x = (α+ (−α))x = 0x = 0.

(3) We claim that 2A ⊂ A+A. Notice that for A ⊂ X, we have that

2A = {2x : x ∈ A} = {x+ x : x ∈ A} ⊂ {x+ y : x, y ∈ A} = A+A.

Here we implicitly use 2 = 1 + 1, so 2x = (1 + 1)x = x+ x.
(4) ( =⇒ ): Assume that A is convex. We have that for all 0 ≤ t ≤ 1 that

tA+ (1− t)A ⊂ A.

Notice that (s+ t)x = sx+ tx, so we see that for all subsets A

(s+ t)A = {(s+ t)x : x ∈ A} = {sx+ tx : x ∈ A} ⊂ {sx+ ty : x, y ∈ A} = sA+ tA.

It suffices then to show that sA + tA ⊂ (s + t)A. If s and t are 0, then the result clearly
follows, since 0A = 0. Assume at least one of s or t is non-zero. Then we can multiply
both sides of the above by 1/(s+ t). After relabeling, this implies that 0 ≤ s, t ≤ 1 so that
s+ t = 1. Hence, we have s = 1− t, so we can rewrite this as

tA+ (1− t)A = tA+ sA ⊂ (s+ t)A = A

by convexity. Thus, the inequality holds.
(⇐= ): If, for all scalars s and t, we have sA+ tA = (s+ t)A, then in particular for scalars
s and t with 0 ≤ s, t ≤ 1 and with s + t = 1 we have sA + tA = A, or in other words, for
0 ≤ t ≤ 1 we have

tA+ (1− t)A ⊂ A.
So A is convex.

(5) We first show that every union of balanced sets is balanced. Recall that a set U ⊂ X is
balanced if for all scalars α with |α| ≤ 1, we have αU ⊂ U . We first show that if {Un} is a
family of subsets of X, then for scalars α we have

α
⋃
Un =

⋃
αUn.
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Notice that

α
⋃
Un = {αx : x ∈ Un for some n} = {αx : αx ∈ αUn for some n} =

⋃
αUn.

Hence, if |α| ≤ 1 and {Un} is a family of balanced subsets of X, then

α
⋃
Un =

⋃
αUn,

and αUn ⊂ Un for each n, so

α
⋃
Un ⊂

⋃
Un.

Similarly, if {Un} is a family of subsets of X and α a scalar, we have

α
⋂
Un = {αx : x ∈ Un for all n} = {αx : αx ∈ αUn for all n} =

⋂
αUn,

so if the Un are balanced and |α| ≤ 1, we have

α
⋂
Un =

⋂
αUn ⊂

⋂
Un.

Thus,
⋃
Un and

⋂
Un are balanced.

(6) Let {Un} be a family of convex sets. Then we see that

t
⋂
Un + (1− t)

⋂
Un ⊂

⋂
(tUn + (1− t)Un) =

⋂
Un.

So the family is convex. Notice that a union of convex sets is not necessarily convex; the
sets {0} and {1} in R are convex, but {0}

⋃
{1} is not convex.

(7) We need to show that

t
⋃
V ∈Γ

V + (1− t)
⋃
V ∈Γ

V ⊂
⋃
V ∈Γ

V.

Let x be in the left hand side. Then x = ty + (1 − t)z for y, z ∈
⋃
V ∈Γ V . Since there is

a total ordering on Γ, we can find U sufficiently large so that y, z ∈ U . U is convex by
construction, so ty + (1− t)z ∈ U , and hence x ∈ U . So x ∈

⋃
V ∈Γ V . Since the choice of x

was arbitrary, we have that the “inequality” holds, so the union is convex.
(8) Suppose A and B are convex. Note that

A+B = {x+ y : x ∈ A, y ∈ B}.

Fix 0 ≤ t ≤ 1. The goal is to show

t(A+B) + (1− t)(A+B) ⊂ A+B.

This follows by the distributive property, though. For α a scalar, we have

α(A+B) = {α(x+ y) : x ∈ A, y ∈ B} = {αx+ αy : x ∈ A, y ∈ B} = αA+ αB,

so using commutativity, we have

t(A+B)+(1−t)(A+B) = tA+tB+(1−t)A+(1−t)B = (tA+(1−t)A)+(tB+(1−t)B) ⊂ A+B.

(9) By the same argument as in (8), we see that for |α| ≤ 1,

α(A+B) = αA+ αB ⊂ A+B,

so A+B is balanced.
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(10) Let {Vn} ⊂ X be vector subspaces. This means that Vn is closed under addition and scalar
multiplication for all n. We wish to show that Vn ∩ Vm is a vector subspace for all m,n.
Note that being closed under addition means

Vn + Vn ⊂ Vn,
and being closed under scalar multiplication implies for all scalars α, we have

αVn ⊂ Vn.
Thus, we see ⋂

Vm +
⋂
Vm ⊂ Vn for all n,

so ⋂
Vm +

⋂
Vm ⊂

⋂
Vm.

An analogous argument applies for scalar multiplication. Hence,
⋂
Vn is a vector subspace.

The same kind of argument as in (7) tells us that the union of totally ordered vector
subspaces is a vector subspace.

We see that

(V1 + V2) + (V1 + V2) = (V1 + V1) + (V2 + V2) ⊂ V1 + V2,

α(V1 + V2) = αV1 + αV2 ⊂ V1 + V2,

so V1 + V2 is a vector subspace if V1 and V2 are vector subspaces.
�

Problem 2 (Rudin 1.2, James). The convex hull of a set A in a vector space X is the set of all
convex combinations of members of A; that is, the set of all sums

t1x1 + · · ·+ tnxn,

in which xi ∈ A, ti ≥ 0,
∑
ti = 1, n is arbitrary. Denote the convex hull by Conv(A). Prove that

the convex hull of A is convex, and it is the intersection of all convex sets that contain A.

Proof. Fix 0 ≤ t ≤ 1. We need to show that

tConv(A) + (1− t)Conv(A) ⊂ Conv(A).

Taking an element in the left hand side, we have that it is in the form

t

 m∑
j=1

tjaj

+ (1− t)

[
n∑
k=1

tkak

]
,

where
∑m

j=1 tj = 1,
∑n

k=1 tk = 1. We see that

t

m∑
j=1

tj + (1− t)
n∑
k=1

tk = t+ (1− t) = 1,

so after relabeling we have that the element is in the form

m+n∑
l=1

tlal,

where aj ∈ A for 1 ≤ j ≤ m + n and
∑m+n

l=1 tl = 1, tl ≥ 0. Thus, it is in the convex hull, and so
Conv(A) is convex.

Let

F = {U : A ⊂ U,U is convex}.
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We claim that
Conv(A) =

⋂
U∈F

U.

First, note that we’ve shown Conv(A) is convex, and it’s clear that A ⊂ Conv(A) by choosing n = 1
and t = 1. Hence, Conv(A) ∈ F , so ⋂

U∈F
U ⊂ Conv(A).

So, we need to show that if V is convex and

A ⊂ V ⊂ Conv(A),

then V = Conv(A) (in other words, Conv(A) is the smallest convex set containing A). Let x ∈
Conv(A), then

x =
n∑
i=1

tiai,

where
∑n

i=1 ti = 1, ti ≥ 0, ai ∈ A. We inductively show that this is in V . In the case n = 1, it’s
clear (since A ⊂ V ). In the case n = 2, we have

x = ta1 + (1− t)a2 ∈ tA+ (1− t)A ⊂ tV + (1− t)V ⊂ V.
Hence, x ∈ V . Assume that this construction works up to n − 1. We need to show that x in the
form above is in V . We write

n∑
i=1

tiai =
n−1∑
i=1

tiai + tnan.

Notice that
∑n−1

i=1 = 1− tn. If tn = 1, this is 0 and it’s clear that this is going to be in V , so assume

tn < 1. If tn = 0, we have that this is in the form
∑n−1

i=1 , and so the induction hypothesis says this

is in V and we win. So assume 0 < tn < 1, so that 0 <
∑n−1

i=1 ti < 1. We can then normalize to get∑n−1
i=1 tiai∑n−1
i=1 ti

= z ∈ V

by the induction hypothesis, so
n−1∑
i=1

tiai =

(
n−1∑
i=1

ti

)
z.

Hence,

x =

n∑
i=1

tiai =

n−1∑
i=1

tiai + tnan =

(
n−1∑
i=1

ti

)
z + tnan = (1− tn)z + tnan ∈ (1− tn)V + tnV ⊂ V,

so it holds up to n. Hence, induction applies, and so we get that all x ∈ Conv(A) are such that
x ∈ V , so V = Conv(A). So for all U convex with A ⊂ U , we have Conv(A) ⊂ U , and hence⋂
U∈F U = Conv(A). �

Remark. This gives us two ways to think about the convex hull – a constructive way (convex
combinations of elements) and a theoretical way (intersection of all convex sets containing A).

Problem 3 (Rudin 1.3, James). Let X be a topological vector space. All sets mentioned below
are understood to be the subsets of X. Prove the following statements.

(1) The convex hull of every open set is open.
(2) If X is locally convex, then the convex hull of every bounded set is bounded.
(3) If A and B are bounded, so is A+B.
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(4) If A and B are compact, so is A+B.
(5) If A is compact and B is closed, then A+B is closed.
(6) The sum of two closed sets may fail to be closed.

Proof.

(1) See Problem 2, part (3).
(2) Let E ⊂ X be a bounded set. Then for every neighborhood U of 0, there exists a t such

that for all s > t, we have E ⊂ sU . In particular, we can choose this U to be convex (since
X is locally convex). We claim that sU is convex. This follows, since

tsU + (1− t)sU = s(tU) + s((1− t)U) = s [tU + (1− t)U ] ⊂ sU.
Hence, Conv(E) ⊂ sU for all s > t. This implies that Conv(E) is convex.

(3) Let V be a neighborhood of 0. Since A and B are both bounded, there exists t1 and t2 so
that A ⊂ sV for all s > t1 and B ⊂ sV for all s > t2. In particular, choosing t = max{t1, t2},
we have that A+B ⊂ sV + sV = (s+ s)V for s > t. Hence, choosing 2t, we have that for
all s > 2t, A+B ⊂ sV . We can do this for all neighborhoods of 0, so A+B is bounded.

(4) Addition is continuous, and A+B is the image of a compact set A×B.
(5) The goal is to show that if x /∈ A + B, then there is a neighborhood of x which does not

intersect B. We can write
A+B =

⋃
a∈A

a+B,

so x /∈ A+B implies x /∈ a+B for all a ∈ A. Since B is closed, a+B is also closed for all
a ∈ A. So we have {x} ∩ (a + B) = ∅, and so we can find neighborhood Ua and Va with
x ∈ Ua and (a+B) ⊂ Va with Ua ∩ Va = ∅. Now, note that

Va −B =
⋃
b∈B

(Va − b)

is an open set which contains a, so

A ⊂
⋃
a∈A

(Va −B),

and since A is compact, we have

A ⊂
n⋃
j=1

(Vj −B)

for some finite refinement. Choose Uj which corresponds to Vj , then let U =
⋂
Uj . This

is a finite intersection of open sets, so open, and x ∈ U . We have that U ∩ (A + B) = ∅,
since otherwise y = a + b ∈ U ∩ (A + B), so y ∈ Vj for some j and y ∈ Uj , which is a
contradiction.

(6) Consider X = R, A = {n : n ≥ 1} =
⋃
n≥1{n}. Singletons are closed, so this is a closed set.

Now, consider B = {−n+ 1/n : n ≥ 1}. This is closed, since limn→∞(1/n− n) = −∞. We
have A+B = {1/n : n ≥ 1}, which is not closed since 0 /∈ A+B.

�

Problem 4 (Rudin 1., James). Let B = {(z1, z2) ∈ C2 : |z1| ≤ |z2|}. Show that B is balanced, but
its interior is not.

Proof. Let α ∈ C be such that |α| ≤ 1. Then

αB = {(αz1, αz2) ∈ C2 : |z1| ≤ |z2|}.
Notice that |αz1| = |α||z1| ≤ |α||z2| = |αz2|, so αB ⊂ B. Hence, it is balanced.
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The interior is Bo = {(z1, z2) ∈ C2 : |z1| < |z2|}, and it is not balanced since 0Bo = 0 /∈ Bo. �

Problem 5 (Rudin 1.5, James). Consider the definition of “bounded set” given in Section 1.6.
Would the content of this definition be altered if it were required merely that to every neighborhood
V of 0 corresponds some t > 0 such that E ⊂ tV ?

Proof. Recall that a subset E of a topological vector space is said to be bounded if to every neigh-
borhood V of 0 in X corresponds a number s > 0 such that E ⊂ tV for every t > s. Call this
condition (1).

As mentioned on Wikipedia, the definitions are in fact equivalent. Labeling the condition in the
problem condition (2), the goal is to show that (2) =⇒ (1). Let E be a set which satisfies (2) so
that for every neighborhood V of 0, we have that there is a t > 0 so that E ⊂ tV . Using Rudin
Theorem 1.14, we can assume without loss of generality that V is a balanced neighborhood of 0.
Consider s ≥ t. The goal is to show that E ⊂ sV for all such s. Since s > t, we have that 1 > t/s,
so since V is balanced we have that tV = (t/s)sV = s((t/s)V ) ⊂ sV . Hence E ⊂ tV ⊂ sV for
all s ≥ t, so we have that there exists a number t > 0 so that E ⊂ tV for all s > t. E is then a
balanced set with respect to condition (1). �

Problem 6 (Rudin 1.6, James). Prove that a topological vector space is bounded if and only if
every countable subset of E is bounded.

Proof. If E ⊂ X is bounded and F ⊂ E is countable, then for every neighborhood of the origin V
we have that there exists a t > 0 so that F ⊂ E ⊂ tV , and hence F is bounded.

Assume now that E is not bounded. There exists a neighborhood of the origin V so that for
all t > 0, E 6⊂ tV . So for every n ≥ 1, we see that E 6⊂ nV , so we can choose xn ∈ E ∩ (nV )c.
The set {xn} ⊂ E is countable, and as seen in the last problem this implies that {xn} 6⊂ tV for all
t > 0. �

Problem 7 (Rudin 1.7, James). Let

X = {f : [0, 1]→ C}.
Topologize X by the family of seminorms

ρx(f) = |f(x)| (0 ≤ x ≤ 1).

The topology is called the topology of pointwise convergence.

(1) Justify this terminology.
(2) Show that there exists a sequence {fn} ⊂ X such that {fn} converges to 0 as n→∞, but

if {γn} is any sequence of scalars such that γn →∞, then {γnfn} does not converge to 0.
(3) Deduce that metrizability cannot be omitted in (b) of Theorem 1.28.

Proof.

(1) Suppose fn → f with respect to this topology, then we have that ρx(fn − f) → 0. This
implies that |fn(x)− f(x)| → 0 for all x ∈ [0, 1]. Hence fn → f pointwise.

(2) As Thomas suggested, the space of all complex sequences which do not contain 0 and
converge to 0 are in bijection with [0, 1], so for any sequence γn such that γn → 0 and does
not contain 0 we can associate it to a point x. Every sequence δn → ∞ can be written as
γ−1
n for some sequence γn → 0 which does not contain 0. For each x ∈ [0, 1], let fn(x) = γn,

and consider the sequence γ−1
n . For each point x, we have fn(x)γ−1

n → 1 for the associated
γn, and hence fnγ

−1
n 6→ 0.

(3) Rudin Theorem 1.28 says that if X is metrizable, then for any sequence {xn} which
converges to 0, there exists a sequence γn → ∞ with γnxn → 0. (2) contradicts this
property.
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Problem 8 (Rudin 1.8, James).

(1) Suppose F is a separating family of seminorms on a vector space X. Let L be the smallest
family of seminorms on X that contains F and is closed under max. If the construction of
Rudin Theorem 1.37 is applied to F and L, show that that the two resulting topologies
coincide. The main difference is that L leads directly to a base, rather than a subbase.

(2) Suppose L is as in part (1) and Λ is a linear functional on X. Show that Λ is continuous if
and only if there exists a p ∈ L such that

|Λx| ≤Mp(x)

for all x ∈ X and some constant M <∞.

Proof. The topology from Rudin Theorem 1.37 is constructed by taking finite intersections of
sets of the form

V (p, n) =

{
x ∈ X : p(x) <

1

n

}
for all p ∈ F and then taking translates. The local base B generated by the finite intersections of
these sets is what we’re really concerned with.

(1) Note that if τ is the topology generated by F and θ is the topology generated by L, then
since F ⊂ L we have that V (p, n) ∈ θ for all p ∈ F , so that τ ⊂ θ. We then need to show
that θ ⊂ τ . To do so, it suffices to show that if B1 is the local base associated to F , B2 is
the local base associated to L, then for every U ∈ B2 there is a V ∈ B1 with V ⊂ U .

The idea is to note that if p = max{p1, p2}, then we have that

V (p, n) = V (p1, n) ∩ V (p2, n).

Once we have this, the result follows. This is also easy, since x ∈ X satisfies p(x) < 1/n if
and only if p1(x) < 1/n and p2(x) < 1/n. This then gives us that the local bases generated
are the same, so the topologies generated are the same. It also follows that it leads to a base,
rather than a subbase, since we don’t need to concern ourselves with finite intersections.

(2) ( =⇒ ): Assume that Λ is continuous. Being continuous is equivalent to being continuous
at the origin. We have that for the open ball B1(0) ⊂ R, Λ−1(B1(0)) ⊂ X is open. Notice

Λ−1(B1(0)) = {x ∈ X : |Λ(x)| < 1}.
Since V (p, n) forms a base for our topology, we can find p and n so that

V (p, n) ⊂ Λ−1(B1(0)).

So x ∈ X with p(x) < 1/n implies |Λ(x)| < 1, so we have |Λ(x)| ≤ np(x) for all x ∈ X.
( ⇐= ): The assumption tells us that V (p,M) ⊂ Λ−1(B1(0)). Notice that for any ε > 0,
we have εV (p,M) ⊂ εΛ−1(B1(0)). Notice that

εΛ−1(B1(0)) = {εx : x ∈ X, |Λ(x)| < 1} = {x ∈ X : |Λ(ε−1x)}| < 1}
= {x ∈ X : |Λ(x)| < ε} = Λ−1(Bε(0)).

So for every ball Bε(0), we have εV (p,M) ⊂ Λ−1(Bε(0)). Notice εV (p,M) is an open set in
θ so Λ is continuous at the origin. Rudin Theorem 1.17 tells us that Λ is continuous.

�

Problem 9 (Rudin 1.9, James). Suppose

(i) X and Y are topological vector space,
(ii) Λ : X → Y is linear,
(iii) N is a closed subspace of X,
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(iv) π : X → X/N is the quotient map, and
(v) Λx = 0 for every x ∈ N .

