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Midterm 1: February 27
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(a) Lebesgue measure on n-dimensional Euclidean space (Chapter 2)
(b) Measurable functions (Chapter 3)

(c) Lebesgue integration, including the limit theorems (Fatou, MCT, DCT,
UCT, BCT) (Chapter 4)

(d) Fubini’s theorem (Chapter 4)

Results of Midterm 1:
Median: 47

Average: 51

Total Possible: 75

Midterm 2: April 10
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Lebesgue Differentiation Theorem (Chapter 5)
Differentiation of Monotone Functions (Chapter 5)

Absolutely Continuous Functions (Chapter 5)

)
)
)
(d) LP classes (including Banach and metric space properties) (Chapter 6)
) Holder’s inequality (Chapter 6)

) Jensen’s inequality (Chapter 6)

) Convolutions (Chapter 4 Lecture 17, Chapter 6)

)

Approximations of the identity (Chapter 6)
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Chapter 1

Prerequisites

This is more of a list of things one should know reading this rather than an
educational chapter.

Definition. For a point x € R™ and € > 0 we define the open ball of radius
€ to be
B(z,e) = B(z) ={y : |z —y| <€}

The notation will be used interchangeably (the notation on the right being mine
and the left being the books).

Definition. A point x of a set F is called an interior point of F if there exists
a d > 0 such that B(z,d) < E. The collection of all interior points of E is called
the interior, and is denoted by FE°.

Definition. A point zy € R™ is said to be a limit point of a set FE if it is the
limit point of a sequence of distinct points in F.

Definition. A point zg € F is said to be a isolated point of a set E if it is not
the limit of any sequence in E outside of the trivial sequence. In other words,
it is an isolated point if and only if there exists a 6 > 0 such that |z — y| >
for all y € E\{z}.

Definition. A set is said to be open if E = E°.
Definition. A set is said to be closed if E€ is open.

Remark 1. Open sets are closed under arbitrary union and countable intersec-
tion. DeMorgan’s Laws give us the opposite for closed sets; that is, closed sets
are closed under arbitrary intersection and countable union.

Definition. A union of a set E along with all of its limit points is called the
closure of F, and is denoted by FE.

Definition. A function f : X — Y is said to be continuous if, for all open
V 2 Y, we have that f~1(V) is open in X.
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For Euclidean space, we define continuity if

lim f(x) = f(zo).

Tr—T0

Definition. If f is only defined on a set E containing xy, £ < R™, then f is
said to be continuous at zy relative to E if f(xg) is finite and either z¢ is
an isolated point or zq is a limit point of E and

lim f(z) = f(xo).

T—x0

zeE
Definition. Let F be a set. Then we say that %, a collection of sets, is a

cover of E if
Ec U K.
Ke%

We say that % is an open cover if K € .% is open for all K.

Definition. Let F be a set. Then we say that F is compact if for every open
cover {K;}*, of E we have that there exists a finite subcollection {K;}¥ , that
covers E.

Theorem 1.1. (Heine-Borel Theorem) We have that a set E € R™ is compact
if and only if it is closed and bounded.

Theorem 1.2. A set F < R"” is compact if and only if every sequence of points
of FE has a subsequence that converges to a point of E.

Lemma 1.1. If ¢ is a continuous function on a compact set F, we have that f
is bounded.

Remark 2. (Open Sets in R™) For n = 1, every open set is a countable union
of disjoint open intervals. For n > 2, every open set is a union of a countable
collection of non-overlapping closed boxes.

Definition. A sequence { f,,}nen of continuous functions on an interval I = [a, b]
is uniformly bounded if there is a number M such that

|fn(2)] < M
for all n and for all x € I.

Definition. A sequence {f, }nen of continuous functions is said to be equicon-
tinuous if for every ¢ > 0 and z there exists a § > 0 such that

|fn(@) = fu(y)] <€

whenever |z — y| < ¢ for all functions f, in the sequence. Note that § may
depend on € and x but not y nor n.

Theorem 1.3. (Arzela-Ascoli Theorem) If a sequence {f,,} of continuous func-
tions is bounded and equicontinuous, then it has a uniformly convergent subse-
quence.
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Definition. A sequence of functions {f,} converges pointwise to f if for all
x € F, where FE is the domain, we have

lim fo(z) = f(2).

n—o0

Definition. A sequence of functions {f,} uniformly converges to f if, for
all € > 0, there exist an IV such that for all n > N, we have

|fn— fl <e.

Definition. We define the supremum-norm on a set S to be

1 lleo = [I£1] = sup{|f(z)] : = €S}

Theorem 1.4. (Stone-Weierstrauss Theorem) Suppose f is a continuous real-
valued function defined on an interval [a,b]. For every e > 0, there exists a
polynomial p such that for all z € [a, b] we have | f(z) —p(x)| < €, or equivalently
the supremum-norm ||f — p|| < e.

Remark 3. In other words, for every continuous function ¢ on a compact set
FE we can construct a sequence of polynomials P,, which converge uniformly to
¢ on E.

Definition. A partition of an interval I = [a,b] is a set P = {xo,z1,...,Z,}
such that zg = a, z,, = b, and x; < ;41 for all 0 < i < n— 1. We say that P is
size n + 1, and denote this by |P| = n + 1.

Definition. Given a bounded function f : [a,b] — R and partition P of [a,b]
of size n + 1 with associated partitioning intervals I;, we define the upper
Riemann sums of [ with respect to P to be

n

U(f,[a,b],P) = > My(f,P)S(T:),

i=1
where
M;(f,P) = sup f(z),
IEIi
I = [@i—1, @],

(5([1) = Tij+1 — Lj-

Definition. In a similar setting to above, we define the lower Riemann sums
of f with respect to P to be

L(f,[a,0],P) = > malf, P)S(L:),

where

mi(f,P) = inf f(x).

