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Motivation

Motivating Question

Preforming a random walk on some graph structure, how long does it take
until you are ”sufficiently random?”

Theorem (Diaconis, Bayer ’92)

If you riffle shuffle a deck of size n, it takes approximately 3
2 log2(n)

shuffles until the deck is ”sufficiently random.”
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Graph Theory

Graph

We define a graph to be a tuple G = (V ,E ) such that V is a collection of
objects called vertices and E ⊆ V ×V is a collection of pairs called edges.

Example

V = {1, 2, 3}, E = {(1, 2), (2, 3)}.

1

2

3
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Graph Theory

Degree

We define the degree of a vertex to be the number of neighbors, or
vertices which are connected by an edge, the vertex has. This is generally
denoted by deg(x).

Regular

A graph is said to be n-regular if the degree of all the vertices is n.
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Graph Theory

Example

V = {1, 2, 3}, E = {(1, 2), (2, 3)}.

1

2

3

We see deg(2) = 2, deg(1) = 1, and deg(3) = 1. This is therefore not
regular.
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Graph Theory

Example

V = {1, 2, 3}, E = {(1, 2), (1, 3), (2, 3)}.
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We see deg(2) = 2, deg(1) = 2, and deg(3) = 2. This is therefore
2-regular.
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Markov Chains

Markov Property and Markov Chain

A Markov Chain is a series of random variables (X0,X1, . . .) on a
common state space Ω satisfying the Markov Property:

P{Xn = xn | X1 = x1, . . . ,Xn−1 = xn−1} = P{Xn = xn | Xn−1 = xn−1}.

Transition Matrix

We can model Markov Chains using a transition matrix, which is a
matrix with entries

P(x , y) = P{Xn = y | Xn−1 = x}
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Markov Chains

Example Graph

0 1

0.1 0.250.75

0.9

Example Markov Chain

This Markov chain has transition matrix

P =

[ 0 1

0 0.1 0.9
1 0.75 0.25

]
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Markov Chains

Aperiodic and Irreducible

We say our Markov Chain is irreducible if there exists a t > 0 for all
x , y ∈ Ω such that

Pt(x , y) > 0.

We say that our Markov Chain is aperiodic if

gcd{t ≥ 1 | Pt(x , x) > 0} = 1

for all x ∈ Ω.
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Markov Chains

Stationary Distribution

If our Markov chain is irreducible, then we have that there exists a unique
distribution π such that

πP = π.

We call such a distribution a stationary distribution.

Limiting Distribution

We call a distribution π̂ a limiting distribution if

lim
t→∞

Pt(x , y) = π̂(y).

If our distribution is aperiodic and irreducible, then we have that the
stationary distribution π is the limiting distribution π̂.
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Markov Chains

Example Graph

0 1

0.1 0.250.75

0.9

Example Stationary Distribution

Notice that this is aperiodic and irreducible, and so we have a stationary
distribution. The stationary distribution is

π =
[

5
11

6
11

]
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Markov Chains

Simple Random Walk

Given some graph G , we can define a simple random walk on G to be a
Markov chain with state space V and transition matrix

P(x , y) =

{
1

deg(x) if x and y are neighbors,

0 otherwise.

Lazy Random Walk

Given some graph G , we can define a lazy random walk on G to be a
Markov chain with state space V and transition matrix

P(x , y) =


1
2 if x = y ,

1
2deg(x) if x and y are neighbors,

0 otherwise.

James Marshall Reber (Purdue University) Markov Chains and Mixing Times September 22, 2018 11 / 25



Mixing Times

Total Variation Distance

We define the total variation distance of two probability distributions µ
and ν on a common state space Ω to be

||µ− ν||TV = max
A⊆Ω
|µ(A)− ν(A)|.

In particular, we care about

d(t) := ||Pt(x , ·)− π(·)||TV

Mixing Time

We define the mixing time of a Markov chain to be

tmix(ε) := min{t | d(t) ≤ ε}.
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Coupling

Markovian Coupling of Markov Chains

We define a Markovian coupling of two Markov chains (Xt) and (Yt)
with common state space Ω and transition matrix P to be the process
(Xt ,Yt)

∞
t=0 over Ω× Ω, with the addendum that

P{Xt+1 = x ′ | Xt = x ,Yt = y} = P(x , x ′)

and
P{Yt+1 = y ′ | Xt = x ,Yt = y} = P(y , y ′).

We will also require that Xs = Ys for some s implies Xt = Yt for all t ≥ s.
A coupling is not a required to be Markovian (and it may not even be the
optimal coupling), but in general we want our Markov chains to be
Markovian.
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Coupling

Theorem

Let
τ := min{t | Xs = Ys for all s ≥ t}.

Then we have
d(t) ≤ max

x ,y∈Ω
||Pt(x , ·)− Pt(y , ·)||TV

≤ max
x ,y∈Ω

P{τ > t | X0 = x ,Y0 = y}

≤ max
x ,y∈Ω

E(τ | X0 = x ,Y0 = y)

t
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Coupling

Example

0

1

2

3

4
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Coupling

Example

If we measure the clockwise distance between the two walkers, this
coupling gives us a new Markov chain on {0, 1, . . . , n} to study.

0 1 2 3 4 5

1 0.5 0.5 0.5 0.5 1
0.25 0.25

0.25

0.25

0.25

0.25

0.25

0.25

This gives us

d(t) ≤ n2

4t
→ tmix(ε) ≤ n2

4ε
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3-Regular Graphs

Prism and Möbius ladder graphs
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3-Regular Graphs

Prism and Möbius ladder graphs
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3-Regular Graphs

GP(n,k)

Below is an example of GP(6, 2).

Notice that if we imagined a cycle on the inside, the nodes which are the
same color would be distance 2 away from eachother.
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3-Regular Graphs

Results

Using coupling, we were able to determine that for Möbius ladder graphs
and prism graphs of size n, the mixing time for a (slightly modified) lazy
random walk is bounded by

tmix(ε) ≤ 3n2

16ε
+

6

ε
,

and for the generalized Petersen graph GP(n, k), the mixing time of the
(slightly modified) lazy random walk is bounded by

tmix(ε) ≤ 3|k|2

2ε
+

3

2ε

(
n

|k|

)2

+
15

ε
,

where |k | = n/ gcd(n, k).
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3-Regular Graphs

”Triangulating”

By ”triangulating” a 3-regular graph, we mean replace each vertex with a
complete graph of size 3.

James Marshall Reber (Purdue University) Markov Chains and Mixing Times September 22, 2018 20 / 25



3-Regular Graphs

”Triangulating”
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complete graph of size 3.

James Marshall Reber (Purdue University) Markov Chains and Mixing Times September 22, 2018 20 / 25



3-Regular Graphs

Example
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3-Regular Graphs

Example
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3-Regular Graphs

Results

We found that when you triangulate the Möbius ladder graphs and prism
graphs of size n, your mixing time transforms into

tmix(ε) ≤ 15n2

16ε
+

87

5ε
.

For the generalized Petersen graph GP(n, k), it transforms into

tmix(ε) ≤ 15|k |2

2ε
+

15

2ε

(
n

|k|

)2

+
9

ε

(
n

|k |

)
+

9

ε
|k |+ 108

ε
,

where |k | = n/ gcd(n, k).
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3-Regular Graphs

Remaining Questions

I Can we generalize this result to all vertex transitive 3-regular graphs?

I Can we extend it to all 3-regular graphs?

I Are the bounds we found above tight, or can we improve them?

I Does a similar result apply to lower bounds on these mixing times?
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