(1) Prove that there is a unique f : X/N → Y which satisfies Λ = f ◦ π.
(2) Prove that this f is linear.
(3) Prove that Λ is continuous if and only if f is continuous.
(4) Prove that Λ is open if and only if f is open.

Proof. Throughout, we utilize Rudin Theorem 1.41 which establishes that π : X → X/N is an
open, continuous, linear map.

(1) In a diagram, we have the following:

X

X/N Y

π Λ

We define the map f : X/N → Y via f(x+N) = Λ(x). We first check this is well-defined.
If x− y ∈ N , then we have that

f(x+N) = Λ(x) = Λ(x+ y − y) = Λ(x− y) + Λ(y) = Λ(y) = f(y +N).

The map is therefore well-defined. Notice it is such that f ◦ π = Λ, since f ◦ π(x) =
f(x + N) = Λ(x). We check that it is unique. If g is another function so that g ◦ π = Λ,
then for each x ∈ X we have that g(x+N) = Λ(x) = f(x+N). Every element in X/N is
in this form, so we have that f = g as functions. In a diagram, we have

X

X/N Y

π Λ

∃!f

commutes.
(2) We now check that the map is linear. Let α be a scalar, x ∈ X, then we have that

f(α(x+N)) = f(αx+N) = Λ(αx) = αΛ(x) = αf(x+N),

and if x, y ∈ N , then we have

f((x+N) + (y +N)) = f((x+ y) +N) = Λ(x+ y) = Λ(x) + Λ(y) = f(x+N) + f(y +N),

where in both cases we utilized the fact that N is a (closed) subspace.
(3) Let U ⊂ Y be open. If f is continuous, we have that f−1(U) is open, and by the continuity of

π we have π−1(f−1(U)) = Λ−1(U) is open. This applies for all open sets, so Λ is continuous.
If Λ is continuous, then for all U ⊂ Y open we have Λ−1(U) = π−1(f−1(U)) is open.

We note that π is an open map, so applying π we get that π(π−1(f−1(U))) = f−1(U) is an
open set. This applies for all U ⊂ Y open, so we have f is continuous.

(4) Let U ⊂ X be open. If Λ is open, we have Λ(U) = f(π(U)) is open. Notice that every open
subset of X/N is realized by π(U) for some open subset U ⊂ X, so we get that for every
open subset V ⊂ X/N , f(V ) is open.

If f is an open map, then for all V ⊂ X/N open we have that f(V ) is open. Let U ⊂ X
be open, then Λ(U) = f(π(U)) is open, since π is an open map. We get that Λ is an open
map.

�

Problem 10 (Rudin 1.10, James). Suppose X and Y are topological vector spaces, dim(Y ) <∞,
Λ : X → Y is linear, and Λ(X) = Y (so that Λ is surjective).
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(1) Prove that Λ is an open mapping.
(2) Assume, in addition, that the null space of Λ is closed. Prove that Λ is continuous.

Proof. Let N = ker(Λ), then X/N ∼= Y by surjectivity and the first isomorphism theorem. Suppose
N is closed. By the last problem there exists a map f : X/N → Y so that Λ = f ◦ π. This map is
linear, and if N is closed then by the last problem and Rudin Theorem 1.21, we have that the
map is a homeomorphism.

If N is not closed, we will have that X/N is not a topological vector space. We have to put in
more work for this case.

Let {ei} be a basis for Y . Let ai ∈ Λ−1(ei). Since the ei are linearly independent, we have that
the ai are also linearly independent, since

∑
tiai = 0 implies Λ(

∑
tiai) =

∑
tiΛ(ai) =

∑
tiei = 0,

so ti = 0 for all i. The map F : Rn → X given by F (x1, . . . , xn) =
∑
xiai is a linear map. Invoking

Rudin Lemma 1.20, it is continuous, and we note that ker(F ) = 0 by linear independence.
Let Γ : Rn → Y be defined by Γ = Λ ◦ F . By the surjectivity of Λ and injectivity of F , we get

Γ is bijective. Let U ⊂ X be a neighborhood of the origin. F continuous implies F−1(U) is open
and we note it contains the origin, so there is a ε > 0 with Bε(0) ⊂ F−1(U). Γ is a bijective linear
map between finite dimensional vector spaces so a homeomorphism. Hence, Γ(Bε(0)) is an open
subset containing the origin, and we see that Γ(Bε(0)) ⊂ Λ(U), so that the image of every open
neighborhood of the origin in X contains an open neighborhood of the origin in Y . �

Remark. Question: Did we really need to do all of that work for the second part? This (among
other resources) suggests yes, but I want to use Rudin Exercise 1.9 to do it faster.

1.2. Chapter 2.

Problem 11 (Rudin 2.1, James).

(1) If X is an infinite-dimensional topological vector space which is the union of countably
many finite-dimensional subspaces, prove that X is of the first category in itself.

(2) Prove that no infinite-dimensional F -space has a countable Hamel basis.

Proof.

(1) First, we remark that a finite-dimensional subspace V ⊂ X is a closed subspace. (Rudin
Theorem 1.21 (b)). Next, we claim that a closed subspace of X must be meager

Claim. Let V ⊂ X be a closed subspace. If V has non-empty interior then V = X.

Proof. Suppose that E ⊂ V is a nonempty open subset. Let a ∈ E. Then E − a is an open
neighborhood of the origin. Since V is a subspace, we have that E − a ⊂ V still. Note that
for arbitrary x ∈ X, we have that there exists n sufficiently large so that (1/n)x ∈ E−a ⊂ V .
A vector subspace is closed under scalar multiplication, so n((1/n)x) = x ∈ V . The choice
of x was arbitrary, giving us X = V . �

Taking the contrapositive of the above claim, we have that V 6= X implies that V is
meager. Thus, we have that

X =

∞⋃
n=1

Vn,

where the Vn ⊂ X are finite-dimensional subspaces. This gives us that X is a countable
union of meager sets, and so it is of first category in itself.

(2) An F -space is a complete metric space, so Baire’s theorem (Rudin Theorem 2.2, see
discussion below) tells us that X is of second category. If X admits a Hamel basis β, then
every x ∈ X admits a unique representation of the form

x =

n∑
i=1

αivi,
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where {vi}ni=1 ⊂ β.
Suppose β is countable. For every finite subset α ⊂ β, we can associate a finite dimen-

sional vector subspace Vα by taking the span of the vectors in α. Since β is a Hamel basis,
the above discussion tells us that

X =
⋃
α⊂β

Vα.

This is a countable union of finite-dimensional vector subspaces, so (1) tells us that X is of
first category, contradicting the fact that X is a F -space.

�

Problem 12 (Rudin 2.2, James). Sets of first and second category are “small” and “large” in a
topological sense. These notions are different when “small” and “large” are understood in the sense
of measure, even when the measure is intimately related to the topology. To see this, construct a
subset of the unit interval which is of the first category but whose Lebesgue measure is 1.

Proof. Take a fat Cantor set. �

Problem 13 (Rudin 2.3, James). Put K = [−1, 1]. Define

DK = {f ∈ C∞(R) : supp(f) ⊂ K}.
Let {fn} ⊂ L1 be such that

Λϕ = lim
n→∞

∫
K
fn(t)ϕ(t)dt

exists for every ϕ ∈ DK .

(1) Show that Λ is a continuous linear functional on DK .
(2) Let fn(t) = n3tχ[−1/n,1/n]. Show that there exists an M <∞ so that∣∣∣∣∫

K
fn(t)ϕ(t)dt

∣∣∣∣ ≤M‖Dϕ‖∞
for all n.

(3) Construct an example where there exists M <∞ so that∣∣∣∣∫
K
fn(t)ϕ(t)dt

∣∣∣∣ ≤M‖D2ϕ‖∞

for all n, but there is no such M so that∣∣∣∣∫
K
fn(t)ϕ(t)dt

∣∣∣∣ ≤M‖Dϕ‖∞
for all n.

(4) Show that in general there exists a positive integer p and a number M <∞ so that∣∣∣∣∫
K
fn(t)ϕ(t)dt

∣∣∣∣ ≤M‖Dpϕ‖∞.

Proof.

(1) Define

Λn =

∫
K
fn(t)ϕ(t).

The linearity of the integral tells us that {Λn} is a family of linear functions from DK → R.
We note that these are continuous utilizing the dominated convergence theorem. By the
discussion in Rudin Section 1.46, we note that DK is a Frechet space, so in particular an
F -space. By Rudin Theorem 2.8, we get that Λ is continuous.
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(2) Note that fn(t) ∈ L1 for all n, since∫
K
fn(t)dt =

∫ 1/n

−1/n
n3tdt = n3

(
t2

2

∣∣∣∣1/n
−1/n

)
=
n3

t

(
1

n2
− 1

n2

)
= 0.

Note that for any constant C we have

Fn(t) = n3 t
2

2
+ C

is such that F ′n = fn. Without loss of generality, we choose C = 0.
Let ϕ ∈ DK . Using integration by parts, we have∫

K
fn(t)ϕ(t)dt =

∫ 1/n

−1/n
fn(t)ϕ(t)dt =

n3t2

2
ϕ(t)

∣∣∣∣1/n
−1/n

− n3

2

∫ 1/n

−1/n
Dϕ(t)t2dt.

Notice

n3t2

2
ϕ(t)

∣∣∣∣1/n
−1/n

=
n

2
ϕ(1/n)− n

2
ϕ(−1/n) =

n

2
[ϕ(1/n)− ϕ(−1/n)] =

ϕ(1/n)− ϕ(−1/n)

2/n
.

By the mean value theorem, we have that this is bounded above by ‖Dϕ‖∞. We similarly
note that

−n
3

2

∫ 1/n

−1/n
Dϕ(t)t2dt ≤ −‖Dϕ‖∞

n3

2

∫ 1/n

−1/n
t2dt = −1

3
‖Dϕ‖∞.

Hence we have that ∣∣∣∣∫
K
fn(t)ϕ(t)dt

∣∣∣∣ ≤ 2

3
‖Dϕ‖∞.

(3) TODO
(4) This follows by Rudin Exercise 1.8 and the fact that the topology is generated by the

seminorms

pN (f) = max{|Dαf(x)| : x ∈ KN , |α| ≤ N}.
�

Problem 14 (Rudin 2.4, James). Let L1 and L2 be the usual Lebesgue spaces on the unit interval.
Prove that L2 ⊂ L1 is of the first category in three ways:

(1) Show that

An =

{
f :

∫
|f |2 ≤ n

}
is closed in L1 but has empty interior.

(2) Put gn = n on [0, n−3] and show that∫
fgn → 0

for every f ∈ L2 but not every f ∈ L1.
(3) Show that the inclusion map of L2 into L1 is continuous, but not onto.

Proof.

(1) We establish the set is closed. Let {fm} ⊂ An be a sequence with fm → f in L1. The goal
is to show that f ∈ An as well. Recall fm → f in L1 if∫

|f − fm| → 0.

12



Convergence in L1 implies convergence in measure, and since fm → f in measure we have
a subsequence fmj → f almost everywhere. Notice the sequence |fmj |2 → |f |2 almost
everywhere as well. Finally for each mj we have∫

|fmj |2 ≤ n.

Applying Fatou’s lemma gives us∫
|f |2 ≤ lim inf

j→∞

∫
|fmj |2 ≤ n.

So f ∈ An.
Next, we need to show that the interior of An is empty for all n. Let f ∈ An, and consider

the ball

Bk(f) =

{
g ∈ L1 :

∫
|f − g| < 1

k

}
.

The goal is to show that there is no k with Bk(f) ⊂ An. Let g ∈ L2 \ L1, and notice that
for r > ‖g‖1/k, we have that f + (1/r)g ∈ Bk(f). This follows from∫

|f − f − (1/r)g| = ‖g‖1
r

< k.

We now claim that f + (1/r)g /∈ An. If f + (1/r)g were in An, we would have∫
|f + (1/r)g|2 =

1

r2

∫
|rf + g|2 ≤ n.

In other words, ∫
|rf + g|2 <∞,

so rf + g ∈ L2. In other words, there is some h ∈ L2 with rf + g = h. We note that L2

is a vector subspace, so this implies that g = h − rf ∈ L2. This contradicts the fact that
g ∈ L1 \ L2, so we cannot have f + (1/r)g ∈ An. The choice of k was arbitrary, so for all k
we get that

Bk(f) 6⊂ An,
and so f is not in the interior of An. The choice of f was arbitrary, so (An)o = ∅.

This tells us that the An are meager sets, and we have that

L2 =
⋃
n≥1

An,

so L2 is of first category in L1.
(2) Let f ∈ L2. By Hölder’s inequality, we have∫

fgn =

∫ n−3

0
nf ≤ ‖f‖2‖nχ[0,n−3]‖2,

and we note that (∫ n−3

0
n2

)1/2

=
1

n
,

so as n→∞ we get that
∫
fgn → 0.

Note the same trick doesn’t work here, since for f ∈ L1 we have∫
fgn ≤ ‖f‖1‖nχ[0,n−3]‖∞ = ‖f‖1n→∞.
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Let

f(x) = x−3/4χ[0,1].

Then

‖f‖1 = 4 <∞,
and we have ∫

fgn = n

∫ n−3

0
x−3/4dx = 4n1/4 →∞.

Define

Λn : L1 → R, Λn(f) =

∫
fgn.

By what we observed above, each Λn is continuous and linear. We have that the collection
of all points whose orbits under the action of Γ = {Λn} are bounded is going to be B = L2.
We showed that B 6= L1, so by the contrapositive of Banach-Steinhaus we cannot have that
B is of the second category.

(3) Consider the map T : L2 → L1 which is the identity. Since we’re on the unit interval, we
have L2 ⊂ L1, so this is fine. To see that it’s continuous, we recall that

‖T (f)‖1 = ‖f‖1 ≤ ‖f‖2.

This follows by using Hölder’s inequality:

‖f‖1 =

∫
|f | · 1 ≤ ‖|f |1‖2/1 · ‖1‖2/(2−1) = ‖f‖2µ([0, 1])(2−1)/2 = ‖f‖2.

The inclusion is therefore continuous. Note that T is not surjective, since 1√
x
/∈ L2. The

contrapositive of the open mapping theorem says that L2 cannot be of second category in
L1.

�

Problem 15 (Rudin 2.6, James). Define the Fourier coefficients f̂(n) of a function f ∈ L2(T )
(where T is the unit circle) by

f̂(n) =
1

2π

∫ π

−π
f(θ)e−inθdθ

for all n ∈ Z. Put

Λnf =

n∑
k=−n

f̂(k).

Prove that

L :=
{
f ∈ L2(T ) : lim

n→∞
Λnf exists.

}
is a dense subspace of L2(T ) of the first category.

Remark. Folland defines Fourier coefficients by

f̂(n) =
1

2π

∫ π

−π
f(eiθ)e−inθdθ.

This is fine, except I’m imagining the function is already a function on the circle so there’s no need
to compose with eiθ (see Wikipedia for example).
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Proof. We first show that A is dense. Stone-Weierstrass says that trigonometric polynomials are
dense in L2(T ), so if we show that the series of Fourier coefficients converges for trigonometric
polynomials then we win. By linearity, it boils down to showing that if fk(x) = exp(ikx), then
limn→∞ Λnfk exists.

To see this, notice that

f̂k(n) =
1

2π

∫ π

−π
eikxe−inxdx =

{
1 if n = k

0 otherwise.

Hence we see that for sufficiently large n, we get

Λnfk =

n∑
−n

f̂k(j) = 1.

So limn→∞ Λnfk exists for this function, and so for linear combinations, and so for trigonometric
polynomials.

Note that A is a subspace (imagining L2(T ) as a vector space). This directly follows from the
linearity of limits and the fact that Λn is a linear function with respect to n.

Let Γ = {Λn}. We have Λn : L2(T ) → R is a linear functional on L2(T ) for each n. Suppose
that L is of the second category. Rudin Theorem 2.7 (b) says that, since R is a F -space, L = X
and Λ : X → Y is continuous, where Λ is the limit. However, we have that L 6= X, forcing it to be
of the first category. To see this, consider

−if(x) =

{
−iπ + ix if 0 < x < π

iπ + ix if − π < x < 0

(see here for how to construct such a function). This is a function where f̂(n) = 1
n for n 6= 0, and

so the limit of Λnf does not exist. Hence, L 6= X. �

Remark. This is weird, since it is dense but it is the union of nowhere dense sets.

Problem 16 (Rudin 2.7, James). Let C(T) be the set of all continuous complex functions on the
unit circle T. Suppose {γn} is a complex sequence that associates to each f ∈ C(T) a function
Λf ∈ C(T) whose Fourier coefficients are

Λ̂f(n) = γnf̂(n).

Prove that {γn} has this multiplier property iff there is a complex Borel measure µ on T such that

γn =

∫
e−inθdµ(θ).

Proof. We follow the hint given in Rudin. Since T is compact, we have that the infinity norm

‖f‖∞ = sup{|f(x)| : x ∈ T}
is a well-defined norm on C(T). One can show that C(T) is a Banach space with this norm.

We check that Λ : C(T) → C(T) is a linear function. Let f, g ∈ C(T). Then Λ(f + g) is a
function in C(T) whose Fourier coefficients are of the form

(Λ(f + g))∧(n) = γn(f + g)∧(n).

The Fourier transform is linear,so

(Λ(f + g))∧(n) = γnf̂(n) + γnĝ(n) = (Λf)∧(n) + (Λg)∧(n).

Since the Fourier coefficients are all equal, we have that the functions Λ(f + g) = Λ(f) + Λ(g) are
equal almost everywhere, and since they are continuous this implies that they are equal everywhere.
The same argument with scaling tells us that Λ is a linear function.
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Now we have that Λ : C(T)→ C(T) is a linear function between Banach spaces, and we wish to
show that it is continuous. The closed graph theorem tells us that it suffices to check the graph of
Λ is closed. Let fn → f in C(T), then we need to show that Λ(fn)→ Λ(f). Note that the Fourier
transform is continuous, and so with this we have

[Λ(f)]∧(m) = lim
n→∞

[Λ(fn)]∧(m) = lim
n→∞

γm(fn)∧(m) = γmf̂(m).

By the same argument earlier, we get that limn→∞ Λ(fn) = Λ(f). Thus Λ is continuous.
Compose Λ with the map f 7→ f(0), which is a continuous linear functional. This gives us a new

linear functional

f 7→ (Λf)(0) =
∞∑
−∞

γnf̂(n).

Note we will look at the space of trigonometric functions on T, which is dense in C(T) by a
consequence of Fejers theorem. Notice that on the base κn = exp(−2πinx), we have (Λκn)(0) = γn.
Extending by linearity gives us that it is a positive linear functional, so Riesz-Representation says
that there is a unique complex Borel measure µ on T with

(Λκn)(0) = γn =

∫
e−2πinxdµ(x).

�

Problem 17 (Rudin 2.13, James). Suppose X is a topological vector space which is of the second
category in itself. Let K be a closed, convex, absorbing subset of X. Prove that K contains a
neighborhood of the origin.