IEIi
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Definition. Given a bounded function f : [a,b] — R, we define the upper
Riemann integral of f on [a,b] to be

+
J =inf U(fa [avb]77))'
1 P

[a,b

The lower Riemann integral is defined analogously;

f=sup L(f,[a,b],P).
[a,b] P

Definition. We say that a bounded function f : [a,b] — R is Riemann inte-

grable is
+ —
| =
[a,b] [a,b]

If it is Riemann integrable, we define the Riemann integral of f on [a,b] to

be
- +
[ r=] =] +
a,b [a,b] [a,b]

Remark 4. If a function is continuous, it is Riemann integrable.

Remark 5. If a function is bounded and monotone on [a, b], then f is Riemann
integrable on [a, b].

Definition. We define the support of a function to be the closure of the set
of points where the function is non-zero.

Definition. We say that a function f has compact support if it is 0 outside
of a compact set.

Definition. Variation is defined to be
V(fila,b]) = 5171313 2 |fzi) = f@ima)l,
i=1

where P is a partition of the interval [a, b].

Definition. A function has bounded variation if V(f;[a,b]) < M for some
fixed M.

Definition. A vector space V over a field F' is a set which is closed under
vector addition and scalar multiplication.

Definition. A norm space is a vector space V equipped with a function
[|-]]: V — [0,00) such that

(i) ||v|] = 0 if and only if v = 0,

(ii) flev]| = [efl[vll;

10
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(iii) ||o + wl] < [|v]] + [Jw]]-

Definition. A sequence {a,} is Cauchy if for all € > 0, there exists an N such
that for all n,m > N we have

[lan — am|| < e.

Definition. A sequence {a,} converges if there exists an a such that for all
€ > 0 there exists an IV such that for all n > N we have

lan, —a| < e.

Definition. A space V is complete if every Cauchy sequence converges. That
is, if {a,} is Cauchy, then there is some v € V such that a,, — v.

More will be added as needed.

11



James Marshall Reber January 6, 2020

12



Chapter 2

Measure on Euclidean
Space

2.1 Lecture 1 (Outer Measure)

The first goal is to define some way of measuring volume of sets in R™. We first
start with some notation. Throughout, [ = {z € R® : a; < x; < b; fori =
1,...,n} for some a; < b;; i.e. I will denote closed intervals. If E <€ R™ and
E < |, I, (countable), then we call {I} a cover of E.

Definition. We define the volume of a closed interval to be

v(I) = H(bi —a;).

K2

Definition. We define the outer measure or exterior measure of a set F
to be

El.= it ().

covers {I;} of E %

Intuitively, the exterior measure is just covering the set with smallest number
of cubes possible and then adding up the volume of those cubes. This is almost
the definition of measure we’re going to use. The problem is that there are some
sets where this measure is not any good; that is, we want the outer measure
to be the same as the inner measure, and in some cases this will not happen.
When it does, though, we will call this set measurable.

Theorem 2.1. (Properties of The Outer Measure)
(i) [I|e = v(I) for all closed intervals I.

(11) If £; < FEs, then ‘E1|e < |E2|e-
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(iii)

If {E\} is a countable collection of sets, then

UEk < Z |Eke.
k e

k

Proof. (i) First, note that I is a cover of itself. Thus, we get |I|. < v(I). For

the reverse, let I < |, I. Let I}* be a “small blowup”; that is,
Iy < (I})° c I

be such that
v(IF) < (1 +e)v(ly), €>0.

N N
relJure Y n

k=1 k=
Now, I < Ugil I¥ implies v(1) < Zk L v(I¥). Thus, we get

I)éZv(I;: (I+e¢) Z 1+e)2v([k).
k=1 k=1

k

Since I is compact,

,_.

Thus, v() < 35, v(Iy) for any I < |, Ix, and so we get v(I) < |I]e.

This comes directly from the definition. Since E; € FE5, we get that all
covers of Fs also cover Fq, and so we get that the measure of E5 can be
at most the measure of Ej.

We cover Ej by |, Ij(k) such that
S (J}‘”) < |Bple + 27F,
J

where € > 0 is arbitrary. Thus, we have that  J, E is covered by | J

So
U < X0 (1) < D08 + 24 = NIEd, +
% jok k k

Since e was arbitrary, take the limit as ¢ — 0. This gives us the desired
result.

(k)
JkIJ )

Q.E.D

2.2 Lecture 2 (Lebesgue Measure)

We now want to briefly discuss the independence of outer measure from the
choice of axis. When discussing outer measure originally, we covered our plane
with boxes which have edges parallel to the axis. What if, however, we had
diagonal axis? It should be that this gives us the same result. For notation
purposes, we will denote things in alternative axis with a prime.

14
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Theorem 2.2. For £ < R"”, we have
|E|e = |E]..
Proof. We will first prove a claim.
Claim 2.1. For I’ an interval on alternate axis, we have
[I'le = |I']..
Proof. Take a slight blow up of I’, denoted by I'*, so that I' < (I'*)° and
v(I™) < v(I') + e

Since (I'*)° is open, we may write

(I/*)O _ UIk

k

which are non-overlapping (see Remark 1). We then take a finite collection
and note that we have

N
Z < 1) I/*)
Thus, taking the limit as N — oo, we get

0
Zvlk ) <o(I™) <ov(I’) +e
k=1

This tells us that |I'|, < v(I’) + e. Taking the limit as € — 0, we get that
[Ie <o(I') = |T'[.

An analogous argument gives us the reverse direction, and so we get equality.
Q.E.D

The above argument also gives us the following for free.

