Markov Chains, Mixing Times, and Couplings

James Marshall Reber
Department of Mathematics, Purdue University

September 22, 2018

PURDUE

Motivation

Motivating Question

Preforming a random walk on some graph structure, how long does it take until you are "sufficiently random?"

Theorem (Diaconis, Bayer '92)

If you riffle shuffle a deck of size n, it takes approximately $\frac{3}{2} \log _{2}(n)$ shuffles until the deck is "sufficiently random."

Graph Theory

Graph

We define a graph to be a tuple $G=(V, E)$ such that V is a collection of objects called vertices and $E \subseteq V \times V$ is a collection of pairs called edges.

Example

$V=\{1,2,3\}, E=\{(1,2),(2,3)\}$.

Graph Theory

Degree

We define the degree of a vertex to be the number of neighbors, or vertices which are connected by an edge, the vertex has. This is generally denoted by $\operatorname{deg}(x)$.

Regular

A graph is said to be n-regular if the degree of all the vertices is n.

Graph Theory

Example

$V=\{1,2,3\}, E=\{(1,2),(2,3)\}$.

We see $\operatorname{deg}(2)=2, \operatorname{deg}(1)=1$, and $\operatorname{deg}(3)=1$. This is therefore not regular.

Graph Theory

Example

$V=\{1,2,3\}, E=\{(1,2),(1,3),(2,3)\}$.

We see $\operatorname{deg}(2)=2, \operatorname{deg}(1)=2$, and $\operatorname{deg}(3)=2$. This is therefore 2-regular.

Markov Chains

Markov Property and Markov Chain

A Markov Chain is a series of random variables $\left(X_{0}, X_{1}, \ldots\right)$ on a common state space Ω satisfying the Markov Property:

$$
\mathbf{P}\left\{X_{n}=x_{n} \mid X_{1}=x_{1}, \ldots, X_{n-1}=x_{n-1}\right\}=\mathbf{P}\left\{X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right\} .
$$

Transition Matrix

We can model Markov Chains using a transition matrix, which is a matrix with entries

$$
P(x, y)=\mathbf{P}\left\{X_{n}=y \mid X_{n-1}=x\right\}
$$

Markov Chains

Example Graph

Example Markov Chain

This Markov chain has transition matrix

$$
P=\begin{aligned}
& 0 \\
& 1
\end{aligned}\left[\begin{array}{cc}
0 & 1 \\
0.1 & 0.9 \\
0.75 & 0.25
\end{array}\right]
$$

Markov Chains

Aperiodic and Irreducible

We say our Markov Chain is irreducible if there exists a $t>0$ for all $x, y \in \Omega$ such that

$$
P^{t}(x, y)>0 .
$$

We say that our Markov Chain is aperiodic if

$$
\operatorname{gcd}\left\{t \geq 1 \mid P^{t}(x, x)>0\right\}=1
$$

for all $x \in \Omega$.

Markov Chains

Stationary Distribution

If our Markov chain is irreducible, then we have that there exists a unique distribution π such that

$$
\pi P=\pi
$$

We call such a distribution a stationary distribution.

Limiting Distribution

We call a distribution $\hat{\pi}$ a limiting distribution if

$$
\lim _{t \rightarrow \infty} P^{t}(x, y)=\hat{\pi}(y)
$$

If our distribution is aperiodic and irreducible, then we have that the stationary distribution π is the limiting distribution $\hat{\pi}$.

Markov Chains

Example Graph

Example Stationary Distribution

Notice that this is aperiodic and irreducible, and so we have a stationary distribution. The stationary distribution is

$$
\pi=\left[\begin{array}{ll}
\frac{5}{11} & \frac{6}{11}
\end{array}\right]
$$

Markov Chains

Simple Random Walk

Given some graph G, we can define a simple random walk on G to be a Markov chain with state space V and transition matrix

$$
P(x, y)=\left\{\begin{array}{l}
\frac{1}{\operatorname{deg}(x)} \text { if } \mathrm{x} \text { and } \mathrm{y} \text { are neighbors }, \\
0 \text { otherwise }
\end{array}\right.
$$

Lazy Random Walk

Given some graph G, we can define a lazy random walk on G to be a Markov chain with state space V and transition matrix

$$
P(x, y)=\left\{\begin{array}{l}
\frac{1}{2} \text { if } x=y \\
\frac{1}{2 \operatorname{deg}(x)} \text { if } \mathrm{x} \text { and } \mathrm{y} \text { are neighbors, } \\
0 \text { otherwise. }
\end{array}\right.
$$

Mixing Times

Total Variation Distance

We define the total variation distance of two probability distributions μ and ν on a common state space Ω to be

$$
\|\mu-\nu\|_{T V}=\max _{A \subseteq \Omega}|\mu(A)-\nu(A)|
$$

In particular, we care about

$$
d(t):=\left\|P^{t}(x, \cdot)-\pi(\cdot)\right\|_{T V}
$$

Mixing Time

We define the mixing time of a Markov chain to be

$$
t_{\operatorname{mix}}(\epsilon):=\min \{t \mid d(t) \leq \epsilon\}
$$

Coupling

Markovian Coupling of Markov Chains

We define a Markovian coupling of two Markov chains $\left(X_{t}\right)$ and $\left(Y_{t}\right)$ with common state space Ω and transition matrix P to be the process $\left(X_{t}, Y_{t}\right)_{t=0}^{\infty}$ over $\Omega \times \Omega$, with the addendum that

$$
\mathbf{P}\left\{X_{t+1}=x^{\prime} \mid X_{t}=x, Y_{t}=y\right\}=P\left(x, x^{\prime}\right)
$$

and

$$
\mathbf{P}\left\{Y_{t+1}=y^{\prime} \mid X_{t}=x, Y_{t}=y\right\}=P\left(y, y^{\prime}\right)
$$

We will also require that $X_{s}=Y_{s}$ for some s implies $X_{t}=Y_{t}$ for all $t \geq s$. A coupling is not a required to be Markovian (and it may not even be the optimal coupling), but in general we want our Markov chains to be Markovian.