Proof. First, we show that if K is absorbing, then so is −K. If K is absorbing, then for every
x ∈ X there is a tx so that for s > tx, x ∈ sK. For every x ∈ X, there is a unique (−x), so for this
(−x) there is a t(−x) so that for s > t(−x), −x ∈ sK, which implies x ∈ s(−K). Since we can do
this for all x ∈ X, we get that −K is absorbing.

Next, if K1,K2 are two absorbing sets, we claim that K1 ∩K2 is absorbing. Let x ∈ X. Then
there is t1, t2 so that for s > t1, x ∈ sK1, and for s > t2 we ahve that x ∈ sK2. Let t = max{t1, t2}.
Then for s > t, we have that s > t1 and s > t2, so x ∈ sK1 and x ∈ sK2. In other words,
x ∈ s(K1 ∩K2). We can do this for all x ∈ X, so the set is absorbing.

Since K and −K are both absorbing, we have

H = K ∩ (−K)

is absorbing. We now claim that Ho 6= ∅. Since H is absorbing, we have that

X =

∞⋃
n=1

nH.

Since X is of second category in itself, we get that there must be some n so that nH is not nowhere
dense, and since scaling by n is a homeomorphism we get that H is nowhere dense. In other words,
H has nonempty interior. Note that H is a closed, convex set since K is closed and convex.

Now we claim that
2H = H +H = H −H.

The first inequality follows from Rudin Exercise 1.1 (4). The second inequality follows from the
fact that −H = H. Since H has nonempty interior, let U ⊂ H be open. We get that

U − U ⊂ H −H = 2H.

This is a nonempty open neighborhood of the origin. Using that scaling is a homeomorphism,
we get that scaling down by (1/2) still gives us an open neighborhood of the origin contained in
H ⊂ K. So K contains a neighborhood of the origin. �
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Problem 18 (Rudin 2.14, James).

(1) Suppose X and Y are topological vector space, {Λn} is an equicontinuous sequence of linear
mappings from X into Y , and C is the set of all x at which {Λn(x)} is a Cauchy sequence
in Y . Prove that C is a closed subspace of X.

(2) In addition to the hypotheses of (1), assume that Y is an F space and that {Λn(x)} converges
in some dense subset of X. Prove that then

Λ(x) = lim
n→∞

Λn(x)

exists for every x ∈ X and that Λ is continuous.

Proof.

(1) Let x ∈ C. The goal is to show that x ∈ C. In other words, the goal is to show that
{Λn(x)} is a Cauchy sequence, meaning that for every open neighborhood of the origin V ,
we have that there is an N so that for m,n ≥ N , we have

Λn(x)− Λm(x) ∈ V.

Let V be a neighborhood of the origin, and a balanced neighborhood of the origin U so
that U +U +U ⊂ V . Since we have equicontinuity, choose a neighborhood W of the origin
so that Λn(W ) ⊂ U for each W . Since x ∈ C, we get that (x+W ) ∩ C 6= ∅, so there is a
y in this intersection so that {Λn(y)} is Cauchy. Now we have an N so that for n,m ≥ N

Λn(y)− Λm(y) = Λn(y − x) + Λn(x)− Λm(y − x) + Λm(x) ∈ U

So

Λn(x)− Λm(x) = [Λn(y)− Λm(y)]− [Λn(y − x)− Λm(y − x)] ∈ U + U + U ⊂ V

(here using the fact that y − x ∈ W ) and so the sequence is Cauchy. To see that it is a
subspace is easy; if x, y ∈ C, then x+ y ∈ C by linearity. Same with scaling.

(2) By (1), the space of points where this converges is closed subspace. Since it contains a
dense subset, it must be the whole space, so the limit exists for all x ∈ X. Hence, we can
define

Λ(x) = lim
n→∞

Λn(x)

and this limit is well-defined. We check that this is continuous. Let x, y ∈ X, then

Λ(x+ y) = lim
n→∞

Λn(x+ y) = lim
n→∞

[Λn(x) + Λn(y)] = Λ(x) + Λ(y)

using linearity of the Λn and the limit. The same argument gives us scaling, so it is a linear
map. For continuity, we show continuity at the origin and apply Rudin Theorem 1.17.
Let V be a neighborhood of the origin in Y . By equicontinuity, there exists a neighborhood
W of the origin in X so that Λn(W ) ⊂ V for all n. This gives us that Λ(W ) ⊂ V , which
tells us that Λ is continuous at the origin.

�

Remark. I filled in the details from here.

Problem 19 (Rudin 2.15, James). Suppose X is an F -space and Y is a subspace of X whose
complement is of the first category. Prove that Y = X.

Proof. The complement of Y is of the first category, so

Y c =

∞⋃
α=1

Uα,
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where the Uα are nowhere dense. Taking complements, we have that

Y =
∞⋂
α=1

U cα.

Taking individual Uα, we note that
Uα

o
= ∅,

so taking complements we have

(U cα)o = X;

that is, U cα contains an open set Vα ⊂ U cα which is dense. So we have
∞⋂
α=1

Vα ⊂ Y.

By Baire’s theorem (Rudin Theorem 2.2) we get that the intersection of a countable collection
of open dense sets is dense, so we get that Y must be dense.

Since Y is dense, we get that Y ∩ (Y + x) 6= ∅, so take y ∈ Y ∩ (Y + x). Then y− x ∈ Y so that
y − x = y′ for some y′ ∈ Y , hence x = y − y′ ∈ Y . This holds for all x ∈ X, so X = Y . �

Problem 20 (Rudin 2.16, James). Suppose that X and K are metric spaces, that K is compact,
and that the graph of f : X → K is a closed subset of X ×K.

(1) Prove that f is continuous.
(2) Show that the compactness of K cannot be omitted from the hypotheses.

Proof.

(1) Consider
Γ(f) = {(x, f(x)) : x ∈ X} ⊂ X ×K.

Suppose xn → x. The goal is to show that f(xn) → f(x). Suppose for contradiction that
f(xn) 6→ f(x). Then we can construct a sequence f(xnj )→ y 6= f(x) by compactness and
the fact that if every convergent subsequence converges to f(x), we have that the limit
is f(x). Then the sequence (xnj , f(xnj )) ⊂ Γ(f) is a sequence which converges to (x, y),
but this then contradicts the fact that Γ(f) is closed. Hence, we must have that every
convergent subsequence converges to f(x).

(2) Let f : [0, 1]→ R be f(x) = 1/x if x 6= 0 and f(0) = 0. Then X is compact, and the graph
of f is closed, but f is not continuous.

�

1.3. Chapter 3.

Problem 21 (Rudin 3.1, James). Call a set H ⊂ Rn a hyperplane if there exists real numbers
a1, . . . , an, c (with ai 6= 0 for at least one i) such that H consists of all of the points x ∈ Rn satisfying∑

aixi = c.

Suppose E ⊂ Rn is convex with nonempty interior, and y ∈ ∂E. Prove that there is a hyperplane
H such that y ∈ H and E lies entirely on one side of H.

Proof. Recall that the Minkowski functional µA of a subset A is defined by

µA(x) = inf{t > 0 : t−1x ∈ A}.
This is well-defined and finite so long as A is absorbing.

Suppose 0 is an interior point of E. Since E has nonempty interior, this implies that the interior
of E is a neighborhood of the origin. Hence, E is an absorbing set by prior claims. We can
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then define the Minkowski functional µE . As suggested in Rudin, the goal now is to try to apply
Theorem 3.2. Notice that µE : X → R satisfies

µE(x+ y) ≤ µE(x) + µE(y), µE(tx) = tµE(x)

by Theorem 1.35. So (b) of Theorem 3.2 is satisfied.
Consider the subspace

M = {λy : λ ∈ R} ⊂ Rn.
In other words, M is the subspace generated by y on the boundary of E. Define f : M → R by

f(ty) = t.

This is a linear function, and we see that on M

f(ty) = t ≤ µE(ty).

Theorem 3.2 applies to give us Λ : X → R with

Λ|M = f, −µE(−x) ≤ Λ(x) ≤ µE(x).

Notice
µE(x) ≤ 1 for x ∈ E =⇒ |Λ(x)| ≤ 1 for x ∈ E.

Notice Λ(y) = 1 as well.
Define H by

H = {x ∈ Rn : Λ(x) = 1}.
We check that this is a hyperplane. Writing x ∈ H as

x = (x1, . . . , xn) =
∑

xiei,

we have
Λ(x) =

∑
xiΛ(ei) = 1.

So if we set the constants ai = Λ(ei), we see that this gives us a hyperplane with c = 1 (we remark
that at least one of the ai must be non-zero, since Λ(y) 6= 0). To be on one side of the hyperplane
means that for all z ∈ E, we have ∑

ziai ≤ 1,

which we see is satisfied.
We have then proven the statement under the assumption that 0 is in the interior of E. If 0 is

not in the interior of E, we can take an element z in the interior and shift E by z; i.e., we examine
the set F = E − z. This is a convex set (since the translation of a convex set is convex) and it has
0 in the interior, so we can construct a hyperplane H ′ so that F lies entirely on one side of H ′.
We can then translate this back by setting H = H ′ + z. Notice that translating the hyperplane
still gives us a hyperplane, since y ∈ H is of the form y = x + z, x ∈ H, and applying our linear
functional to this element gives

Λ(y) = Λ(x) + Λ(z) =
∑

xiΛ(ei) + C = 1.

Thus we set ai = Λ(ei) and c = 1 − C, giving us a hyperplane. Notice that E is still contained
entirely on one side of the hyperplane. �

Remark. The hint on here was useful.

Problem 22 (Rudin 3.2, James). Let L2 := L2([−1, 1]) with respect to Lebesgue measure. Let

Eα = {f ∈ C([−1, 1]) : f(0) = α}.
(1) Show that each Eα is convex.
(2) Show that each Eα is dense in L2.
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(3) Conclude that if α 6= β, then Eα and Eβ are two disjoint convex sets which cannot be
separated by any continuous linear functional.

Proof. (1) Let f, g ∈ Eα, 0 ≤ t ≤ 1. The goal is to show

tf + (1− t)g ∈ Eα.

Evaluating at 0, we have

tf(0) + (1− t)g(0) = tα+ (1− t)α = α,

so tf + (1− t)g ∈ Eα.
(2) Fix α. Let f ∈ L2. The goal is to show that for all ε > 0, there exists a g ∈ Eα so that

‖g − f‖2 < ε.

Lebesgue measure is Radon, so in particular we have C([−1, 1]) ⊂ L2 is dense (Folland
Proposition 7.9). So for any h ∈ C([−1, 1]), if we can find g ∈ Eα with

‖g − h‖2 < ε/2,

then we are done by the triangle inequality. Consider an open ball (−δ, δ) ⊂ [−1, 1], and
define a function g(x) to be h(x) when x /∈ (−δ, δ), g(x) is the straight line connecting
h(−δ) to α on (−δ, 0], and it is the straight line connecting α to h(δ) on [0, δ). This is
continuous by construction, and we can do this for all δ > 0. Let N = max{α, ‖h‖u}. Then(∫ 1

−1
|g − h|2

)1/2

≤
(∫ δ

−δ
4N2

)1/2

= 2
√

2
√
δN.

Notice that N doesn’t depend on δ, so we can choose

δ <
ε2

16N2
.

Then

‖g − h‖2 < ε/2,

as desired.
(3) Take α 6= β, Λ : L2 → R continuous and linear. It’s clear that Eα ∩ Eβ = ∅, since if

f ∈ Eα ∩ Eβ =⇒ f(0) = α and f(0) = β, contradicting well-definedness. As long as
Λ(f) 6= 0 for some f ∈ L2, we have Λ is surjective by linearity. So Λ(Eα) = R, Λ(Eβ) = R,
so these sets cannot be separated by a continuous linear functional.

�

Problem 23 (Rudin 3.4, James). Let l∞ be the space of all real bounded functions x on the
positive integers. So x : Z≥0 → R with

‖x‖∞ = max{|xi| : i ≥ 0} <∞.

Let τ be the translation operator defined on l∞ by

(τx)(n) = x(n+ 1).

Prove that there exists a linear functional Λ on l∞ such that

(1) Λ(τx) = Λx,
(2)

lim inf
n→∞

x(n) ≤ Λ(x) ≤ lim sup
n→∞

x(n)

for every x ∈ l∞.
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Proof. We follow the suggestion. Define

Λn(x) =

∑n
k=1 x(k)

n
,

M =
{
x ∈ l∞ : lim

n→∞
Λn(x) exists

}
,

p(x) = lim sup
n→∞

Λn(x).

The goal is to apply Theorem 3.2, so we need to check all of the assumptions.

(1) Let x, y ∈ l∞, α a scalar. We need to show

αx+ y ∈M.

Notice that for each n, we have

Λn(αx+ y) =
1

n

n∑
k=1

(αx+ y)(k) = α
1

n

n∑
k=1

x(k) +
1

n

n∑
k=1

y(k)

αΛn(x) + Λn(y)

Taking limits, we get

lim
n→∞

Λn(αx+ y) = α lim
n→∞

Λn(x) + lim
n→∞

Λn(y).

So if the limits for x and y exist, they exist for linear combinations. So M is a linear
subspace.

(2) Next, we need to check that p : X → R satisfies the desired properties. Notice that

lim sup
n→∞

Λn(x+ y) = lim sup
n→∞

[Λn(x) + Λn(y)] ≤ lim sup
n→∞

Λn(x) + lim sup
n→∞

Λn(y).

So
p(x+ y) ≤ p(x) + p(y).

Notice that for t ≥ 0, we have

p(tx) = lim sup
n→∞

Λn(tx) = lim sup
n→∞

[tΛn(x)] = t lim sup
n→∞

Λn(x) = tp(x).

(3) Let f : M → R be defined by

f(x) = lim
n→∞

Λn(x).

Clearly we have f(x) ≤ p(x) on M and f is linear.

Thus, we get a linear functional Λ : X → R with Λ|M = f and

−p(−x) = lim inf
n→∞

Λn(x) ≤ Λ(x) ≤ lim sup
n→∞

Λn(x) = p(x).

We claim now that

lim sup
n→∞

1

n

n∑
k=1

x(k) ≤ lim sup
n→∞

x(n).

To see this, fix an n and fix j ≤ n. Then we have

1

n

n∑
k=1

x(k) =
1

n

j∑
k=1

x(k) +
1

n

n∑
k=j+1

x(k).

Now notice

1

n

n∑
k=1

x(k) ≤ 1

n

j∑
k=1

x(k) +
n− j
n

sup
p≥j

x(p).
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Taking lim sup of both sides gives

lim sup
n→∞

Λn(x) ≤ sup
p≥j

x(p).

Taking the limit as j →∞ gives

lim sup
n→∞

Λn(x) ≤ lim sup
n→∞

x(n).

A similar inequality works for limit inferiors, giving us

lim inf
n→∞

x(n) ≤ Λ(x) ≤ lim sup
n→∞

x(n).

This is (2).
If x ∈ M , then (1) follows easily (shifting the limit doesn’t change anything). Notice that

τ(x) ∈ l∞ (shifting still gives a sequence, and it is still bounded). We see that (2) gives us

|Λ(τx)− Λ(x)| = |Λ(τx− x)| ≤ lim sup
n→∞

(τx− x) = 0,

since shifting doesn’t change the limit superior, so

Λ(τx) = Λ(x).

�

Problem 24 (Rudin 3.5, James). For 0 < p <∞, let lp be the space of all functions x : Z≥0 → R
(could also be complex) so that

∞∑
n=1

|x(n)|p <∞.

For 1 ≤ p <∞, define

‖x‖p =
(∑

|x(n)|p
)1/p

,

‖x‖∞ = sup
n
|x(n)|.

(1) Assume 1 ≤ p <∞. Prove that ‖ · ‖p and ‖ · ‖∞ make lp and l∞ into Banach spaces.
(2) If (p, q) = 1, prove that (lp)∗ = lq in the following sense: There is a one-to-one correspon-

dence Λ↔ y between (lp)∗ and lq given by

Λ(x) =
∑

x(n)y(n), x ∈ lp.

(3) Assume 1 < p <∞. Prove that lp contains sequences that converge weakly but not strongly.
(4) On the other hand, prove that every weakly convergent sequence in l1 converges strongly.
(5) If 0 < p < 1, prove that lp metrized by

d(x, y) =

∞∑
n=1

|x(n)− y(n)|p

is a locally bounded F -space which is not locally convex but that (lp)∗ nevertheless separates
points on lp.

(6) Show that (lp)∗ = l∞ in the same sense as prior for 0 < p < 1.
(7) Show also that the set of all x with

∑
|x(n)| < 1 is weakly bounded but not originally

bounded in lp for 0 < p < 1.
(8) For 0 < p ≤ 1, let τp be the weak* topology induced on l∞ by lp. If 0 < p < r ≤ 1, show

that τp and τr are different topologies but that they induce the same topology on each norm
bounded subset of l∞.

Proof.
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(1) We first check that these are indeed norms. The fact that they are positive is clear. We
then check the remaining three properties for ‖ · ‖p.
(a) To see the triangle inequality requires a few steps. First, recall that if a, b ≥ 0 and

0 < λ < 1, then

aλb1−λ ≤ λa+ (1− λ)b.

The proof of this fact is a simple calculus trick (see Folland Lemma 6.1). Next, we
wish to show that

‖xy‖1 ≤ ‖x‖p‖y‖q
for (p, q) = 1. Assume that x, y 6= 0, since otherwise this is an easy observation. As-
sume as well ‖x‖p <∞, ‖y‖q <∞, since otherwise this isn’t interesting. Normalizing
with respect to ‖x‖p, ‖y‖q, we can assume that these are both 1. Write a = |x(n)|p,
b = |y(n)|q, λ = p−1 to get

|x(n)y(n)| = aλb1−λ ≤ λa+ (1− λ)b = p−1|x(n)|p + q−1|y(n)|q.
Adding both sides from n = 1 to ∞ gives

‖xy‖1 ≤ p−1‖x‖pp + q−1‖y‖qq = 1 = ‖x‖p‖y‖q.
This gives us Hölder’s inequality for sequences.
The goal now is to establish the triangle inequality. Notice that we can assume x+y 6=
0. Assume as well p > 1. Write

|x+ y|p ≤ (|x|+ |y|)|x+ y|p−1

and apply Hölder to get

‖x+ y‖pp ≤ ‖x‖p‖|x+ y|p−1‖q + ‖y‖p‖|x+ y|p−1‖q = (‖x‖p + ‖y‖p)
(∑

|x(n) + y(n)|p
)1/q

.

Dividing then gives the desired result.
If p = 1, then

‖x+ y‖1 =
∑
|x(n) + y(n)| ≤

∑
[|x(n)|+ |y(n)|] = ‖x‖1 + ‖y‖1.