Corollary 2.2.1. For I an interval, we have
|I|e = |I|Ie'

Take a general set E < R™ and cover it by “normal intervals” (that is,
intervals on the standard axis); i.e. take £ < | J, I such that

Do) < |Ele + €/2.

k

We can cover the I with alternate intervals. Take a collection [ ,’C j such that
I].c < U I};’j,
J

15
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Zv(f,;j) < u(Iy) + (e/2) 275

By transitivity we get

Ec|Jn,;
k,j
Moreover, we get
Bl < Y o) < ) (k) + (¢/2)27%) < |El + e
k,j k

So, we get that |E|, < |E|.+¢€ and moreover |E|, < |El.. A symmetric argument
gives us the other direction. Q.E.D

We now are going to talk about measurable sets, or Lebesgue measur-
able sets. We will first, however, discuss a relation between outer measure and
open sets.

Lemma 2.1. For any £ < R™ and € > 0, there exists an open set G such that
FE < G and
|Gle < |E|e + €.

Corollary 2.2.2. For any £ < R”, we get that

Bl = inf |Gl
G open
EcG

We now prove the lemma.

Proof. We what now seems to be the standard trick. Take a cover of {I;} of E

such that
Zv([k) < |Ele + €/2.
k

Now take a blowup of the I} such that I, < (I}¥)° and
o(IF) < v(ly) + /227"
Take G to be the union of the interiors of the blow up; that is,
¢ = Japr
k
This is open, and we have

Gl < Yo ( <D (k) + (€/2)27%) < B +e.

k k

Q.E.D

This now leads us to the definition of a measurable set.

16
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Definition. A set £ < R" is said to be measurable or Lebesgue measurable
if for all € > 0 there is an open set G such that £ € G and |G — E|, < e.

Definition. If E is measurable, then the measure of E is |F|.; that is,
|Ele = |E| = p(E).

Remark 6. Again, note that Lemma 2.1 gave us no information on this
definition. Just because |G|, —|E|. < € does not imply that |G — E|. < e. This
highlights one of the issues with outer measure.

Remark 7. There are nonmeasurable sets, however most sets in your life are
measurable (in other words, if you can write it down, it’s measurable).

So what sets are exactly measurable, then?
Example 2.1. (i) Open sets are measurable. This is clear, taking G = E.

(ii) Sets with outer measure 0 are measurablell Let £ ¢ R” be such
that |E|. = 0. Then by Lemma 2.1 we have that there is a G such that
E c G and |G|e < |E|e + €. Since |E|. = 0, we get that |G|, < e. Thus,
we have
|G —El. <|Glc <e

So E' is measurable.
(iii) Countable unions of measurable sets are measurable. Take E =

Ui Ex. Take {Gy} for each k such that E < G and |G — Eile < €2~k
(this is fine since the Ej are measurable). Let G = | J, G Then we have

G~ Bl < | J(Gr — B

k

<D |Gk — Exle <.
e k

(iv) Intervals are measurable. First, we prove a claim.
Claim 2.2. A set £ € R” consisting of a single point = has outer measure
0. Moreover, it is measurable.
Proof. Take the open sets
G.=B(x)={yeR" : |z —y| <e}.
Then we have F € G, for all ¢, and moreover
0 < |E|e < inf|Gle = 0.
Q.ED
Note that I = 0I u I°. We have I° open, and so measurable, and we
have 0I = |J{z} such that x € I — I°, which is a countable union of

points. These have measure zero, and so ¢I is measurable and moreover
has measure 0. Therefore, I is measurable. In particular, |I| = |I°|.

T slightly diverge from the lecture notes since I have an issue with the proof as I have it.

17
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2.3 Lecture 3 (o-algebra)

(v) Closed sets are measurable. First, we need a definition and a lemma.

Definition. Let F, H < R™ be two sets. Then we define the distance
between the sets as

d(F,H)=inf{lz —y| : z€ F,ye H}.
Lemma 2.2. If d(El,EQ) > 0, then |E1 v E2| = ‘E1|e + ‘E2|e.
Proof. Let’s say E1 U Ey < |, I, where Y, |Ii| < |E1 U Esle + €, such

that there is no I; € E; n Ey (do this by subdivisions). Thus, we have
that By < |, I; and E5 < | J;, I, Then we get

|Brle + [Bale < Y 0]+ > 1nl = Y 1kl < |By U Bofe + e
l h k

This implies that |Eq]e + |Ez]le < |E1 U Eal.. We know the converse
inequality is true by Theorem 2.1 (iii). Thus, we have equality. Q.E.D

Lemma 2.3. If {I;;}Y | is a collection of nonoverlapping intervals, then

N

= 2, Il

k=1

Proof. We have by Theorem 2.1 (iii)

N N
U I < D 1),
k=1

k=1
so it suffices to show the other direction. Suppose that U/ivzl Iy, is covered
by intervals {.J;}. In other words,

e

For ¢ > 0 fixed and for each interval J;, pick an interval J;" containing J;
in its interior, and such that

T3 < (1 + )l ;.

Then since ngl Ij is compact (it is bounded and a countable union of
closed sets, and so closed) it is in fact covered by finitely many of the JJ’-".

Hence, we have
N M
UneUs
k=1 j=1

18
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It follows then that
M

U7

Jj=1

N

> Z |-
k

=1

On the other hand, we get
M
U7
j=1
Hence, for any cover {J;} of Uszl I}, we have

1 N

Take the infimum over all such covers and let € — 0. Q.E.D

J

M M
SO+ Y L <@+,
j=1 Jj=1

We will also establish two claims that are used implicitly in the next ar-
gument.

Claim 2.3. If G open, F' € G compact, then G — F' is open.

