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Introduction

Throughout, let M be a smooth closed manifold.

Fact

If g is a Riemannian metric onM with everywhere negative sectional curvature, then inside of

every free homotopy class there exists a unique closed geodesic.

Definition

Let M be smooth closed manifold and let g be a Riemannian metric on M with everywhere

negative sectional curvature. Themarked length spectrum is a functionMLSg which takes a free

homotopy class σ and returns the length of the unique closed geodesic γσ inside of it.

Conjecture (Burns-Katok [2])

If g and g′ are two negatively curved metrics with MLSg = MLSg′, then g and g′ are isometric.

While the conjecture is open in full generality, it is known to be true in the following cases:

ifM is a surface (Croke [4], Otal [9]);

if the manifold is locally-symmetric (Besson-Courtois-Gallot [1], Hamenstädt [8]);

if the metrics are close in a sufficiently fine topology (Guillarmou-Lefeuvre [10]).

Some “semi-rigidity” problems have been considered alongside of the original problem:

Does MLSg ≈ MLSg′ implies g ≈ g′? (Butt [3])

Does MLSg ≤ MLSg′ imply Vol(g) ≤ Vol(g′)? (Croke-Dairbekov-Sharafutdinov [6])

The aim is to study a new kind of semi-rigidity problem.

Motivating Questions

Definitions

Let M be a smooth closed orientable surface, let g and g′ be two metrics on M , and let f :
(M, g) → (M, g′) be a diffeomorphism.
1. We say that f is volume shrinking if Jac(f ) ≤ 1.
2. We say that f is length shrinking if ‖Dxf (v)‖ ≤ ‖v‖′ for all (x, v) ∈ TM .

Questions

1. Does MLSg ≤ MLSg′ imply there is a volume shrinking diffeomorphism?

2. Does MLSg ≤ MLSg′ imply there is a length shrinking diffeomorphism?

Volume Shrinking Case

It is easy to show that the answer to the first question is “yes” on a surface by combining two

known results.

Theorems

1. (Croke-Dairbekov [5]) IfM is a smooth closed orientable surface and g and g′ are two
negatively curved metrics on M with MLSg ≤ MLSg′, then Vol(g) ≤ Vol(g′).

2. (Moser [11]) If ω and ω′ are two volume forms with Vol(ω) = Vol(ω′), then there is a
diffeomorphism f : M → M so that f∗(ω′) = ω.

Length Shrinking Case – Main Result

We show that the answer to the second question is “no” in a rather strong sense.

Theorem (Gogolev-Marshall Reber ‘23 [7])

LetM be a closed, connected, orientable surface. If g is a negatively curved metric onM , then
there exist arbitrarily C∞-small perturbations g′ of g for which there exists an ε > 0 so that

MLSg′ > (1 + ε)MLSg, and

there does not exist a length shrinking diffeomorphism f : M → M .

Preliminaries

Throughout,

let M be as above and fix a negatively curved metric g,

let F be the collection of shortest g-geodesics with a self-intersection; we’ll refer to these
as “figure eights,”

for each γ ∈ F , let γ1 denote the shorter loop of the figure eight and γ2 the longer loop of
the figure eight,

let γShort ∈ F be such that `g(γ1
Short

) ≤ `g(γ1) for every γ ∈ F , where `g denotes the length

of a curve with respect to the metric g.

The following three results are established in [7].

Claim 1

There exists a C∞ neighborhood U of g such that for every g′ ∈ U , every length shrinking
diffeomorphism f : M → M , and every γ ∈ F , we can find an η ∈ F so that f ◦γ is homotopic
to η.

This allows us to choose metrics so that γf := f ◦ γ is in the same free homotopy class as a
figure eight.

Claim 2

One can perturb g′ in such a way so that

each γ ∈ F is a g′-geodesic after reparamterization,

there are constants 0 < ξ1 < ξ2 so that for every γ ∈ F we have

`g′(γ1) = `g(γ1) − ξ1 and `g′(γ2) = `g(γ2) + ξ2,

there is an ε > 0 so that MLSg′ > (1 + ε)MLSg.

The perturbation we construct allows us to adjust the constants ξ1 and ξ2 so that the above
properties hold for all ξ2 close to ξ1.

This allows us to perturb g to get new metrics g′ so that they uniformly shrink one loop of
the figure eights and uniformly expand the other loop of the figure eights. Moreover, this

can be done in such a way so that the marked length spectrum is getting bigger.

Claim 3

For small enough perturbations according to the previous claims, we have that for any shrinking

diffeomorphism the intersection points are mapped close to one another.

More precisely, g′ can be chosen so that for any shrinking diffeomorphism f : M → M and

any γ ∈ F , if η ∈ F is homotopic to γf := f ◦ γ, then letting p be the intersection point of η
and q the intersection point of γf , we have dg(p, q) < ξ1/2.

This allows for us to say that every shrinking diffeomorphism maps a figure eight uniformly

close to another figure eight.

Sketch of the Proof

Assuming the preliminary claims, we are able to sketch a proof of the main result.

Proof

Let g′ be close to g according to Claims 1 through 3. Suppose for contradiction there is a
shrinking diffeomorphism f : M → M between g and g′. Let γf and η be as in Claim 3, and

suppose without loss of generality that γ1
f is homotopic to η1.

Figure 1. An example of γf in red and η in black.

Let ν be the unique g-geodesic connecting p and q. By Claim 3, we have `g(ν) < ξ1/2. Con-
catenating γ1

f with ν, ν−1, and η2, we get a new figure eight curve in the same free homotopy
class as η. Using the length shrinking property, the first loop has length

`g(ν−1γ1
fν) < ξ1 + `g(γ1

f ) ≤ ξ1 + `g′(γ1
Short) = `g(γ1

Short) ≤ `g(η1).
This contradicts the fact that η is a length minimizer in its free homotopy class.
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