So we have the triangle inequality for 1 ≤ p <∞. For p =∞, we see

‖x+ y‖∞ = sup
n≥1
|x(n) + y(n)| ≤ sup

n≥1
|x(n)|+ sup

n≥1
|y(n)| = ‖x‖∞ + ‖y‖∞.

This gives us the triangle inequality for 1 ≤ p ≤ ∞.
(b) Homogeneity is an easy observation. For 1 ≤ p <∞, we have

‖λx‖p =
(∑

|λx(n)|p
)1/p

= |λ|
(∑

|x(n)|p
)1/p

= |λ|‖x‖p.

For p =∞ it is equally as easy,

‖λx‖∞ = sup
n≥1
|λx(n)| = |λ| sup

n≥1
|x(n)|.

(c) For p =∞, we see

‖x‖∞ = 0 ⇐⇒ |x(n)| = 0 for all n ⇐⇒ x = 0.

For 1 ≤ p <∞, we see

‖x‖p =
(∑

|x(n)|p
)1/p

≥ (|x(n)|p)1/p = |x(n)|,
so

‖x‖p = 0 ⇐⇒ |x(n)| = 0 for all n ⇐⇒ x = 0.
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So these are indeed norms.
To be a Banach space, we need to show that the norm is complete. Fix 1 ≤ p <∞ first.

Let ∑
‖xk‖p

be a convergent series. Then the goal is to show∑
xk

converges as well (using Folland Theorem 5.1). Define

FN =

N∑
k=1

|xk|, F =

∞∑
k=1

|xk|.

Notice

‖FN‖p ≤
N∑
k=1

‖xk‖p ≤
∑
‖xk‖p <∞

for all N . Hence,
lim
N→∞

‖FN‖p = ‖F‖p <∞.

In particular, ‖F‖p <∞ =⇒ F (n) <∞ for all n, so

G(n) =

∞∑
k=1

xk(n)

converges for all n. The goal is to show

lim
n→∞

n∑
k=1

xk → G

with respect to the Lp norm. Notice∥∥∥∥∥G−
n∑
k=1

xk

∥∥∥∥∥
p

p

=

∥∥∥∥∥
∞∑

k=n+1

xk

∥∥∥∥∥
p

p

→ 0,

so we have convergence.
Note that xn → x in the l∞ norm iff

‖xn − x‖∞ → 0.

In other words,
lim
n→∞

sup
k≥1
|xn(k)− x(k)| = 0.

This means that xn → x uniformly.
Let (xn) be Cauchy. Then for all ε > 0, there exists an N so that for n,m ≥ N ,

‖xn − xm‖∞ < ε.

This means that for k fixed, we have

|xn(k)− xm(k)| < ε,

so that {xn(k)} is a Cauchy sequence in R. Since R is complete, we have that a limit is
defined. Thus, we can let

x(k) = lim
n→∞

xn(k)

For all ε > 0, we wish to show that there is an N so that for n ≥ N ,

‖xn − x‖∞ < ε.
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This follows from just noting that that the sequence is Cauchy, so there is an N with
n,m ≥ N implying

‖xn − xm‖∞ < ε,

and then we take the limit as m→∞. This makes lp into a Banach space for 1 ≤ p ≤ ∞.
(2) Recall (p, q) = 1 if and only if 1/p + 1/q = 1. One direction is easy. We see that y ∈ lq

gives us a linear functional which is continuous by Hölder, since

‖xy‖1 ≤ ‖x‖p‖y‖q <∞.
So Λ : lp → R defined by

Λ(x) =
∑

x(n)y(n) <∞,

and continuity follows by noting

‖Λ‖ ≤ ‖y‖q.
We now consider Λ : lp → R a continuous linear functional. The goal is to define a

function y ∈ lq so that

Λ(x) =
∑

x(n)y(n).

Consider

xk(n) =

{
1 if k = n

0 otherwise.

We see that xk(n) ∈ lp clearly, and we note that x ∈ lp is of the form

x(n) =
∞∑
k=1

x(k)xk(n),

Now define
y(k) = Λ(xk).

The claim is that
Λ(x) =

∑
x(n)y(n)

and y ∈ lq. To see the first result, define

SN =

N∑
k=1

akxk,

so that limN→∞ SN = x. Notice

Λ(SN ) =
N∑
k=1

x(k)Λ(xk),

and by continuity we get
∞∑
k=1

x(k)y(k) = lim
N→∞

Λ(SN ) = Λ(x).

So the first property is established. Next, ‖Λ‖ <∞, since Λ is continuous. Recall

‖Λ‖ = sup{|Λ(x)| : ‖x‖p = 1}.
The goal is to show ‖y‖q ≤ ‖Λ‖. Let gn = χ[1,n]y, so that gn → y pointwise. Let

yn =
|gn|q−1sgn(g)

‖gn‖q−1
q

,
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then ‖yn‖p = 1 and using Fatou’s Lemma we get

‖y‖q ≤ lim inf ‖yn‖q ≤ lim inf
∑

yn(k)y(k) ≤ ‖Λ‖.

This gives us the desired correspondence.
(3) Assume 1 < p <∞. Consider xk(n) given above. We wish to show that xk(n)→ 0 weakly

but not strongly. Notice that for any k and m,

‖xk − xm‖p = 21/p.

The sequence is not Cauchy, so does not converge strongly to anything. On the other hand,
for any y ∈ lq, we have

∞∑
n=1

xk(n)y(n) = y(k).

Since ‖y‖q <∞, we must have limk→∞ |y(k)| = 0. Hence,

lim
k→∞

Λ(xk) = 0 for all Λ ∈ (lp)∗.

So it converges weakly to 0.
(4) Suppose xn → x weakly in l1. Without loss of generality, we assume that xn → 0 weakly by

linearity. For contradiction, assume xn 6→ 0. We follow the method of the “gliding hump”
(credit to this user) Since xn 6→ 0, there is a subsequence (xm) so that ‖xm‖1 ≥ ε. The idea
is to construct a linear functional so that

f(xn) =
∑

xn(k)y(k) > 0 for all n.

Choose N1 so that
∞∑

k=N1

|x1(k)| < ε

100
.

Choose M1 so that
N1∑
k=1

|xM1(k)| < ε

100
.

Choose corresponding Nj and Mj so that

∞∑
k=Nj

|xMj−1(k)| < ε

100
,

Nj∑
k=1

|xMj (k)| < ε

100
.

Given Mj−1 (and setting M0 = 1) we see we can choose Nj since each xMj−1 ∈ l1. Given
Nj , we see we can choose Mj since the sequence y(k) = 1 for 1 ≤ k ≤ Nj is in l∞ which
is contained in the dual, so there must be some Mj which satisfies the criteria by weak
convergence.

Notice that the bulk of the mass for xMj lies in between Nj−1 + 1 ≤ k ≤ Nj , since

Nj−1∑
k=1

|xMj−1(k)| < ε

100
,

∞∑
k=Nj

|xMj−1(k)| < ε

100
,
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and ‖x‖1 > ε. Define

y(k) = sgn(xMj (k)) for Nj−1 < k ≤ Nj .

Then we see that the linear functional defined by y gives

|f(xMj )| =

∣∣∣∣∣
∞∑
k=1

y(k)xMj (k)

∣∣∣∣∣ =

∣∣∣∣∣∣
Nj−1∑
k=1

y(k)xMj (k) +

Nj∑
k=Nj−1+1

y(k)xMj (k) +

∞∑
k=Nj+1

y(k)xMj (k)

∣∣∣∣∣∣
≥ 98

100
ε > 0.

This applies for an infinite subsequence xMj , so this contradicts the fact that xn → 0 weakly.
(5) Recall a space is said to be locally bounded if the origin has a set which is bounded. A set

E ⊂ X is said to be bounded if for all neighborhoods of the origin V there exists a t > 0
with E ⊂ tV . A space is an F-space if the topology is induced by a complete invariant
metric.

We need to show the following:
(a) The function d is indeed a metric.
(b) The metric d is invariant.
(c) The metric d is complete (this shows that it is an F -space).
(d) The origin admits a bounded neighborhood (this shows that it is a locally bounded

F -space).
(e) The space is not locally convex.
(f) (lp)∗ separates points on lp.

We go through each step:
(a) We show that d is a metric. There are four properties to check.

(i) It is clear that d(x, y) ≥ 0, since it is a sum of positive terms.
(ii) Notice that

d(x, y) =
∑
|x(n)− y(n)|p =

∑
|y(n)− x(n)|p = d(y, x).

(iii) We see d(x, y) = 0 iff |x(n)− y(n)|p = 0 for each n iff x(n) = y(n) for each n iff
x = y.

(iv) The triangle inequality is easier this time. We claim for a, b ≥ 0, we have

(a+ b)p ≤ ap + bp

for 0 < p < 1. If b = 0, it is clear. Assume b 6= 0. Divide both sides by bp to get(a
b

+ 1
)p
≤
(a
b

)p
+ 1.

Let t = a/b (since b 6= 0). Then the goal is to show for t ≥ 0,

(t+ 1)p ≤ tp + 1.

In other words, the goal is to show

(t+ 1)p − tp ≤ 1.

Taking the derivative of the left hand side with respect to t, we get

p(t+ 1)p−1 − ptp−1.

For t > 0 we get that this is less than 0 so that the function is decreasing. at
t = 0, we get 1, so it is maximized at 1. In other words, we have the desired
inequality.
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With this in mind, we see that for each n

|x(n)− y(n)|p = |x(n)− z(n) + z(n)− y(n)|p ≤ (|x(n)− z(n)|p + |z(n)− y(n)|p,

so

d(x, y) ≤ d(x, z) + d(y, z).

This establishes that d is a metric.
(b) To see invariance, notice

d(x+ z, y + z) =
∑
|x(n) + z(n)− y(n)− z(n)|p =

∑
|x(n)− y(n)|p = d(x, z).

(c) To see that it’s complete, let (xn) be a Cauchy sequence with respect to the metric.
In other words, for all ε > 0 there exists an N so that for n,m ≥ N we have

d(xn, xm) < ε.

Translating, ∑
|xn(k)− xm(k)|p < ε.

For fixed k, we have

|xn(k)− xm(k)|p < ε =⇒ |xn(k)− xm(k)| < ε1/p.

Since 0 < p < 1 is fixed and this holds for all ε > 0, we get that the sequence (xn(k))
is Cauchy in R. Utilizing the fact that R is complete, we get that (xn(k)) converges to
a value, denote it by x(k).
The idea now is that xn → x. To see this, fix ε > 0. Since the sequence is Cauchy,
there exists an N so that for n,m ≥ N , we have

d(xn, xm) <
ε

2
.

Notice that for n ≥ N , we have

d(x, xn) ≤ d(x, xm) + d(xn, xm).

Notice

d(x, xm) =
∑
|x(k)− xm(k)|p.

For sufficiently large m, we get

|x(k)− xm(k)|p < ε

2k+1
,

so

d(x, xm) <
ε

2
.

This gives us d(x, xn) < ε. The choice of ε > 0 was arbitrary, so xn → x. This
establishes completeness.

(d) The balls in this topology are

Bn = {x ∈ lp : d(x, 0) < 1/n}.

Notice that

n1/pBn = {n1/px ∈ lp : d(x, 0) < 1/n}.
Notice

d(n1/px, 0) =
∑
|n1/px(k)|p = n

∑
|x(k)|p < 1.

So B1 = n1/pBn, establishing B1 is bounded.
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(e) Fix ε > 0. If lp was locally convex, then we would have co(Bε) ⊂ Bδ for some δ > 0
(where here co is the convex hull). Notice that for k ≥ 1, m ≥ 1 we can set

xk(n) =

{
ε
m if n = k

0 otherwise.

Then

(x1 + · · ·+ xm) ∈ co(Bε).

However,

‖x1 + · · ·+ xm‖p =
εp

mp
+ · · ·+ εp

mp
= m1−pεp,

so if this were in Bδ for some δ > 0, we require

m1−pεp < δ =⇒ m1−p <
δ

εp

for all m ≥ 1. Since p < 1, 1 − p > 0, so it is impossible for this to hold for all m.
Thus, it is impossible for co(Bε) ⊂ Bδ for any δ.

(f) If x 6= y, then there is a k so that x(k) 6= y(k). Let Λ : lp → R be defined by Λ(x) =
x(k). This is a linear functional, since Λ(x+y) = (x+y)(k) = x(k)+y(k) = Λ(x)+z(y),
and Λ(ax) = (ax)(k) = ax(k). It is continuous, since N (Λ) = {x : x(k) = 0} is closed
(here utilizing Theorem 1.18). If (xn) ⊂ N(Λ), xn → x, then we have that

xn(k) = 0 for all k,

so for all ε > 0 we get

|x(k)|p < ε.

Hence x(k) = 0, so x ∈ N(Λ). So Λ is a continuous linear functional with Λ(x) 6= Λ(y).
We can find one for each x 6= y, so (lp)∗ separates points.

(6) Let y ∈ l∞. We wish to show ∑
x(k)y(k) <∞,

so that y defines a linear functional by

Λ(x) =
∑

x(k)y(k).

Let

SN =
N∑
k=0

x(k)y(k).

Inducting the lemma from prior, we have

|SN |p ≤
N∑
k=0

|x(k)|p|y(k)|p.

Since y ∈ l∞, |y(k)| ≤M for some M <∞. So

|SN |p ≤Mp
N∑
k=0

|x(k)|p.

Taking the limit as N →∞, we get

|S|p ≤Mp
∞∑
k=0

|x(k)|p,
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where
S =

∑
x(k)y(k).

This establishes that S < ∞, so that Λ is well-defined. Linearity is an easy observation,
and continuity follows by the fact that Λ is bounded on B1, the ball of radius 1 around the
origin. So l∞ ⊂ (lp)∗.

For the other direction, let Λ : lp → R be a continuous linear functional. Again, define

xk(n) =

{
1 if n = k

0 otherwise.

For x ∈ lp, we can write

x(n) =
∑

akxk(n).

By the same argument as before, we have

Λ(x) =
∑

akΛ(xk).

Let y(k) = Λ(xk). We claim y ∈ l∞. Since Λ is continuous, we have that there is some ball
Bε around the origin with Λ bounded on Bε. So for sequences x ∈ Bε, we get |Λ(x)| ≤M .
Consider the sequence

xk(n) =

{
ε1/p if k = n

0 otherwise.

Then xk(n) ∈ Bε, and |Λ(xk)| = ε1/p|y(k)| ≤M . So for all k, we have

|y(k)| ≤ M

ε1/p
=⇒ ‖y‖∞ <∞.

So y ∈ l∞, as desired. We then get the correspondence.
(7) Consider

E =
{
x ∈ lp :

∑
|x(n)| < 1

}
.

We wish to show that for all y ∈ l∞, x ∈ E, we have∑
|x(k)||y(k)| <∞.

But this is clear, since
|y(k)| ≤M for all k,

so ∑
|x(k)||y(k)| ≤M

∑
|x(k)| <∞.

Hence, E is weakly bounded, since every Λ ∈ (lp)∗ is bounded on E.
We now want to show it is not originally bounded. So for all t > 0, it suffices to show

that E 6⊂ tB1, where B1 is the ball of radius 1. Note

tB1 =
{
tx ∈ lp :

∑
|x(n)|p < 1

}
=
{
x ∈ lp :

∑
|x(n)|p < tp

}
.

So for each t > 0, it suffices to find x ∈ lp so that∑
|x(n)| < 1

but ∑
|x(n)|p ≥ tp.

For 0 < t < 1, this is easy. Set x(1) = t and x(k) = 0 otherwise. Since 0 < p < 1, we get
1/p > 1. So the series ∑

n−1/p = γ(p) <∞.
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Let x(n) = δn−1/p for δ < 1/γ(p) and n ≤ N , x(n) = 0 for n > N . Here, N is chosen
sufficiently large so that

N∑
n=0

|x(n)|p ≥ tp.

Note that such an N exists since the series diverges. Then we see that∑
|x(n)| < 1,

while ∑
|x(n)|p ≥ tp

by construction. So we’ve found x ∈ E with x /∈ tB1 for all t > 0, so the set is not bounded.
(8) We now consider the weak* topology generated on l∞ by lp for 0 < p ≤ 1. We can write

x ∈ lp as a linear functional on l∞ by

x(y) =
∑

x(k)y(k).

For a finite collection {xi}ni=1 ⊂ lp, consider

W = {y ∈ l∞ : |xi(y)| < εi, 1 ≤ i ≤ n}
Sets of the form W form the open balls for the weak* topology on l∞. For 0 < r < p ≤ 1,
we can take {zj}mj=1 ⊂ lr and write

V = {y ∈ l∞ : |zj(y)| < εi, 1 ≤ j ≤ m}.
Note that these form the open balls in the weak* topology induced by lr. The goal is to
show we can form an open ball with respect to one that is not open with respect to the
other.

Take z ∈ lr. Then we have ∑
|z(k)|r = M <∞.

Notice (∑
|z(k)|p

)r/p
≤
∑
|z(k)|p(r/p) =

∑
|z(k)|r = M.

So ∑
|z(k)|p = Mp/r <∞.

Hence lr ⊂ lp. This inclusion is strict, so we see that the topologies generated differ (the
topology generated by τr will be weaker, since there are less functions).

It suffices to show it on the norm-closed unit ball. Banach-Alaoglu says this is weak*
compact with respect to both τr and τp. These are both Hausdorff topologies, so since all
compact Hausdorff topologies must agree, we have that τp = τr on the unit ball.

�

Remark. Reference for last fact found here.

Problem 25 (Rudin 3.11, James). Let X be an infinite-dimensional Fréchet space. Prove that X∗

with its weak* topology is of the first category in itself.

Proof. Recall that X∗ is of the first category if it is a countable union of nowhere dense sets. We
can embed X into X∗∗ via J : X → X∗∗ with J(x)(ϕ) = ϕ(x); i.e., J(x) = Evalx. Then the weak*
topology says that any continuous linear functional on X∗ is of the form J(x) for some x ∈ X.

Recall that {x1, . . . , xn} ⊂ X, εi > 0, sets of the form

V = {ϕ ∈ X∗ : |J(xi)(ϕ)| < εi for 1 ≤ i ≤ n} = {ϕ ∈ X∗ : |ϕ(xi)| < εi for 1 ≤ i ≤ n}
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give us a local base for our topology.
Consider U a neighborhood of 0 in a topological vector space X. We define the polar of U to be

Pol(U) = {ϕ ∈ X∗ : |ϕ(x)| ≤ 1 for all x ∈ V }.
We see that Pol : P(X) → P(X∗) satisfies a reverse inclusion property. To see this, let U ⊂ V be
neighborhoods of the origin, and take ϕ ∈ Pol(V ). Then

|ϕ(x)| ≤ 1 for all x ∈ V =⇒ |ϕ(x)| ≤ 1 for all x ∈ U,
so ϕ ∈ Pol(U). Hence, Pol(V ) ⊂ Pol(U).