Proof. Notice that G —F = G n F°, F compact implies it is closed so that
F€ is open, and this is therefore the intersection of two open sets. Q.E.D

Claim 2.4. If F, H compact and F' n H = & (that is, they are disjoint),
then d(F, H) > 0.

Proof. Assume otherwise. That is, assume d(F, H) = 0. Then per defini-
tion this says that

inf{lx —y| : xe F,ye H} =0.

But F and H being closed implies closed implies that there exists x, y such
that |z —y| = 0, or x = y, since there exists {z,} € F, {yn} € H such
that |z, — y,| — 0, but ,, > € F and y, —» y € H. Thus, we have
F n H # @, a contradiction. Q.E.D

We now have enough tools to prove that closed sets are measurable. Through-
out, let F' be a closed set. We first start with the case where F' is compact.
Choose open G with F € G and |G| < |F|. +¢€, € > 0. Since G — F is
open, we can write it as

G—F:UQ,
k
where the {I;} are nonoverlapping intervals. Thus, we get that

|G*F|e <Z|Ik|'
k

19
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(vii)

Note that
G=Fu(G-F)=Fu <U1k>.
k

We can then take a finite collection of the Iy, and note that
N
Fu (U Ik> cG.
k=1

Notice as well that this is closed and bounded, and so therefore com-
pact and disjoint. Hence, they have positive distance, and so we may use
Lemma 2.2 to get

N
Fle+ > 11kl < |G-
k=1

Rewriting this, we get
N
DMl <Gl = |Fle <.
k=1

Since this is true for all N, we may take the limit to get

G~ Fl. < Y1) < 1G]~ |Fl. <.
k

For F' not compact, write

F={J(Fn Byx)).
k

Since this is a countable union of compact sets, we win.

The complement of a measurable set is measurable. For any k£ > 1,
pick an open set Gy, with E € Gy, and |G — E|. < 1/k. If we look at the
complement, we have ch < E. Moreover, Uk ch C E¢ | and denote
U, G = G. Let Z=E® — H. We claim |Z|. = 0. Looking at Z, we see
itis Z = B¢ n H® = E€ n (n,G}). Certainly Z < E°n Gy, = G, — E°,
and so we see |Z|. < |G — E|. < 1/k. Thus, we see E¢ = Z U H, a union
of two measurable sets.

The Cantor set is measurable. Take the interval [0, 1], and subdivide it
into thirds. Remove the interior of the middle third, leaving us with (g, 5).
Each successive step follow this pattern; take each interval, subdivide it
into thirds, and then remove the interior of the middle third. Denoting
the set after the k*" step as O}, we have the Cantor set C is what is left
over after repeating this an infinite number of times; that is,

o0
C=()C
k=1

20
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Since Cy, is closed, it follows C' is closed, and so (v) gives us that this is
measurable. We see that |C|, = 0, since

|Cl. < 2¥37% VE.
Definition. A non-empty collection ¥ of sets is called a o-algebra if
(i) X is closed under countable unions.
(ii) X is closed under complements.

Remark 8. Notice that (i) and (ii) imply that it is closed under countable
intersection as well.

If we let M be the collection of measurable sets, then M is a o-algebra.

Definition. The Borel o-algebra (denoted by B) is the smallest o-algebra
containing the open sets.

Remark 9. The sets in B are measurable.

2.4 Lecture 4 (Limits)

We want to work with limits of sets as well. If {E;}7, is a sequence of sets
such that Ey € Fy41 for all k, then we define the limit of these sets to be the
union. In other words, Ey /" |J, Ex. The other direction is analogous with
intersection and decreasing sets.

Definition. We define the liminf Z,, to be

o0

liminf E,, = Loj ﬂ E,.

m=1n=m
Analogously, we define the lim sup F,, to be

0 o0]

limsup E,, = ﬂ U E,.

m=1n=m

It’s good to also notice what these actually mean in terms of words. We
have that limsup F,, is the set of all elements such that the elements are in
infinitely many F,,. Likewise, the liminf F,, is the set of all elements such that
those limits are in FE,, for all n = ng, where ng can depend on that element.

Example 2.2. (i) Let {f;} be a sequence of continuous functions. Then we
claim that

E={z: lim |fu(2)| =0}

21
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(ii)

(iii)

is measurable. To show this, we need to recall that the limit being zero
implies that there is an € > 0 such that |f,(x)| < € for all n = ng, where
no depends on x. Take € = 1/k. Then we may rewrite this all as

=ﬂ{ | fn (2 |<]1€Vn>n0(x)}.

However, the inside is a liminf! Using this, we may rewrite the whole thing

. A0 A et}

The set on the inside is open, since f is continuous, and so this is all just
a bunch of unions and intersections of open sets. Since .# is a o-field, we
get that this means F is measurable.

(Mandelbrot Set) Let f.(z) = 22 + ¢ over C. Then the Mandelbrot set

M ={ceC : £(0), f(f(0)),..., ™ (0) is bounded sequence} is called
the Mandelbrot set. We rewrite this as

= G ﬁ ceC : |f™(0)| <k}
k=1n=1

The set on the inside is closed by an argument involving polynomial in-
equalities (also could note that it’s the pullback on a closed set of a con-
tinuous function).

(Normal numbers) We have a base-2 decimal expansion for z € [0, 1)
is defined to be
0
xr = b1b2 Z

where b; € {0,1}. Some numbers have two different base-2 decimal expan-
sions, however we’ll just consider the one ending in all Os for simplicity.
Let’s look at

l\’)‘@‘

E ={x€[0,1) : decimal exp of x has equal number of Os and 1s}.