Coupling

Theorem

Let

$$
\tau:=\min \left\{t \mid X_{s}=Y_{s} \text { for all } s \geq t\right\}
$$

Then we have

$$
\begin{gathered}
d(t) \leq \max _{x, y \in \Omega}\left\|P^{t}(x, \cdot)-P^{t}(y, \cdot)\right\|_{T V} \\
\leq \max _{x, y \in \Omega} \mathbf{P}\left\{\tau>t \mid X_{0}=x, Y_{0}=y\right\} \\
\leq \max _{x, y \in \Omega} \frac{\mathbf{E}\left(\tau \mid X_{0}=x, Y_{0}=y\right)}{t}
\end{gathered}
$$

Coupling

Theorem

Let

$$
\tau:=\min \left\{t \mid X_{s}=Y_{s} \text { for all } s \geq t\right\}
$$

Then we have

$$
\begin{aligned}
& d(t) \leq \max _{x, y \in \Omega}\left\|P^{t}(x, \cdot)-P^{t}(y, \cdot)\right\|_{T V} \\
& \leq \max _{x, y \in \Omega} \mathbf{P}\left\{\tau>t \mid X_{0}=x, Y_{0}=y\right\} \\
& \leq \max _{x, y \in \Omega} \frac{\mathbf{E}\left(\tau \mid X_{0}=x, Y_{0}=y\right)}{t}
\end{aligned}
$$

Coupling

Example

Coupling

Example

If we measure the clockwise distance between the two walkers, this coupling gives us a new Markov chain on $\{0,1, \ldots, n\}$ to study.

This gives us

$$
d(t) \leq \frac{n^{2}}{4 t} \rightarrow t_{\operatorname{mix}}(\epsilon) \leq \frac{n^{2}}{4 \epsilon}
$$

3-Regular Graphs

Prism and Möbius ladder graphs

3-Regular Graphs

Prism and Möbius ladder graphs

3-Regular Graphs

GP(n,k)

Below is an example of $\operatorname{GP}(6,2)$.

Notice that if we imagined a cycle on the inside, the nodes which are the same color would be distance $\mathbf{2}$ away from eachother.

3-Regular Graphs

Results

Using coupling, we were able to determine that for Möbius ladder graphs and prism graphs of size n, the mixing time for a (slightly modified) lazy random walk is bounded by

$$
t_{\text {mix }}(\epsilon) \leq \frac{3 n^{2}}{16 \epsilon}+\frac{6}{\epsilon}
$$

and for the generalized Petersen graph $\operatorname{GP}(n, k)$, the mixing time of the (slightly modified) lazy random walk is bounded by

$$
t_{\text {mix }}(\epsilon) \leq \frac{3|k|^{2}}{2 \epsilon}+\frac{3}{2 \epsilon}\left(\frac{n}{|k|}\right)^{2}+\frac{15}{\epsilon}
$$

where $|k|=n / \operatorname{gcd}(n, k)$.

3-Regular Graphs

"Triangulating"

By "triangulating" a 3-regular graph, we mean replace each vertex with a complete graph of size 3 .

3-Regular Graphs

"Triangulating"

By "triangulating" a 3-regular graph, we mean replace each vertex with a complete graph of size 3 .

3-Regular Graphs

Example

3-Regular Graphs

Example

3-Regular Graphs

Results

We found that when you triangulate the Möbius ladder graphs and prism graphs of size n, your mixing time transforms into

$$
t_{\text {mix }}(\epsilon) \leq \frac{15 n^{2}}{16 \epsilon}+\frac{87}{5 \epsilon}
$$

For the generalized Petersen graph $\operatorname{GP}(n, k)$, it transforms into

$$
t_{\text {mix }}(\epsilon) \leq \frac{15|k|^{2}}{2 \epsilon}+\frac{15}{2 \epsilon}\left(\frac{n}{|k|}\right)^{2}+\frac{9}{\epsilon}\left(\frac{n}{|k|}\right)+\frac{9}{\epsilon}|k|+\frac{108}{\epsilon}
$$

where $|k|=n / \operatorname{gcd}(n, k)$.

3-Regular Graphs

Remaining Questions

- Can we generalize this result to all vertex transitive 3-regular graphs?
- Can we extend it to all 3-regular graphs?
- Are the bounds we found above tight, or can we improve them?
- Does a similar result apply to lower bounds on these mixing times?

References

David Aldous and Persi Diaconis, Shuffling cards and stopping times, The American Mathematical Monthly 93 (1986), no. 5, 333-348.
Richard Durrett and R Durrett, Essentials of stochastic processes, vol. 1, Springer, 1999.
围 David A. Levin, Yuval Peres, and Elizabeth L. Wilmer, Markov chains and mixing times, American Mathematical Society, 2006.

Sidney I Resnick, Adventures in stochastic processes, Springer Science \& Business Media, 2013.

Acknowledgements

Thanks to Indiana University, Dr. Chris Connell, and the NSF for the REU and the opportunity to work on the project. Special thanks to Dr. Graham White.