Since X is a Frèchet space, we can take a sequence of decreasing open balls {Un}. This corre-
sponds to a sequence of increasing polar sets {Pol(Un)} with

X∗ ⊂
⋃
n

Pol(Un).

The proof of Banach-Alaoglu says that Pol(Un) is a weak*-closed set for each n. So if we can show
Pol(Un)o = ∅, we win. If it was nonempty, we have some V given above so that V ⊂ Pol(Un),
since these are basic open sets. In other words, for some small ε, we get that

{ϕ ∈ X∗ : |ϕ(xi)| < ε for 1 ≤ i ≤ n} ⊂ {ϕ ∈ X∗ : |ϕ(x)| ≤ 1 for all x ∈ Un}.
For each x ∈ Un, we get ker(J(x)) ⊂

⋂n
i=1 ker(J(xi)), so by Rudin Lemma 3.9 we get x is a

linear combination of the xi. So Un is a finite dimensional vector subspace. The Un are bounded
though, so this implies that Un = {0}, which is a contradiction. So it is in fact impossible to find
V so that V ⊂ Pol(Un), implying that the interior of Pol(Un) is trivial. �

Remark. The gist came from here.

Problem 26 (Rudin 3.18, James). Let K be the smallest convex set in R3 containing the points
(1, 0, 1) (1, 0,−1), and (cos(θ), sin(θ), 0) for 0 ≤ θ < 2π.

(1) Show that K is compact.
(2) Show that the set of all extreme points of K is not compact.
(3) Does such an example exist in R2.

Proof. (1) Let

A := {(1, 0, 1)} ∪ {(1, 0,−1)} ∪ {(cos(θ), sin(θ), 0) : 0 ≤ θ < 2π}.
By Rudin Theorem 3.20, we have that if A ⊂ R3 is compact, then K = co(A) is compact.
Notice

A ⊂ B2(0),

so if we show A is closed then A is compact. We see that

A = {(1, 0, 1)} ∪ {(1, 0,−1)} ∪ {(cos(θ), sin(θ), 0) : 0 ≤ θ < 2π}

= {(1, 0, 1)} ∪ {(1, 0,−1)} ∪ {(cos(θ), sin(θ), 0) : 0 ≤ θ < 2π}.
So it suffices to show this last set is closed. Let

(xn) ⊂ {(cos(θ), sin(θ), 0) : 0 ≤ θ < 2π}.
We can express these as

xn = (cos(θn), sin(θn), 0).

Suppose xn → x ∈ R3. This means

(cos(θn), sin(θn), 0)→ x.

Since these are continuous functions, this forces θn → θ ∈ [0, 2π), so

x = (cos(θ), sin(θ), 0).
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Hence the set is closed, so A is closed and compact.
(2) Denote E(K) to be the set of extreme points. These are certainly bounded, so we need to

show that the set is not closed. The point (1, 0, 0) is not in E(K) (since it is the midpoint of
the line connecting (1, 0, 1) and (1, 0,−1)) but (cos(θ), sin(θ), 0) for 0 < θ < 2π are extreme
points. The set is not closed then.

(3) It does not. A simple (geometric) proof by contradiction shows that extreme points are
isolated here.

�

Problem 27 (Rudin 3.24, James). Suppose

(1) X is a topological vector space on which X∗ separates points.
(2) Y is a topological vector space on which Y ∗ separates points.
(3) µ is a Borel probability measure on a compact Hausdorff space Q.
(4) f : Q→ X is continuous.
(5) co(f(Q)) is compact.
(6) T : X → Y a continuous linear mapping.

Prove

T

(∫
Q
fdµ

)
=

∫
Q

(Tf)dµ.

Proof. Take Λ ∈ Y ∗. Then we claim that Λ ◦ T ∈ X∗. This follows since composition of linear
functions is linear, composition of continuous functions is continuous. By Theorem 3.27, we see
that there is a y ∈ X with

y =

∫
Q
fdµ.

Notice this y satisfies the property that for every Λ ∈ X∗, we have

Λ(y) =

∫
Q

Λ(f)dµ.

Now we examine

T (y) = T

(∫
Q
fdµ

)
.

Taking any linear function Λ ∈ Y ∗, we have

Λ ◦ T (y) = Λ ◦ T
(∫

Q
fdµ

)
=

∫
Q

Λ ◦ T (f)dµ.

Since this holds for all Λ ∈ Y ∗, we get by definition that

T (y) =

∫
Q
T (f)dµ.

�

1.4. Chapter 4.

Problem 28 (Rudin 4.1, James). Let ϕ be the embedding of X into X∗∗. Let τ be the weak
topology of X, and let σ be the weak* topology of X∗∗.

(1) Prove that ϕ is a homeomorphism of (X, τ) onto a dense subspace of X∗∗.
(2) If B is the closed unit ball of X, prove that ϕ(B) is σ-dense in the closed unit ball of X∗∗.
(3) Use (1), (2), and Banach-Alaoglu to prove that X is reflexive iff B is weakly compact.
(4) Deduce from (3) that every norm-closed subspace of a reflexive space is reflexive.
(5) If X is reflexive and Y is a closed subspace of X, prove that X/Y is reflexive.
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(6) Prove that X is reflexive iff X∗ is reflexive.

Proof.

(1) We have that ϕ(x) : X∗ → F is defined by ϕ(x)(f) = f(x). We break this up into parts.
(a) The mapping ϕ is injective: This follows by noting that ϕ(x) = ϕ(y) if and only if for

all x∗ ∈ X∗, x∗(x) = x∗(y). Since X∗ separates points, this forces x = y.
(b) Consider a weak* open neighborhood in X∗∗, i.e. consider

V = {x∗∗ ∈ X∗∗ : |x∗∗(x∗i )| < ε for 1 ≤ i ≤ n}
where (x∗i )

n
i=1 ⊂ X∗. Taking the preimagine of V with respect to ϕ tells us

ϕ−1(V ) = {x ∈ X : |ϕ(x)(x∗i )| < ε for 1 ≤ i ≤ n}
= {x ∈ X : |x∗i (x)| < ε for 1 ≤ i ≤ n}.

This is open with respect to the weak topology on X. This holds for all open basic
sets, so ϕ continuous.

Hence ϕ is a homeomorphism onto its image. The fact Im(ϕ) is dense follows from Golds-
tine’s theorem.

(2) This is Goldstine’s theorem.
(3) ( =⇒ ): Assume X is reflexive, so that X∗∗ = ϕ(X). We have B = B∗∗, and by Banach-

Alaoglu B∗∗ is weak* compact. So by (1) we get that B is weakly compact.
( ⇐= ): If B is weakly compact, ϕ(B) ⊂ B∗∗ is weakly dense, Since B is weakly closed,
this implies ϕ(B) = B = B∗∗. By scaling, we get X = X∗∗.

(4) Let Y ⊂ X be a norm-closed subspace, X reflexive. By (3), B is weakly compact, hence
B ∩ Y is weakly compact, and this is the closed unit ball in Y . So Y is reflexive.

(5) X/Y is a norm-closed subspace of X.
(6) X is reflexive implies X∗ is reflexive is easy. For the other direction, assume X∗ is reflexive.

X is a norm-closed subspace of X∗∗, so in particular it is closed in the topology induced on
X∗∗ by X∗∗∗. But X∗∗∗ = X∗, so it is weak* closed. The image ϕ(X) = X ⊂ X∗∗ is weak*
dense, so in particular X = X∗∗. So X is reflexive.

�

Remark. This was helpful in the last theorem. In particular, Theorem 6.28, 6.29.

Problem 29 (Rudin 4.2, James).

(1) Which of the following spaces are reflexive?
(a) c0.
(b) `1.
(c) `p, 1 < p <∞.
(d) `p, 0 < p < 1.
(e) `∞.

(2) Prove that every finite dimensional normed space is reflexive.
(3) Prove that C, the supremum-normed space of all complex continuous functions on the unit

interval is not reflexive.

Proof.

(1) (a) Recall
c0 = {x : N→ R : lim

n→∞
|x(n)| = 0}.

I can’t remember if we established the dual of c0, so let’s do that now. Let

zk(n) =

{
1 if n = k

0 otherwise.
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For x ∈ c0, we can express it as

x(n) =

∞∑
k=1

akzk(n),

Now, by prior exercises, for y∗ ∈ c∗0 we see that

y∗(x) =
∞∑
k=1

aky
∗(zk) =

∞∑
k=1

x(k)y∗(zk).

Define y : N→ R by y(k) = y∗(zk). Then we can write the above as

y∗(x) =
∞∑
k=1

x(k)y(k).

The claim now is that y ∈ `1. Since the above holds for all x ∈ c0, define

x(k) =

{
|y(k)|
y(k) if y(k) 6= 0

0 otherwise.

Then

y∗(x) =
∞∑
k=1

|y(k)| <∞.

We’ve seen from before that every y ∈ `1 can be identified with a linear functional on
c0, so we have that `1 = c∗0. Now recall that (`1)∗ = `∞ 6= c0. So c0 is not reflexive.

(b) We have (`1)∗ = `∞, (`∞)∗ 6= `1, so `1 is not reflexive. To see this last fact of (`∞)∗ 6= `1,
define f(x) = limn xn. This is a linear functional on (`∞)∗, but cannot be identified
with an element in `1. See here.

(c) We saw before that (`p)∗ = `q, where (p, q) = 1, and hence (`q)∗ = `p. So this is
reflexive.

(d) We saw before that (`p)∗ = `∞, (`∞)∗ 6= `p.
(e) Recall X is reflexive iff X∗ is reflexive, so `1 not being reflexive forces `∞ to not be

reflexive.
(2) dim(X) = dim(X∗∗).
(3) Consider

C = {f : [0, 1]→ C : f is continuous.}
Apply the extreme points argument here to get that C is not the dual of a vector space,
hence can’t be reflexive.

�

Problem 30 (Rudin 4.13, James).

(1) Suppose T ∈ B(X,Y ), Tn ∈ B(X,Y ) for n ≥ 1, each Tn has finite dimensional range, and

lim ‖T − Tn‖ = 0.

Prove that T is compact.
(2) Assume Y is a Hilbert space, and prove the converse of (1): Every compact T ∈ B(X,Y )

can be approximate in the operator norm by operators with finite-dimensional ranges.

Proof.
35

https://math.stackexchange.com/questions/868787/dual-of-l-infty-is-not-l1


(1) Let
U = {x ∈ X : ‖x‖ < 1}

be the open ball in X. Recall T : X → Y is said to be compact if T (U) ⊂ Y is compact in
Y . Equivalently, T is compact if and only if every bounded sequence (xn) ⊂ X contains a
subsequence (xnj ) such that (Txnj ) converges in Y . Equivalently, T is compact if and only
if it is totally bounded.

Recall from Theorem 4.18 that if T ∈ B(X,Y ) and dim(Im(T )) <∞ then T is compact.
Each Tn has finite-dimensional range, so dim(Im(Tn)) < ∞, implying that each Tn is
compact. The goal now is to show this forces T to be compact.

Let (xn) ⊂ X be a bounded sequence. The goal is to show there is a subsequence so

that Txnj converges. T1 is compact, so we can refine xn to x
(1)
n (a subsequence) so that

T1x
(1)
n converges. We can then refine this so that T2x

(2)
n converges. This gives us a sequence

of nested sequences (x
(j)
n ). Let yn = x

(n)
n be the diagonal component. We claim that Tyn

converges. We see that for every n we have Tmyn converges (since eventually n will be large
enough to be the converging sequence). We then need to show that Tyn is Cauchy. To do
so, we see that adding and subtracting Tmyn gives

‖T (yn − yk)‖ ≤ ‖Tyn − Tmyn‖+ ‖Tmyn − Tmyk‖+ ‖Tmyk − Tyk‖.
Notice that yn is a bounded sequence, so

‖Tyn − Tmyn‖, ‖Tmyk − Tyk‖ ≤M‖T − Tm‖.
Since eventually for large n, k,m we have that the middle term is small, and this is all
independent of m, we can take m→∞ to make everything go to 0.

Remark. This argument actually establishes that if

lim ‖T − Tn‖ = 0

and (Tn) are compact, then T is compact.

(2) Since Y is a Hilbert space, we can find an orthonormal basis (ej) ⊂ Y . Let Pn be the
projection onto span{e1, . . . , en}. Define Qn = Id − Pn. This forces ‖QnTx‖ to be a
decreasing function with respect to n for all x, so ‖QnT‖ is decreasing. The claim now is
that ‖T − QnT‖ → 0. If this is the case, then we’re done (since that’s the only property
we’re missing now). Assume for contradiction there is a c so that ‖T −QnT‖ ≥ c. Choose
(xn) ⊂ X with ‖x‖ = 1 and ‖QnTxn‖ ≥ c/2. By compactness of T , we can find a
subsequence xnj so that Txnj → y. Then

‖Txnj −QnjTxnj‖ ≤ ‖Qnjy‖+ ‖Qnj (y − Txnj )‖ ≤ ‖Qnjy‖+ ‖y − Txnj‖.
We see that ‖Qny‖ → 0, and so both terms on the right converge to 0. This is the
contradiction.

�

Remark. Reference can be found here.

Problem 31 (Rudin 4.15, James). Suppose µ is a finite (or σ-finite) positive measure on a measure
space Ω, µ× µ is the corresponding product measure on Ω× Ω, and K ∈ L2(µ× µ). Define

(Tf)(s) =

∫
Ω
K(s, t)f(t)dµ(t). [f ∈ L2(µ)]

(1) Prove that T ∈ B(L2(µ)) and that

‖T‖2 ≤
∫

Ω

∫
Ω
|K(s, t)|2dµ(s)dµ(t).
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(2) Suppose ai, bi are members of L2(µ), for 1 ≤ i ≤ n put K1(s, t) =
∑
ai(s)bi(t) and define

T1 in terms of K1 as T was defined in terms of K. Prove that dim(Im(T1)) ≤ n.
(3) Deduce that T is a compact operator on L2(µ).
(4) Suppose λ ∈ C, λ 6= 0. Prove: Either the equation

Tf − λf = g

has a unique solution f ∈ L2(µ) for every g ∈ L2(µ) or there are infinitely many solutions
for some g and none for others.

(5) Describe the adjoint of T .

Proof.

(1) To show that Tf ∈ L2(µ), we need to establish that∫
Ω

∣∣∣∣∫
Ω
K(s, t)f(t)dµ(t)

∣∣∣∣2 dµ(s) <∞.

First, notice that we can bring the absolute values inside to get an upper bound of∫
Ω

(∫
Ω
|K(s, t)||f(t)|dµ(t)

)2

dµ(s).

Next, observe that Cauchy-Schwarz tells us that(∫
Ω
|K(s, t)||f(t)|dµ(t)

)2

≤
(∫

Ω
|K(s, t)|2dµ(t)

)(∫
|f(t)|2dµ(t)

)
.

Since f ∈ L2(µ), the value on the right is ‖f‖ <∞. So we have an upper bound of

‖f‖
∫

Ω

∫
Ω
|K(s, t)|2dµ(t)dµ(s).

Fubini-Tonelli applies to let us rearrange the order of integration, telling us that we have
an upper bound of

‖f‖
∫

Ω

∫
Ω
|K(s, t)|2dµ(s)dµ(t).

Since K ∈ L2(µ× µ), this is finite. This tells us that Tf ∈ L2(µ). The fact that T is linear
is an easy thing to see. Furthermore, we have

‖T‖ = sup {‖Tf‖2 : ‖f‖2 = ‖f‖ = 1}

= sup

{√∫
Ω

∣∣∣∣∫
Ω
K(s, t)f(t)dµ(t)

∣∣∣∣ dµ(s) : ‖f‖ = 1

}
.

Squaring both sides, we see that from the above discussion we have an upper bound of

‖T‖ ≤
∫

Ω

∫
Ω
|K(s, t)|2dµ(s)dµ(t).

(2) We have

(T1f)(s) =

∫
Ω
K1(s, t)f(t)dµ(t).

Suppose the (ai) and (bi) are basis vectors in L2(µ). The fact that K1(s, t) ∈ L2(µ × µ)
follows from the fact that

|K1(s, t)|2 ≤
(∑

|ai(t)||bi(s)|
)2
≤
∑
|ai(t)|2

∑
|bi(s)|2.

This is the finite Cauchy-Schwarz inequality (see here). Integrating this and using Fubini-
Tonelli, we have
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∫
Ω×Ω
|K1(s, t)|2dµ(s× t) =

(∑
‖ai‖2

)(∑
‖bi‖2

)
<∞.

We then implement (1) to deduce that T1 ∈ B(L2(µ)). Next, we wish to show that
dim(Im(T1)) <∞. We see that

(T1f)(s) =

∫
Ω
K1(s, t)f(t)dµ(t)

=

∫
Ω

(
n∑
i=1

ai(t)bi(s)

)
f(t)dµ(t)

=

∫
Ω

n∑
i=1

ai(t)bi(s)f(t)dµ(t)

=
n∑
i=1

bi(s)

∫
Ω
ai(t)f(t)dµ(t)

=
n∑
i=1

bi(s)〈ai, f〉.

If we take the ai to all be basis vectors, we see that 〈ai, f〉 = 0 unless f shares a component
with ai. That is, if f is another basis element, it is 0 unless f is among the ai. Thus, we
have that dim(Im(T1)) ≤ n.

(3) Use the prior exercise to note that we have a limit of compact operators.
(4) We can rewrite the above to be

(T − λe)f = g.

If λ ∈ σ(T ) (so that T is not invertible) then we claim there will be some g so that there
are no solutions and some for which there are infinitely many solutions. If λ /∈ σ(T ), then
the uniqueness and existence of solutions is clear by invertibility.

Note that every λ ∈ σ(T ) is an eigenvalue by Theorem 4.25 (b). Hence (T − λe) fails
to be injective, so 0 has infinitely many solutions. We can then invoke Theorem 4.24 to
see that this also fails to be surjective. So some solutions (those within the range) will have
infinitely many solutions, while others will have no solutions.

(5) It is self-adjoint. Since we’re dealing with Hilbert spaces, we have a self-dual space. So
the inner product notation we’ve been using to denote evaluation is actually just the inner
product now. That is, if f ∈ L2(µ), then

f∗ = 〈f, ·〉 =

∫
f · dµ,

so that

〈g, f∗〉 = f∗(g) =

∫
fgdµ = 〈g, f〉.

The adjoint then works nicely. Recall that the adjoint is defined to be the unique map T ∗

satisfying

〈Tf, g〉 = 〈f, T ∗g〉.
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Thus, we see

〈Tf, g〉 =

∫
(Tf)(s)g(s)dµ(s) =

∫ (∫
K(s, t)f(t)dµ(t)

)
g(s)dµ(s)

=

∫
g(s)

∫
K(s, t)f(t)dµ(t)dµ(s).