Then we’d like to show that E is measurable. Let r,(z) be the number
of 1’s in the first n digits after the decimal point for the base-2 decimal
expansion of z. Then

E= {xe 0,1) ¢ lim ~rp(2) = 1}

n—w n 2
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)

N

rn(x) <

s

0
k=1r

|3
|3

>3

n

e}
N {xe[0,1) :
1n=m
5+ E

o w o |
= ﬂ U ﬂ En,’r‘,
k:1m=1nzm¢=[%7%]
where E, . is the set of numbers in [0,1) whose first n digits after the

decimal point consist of exactly r ones and n —r zeroes. We see that £, ,
is measurable, since it is the disjoint union of (:) intervals of the form

[5/2", (G +1)/2").

Now we would like to explore two properties of the Lebesgue measure.

=3
i

Proposition 2.1. (i) If {E}} are disjoint measurable sets, then

U Be| = D 1Bl
k k

(ii) If E, /' E, then lim,,_,« |E,| = |E|. If E \, F and at least one |Ey| < o0,
then lim, o |E,| = |E|.

Before starting the proof, we need a lemma.

Lemma 2.4. We have that F is measurable if and only if for all ¢ > 0 there
exists an F € E closed with |E — F| < e.

Proof. Since we are in a o-field, we have that E is measurable if and only if E°¢
is measurable. Since E is measurable, we have that there is an open set G such
that £ € G and |G — E| < € for all € > 0. Let G° = F. Then we have F' € E
closed. Moreover,

G-E=GnE°=F°AnE=E—F,
so that |E° — F| <e. Q.E.D
We now prove the proposition.

Proof. (i) We first break this up into cases.
Case 1: Assume the E} are bounded. Choose subsets Fj, < F) closed
with |Ey, — Fi| < €27%. Then we must have

|Ey| < |Ex — Fy| + |Fi| < |Fy| +e27". (2.1)

Now, since the E}, are disjoint, we have that the F} are disjoint. Moreover,
since the E}, are bounded, then the F}, are also bounded. Since the Fj, are
closed, bounded, and disjoint, we get that they are compact and disjoint.
Compact disjoint sets are separated (see Claim 2.4), and so we may use

Lemma 2.2 to get
N N
U B = D) IR
n=1 n=1
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(i)

Noting that

U Fi. < U Ek,
k k
we get
N
DUIF] <
n=1
This is then true for arbitrary NV, and so we can take the limit to get

YRl <|JE
k k

Using the inequality above, we then have

L Bl

k

2 (1Bel —e27") = 3|l — e <

k k

| Bl

k

The choice of € is arbitrary, so letting it go to zero gives us the desired
inequality.

Case 2: Now we do not assume the Ej, are bounded. Let R" = | J, I =
Uk (Ik — Ix—1), assuming I;; /" R™. Now we take

By =B n (I; = ;).

J

This is disjoint and bounded, and so we may use the first case to get our
desired inequality.

Assume Ey,  E. Define Hy = FE, H, = E, — E_q for k = 2. So
E = ||, Hy. Note that Ej = |_|f:1 H;. Because this is disjoint, we get

n
Bl = X = Jim 3} = Ji Bl

Decreasing is a similar trick.
Q.E.D

2.5 Lecture 5 (Characterizations)

Definition. We say a set is of type Gy if it is a countable intersection of open

sets.
sets.

Analogously, we say a set is of type F, if it is a countable union of closed

Note that these are more general than open/closed sets. Notice as well
that countable union/intersections preserve measure, and open/closed sets are
measurable, so that sets of these types are measurable.
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Theorem 2.3. The following statements are equivalent:
(i) E is measurable.

(i) £ = H — Z, where H is of type Gs, |Z] = 0.

(i) E = H v Z, where H is of type F,, |Z| = 0.

In other words, this characterization says that we can closely approximate
measurable sets with G5 and F; sets.

Proof. (it) = (i) and (4ii) = (i) are trivial; H and Z in both instances are
measurable sets, and so differences of measurable sets and unions of measurable
sets are measurable, thus giving us that F is measurable.

(i) = (i1) : Let Gk be a sequence of open sets such that F < Gj and
|Gr — E| < 1/k. Let H = (), Gi. Clearly H is of type G5. Now, write
Z = H — E sothat E = H— Z. So we are almost done; we just need to show
that | Z| = 0. Notice that in particular we have that Z < G — E for all k. Thus,
we have |Z| < |Gy, — E| < 1/k. Since this works for all k, we get that |Z] = 0.
(i) = (#7) : In this case, pick Fy € FE closed so that |E — Fi| < 1/k. Let
H =, Fy and write Z = E — H. Then this implies £ = Z U H and moreover
we have |Z| < |E — Fy| for all k, so in particular |Z| < 1/k for all k. Thus, we
have |Z] = 0, and we win. Q.E.D

Now, we want to discuss an alternative definition of measurability which will
come up in later chapters called Carathéodory’s definition of measurabil-
ity.

Theorem 2.4. We have that E is measurable if and only if |A|. = |A n E|. +
|A — E|. for all sets A € R™.

One thing to quickly note is that this does not rely on open or closed sets.
As a result, this may be a useful characterization in spaces where the topology
is not natural in any way. Another thing to note is that the A above does not
need to be measurable in any way.

Proof. We first do the implication. Assume that E is measurable. Then by
properties of outer measure we always have that |A|. < |[AnE|.+|A—E|.. We
then want to show the other direction, that is, |An E|. +|A— E|. < |A|.. Start
by choosing an open G such that A € G and |G| < |A|c + €. Then we have that
|GNE|+|A—E| =|G| < |E|. + ¢; moreover, by the inclusion relation, we have

|[ANE|.+|A—E|l.<|GnE|+|G—E|<|A|. +e.

Since this is for any €, we take it to go to zero and get |An E|.+|A—E|. < |Ale,
as desired.
For the converse, we assume that |A|. = |An E|.+|A— E|. for all subsets A.
In particular, take A = G, an open subset such that F € G and |G| < |E|. + €.
Then we have
|G Ele+|G—E|l. <|E|. +e.
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But we assume F < G, so we have G n E = E. Hence, we write this as
|Ele + |G — E|l. <|Ele+€¢ = |G—FEl. <e.

Since this holds for arbitrary e, we get that this is measurable by definition.
Q.E.D

The last thing we did was talk about the construction of a non-measurable
set. I'll omit this, and just refer the reader to this. As a corollary to the
construction from class, though, we get the following.

Corollary 2.4.1. If |A|. > 0, then there exists a non-measurable subset of A.
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Chapter 3

Functions and Measure on
Euclidean Space

3.1 Lecture 6 (Functions that preserve measure)
We first recall what a Lipschitz function is.
Definition. We say that a function 7' : R™ — R" is Lipschitz if
T(x) = T(y)| < Cla -y

for all z,y and C € R.

We also recall what the diameter of a set is.
Definition. The diameter of a set F is defined to be

diam(F) = sup{|z —y| : =,y E}.
This leads us to a theorem.

Theorem 3.1. If T': R® — R"™ is Lipschitz and if £ € R” is measurable, then
T(F) is measurable. In short, Lipschitz functions preserve measurability.

We will first prove a lemma.

Lemma 3.1. If f: X — Y is a function, then for {U,} such that U, < X for

all o we get
f (U Ua> = J W)

We will also need a claim for this lemma.

Claim 3.1. If f is continuous, F is compact, then f(FE) is compact (that is,
the image of a compact set under a continuous function is compact).
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Proof. Let E < Uﬁil f71(V,). Then we have that

[y | v

n=1
Q.E.D

Proof. If y € f(J, Ua), then we have x € | J, Uy, such that f(z) = y. Thus,
x € U, for some «, and we get f(z) = y € f(U,). But since this works for all
o, we get

yel Jf(Ua).
«
The other directon analogous. Q.E.D

Remark 10. We have that

where equality may not hold.

Proof. We first show that T preserve F, sets. Suppose first we have a compact
set. Since T is Lipschitz, it is also continuous, and so we have that T'(F) is also
compact. If F is closed, we have that it is a union of compact sets, and since
T(Ux Er) = U, T(Eg), we have that T'(E) is also closed. Using this again, we
get that if E is of type F,, then T(FE) is also of type F,.

Next, we quickly note that if |Z] = 0, then |T'(Z)| = 0. Since T is Lipschitz,
we have diam(T'(F)) < Cdiam(E). Then we have a constant C’ such that
|T(I)|e < C'|I]. This gives us that |T(E)|. < C'|E|.. So if we have measure 0
on the right, we get measure 0 on the left.

This is all we need, since by Theorem 2.3 if ' is measurable we may write
itas E = Hu Z, where H is of type F, and |Z| = 0. Using Lemma 3.1 again,
we get that T'(E) is measurable. Q.E.D

So Lipschitz functions preserve measurable sets. The next theorem shows
that we can do better than that.

Theorem 3.2. If T is a linear transformation of R™, then |T(E)| = | det(T)|-|E|
for all measurable £ < R"™.

Proof. Recall from linear algebra that
IT(D)| = [det(T)] - [1].

From this, it follows that |T'(E)|. < |det(T)| - |E|e. So for measure 0 sets the
conclusion follows. Without loss of generality, we may assume that det(7") > 0
since the conclusion also follows from this. Since det(7) > 0, we have that T is
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invertible. Now, note that theorem is true for open sets, since for open U we
may write it as
U= U I,
k
where the I are non-overlapping. Hence, we have

T(W) = |7,
k

and so

(V)] = det(T) Y |T(Ix)].
k

Let’s now explore sets of type Gs. Let H = (), Gk, and let H, = (), _; Gk.
Then H,, \, H. Assuming |H, | — |H| (that is, at least one of the H; has finite
measure), we know T'(H,) \, T(H), using the fact that T is invertible. So we
know that |T'(H,)| — |T(H)|, and we know that T'(H,,) = det(T) - |H,|, but
this converges to T'(H) = det(T) - |H|.

Why may we assume that |H,| — |H|? Write

e} 0
H= Ul(Hm{me]R” Dz <n}) = UlEn.

Each of the FE, is of type Gs, where the above argument works. We have
E, / H,and so |E,| /' |H]|.

Finally, let E be an arbitrary measurable set. Again, by Theorem 2.3, we
have that we may write E = H\Z, where H is of type G5 and |Z| = 0. We
also take £ € H. Then we have T(E) = T(H) — T(Z), using the fact that T is
invertible. So

T(E) = T(H)| = |T(2)] = [T(H)| = det(T) - [H].
Note that |H| = |E| by assumption, so we get |T'(E)| = det(T) - |E|]. Q.E.D

Remark 11. The Cantor Function is related to the Cantor set, C' =, Ch,.
Let D, =[0,1] - C\, = Uznfl (I}’)O. Define a function

Jj=1

f@) = {j/2” it z e I7

linear otherwise

This function is continuous, but maps a measurable set to a non-measurable
set. To see this, let f(z) = lim,_,« fn(z). Notice that f surjects onto [0, 1], so
use Vitali’s theorem to find a non-measurable set V' < [0, 1]. Then we have that
f~HV)c C,and so |f~1(V)| < |C| = 0. Therefore, f~1(V) is measurable, and
f maps this set to V, a non-measurable set.
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3.2 Lecture 7 (Measurable Functions)

The book defines a measurable function as follows.

Definition. Given a subset E € R™ (not necessarily measurable) and a function
f: E — R, wesay that f is a measurable functionon Eif {x € E : f(z) > a}
is a measurable set for all a € R.