We now need to justify switching the order of integration. To do this is trickier than it seems.
First, notice that (Tf)(s) ∈ L2(µ), so by Cauchy-Schwarz we see that g(Tf) ∈ L1(µ), since∣∣∣∣∫ g(Tf)

∣∣∣∣ ≤ ∫ |g||Tf | ≤ (∫ |g|2)(∫ |Tf |2) <∞.

Define T ∗ by

(T ∗g)(t) =

∫
K(s, t)g(s)dµ(s).

Then we see that (T ∗g)f ∈ L1(µ) by a similar argument, and so switching the order of
integration is fine. This gives

〈Tf, g〉 =

∫ ∫
K(s, t)f(t)g(s)dµ(t)dµ(s) =

∫ ∫
K(s, t)f(t)g(s)dµ(s)dµ(t) = 〈f, T ∗g〉.

�

Problem 32 (Rudin 4.16, James). Define

K(s, t) =

{
(1− s)t if 0 ≤ t ≤ s
(1− t)s if s ≤ t ≤ 1.

Define T ∈ B(L2(0, 1)) by

(Tf)(s) =

∫ 1

0
K(s, t)f(t)dt.

(1) Show that the eigenvalues of T are (nπ)−2, n = 1, 2, . . ., that the corresponding eigenfunc-
tions are sin(nπx) and that each eigenspace is one-dimensional.

(2) Show that the above eigenfunctions form an orthogonal base for L2(0, 1).
(3) Suppose g(t) =

∑
cn sin(nπt). Discuss the equation Tf − λf = g.

(4) Show that T is also a compact operator on C([0, 1]).

Proof.

(1) Assume λ 6= 0, λ an eigenvalue. Then there is an f so that (Tf) = λf . That is, for every
s ∈ [0, 1] we have

(Tf)(s) =

∫ 1

0
K(s, t)f(t)dt = (1− s)

∫ s

0
tf(t)dt+ s

∫ 1

s
(1− t)f(t)dt = λf(s).

We see that taking the derivative gives

λf ′(s) = −
∫ s

0
tf(t)dt+ (1− s)sf(s) +

∫ 1

s
(1− t)f(t)dt− s(1− s)f(s)

=

∫ 1

s
(1− t)f(t)dt−

∫ s

0
tf(t)dt.

Taking a second derivative gives

λf ′′(s) = −(1− s)f(s)− sf(s) = −f(s).

So
λf ′′(s) + f(s) = 0.
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Note that

λf(0) = (Tf)(0) = 0 =⇒ f(0) = 0,

λf(1) = (Tf)(1) = 0 =⇒ f(1) = 0.

So we need to solve this second order differential equation. Examine the characteristic
function:

λr2 + 1 = 0 =⇒ r2 +
1

λ
= 0.

Assume λ > 0. This implies that the roots are complex; that is, the roots are

r = ± i√
λ
.

So the solutions are of the form

ei/
√
λ, e−i/

√
λ.

Using DeMoivre’s formula, this implies

f(s) = C1 cos(s/
√
λ) + C2 sin(s/

√
λ).

Plugging in our initial conditions, we have

f(0) = C1 = 0,

f(1) = C2 sin(1/
√
λ) = 0 =⇒ C2 = 0 or λ = (nπ)−2 for n ∈ N.

We want to find the non-trivial solution, so this means that we have the eigenvalues are
(nπ)−2 for n ∈ N and the eigenfunctions are

f(s) = sin(nπs).

Notice this implies the eigenspace has dimension 1, since scalar multiples of these are the
only solutions to this differential equation.

(2) We first show these are orthogonal. Assume m,n ∈ Z are distinct. Then we have∫ 1

0
sin(nπx) sin(mπx)dx =

−m cos(mπ) sin(nπ) + n sin(mπ) cos(nπ)

π(m2 − n2)
= 0.

We note we can turn this into an orthonormal set by just multiplying the components by√
2. We now show completeness.
For all f ∈ L2((0, 1)), we can extend it (uniquely) to L2((−1, 1)) by taking an even

extension, i.e.

f(t) =

{
f(t) if t ∈ [0, 1]

−f(−t) if t ∈ [−1, 0].

Recall that L2((−1, 1)) has an orthogonal basis given by {1, cos(nπt), sin(nπt)} by Stone-
Weierstrass. Now we see that∫ 1

−1
f(t) cos(nπt)dt = 0 for n ≥ 0,

and ∫ 1

−1
f(t) sin(nπt)dt = 2

∫ 1

0
f(t) sin(nπt)dt for n ≥ 1.

If ∫ 1

0
f(t) sin(nπt)dt = 0 for n ≥ 1,
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then we have that the above integral is 0, implying that f is 0 since it evaluates to 0 on all
of the orthogonal base. So we get that the set is complete, implying that it is an orthogonal
base.

(3) Write

g(t) =

∞∑
n=1

cn sin(nπt).

If g is 0, then the statement reduces to looking at

Tf = λf,

for which there is only a (non-trivial) solution if λ is an eigenvalue. Assume now g(t) =
C sin(nπt), where C 6= 0 is some constant and n ≥ 1 an integer. We have that

Tf − λf = C sin(nπt).

Setting

f = (nπ)2 sin(nπt),

we see

Tf = sin(nπt),

so

Tf − λf = sin(nπt)− λ(nπ)2 sin(nπt) = [1− λ(nπ)2] sin(nπt) = C sin(nπt).

There is a solution if

1− λ(nπ)2 = C ⇔ λ = (nπ)−2[1− C].

The question now is whether this solution is unique. If λ is an eigenvalue, i.e. if

C =
m2 − n2

m2

for some m ∈ Z≥1, then the Fredholm alternative says that this is not a unique solution
(scale things around). Otherwise, this is the unique solution.

For a finite sum, i.e. for

g(t) =

N∑
n=1

cn sin(nπt),

we can apply the prior strategy for each individual cn and sum them together, giving us
the existence of a solution as long as λ satisfies

λ = (nπ)−2[1− cn] for 1 ≤ n ≤ N.

If this is the case, for each n we set fn = sin(nπt) and we set

f =

N∑
n=1

fn.

This tells us

Tf − λf =

N∑
n=1

(Tfn − λfn) =

N∑
n=1

cn sin(nπt).

Even if this strategy doesn’t work, as long as λ is not an eigenvalue the Fredholm alter-
native tells us there is a unique solution. The question now is if λ is an eigenvalue, when
do we have a solution for g?
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Note by (2) we have an orthogonal base given by the sines. Write

f =

∞∑
n=1

an sin(nπt).

Notice

Tf =
∞∑
n=1

an(nπ)−2 sin(nπt).

Since λ an eigenvalue, we know λ = (πm)−2 for some m ≥ 1 an integer. Hence we have

Tf − λf =

∞∑
n=1

an(nπ)−2 sin(nπt)−
∞∑
n=1

an(mπ)−2 sin(nπt) =

∞∑
n=1

cn sin(nπt)

=⇒ an((nπ)−2 − (mπ)−2) = cn for n ≥ 1.

We see there exists a solution for g so long as cm = 0.
(4) We follow the hint in Rudin. Let {fi} be uniformly bounded. The goal is to show the

(Tfi) are equicontinuous. If we can show this, we invoke Arzela-Ascoli to deduce that the
operator must be compact.

Note that (fi) being uniformly bounded implies that |fi(x)| ≤M for all i and all x ∈ [0, 1],
M <∞. Notice that for all i we have

|Tfi(s)− Tfi(r)| =
∣∣∣∣∫ 1

0
K(s, t)fi(t)dt−

∫ 1

0
K(r, t)fi(t)dt

∣∣∣∣
=

∣∣∣∣(1− s)∫ s

0
tf(t)dt+ s

∫ 1

s
(1− t)f(t)dt− (1− r)

∫ r

0
tf(t)dt− r

∫ 1

r
(1− t)f(t)dt

∣∣∣∣
=

∣∣∣∣(1− s− 1 + r)

∫ s

0
tf(t)dt+ (1− r)

∫ s

0
tf(t)dt+ (s− r)

∫ 1

s
(1− t)f(t)dt

+r

∫ 1

s
(1− t)f(t)dt− (1− r)

∫ r

0
tf(t)dt− r

∫ 1

r
(1− t)f(t)dt

∣∣∣∣
=

∣∣∣∣(r − s) ∫ s

0
tf(t)dt+ (1− r)

∫ s

r
tf(t)dt+ (s− r)

∫ 1

s
(1− t)f(t)dt+ r

∫ r

s
(1− t)f(t)dt

∣∣∣∣
≤ M

2
|r − s|+M(1− r)

∫ s

r
tdt+

M

2
|s− r|+Mr

∫ s

r
(1− t)dt

= M |r − s|+ M

2
(r − s)(2r2 + 2rs− 3r − s)

≤M |r − s|
(

1 + r2 + rs− 3

2
r − s

2

)
.

Noting that 0 ≤ r, s ≤ 1, we can maximize the above to get

|Tfi(s)− Tfi(r)| ≤
3

2
M |r − s|.

This is independent of the choice of i, so we can choose δ uniformly so that it applies for
all i. Thus, we have equicontinuity.

�
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1.5. Chapter 10.

Problem 33 (Rudin 10.1, James). Use the identity

(xy)n = x(yx)n−1y

to prove that xy and yx always have the same spectral radius

Proof. Notice the identity follows by breaking it up; for n ≥ 1, write (xy)n = xy · · · · · xy n times.
Taking out the first x and the last y, we are left with x(yx · · · · · yx)y. We took out one copy of xy,
so this leaves us with n− 1 of these.

Recall from Rudin 10.13 that the spectral radius of xy satisfies

ρ(xy) = lim
n→∞

‖(xy)n‖1/n.

Using the identity, we have

ρ(xy) = lim
n→∞

‖(xy)n‖1/n = lim
n→∞

‖x(yx)n−1y‖1/n

≤ lim
n→∞

‖x‖1/n‖(yx)n−1‖1/n‖y‖1/n

= lim
n→∞

‖(yx)n−1‖1/n = lim
n→∞

(
‖(yx)n−1‖1/(n−1)

)(n−1)/n
= ρ(yx).

A symmetric argument gives

ρ(yx) ≤ ρ(xy),

so we have equality. �

Problem 34 (Rudin 10.2, James).

(1) If x and xy are invertible in A, prove that y is invertible.
(2) If xy and yx are invertible in A, prove that x and y are invertible.
(3) Prove that it is possible to have xy = e but yx 6= e.
(4) If xy = e and yx = z 6= e, show that z is a non-trivial idempotent.

Proof.

(1) If x is invertible, there is an x−1. Similarly, let xy = z, then there is a z−1. So

(xy)z−1 = e =⇒ x(yz−1) = e =⇒ yz−1 = x−1 =⇒ yz−1x = e.

Notice as well

z−1xy = z−1(xy) = e.

So y−1 = z−1x.
(2) Let z = xy, q = yx, then we see there is a z−1 and a q−1. The goal is to prove that x is

invertible (the same argument will show y is invertible). Notice

x = xqq−1 = x(yx)q−1 = (xy)xq−1 =⇒ z−1x = xq−1.

Now

e = z−1z = z−1(xy) = (z−1x)y = (xq−1y) = x(q−1y).

Notice as well

q−1yx = q−1(yx) = e.

So x−1 = q−1y.
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(3) We follow the hint. Consider the left and right shifts Sr and Sf on some Banach space of
functions, that is, set

(Srf)(n) = f(n− 1) if n ≥ 1,

(Srf)(0) = 0,

(Slf)(n) = f(n+ 1) if n ≥ 0.

Then Sr ◦ Sl(f)(n) = Sr(Sl(f))(n) = (Sl(f))(n − 1) = f(n) as long as n ≥ 1. At n = 0,
Sr(Sl(f))(0) = Sl(f)(0) = f(1), so we see it is not the identity. On the other hand,
Sl ◦ Sr(f)(n) = Sl(Sr(f))(n) = Sr(f)(n+ 1) = f(n) for all n ≥ 0, so it is the identity.

(4) Recall a non-trivial idempotent is an element satisfying z2 = z and z 6= 0, z 6= e. We see
(using xy = e)

z2 = (yx)(yx) = y(xy)x = yx.

Clearly z 6= e by construction. We need to show z 6= 0. If z = 0, then this says yx = 0, so

y = y(xy) = (yx)y = 0 · y = 0,

implying 0 is invertible, a contradiction.

�

Problem 35 (Rudin 10.3, James). Prove that every finite dimensional A is isomorphic to an
algebra of matrices.

Proof. Send basis elements to basis elements of Cn (since it’s finite dimensional) and identify
matrices correspondingly. �

Problem 36 (Rudin 10.5, James). Let A0 and A1 be the algebras of all complex 2-by-2 matrices
of the form (

α 0
0 β

)
,

(
α β
0 α

)
.

Prove that every two-dimensional complex algebra A with unit e is isomorphic to one of these, and
that A0 is not isomorphic to A1.

Proof. Since A is two dimensional, it admits a basis {e, a} where e is such that ae = ea = a. Notice
that we must have

a2 = αe+ βa, α, β ∈ C.
We claim we can find another basis {e, b} with b2 = λe for some λ ∈ C. If β = 0, we are done. If
β 6= 0, notice that α 6= 0 as well, for if α = 0 we get

a2 = βa =⇒ a(a− βe) = 0,

implying either a = λe for λ ∈ C, contradicting the fact this is a basis. So

(a− γe)2 = a2 − 2γa+ γ2e = αe+ βa− 2γa+ γ2e = (α+ γ2)e+ (β − 2γ)a.

So if we set b = a− β/2e, the above shows

b2 = (α+ β2/4)e.

Furthermore, we see {e, b} forms a basis. So we can find a basis with a2 = λe for some λ ∈ C.
We now break this into two cases: λ = 0 (that is, a2 = 0) or λ 6= 0. We claim in the case λ 6= 0

there is no element that squares to 0. To see this, suppose

c = αe+ βa, c2 = 0, c 6= 0.

Then

c · c = (αe+ βa) · (αe+ βa) = α2e+ αβa+ αβa+ β2a2.
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Since a2 = λe, we can rewrite this as

c2 = (α2 + β2λ)e+ 2αβa.

We see c2 = 0 implies that α+β2λ = 0 and αβ = 0. This is a contradiction, since the last equation
implies either α or β is 0, the fact that c 6= 0 implies at least one must be non-zero, and the first
equation implies that if one is zero, then so is the other. So if c 6= 0, then c2 6= 0.

Consider the case λ = 0. Define the map

ϕ : A→ A1, ϕ(αe+ βa) =

(
α β
0 α

)
.

It follows that this is a linear map and L(e) = Id, so we just need to check multiplication. That is,

ϕ((α1e+ β1a)(α2e+ β2a)) = ϕ(α1e+ β1a)L(α2e+ β2a).

Notice

(α1e+ β1a)(α2e+ β2a) = α1α2e+ (α1β2 + α2β1)a,

and (
α1 β1

0 α1

)
·
(
α2 β2

0 α2

)
=

(
α1α2 α1β2 + α2β1

0 α1α2

)
,

so this is indeed multiplicative, hence an algebra homomorphism. It’s clearly surjective, and if
ϕ(αe+ βa) = 0, then this implies that α, β = 0, so this is injective. Thus we have an isomorphism.

Consider the case λ 6= 0. So a2 = λe. We wish to find a basis element b so that b2 = b, b 6= e.
All of the elements are of the form

b = αe+ βa,

so

b2 = (αe+ βa)(αe+ βa) = (α2 + λβ2)e+ 2αβa.

We want

α2 + λβ2 = α,

β = 2αβ.

This forces

α =
1

2
, β = ± 1

2
√
λ
.

Moreover, α, β 6= 0, so this implies we can find b, c ∈ A with b2 = b, c2 = c, b 6= c, bc = cb = 0, and
b+ c = e. Moreover, these form a basis for our algebra. We then construct our homomorphism as

ϕ : A→ A0, ϕ(αb+ βc) =

(
α 0
0 β

)
.

Linearity is again clear, injectivity is clear, surjectivity is clear, L(e) = 1, and so it suffices to show
multiplicativity. Notice

(αb+ βc)(αb+ βc) = α2b+ αβcb+ αβbc+ β2c = α2b+ β2c.

Notice (
α 0
0 β

)(
α 0
0 β

)
=

(
α2 0
0 β2

)
.

So we have that every two-dimensional complex algebra A with unit e is isomorphic to one of
these. By the remark on the case of λ 6= 0 having no (non-zero) element that squares to 0, we see
that A0 6∼= A1. So up to isomorphism there are only two options for a two dimensional complex
Banach algebra. �
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1.6. Chapter 11.

Problem 37 (Rudin 11.1, James). Prove the following:

(1) No proper ideal of A contains any invertible element of A.
(2) If J is an ideal in a commutative Banach algebra A, then its closure J is also an ideal.

Proof.

(1) Suppose J < A is a proper ideal, and let y ∈ J be invertible. Then y−1 ∈ A, so yy−1 = e ∈
J . But e ∈ J implies ex = x ∈ J for all x ∈ A. Hence J = A, a contradiction.

(2) We need to show for all y ∈ J , x ∈ A, we have xy ∈ J . Since A a Banach algebra, we can
express y ∈ J as the limit yn → y, where yn ∈ J for all n. Since J an ideal, xyn ∈ J for all
n, and by continuity of multiplication this implies xy ∈ J as desired.

�

2. Penneys Solutions

Problem 38 (Penneys 3, James). Consider

Lp[0, 1] :=

{
f : [0, 1]→ C measurable :

(∫
|f |p

)1/p

<∞

}
for 0 < p < 1.

(1) Show that

d(f, g) =

∫ 1

0
|f(t)− g(t)|pdt

is a well-defined translation-invariant metric on Lp[0, 1].
(2) Show that Lp[0, 1] with the metric given in (1) is a complete metric space.
(3) Prove that the only convex open subsets of Lp[0, 1] are ∅ and Lp[0, 1].
(4) Deduce that if (X, τ) is a locally convex topological vector space and T : Lp[0, 1]→ X is a

continuous linear map, then T = 0.

Proof. (1) We first show that it is a metric. There are three properties we must establish.
(i) d(f, g) ≥ 0: This follows since it’s an integral of a non-negative function.
(ii) d(f, g) = d(g, f): Notice that

d(f, g) =

∫ 1

0
|f(t)− g(t)|pdt =

∫ 1

0
| − (g(t)− f(t))|pdt

=

∫ 1

0
|g(t)− f(t)|pdt = d(g, f).

(iii) d(f, g) = 0 if and only if f = g almost everywhere: First, assume that d(f, g) = 0.
Then we have

d(f, g) =

∫ 1

0
|f(t)− g(t)|pdt = 0.

This can only happen if |f(t) − g(t)|p = 0 almost everywhere (see Folland Propo-
sition 2.16), which forces |f(t) − g(t)| = 0 almost everywhere, or f = g almost
everywhere. Next, if f = g almost everywhere, then |f(t) − g(t)| = 0 almost every-
where, and so we see that d(f, g) = 0.