We will use a similar definition, given below.

Definition. A function f : R™ — R is a measurable function if {z : f(z) >
a} is measurable for all a € R.

We abbreviate the pullback {z : f(x) > a} tosimply be {f > a} throughout.

Example 3.1. (i) We have that continuous functions are measurable func-
tions. The set (a, ) is an open set, and so we have f~1((a,®)) = {f > a}
is an open set, and so by Example 2.1 (i) we have that it is measurable.

(ii) The characteristic function of measurable sets is measurable. Recall
that for a set A we define the characteristic function as

(2) lifzeA
x:
xa Oifz¢ A

Then if £ < R" is measurable, we have xp is a measurable function.
First, take a > 1. We have then that X}_ﬂl = ¢, and so measurable. For
0 <a <1, we have Xgl = FE, a measurable set. Finally, if a < 0, we have
that Xgl = R", a measurable set.

The choice of {f > a} is not unique, as we see in the following theorem.
Theorem 3.3. The following are conditions are equivalent for a function f.
(i) {f > a} is measurable for all a € R.
(ii) {f = a} is measurable for all a € R.
(iii) {f < a} is measurable for all a € R.
(iv) {f < a} is measurable for all a € R.

Proof. (i) = (ii): We have that

{fza}=({f>a—1/k}
k=1

Since this is a countable intersection of measurable sets, it is also measurable.
(1i) == (di1): Measurability is preserved under complements, and we have
that

{f=a)° = {f <a}.
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(#it) = (iv): Again, we see that
{f <a} = J{f <a+1/k}
k=1

A countable union of measurable sets is measurable.
(iv) = (4i): Measurability is preserved under complements, and we have that

c
{f<a}” ={f>a}.
Q.E.D
Using this, we can construct some nicer measurable sets.

Corollary 3.3.1. If f a measurable function, then the following are measurable
sets:

() {a<f<b}
(ii) {f = a},
(iii) {a < f < b} and {a < f < b},
(iv) {f < o},

We can also obtain some alternative criteria for measurability using this
definition.

Theorem 3.4. We have that f is a measurable function if and only if f~(G)
is a measurable set for all G < R open.

Proof. <= is clear. We have that (a,o0) is an open set for all a € R, and so
furthermore f~1((a,0)) is a measurable set for all a. By definition, this means
that f is a measurable function.

= : Let G < R be open. Then since we are in R, we may use Remark 1 to
get that there is an open cover of G of open disjoint intervals. Notationally, we

have
G = |_|(ak, bk)
k
Now, the pullback of G is

FHE) = | (an b))
k

Notice that we preserve the disjointness since we are in R. The pullback of these
open intervals is measurable since f is a measurable function, and so we have a
disjoint union of measurable sets, which is measurable. Q.E.D

We also note that we need not check the condition for all a € R, but rather
just for a € A € R where C1(A) = R (i.e. a dense subset).

31



James Marshall Reber January 6, 2020

Theorem 3.5. If A is a dense subset of R, then f is a measurable function if
and only if {f > a} is measurable for all a € A.

Proof. = :is clear. By definition, we have {f > a} is measurable for all a € R,
and so by extension for all a € A.

<= : What if a ¢ A? Since A is dense, we can take a sequence {aj} such that
ar "\ a. Then we have

{f >ax} 7 {f >a}
So we have a limit of increasing measurable sets, and so by Proposition 2.1
(i) we get that {f > a} is measurable. Q.E.D

Definition. We say that a property holds almost everywhere (abbreviated
by a.e.) if it holds everywhere except in some set of measure 0.

Example 3.2. (i) Let f(z) = xo(z). We claim f = 0 a.e. We see it holds
everywhere except on Q. So we must show QQ has measure 0.

Claim 3.2. The measure of Q is 0.

Proof. We may write

Q=] |[{g}-

q€Q
Since QQ is countable, we have that this is a countable union of sets of
measure (0. Furthermore,

Q=) Hall=0=0.

qeQ qeQ
Q.E.D

Thus, we have the property holds a.e.
(ii) We say f =g a.e. if [{z : f(x) # g(z)}| = 0.

We may extend Example 3.2 (ii) to show that if one of the functions is
measurable, then the other must also be measurable.

Theorem 3.6. If f is a measurable function, and f = g a.e., then g is measur-
able and [{f > a}| = |{g > a}| for all a.

Proof. Let Z = {x : f(z) # g(x)}. Then since f = g a.e., we have |Z| = 0.
Furthermore, for all a, we have

{g>aluZ={f>aluZ

Since {g > a} U Z is measurable and differs from {g > a} by a set of measure 0,
we have that {g > a} is measurable and shares the same measure. Furthermore,

{g>a}l =Hg>atvZ|=[{f>atvZ]=|{f>a}l
Q.E.D
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Do these measurability conditions hold under composition? The answer is
sometimes.

Theorem 3.7. If ¢ : R — R is continuous and f : R® — R is measurable, then
¢ o f is measurable.

Proof. We have the following diagram:

R" ! R—* LR

e (@) =a" y=u o~ (G)=C o G
Notice that G’ is open, since ¢ is continuous, and G” is measurable, since [ is
a measurable function. Thus, we have that ¢ o f is measurable. Q.E.D

Corollary 3.7.1. If f is measurable, then so are the following:
()
(i)

(iii) e, where c is a constant,

(iv) £+ = max{o, f},

V) f

Remark 12. Note that Theorem 3.7 is not true in general. We are not
guaranteed ¢ o f is measurable if ¢ is measurable, since we only know that
¢~ 1(G) is a measurable set, not open.

—min{0, f}.