(iv) Finally, we need to establish the triangle inequality. This is the more interesting
property. Let f, g, h be measurable functions from [0, 1] to C. The goal is to show that

d(f, g) ≤ d(f, h) + d(h, g).
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Notice that

d(f, g) =

∫ 1

0
|f(t)− g(t)|pdt.

We can add and subtract h to get

d(f, g) =

∫ 1

0
|f(t)− h(t) + h(t)− g(t)|pdt.

We now use concavity. We claim for a, b ≥ 0, we have

(a+ b)p ≤ ap + bp.

If b = 0, then it follows. Assume b > 0. Then we can divide by bp to get that the
above is equivalent to (

1 +
a

b

)p
≤ 1 +

(a
b

)p
.

Let t = a/b. This can then be rewritten as

(1 + t)p ≤ 1 + tp ⇔ (1 + t)p − tp ≤ 1.

To prove the above claim, we differentiate with respect to t to get

p(1 + t)p−1 − ptp−1 = p
[
(1 + t)p−1 − tp−1

]
,

and this is less than 0 for t > 0. Hence, it is decreasing, so it is maximized at t = 0,
which is 1, giving us the desired inequality.
Thus, we see that

d(f, g) =

∫ 1

0
|f(t)− h(t) + h(t)− g(t)|pdt ≤

∫ 1

0
(|f(t)− h(t)|p + |h(t)− g(t)|p) dt

= d(f, h) + d(h, g).

Hence, it is a well-defined metric. We then need to show translation invariance. Let
f, g, h : [0, 1]→ C be measurable functions. We have that

d(f + h, g + h) =

∫ 1

0
|f(t) + h(t)− g(t)− h(t)|pdt =

∫ 1

0
|f(t)− g(t)|pdt = d(f, g).

So it is a well-defined translation-invariant metric on Lp[0, 1].
(2) (Proof from here) We now need to show it is complete. Let (fn) ⊂ Lp[0, 1] be a Cauchy

sequence; i.e., for all ε > 0, there exists an N so that for n,m ≥ N , we have

d(fn, fm) =

∫ 1

0
|fn(t)− fm(t)|pdt < ε.

Rudin claims this to be analogous to the p ≥ 1 case. Choose a subsequence (fnj ) ⊂ Lp[0, 1]
of (fn) so that ∫ 1

0
|fnj (t)− fnj+1(t)|pdt < 1

2j
.

Let

gn(t) =

n∑
j=1

|fnj+1(t)− fnj (t)|.

We first claim that ∫ 1

0
|gn(t)|pdt ≤ 1.
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To see this, note that ∫ 1

0
|gn(t)|pdt =

∫ 1

0

∣∣∣∣∣∣
n∑
j=1

|fnj+1(t)− fnj (t)|

∣∣∣∣∣∣
p

dt

≤
∫ 1

0

n∑
j=1

|fnj+1(t)− fnj (t)|pdt =
n∑
j=1

∫ 1

0
|fnj+1(t)− fnj (t)|pdt

<
n∑
j=1

2−j ≤ 1,

where here we used the claim from (1). Now, we write

g(t) =
∞∑
j=1

|fnj+1(t)− fnj (t)|.

We claim that ∫ 1

0
|g(t)|pdt ≤ 1.

To see this, note that∫ 1

0
|g(t)|pdt =

∫ 1

0

∣∣∣∣∣∣
∞∑
j=1

|fnj+1(t)− fnj (t)|

∣∣∣∣∣∣
p

dt

=

∫ 1

0
lim
n→∞

∣∣∣∣∣∣
n∑
j=1

|fnj+1(t)− fnj (t)|

∣∣∣∣∣∣
p

dt.

Recall that Fatou’s Lemma says∫
lim inf gn ≤ lim inf

∫
gn,

where gn is a positive valued function. Hence, we have∫ 1

0
lim
n→∞

∣∣∣∣∣∣
n∑
j=1

|fnj+1(t)− fnj (t)|

∣∣∣∣∣∣
p

dt ≤ lim inf
n→∞

∫ 1

0

∣∣∣∣∣∣
n∑
j=1

|fnj+1(t)− fnj (t)|

∣∣∣∣∣∣
p

dt

≤ lim inf
n→∞

∫ 1

0

n∑
j=1

|fnj+1(t)− fnj (t)|pdt

= lim inf
n→∞

n∑
j=1

∫ 1

0
|fnj+1(t)− fnj (t)|pdt

< lim inf
n→∞

n∑
j=1

2−j ≤ 1.

Define the function

G(t) = fn1(t) +
∞∑
j=1

(fnj+1(t)− fnj (t)).
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Then we have that the function is defined almost everywhere, so let F (t) be the function
defined to be the value of the series if it converges and 0 otherwise. Note that

F (t) = lim
j→∞

fnj (t) almost everywhere.

Fatou’s Lemma then applies, so we see that for fixed ε > 0, we can find N sufficiently large
so that for n ≥ N ,

d(F, fn) =

∫ 1

0
|F (t)− fn(t)|pdt ≤ lim inf

j→∞

∫ 1

0
|fnj (t)− fn(t)|pdt < εp.

So F − fn is in Lp, hence F in Lp, and fn → F with respect to the Lp metric.
(3) We now need to show that the only open convex sets are ∅ and Lp[0, 1]. A set U ⊂ Lp[0, 1]

is convex if, for 0 ≤ t ≤ 1, we have that

tU + (1− t)U ⊂ U.

We follow Rudin 1.47. Let U ⊂ Lp[0, 1] be open and convex. Since a shifting of convex
sets is convex, assume without loss of generality that 0 ∈ U . Then we have that there is
some δ > 0 so that Bδ(0) ⊂ U , where

Bδ(0) =

{
f ∈ Lp[0, 1] :

∫ 1

0
|f(t)|pdt < δ

}
.

Let f ∈ Lp[0, 1]. Since f ∈ Lp[0, 1], we get∫
|f(t)|pdt = M <∞.

Since p < 1, we have that there exists a positive integer n so that

np−1

∫ 1

0
|f(t)|pdt < δ.

Now, by the continuity of the indefinite integral of |f(t)|p, we have that there is a partition
of [0, 1]

0 = x0 < x1 < · · · < xn = 1

so that ∫ xi

xi−1

|f(t)|pdt = n−1

∫ 1

0
|f(t)|pdt.

Let

gi(t) =

{
nf(t) if xi−1 < t ≤ xi
0 otherwise.

Then we have that gi ∈ U , since∫ 1

0
|gi(t)|pdt =

∫ xi

xi−1

|nf(t)|pdt = np
∫ xi

xi−1

|f(t)|pdt = np−1

∫ 1

0
|f(t)|pdt < δ,

so gi ∈ Bδ(0) ⊂ U. Now, we have that U is convex, so

f =
1

n
(g1 + · · ·+ gn) ∈ U.

Thus, U = Lp[0, 1].
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(4) Finally, the goal is to deduce that if T : Lp[0, 1] → X is a continuous linear map, then
T = 0. Since it’s linear, we have that T (0) = 0. Next, let U ⊂ X be an open set. Since X
is locally convex, we get that there is an open convex set V so that V ⊂ U . Thus, we get
that T−1(V ) ⊂ T−1(U), and since preimages of convex sets are convex, we get that T−1(V )
is a convex open set, so T−1(V ) = T−1(U) = Lp[0, 1]. This applies to all open sets, so in
particular any open neighborhood of 0, so T must be the 0 mapping.

�

Problem 39 (Penneys 4, James). Let (X, τ) be a topological vector space. For x ∈ X, let O(x)
denote the collection of open neighborhoods of x. Prove the following.

(1) Every open U ∈ O(0X) is absorbing.
(2) If U, V ⊂ X are open, then so is U + V .
(3) If U ⊂ X is open, then so is the convex hull of U .
(4) Every convex U ∈ O(0X) contains a balanced convex V ∈ O(0X).

Proof.

(1) Recall a set U ⊂ X is absorbing if, for every x ∈ X, there exists a t so that x ∈ tU . Fix
x ∈ X then we have that α 7→ αx is a continuous mapping, so in particular the collection
{α : αx ∈ U} is open, and it contains 0. So we can find n sufficiently large so that
(1/n)x ∈ U , which implies that x ∈ nU for n sufficiently large. Hence, U is absorbing.

(2) The shift of an open set by a point is still open (since translation is a homeomorphism), so

U + V =
⋃
x∈V

(U + x)

is open.
(3) The convex hull of U ⊂ X is the smallest convex set containing U . Denote this by Conv(U).

Let K be a convex set containing U . Note that Ko is convex, since for fixed 0 ≤ t ≤ 1 we
have

tKo + (1− t)Ko ⊂ K
is open. Hence, if Conv(U) were not open, then we would have Conv(U)o is open and
convex and contains U while being smaller than Conv(U), contradicting the minimality of
Conv(U). Thus, Conv(U) must be open.

(4) This is Rudin Theorem 1.14 (b). Suppose U a convex neighborhood of 0. Let

A :=
⋂
|α|=1

αU.

By the continuity of scalar multiplication, there is a neighborhood V and a δ > 0 such that
αV ⊂ U for |α| < δ. Let W be the union of the αV . W is then a balanced neighborhood
of 0, W ⊂ U . Since W is balanced, we see that α−1W = W when |α| = 1, so W ⊂⋂
|α|=1 αU = A. A is convex, being an intersection of convex sets, and so by prior work we

have that Ao is convex. Recall A is balanced implies Ao is balanced, and we see that A is
balanced since if α = rβ is such that |α| ≤ 1, |β| = 1, and 0 ≤ r ≤ 1, then

αA = rβA =
⋂
|z|=1

rβzU =
⋂
|z|=1

rzU ⊂
⋂
|z|=1

zU = A.

So A is balanced.

�

Problem 40 (Penneys 5, James). Suppose ϕ,ϕ1, . . . , ϕn are linear functionals on a vector space
X. Prove that the following are equivalent:
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(1) We have that

ϕ =

n∑
k=1

αkϕk,

where αi ∈ R.
(2) There is an α > 0 so that for all x ∈ X,

|ϕ(x)| ≤ αmax{|ϕk(x)| : 1 ≤ k ≤ n}.

(3) We have that
n⋂
k=1

ker(ϕk) ⊂ ker(ϕ).

Proof. (1) =⇒ (2) : For all x ∈ X, we have

|ϕ(x)| =

∣∣∣∣∣
n∑
k=1

αkϕk(x)

∣∣∣∣∣ ≤
n∑
k=1

|αk||ϕk(x)|

≤ max{|ϕk(x)| : 1 ≤ k ≤ n}

(
n∑
k=1

|αk|

)
.

Setting

α =
n∑
k=1

|αk|

gives us the desired result.
(2) =⇒ (3) : If x ∈

⋂n
k=1 ker(ϕk), then ϕk(x) = 0 for 1 ≤ k ≤ n. This implies that

|ϕ(x)| ≤ αmax{|ϕk(x)| : 1 ≤ k ≤ n} = 0,

so x ∈ ker(ϕ).
(3) =⇒ (1) : (Rudin Lemma 3.9) Define the map f : X → Rn by

f(x) = (ϕ1(x), . . . , ϕn(x)).

Notice that ker(f) =
⋂n
k=1 ker(ϕk) ⊂ ker(ϕ) by (3), so we get a linear functional g : Im(f) → R

by g(f(x)) = ϕ(x). Now extend g to a linear function G : Rn → R, defined in such a way so that
G(f(x)) = ϕ(x). To do so, we note that Im(f) is finite dimensional, so has a basis {un}. Since
X/ ker(f) ∼= Im(f) ⊂ Rn, we can view these as basis elements in Rn, so on all basis elements which
are not in R we set G to be 0. Then G : Rn → R is so that g = G on Im(f).

Now, G(x) =
∑n

k=1 αkπk(x), where πk : Rn → R is the kth component projection. Then

G(f(x)) = G(ϕ1(x), . . . , ϕn(x)) =
n∑
k=1

αkϕk(x) = ϕ(x).

This holds for all x, so we have (1) holds. �

Problem 41 (Penneys 6, James). Suppose X is a vector space and Y is a separating linear space of
functionals on X. Endow X with the weak topology induced by Y . Prove that a linear functional
ϕ on X is weakly continuous if and only if ϕ ∈ Y .

Proof. (Rudin Theorem 3.10) Recall that a family of functionals is said to be separating if for
all x 6= y in X, there is a f ∈ Y so that f(x) 6= f(y).

Recall that the weak topology on X induced by Y is the weakest topology so that for all f ∈ Y ,
f is continuous.
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If ϕ ∈ Y , then clearly ϕ is weakly continuous. Suppose that ϕ is weakly continuous. Then there
exists a neighborhood V around the origin so that

V ⊂ {x ∈ X : |ϕ(x)| < 1}.
In pariticular, the weak topology is generated by balls of the form

V ({pi}ki=1, ε) = {x ∈ X : |pi(x)| < ε}
where pi ∈ Y , ε > 0, so we have that there exists a neighborhood V ({pi}ki=1, ε) with

V ({pi}ki=1, ε) ⊂ ϕ−1(B1(0)).

Notice that this implies that

|ϕ(x)| ≤ εmax{|pi(x)| : 1 ≤ i ≤ k}.
By Penneys 5, this implies that ϕ is a linear combination of elements from Y , so is in Y . �

Problem 42 (Penneys 36, James). Let A be a unital Banach algebra. Suppose we have a norm
convergent sequence (an) ⊂ A with an → a. Prove that for every open neighborhood U of σ(a),
there is an N > 0 such that σ(an) ⊂ U for all n > N .

Proof. This follows by Rudin 10.20. The goal is to show that there is an ε > 0 such that if
z ∈ Bε(a), then σ(z) ⊂ U . If we establish this, then since there is an N such that an ∈ Bε(a) for
all n > N by norm convergence, we get that σ(an) ⊂ U for all n > N .

To find this ε, we use the fact that ‖(λe−a)−1‖ is continuous with domain the complement of U
(by simply noting it is the composition of continuous functions). This norm tends to 0 as λ→∞,
so it is uniformly bounded. That is, there exists M <∞ with

‖(λe− a)−1‖ < M

for all λ /∈ U . If y ∈ A, ‖y‖ < 1/M , λ /∈ U , then

λe− (a+ y) = (λe− a)[e− (λe− a)−1y]

is invertible in A since ‖(λe − a)−1‖ < 1. This implies λ /∈ σ(x + y). Take ε = 1/M to get the
desired result. �

Problem 43 (Penneys 37, James). Let X be a Banach space and let [a, b] ⊂ R be a compact
interval. Let C := C([a, b], X) be the space of continuous functions [a, b] → X, X equipped with
the norm topology.

(1) Show that every f ∈ C is uniformly continuous.
(2) Prove that C is a Banach space under the supremum norm:

‖f‖∞ := sup
t∈[a,b]

‖f(t)‖.

Proof.

(1) This is the usual compact metric space argument.
(2) It is clearly a vector space (do the usual tricks, noting addition is pointwise and scaling a

continuous function is continuous). We walk through the norm definition (though this too
is the usual tricks).
(a) It maps to R≥0 since ‖·‖ is a norm (here one might need to mention supremum property

for positiveness but this is easy).
(b) If ‖f‖∞ = 0, then this implies that

0 ≤ ‖f(t)‖ ≤ 0 for all t ∈ [a, b]

by supremum properties. Hence ‖f(t)‖ = 0 for all t. Since ‖ · ‖ is a norm, this implies
f(t) = 0 for all t, so f is the zero function.
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(c) Notice

‖cf‖∞ = sup
t∈[a,b]

‖cf(t)‖ = sup
t∈[a,b]

|c|‖f(t)‖ = |c|‖f‖∞.

(d) The triangle inequality follows from noting that the supremum and the norm satisfy
the triangle inequality.

The next thing to check is completeness of the norm. Let (fn) ⊂ C be a Cauchy sequence.
This implies for all ε > 0, there is an N so that for n,m > N , we have

‖fn − fm‖∞ < ε.

Note this implies for each t we have

‖fn(t)− fm(t)‖ < ε

by the supremum. Now (fn(t)) ⊂ X is a Cauchy sequence with respect to the norm. Since
X is Banach, we have fn(t)→ y ∈ X. Define f(t) = y to be a function f : [a, b]→ X. We
need to show fn → f in the supremum norm. Notice, however,

‖fn − f‖∞ = sup
t∈[a,b]

‖fn(t)− f(t)‖.

For each t ∈ [a, b], we see that ‖fn(t)− f(t)‖ → 0, forcing the supremum to go to 0 as well,
as desired.

�

Problem 44 (Penneys 38, James). Let X be a Banach space. In this problem, we show that
the Riemann integral for continuous paths γ : [a, b] → X is well-defined and compatible with X∗.
Throughout, fix a continuous path γ : [a, b]→ X.

(1) A partition of [a, b] is a finite list

P = {a = t0 < t1 < · · · < tn = b}.

Consider the set of partitions, denoted by Γ. We can give a partial ordering ≤ on Γ by
saying P ≤ Q iff P ⊂ Q as sets. Show that partitions form a directed set under this partial
ordering.

(2) A tagged partition of [a, b] is a pair (P, u), where P is a partition of [a, b] (defined in (1))
and u = (ui)

n
i=1 ∈ [a, b]n is such that ti−1 ≤ ui ≤ ti for all i = 1, . . . , n. A preorder on a

set is a binary relation which is both reflexive and transitive. Show that the partial order
given on partitions in (1) induces a preorder on tagged partitions.

(3) For a tagged partition (P, u), let

x(P,u) =

n∑
i=1

γ(ui)(ti − ti−1).

Show that x(P,u) is a norm convergent net in X.
(4) Define ∫ 1

0
γ(t)dt = limx(P,u).

Prove that for every ϕ ∈ X∗,

ϕ

(∫ 1

0
γ(t)dt

)
=

∫ 1

0
ϕ(γ(t))dt,

where the right hand side is the Riemann integral of ϕ ◦ γ : [a, b]→ C.
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(5) Show that ∥∥∥∥∫ b

a
γ(t)dt

∥∥∥∥ ≤ ∫ b

a
‖γ(t)‖dt.

Deduce that ∫ b

a
: C([a, b], X)→ X

is a bounded linear transformation.

Proof.

(1) We remark the obvious notion that ⊂ is a partial ordering on a collection of sets, so further-
more is a preorder. A directed set is a set equipped with a preorder satisfying the property
that any two elements have an upper bound. Notice that if P,Q ∈ Γ, then P ∪ Q ∈ Γ,
where union is defined as sets. The union of two finite sets gives us a finite set, so P ∪Q is
indeed a partition.

(2) The induced preorder is given by (P, u) ≤ (Q, r) if u ⊂ r as sets (i.e. there are more
tags) and P ⊂ Q as sets. Note that with this, (P, u) ≤ (P, u) (so it is reflexive) and if
(P, u) ≤ (Q, r), (Q, r) ≤ (T, s), then (P, u) ≤ (T, s) (since u ⊂ s and P ⊂ T ).

(3) Since γ is continuous, we have that it is uniformly continuous (by the usual argument).
Denote

‖P‖ = max{∆i : i = 1, . . . , n}, ∆i = ti − ti−1.

To show it is a norm convergent net, we need to show it is a Cauchy net. So for every ε > 0,
there is a (P, u) with (Q, r), (T, s) ≥ (P, u) implies

‖x(Q,r) − x(T,s)‖ < ε.

Notice

‖x(Q,r) − x(T,s)‖ =

∥∥∥∥∥
m∑
i=1

γ(ri)∆i −
n∑
i=1

γ(si)∆i

∥∥∥∥∥ .
Eliminating the things they have in common (due to (P, u)) and relabeling leaves us with
an upper bound of

k∑
j=1

|γ(wj)|∆j .

Since these are refinements of (P, u), and noting by uniform continuity ‖γ‖∞ < M , choosing
‖P‖ < ε/Mk forces |∆j | < ε/Mk, and so we get an upper bound of ε. Since the choice of ε
was arbitrary, the net must be Cauchy, giving us it converges to something in norm. Label
the something as ∫ b

a
γ(t)dt.

(4) We have

ϕ

(∫ b

a
γ(t)dt

)
= ϕ(limx(P,u)) =

∫ b

a
ϕ(γ(t))dt.

The first equality is by definition. Notice that for each x(P,u), we have

ϕ(x(P,u)) = ϕ

(
n∑
i=1

γ(ui)∆i

)
=

n∑
i=1

ϕ(γ(ui))∆i

by linearity. By continuity of ϕ, we can take the limit of tagged partitions of this quantity
instead. Doing so gives us the Riemann integral by definition.

54



(5) We have ∫ b

a
γ(t)dt = x ∈ X.

We invoke Hahn-Banach (Rudin 3.3) to find a linear functional ϕ ∈ X∗ with ϕ(x) = ‖x‖,
ϕ(y) ≤ ‖y‖ for all y ∈ X. So∥∥∥∥∫ b

a
γ(t)dt

∥∥∥∥ = ϕ

(∫ b

a
γ(t)dt

)
=

∫ b

a
ϕ(γ(t))dt ≤

∫ b

a
‖γ(t)‖dt ≤ ‖γ‖∞

∫ b

a
dt = (b− a)‖γ‖∞.

The operator norm of the integral is then (b−a), so the integral is a bounded linear operator.

�

Problem 45 (Penneys 39, Thomas). Let A be a unital Banach algebra. Show that the holomorphic
functional calculus satisfies the following properties.

(1) Suppose a ∈ A and K ⊂ C is compact such that σ(a) ⊂ Ko. Show there is an MK > 0
such that for any f ∈ H(Ko) which has continuous extension to K,

‖f(a)‖ ≤MK‖f‖C(K).

(2) Suppose (an) ⊂ A is a norm convergent sequence with an → a. Show that for all f ∈
O(σ(a)), f(an)→ f(a).

Proof.

(1) Using the notation of Rudin, we have

‖f̃(a)‖ ≤MK‖f‖C(K),

where

f̃(a) =
1

2πi

∫
Γ
f(x)(xe− a)−1dx

and Γ is any contour that surrounds σ(x) in Ko. Taking the norm and invoking the triangle
inequality, we get

‖f̃(a)‖ =

∥∥∥∥ 1

2πi

∫
Γ
f(x)(xe− a)−1dx

∥∥∥∥ ≤ 1

2π

∫
Γ
|f(x)|‖xe− a‖−1dx

≤ ‖f‖C(K)

(
1

2π

∫
Γ
‖xe− a‖−1dx

)
.

Recall (Rudin 3.30, the resolvent identity) that (xe− a)−1 is strongly holomorphic off of
σ(a). In particular, it is continuous on Γ, so ‖(xe− a)−1‖ is continuous on Γ. Hence

0 < MK =
1

2π

∫
Γ
‖(xe− a)−1‖dx <∞.

This tells us

‖f̃(a)‖ ≤ ‖f‖C(K)MK

as desired.
(2) Use Problem 36 to get that eventually f̃(an) is well-defined on some open set U which

contains σ(a). Now note

‖f̃(a)− f̃(an)‖ =
1

2π

∥∥∥∥∫
Γ
f(x)[(xe− a)−1(xe− an)−1]dx

∥∥∥∥
≤ ‖f‖Γ

2π

∫
Γ
‖(xe− a)−1 − (xe− an)−1‖dx,
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where here ‖f‖Γ = supx∈Γ |f(x)|. Since Γ continuous, (xe − a)−1 is uniformly continuous
on Γ. We can take n sufficiently large so that for some choice of ε > 0

‖(xe− a)−1 − (xe− an)−1‖ < ε
2π

‖f‖Γ`(Γ)
,

so
‖f̃(a)− f̃(an)‖ < ε.

The choice of ε > 0 was arbitary, so we get f̃(an)→ f̃(a).

�

Problem 46 (Penneys 40, James). Let A be a unital Banach algebra, and let a, p ∈ A be such
that ap = pa (that is, they commute).

(1) Show that for every f ∈ O(σ(a)), f̃(a)p = pf̃(a).
(2) From here on, assume p is an idempotent. Show that pAp is a unital Banach algebra.
(3) Prove that σpAp(pa) ⊂ σA(a).

(4) Prove that for every f̃ ∈ O(σA(a)), f̃(ap) = pf̃ when viewed in the image of the holomorphic
functional calculus

O(σpAp(pa))→ pAp : f 7→ f̃(pa).

Proof.

(1) We see that

f̃(a) =
1

2πi

∫
Γ
f(x)(xe− a)−1dx.

So

f̃(a)p =

(
1

2πi

∫
Γ
f(x)(xe− a)−1dx

)
p =

1

2πi

∫
Γ
f(x)(xe− a)−1pdx.

By commutativity of a and p, we see

(xe− a)p− p(xe− a) = (xe)p− ap− p(xe) + pa = 0,

so
(xe− a)p = p(xe− a)⇔ p(xe− a)−1 = (xe− a)−1p.

Using this and the above, we get

f̃(a)p = p

(
1

2πi

∫
Γ
f(x)(xe− a)−1dx

)
= pf̃(a).

(2) Recall p is an idempotent if p2 = p. Notice

pAp = {pxp : x ∈ A}.
We need to show this satisfies all of the familiar properties for a Banach algebra. We first
check it is a vector space. Taking pxp, pyp ∈ pAp, we see

pxp+ pyp = p(xp+ yp) = p((x+ y)p) = p(x+ y)p ∈ pAp,
so it is closed under addition. If 0 ∈ A is the unit with respect to addition, then

p0p+ pxp = p(0 + x)p = pxp = pxp+ p0p,

so p0p ∈ pAp is still the unit with respect to addition. It is closed under inverses for a
similar reason. If α ∈ C a scalar, then

α(pxp) = p(αx)p ∈ pAp,
so it is closed under scaling as well. The compatibility with respect to scaling follows easily,
so it is clear that it is a complex vector space from here.
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We check now that it is a complex algebra. Take pxp, pyp, pzp ∈ pAp. We see

pxp(pyppzp) = pxp(pyp2zp) = pxp(pypzp) = pxpypzp ∈ pAp,
(pxppyp)pzp = (pxpyp)pzp = pxpypzp ∈ pAp,

so
pxp(pyppzp) = (pxppyp)pzp.

Next,
(pxp+ pyp)pzp = pxpzp+ pypzp = (pxp)(pzp) + (pyp)(pzp),

pxp(pyp+ pzp) = pxpyp+ pxpzp = (pxp)(pyp) + (pxp)(pzp).

Finally, if α ∈ C,

α((pxp)(pyp)) = α(pxpyp) = αpxpyp = (αpxp)(pyp) = pxp(αpyp),

thanks to the fact that A is a complex algebra. So pAp is a complex algebra.
Assume that p 6= 0 (the case p = 0 makes all of the above trivial anyways). We see that

‖p‖ = ‖pp‖ ≤ ‖p‖2 =⇒ 1 ≤ ‖p‖,
since p 6= 0. Define

‖pap‖p = ‖p‖‖a‖.
A rescaling of a norm is a norm. We check that this is still a Banach space. Let (pxnp) ⊂ pAp
be Cauchy. For ε > 0, we have that there is a N so that for n,m > N ,

‖pxnp− pxmp‖p = ‖p(xn − xm)p‖p = ‖p‖‖xn − xm‖ < ε,

so (xn) ⊂ A is a Cauchy sequence, hence xn → x. The claim is that pxnp → pxp. This
follows, since

‖pxnp− pxp‖p = ‖p(xn − x)p‖p = ‖p‖‖xn − x‖ → 0.

So pAp is a Banach space with respect to this norm.
We now check it is a Banach algebra. Notice

‖(pxp)(pyp)‖p = ‖pxpyp‖p = ‖p‖‖xpy‖ ≤ ‖p‖‖x‖‖p‖‖y‖ = ‖pxp‖p‖pyp‖p.
Hence, pAp is a Banach algebra.

It is unital with unit p = (pep), since

(pxp)(p) = pxp2 = pxp.

(3) If x /∈ σA(a), we have (xe− a) is invertible, so there is some q ∈ A with q(xe− a) = e. We
see

pqp(xe− pa) = (pqp)xe− (pqp)pa = p(qxe)p− p(qa)p = p[q(xe− a)]p = pep = p.

So x /∈ σpAp(pa). Thus, σpAp(pa) ⊂ σA(a).
(4) Let’s first take the fact on faith. That is, assume the following.

Fact. Suppose U ⊂ C open and σA(a0 ⊂ U . Suppose as well that Φ : H(U) → A is a
homomorphism satisfying the following:
• Φ(z 7→ 1) = 1A,
• Φ(z 7→ z) = a,
• If (fn) ⊂ H(U) converges locally uniformly to f , then Φ(fn)→ Φ(f).

Then Φ(f) = f̃(a) for all f ∈ H(U). That is, Φ is the holomorphic functional calculus
restricted to H(U) ⊂ O(σA(a)).

Define Φ : H(U) → pAp by Φ(f) = p(f̃(a)). We show that this is a homomorphism
satisfying the criteria outlined in the fact.

57



• Let f(z) = 1. Then

Φ(f) = p(f̃(a)),

f̃(a) =
1

2πi

∫
Γ
f(x)(xe− a)−1dx =

1

2πi

∫
Γ
(xe− a)−1dx = e,

where here we used Rudin 10.23, 10.24. So

Φ(f) = p(f̃(a)) = p,

which is the unit of pAp.
• Let f(z) = z, then

f̃(a) =
1

2πi

∫
Γ
f(x)(xe− a)−1dx =

1

2πi

∫
Γ
x(xe− a)−1dx = a,

again by Rudin 10.23, 10.24. So

Φ(f) = p(f̃(a)) = pa.

• Let fn → f uniformly locally. We can invoke Rudin 10.27 to get

f̃n(a)→ f̃(a).

So
Φ(fn) = p(f̃n(a))→ p(f̃(a)) = Φ(f).

• We now show that Φ is an algebra homomorphism. The only interesting part is mul-
tiplication (the rest follows by linearity of the integral). Define h(x) = f(x)g(x). The

goal is to show Φ(h) = Φ(f)Φ(g). Notice by Rudin 10.25, we get h̃ = f̃ g̃. So

Φ(h) = p(h̃(a)) = p(f̃(a)g̃(a)) = p2f̃(a)g̃(a) = pf̃(a)pg̃(a) = Φ(f)Φ(g),

where here we used (1) for commutativity in the fourth equality.
So we see Φ satisfies the desired property and is a homomorphism. Hence, by the fact,

Φ is the holomorphic functional calculus, implying f̃(pa) = Φ(f) = p(f̃(a)).
We now need to show that the uniqueness of holomorphic functional calculus (HFC)

proves the fact. We see that (according to the theorem in Penneys on page 12) the HFC
is uniquely characterized by 3 properties. Since Φ is an algebra homomorphism (satisfying
(1)) and Φ gives local convergence (satisfying (2)), we just need to show (3). But this
follows by just noting that Φ sends polynomials to polynomials and then using Runge’s
theorem and the local uniform convergence property to deduce Φ agrees everywhere with
the usual HFC.

�

Problem 47 (Penneys 41, James). Let A ∈ Mn(C). As best you can, describe f(A), where
f ∈ O(σ(A)).

Proof. I’m following this.
Fix A ∈Mn(C). Recall we have

ψ : C[z]→Mn(C), ψ(p) = p(A).

We have an associated minimal polynomial of A, mA, which can be written as

mA =
k∏
i=1

(z − λi)ei ,

where λi ∈ σ(A) for 1 ≤ i ≤ k. We see we have an induced homomorphism

ψ̂ : C[z]/(mA)→Mn(C), ψ̂(p+ (mA)) = p(A).
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By the uniqueness of HFC, if we can construct a “nice” unital algebra homomorphism Φ : Hol(U)→
Mn(C), then we can describe what f looks like with this homomorphism.

Define a homomorphism

η : C[z]/(mA)→ Hol(U)/mA ·Hol(U), η(p+ (mA)) = p|U +mA ·Hol(U).

The goal is to show that this is an isomorphism. If we denote π : Hol(U) → Hol(U)/mA · Hol(U)

as the canonical surjection, then we can construct Φ : Hol(U)→Mn(C) by setting Φ = ψ̂ ◦ η−1 ◦π.
So our first step here is showing η is an isomorphism. First, we show it is injective. Suppose

p|U ∈ mA · Hol(U); that is, there is some f ∈ Hol(U) with p|U = mA · f . Then p|U has a zero of
order ej at λj for each j. By the uniqueness of power series representation, mj := (z−λj)ej divides
p in C[z], which implies mA | p, or p = 0 in C[z]/(mA).

We now show surjectivity. Write

rl :=
mA

ml
=
∏
j 6=l

mj .

We see gcd(r1, . . . , rk) = 1. We can then find qj ∈ C[z] so that

1 =
k∑
j=1

qjrj .

Take f ∈ Hol(U). The goal is to find p with mA | (f − p) in Hol(U). Around each λj , we can write

f(z) =
∞∑
n=0

ajn(z − λj)n, ajn :=
fn(λj)

n!
.

Set

pj =

ej−1∑
n=0

ajn(z − λj)n, 1 ≤ j ≤ k,

and

p :=

k∑
j=1

pjqjrj .

We see f − pj has a zero of order ej at λj , so mj | (f − pj) in Hol(U). Thus

f − p =

k∑
j=1

(f − pj)qjrj = mA

k∑
j=1

f − pj
mj

qj ∈ mA ·Hol(U).

We have then

Φ(f) = p(A), p(A) =

k∑
j=1

pj(A)qj(A)rj(A) =

k∑
j=1

ej−1∑
n=0

f (n)(λj)

n!
(A− λj)nqj(A)rj(A).

The only property not clear from this is the local uniform convergence. However, local uniform
convergence implies the derivatives converge uniformly locally, and so we just use the representation
above and linearity of the limit to get our result. �

Problem 48 (Penneys 41, Thomas). Let A ∈ Mn(C). As best you can, describe f(A), where
f ∈ O(σ(A)).

59



Thomas’ Proof. Let A ∈ Mn(C) and suppose f ∈ O(σ(A)). First suppose A is an n × n Jordan
block,

A =


λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · λ 1
0 0 · · · · · · λ

 .

Since f is holomorphic on an open set containing λ, we can express it as1

f(z) =
∞∑
k=0

f (k)(λ)

k!
(z − λ)k.

Using this, we can write the HFC as

f̃(A) =

∞∑
k=0

f (k)(λ)

k!
(A− λI)k.

Notice that

A− λI =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
0 0 · · · · · · 0

 ,

so there exists N such that (A− λI)N−1 6= 0, (A− λI)N = 0. Hence,

f̃(A) =
N−1∑
k=0

f (k)(λ)

k!
(A− λI)k.

We now know how the HFC acts on Jordan blocks. The next step is to show how it acts on a
Jordan matrix. Suppose

A =


J1 0 · · · 0
0 J2 · · · 0

0 0
. . . 0

0 0 0 Jr,


where the Ji are Jordan blocks for 1 ≤ i ≤ r. We can express A as

A =
r⊕
i=1

Ji.

If we determine how the HFC acts on direct sums, we will know how it acts on Jordan matrices.
We check for just two matrices and use induction.

Suppose

A = B ⊕ C.
Let k ∈ Z. We can write

(A− λI)k = (B ⊕ C − λI)k = ((B − λI)⊕ (C − λI))k

= (B − λI)k ⊕ (C − λI)k,

1Implicitly throughout, we will take disjoint open sets around each of the λ ∈ σ(A) when we express the HFC.
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where the identity is taken over the appropriate subspace in each step. Writing out the HFC, we
have

f̃(A) =
1

2πi

∫
Γ
f̃(λ)(A− λI)−1dλ =

1

2πi

∫
Γ
f̃(λ)[(B − λI)−1 ⊕ (C − λI)−1]dλ

(∗) =
1

2πi

∫
Γ
f̃(λ)(B − λI)−1dλ+

1

2πi

∫
Γ
f̃(λ)(C − λI)−1dλ

= f̃(B) + f̃(C).

Equality (*) follows from expanding definitions. That is, if we take Λ ∈ (X ⊕ Y )∗, we can write
Λ = Λ1 ⊕ Λ2 for Λ ∈ X∗, Λ2 ∈ Y ∗, and for x ∈ X, y ∈ Y we have

(Λ1 ⊕ Λ2)(x⊕ y) = Λ1x+ Λ2y.

Putting everything together and inducting, we see that

f̃(A) =
r∑
i=1

f̃(Ji).

Recall that a matrix B is similar to A if there exists P with B = PAP−1. Assuming B is similar
to A, we have

(B − λI)k = (PAP−1 − λI)k = [P (A− λI)P−1)]k.

Letting C = (A− ΛI), we see that

[PCP−1]k = (PCP−1) · · · (PCP−1)︸ ︷︷ ︸
k times

= PCkP−1.

Using this identity, we get

f̃(B) =

∞∑
k=0

f (k)(λ)

k!
(B − λI)k =

∞∑
k=0

f (k)(λ)

k!
P (A− λI)kP−1

= P

[ ∞∑
k=0

f (k)(λ)

k!
(A− λI)k

]
P−1

= P f̃(A)P−1.

We now put this all together. Every matrix is similar to a matrix in Jordan normal form, so for
A ∈Mn(C) we have there is a P with PCP−1 = A, C in Jordan normal form. We write

C =
r⊕
i=1

Ji.

Using the the direct sum, Jordan block, and conjugation properties, we see that

f̃(A) = P

[
r∑
i=1

f̃(Ji)

]
P−1 =

r∑
i=1

Ni−1∑
k=0

f (k)(λi)

k!
P (Ji − λiI)kP−1

�
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