3.3 Lecture 8 (Egorov’s Theorem)

We now prove some properties about measurable functions.
Theorem 3.8. (i) If f is a measurable function, ¢ € R, then cf is measurable.
(ii) If f and g are measurable functions, then so is f + g.
(iii) If f is a measurable function, then so is f2.
(iv) If f and g are measurable functions, then so is fg.
)

(v

If f and g are measurable functions, and g # 0 a.e., then f/g is measurable
as well.

(vi) If {fn} is a sequence of measurable functions, then inf f,, and sup f,, are
also measurable.
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(vii)

(viii)

If {f.} is a sequence of measurable functions, then limsup and liminf are
also measurable.

If lim, o frn = f(x) a.e., then f is measurable.

Proof. (i) We would like to show that the set {c¢f > a} is measurable for all

(if)

(iii)

a € R. We may rewrite this as {f > a/c}, and since f is measurable we
know that this set is measurable as well for all a € R.

We first need a lemma (most likely trivial and should be known, but I'll
leave it in for completeness):

Lemma 3.2. Between any two real numbers is a rational number.

Proof. Assume without loss of generality that x,y > 0 (the argument is
analogous in the other cases). Let x,y € R such that y > . Then we have
y —x > 0. By the Archimedean Principle, we have that there exists an
n € N such that y —z > 1/n > 0. Choose the largest k € N so that

k
— <
n

Then since this was the largest, we have

k+1
< —.
n

T

Assume that y < % Then we have

k+1 k 1
Yy—r< —— — — = —,
n n o n
which is a contradiction. Hence, we must have that y > %, and therefore
T < % < y strictly. Q.E.D

We would like to show {f + g > a} is measurable for all a. Rewrite this as
{f > a—g}. Since a— g and f are real numbers for all z, we get that there
is at least one rational ¢ in between them. In particular, we may rewrite
this as

Udr>anfg>a-gh=JUr>adn{g>a—q}.

qeQ qeQ

We know that these two sets are measurable, and so therefore this is a
union of measurable sets and so measurable for all a.

We would like to show that {f? > a} is measurable. We may rewrite this
as {f? > a} = {f > va} v {f < —v/a}. We know that these sets are
measurable, and so the original set is measurable.
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(iv) Notice that (f +¢)%> —(f —g9)?> = f2+2fg+g>— f>+2fg—g*> = 4fg. So

we have ) )
fg = (f+9) ;(f*g) .

We know that measurability is preserved under addition, subtraction,
squares, and multiplication by constants. Hence, fg is measurable.

(v) If g is a measurable function such that g # 0 a.e., then we may define a
new function h, which is equal to g a.e. and is equal to 1 where g = 0.
Since h = g a.e., we get that h is measurable. Furthermore, we see that
we clearly get that f/h is measurable, and since f/g = f/h a.e. we have
that f/g is measurable by Theorem 3.6.

(vi) Notice that

{Sl;p fe > a} = ij{fk > af,

{i%ffk < a} = O{fk <a},

and so we get that these functions are measurable.

(vii) Note that limsup f,,(z) = inf,, sup,,>,, fn(z) and liminf f, (x) = sup,, inf, > fo(x).
Then by the prior property we get that these are measurable.

(viii) If lim, e fu(x) = f(x) a.e., then we get that it is equal to the lim sup
a.e., and so in particular we get that this f is measurable.
Q.E.D

Using these properties, we can build some crazy things. Moreover, we will
show that even though we can get some crazy functions, these functions are well
approximated by some nice functions.

Definition. A simple function is a function taking on only finitely many
finite values. In other words, it is a function taking on aq,...,axy € R on sets
Fq, ..., En which are disjoint and whose union is R”. We may represent this
function then by

N
i=1

Lemma 3.3. We have that a simple function f is measurable if and only if the
E; are measurable for all 7.

Proof. This is a relatively clear lemma. If f is measurable, then we have that
{z : f(x) > a} is measurable for all a. But this can be represented as a union
of the F;, and so we must have that the E; are all measurable. For the other
direction, if the E; are all measurable, then we have {z : f(z) > a} = |_|i.€:1 E;
for all a, where k depends on a. This is going to then be measurable for all
a. Q.E.D
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We now show that these simple functions are good approximators of all
functions. We will use a sort of “Lebesgue philosophy” to do so. The following
theorem will be extremely important moving forward.

Theorem 3.9. Every measurable function f can be expressed as the limit of
simple measurable functions; i.e.

Fl@) = lim fu().

n—0o0
Moreover, if the f = 0 for all x, then we can choose the f, so that f, ~ f.
Proof. We first assume f > 0. Let

n2" .
j—1
fu(z) = Z (( on ) X{J’z—,}<f<21;z}> + nX{r=n}-

Jj=1

What is this function doing? It divides up the plane horizontally into dyadic
intervals of length 2" from 0 to n. Within each of these intervals, it takes the
smallest value of f within this interval. If the function then goes above n, it just
cuts off the function there. Certainly, then, we see that f, / f, and we achieve
our desired result. What if, however, f < 0 at some points? We may write
f=7fT—f (see Corollary 3.7.1). Both of these functions are non-negative,
and so we just use the prior argument to get the desired result. One may worry
that we might get 00 — 00; however notice that if one function is non-zero at
some point, the other must be zero. Q.E.D

Example 3.3. To see this convergence, let’s animate an example. Let
f(@) = asin(@).
Using Maple, we plot this graph;
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Animating from 0 < < 10 and 1 < n < 8, we get the following gif. The end
results is as follows;

Thus, it seems pretty evident that the sequence of functions converge.

3.4 Lecture 9 (Semi-Continuity)

Definition. Suppose that we have f : E — R. Then we say f is upper
semi-continuous (abbreviated by usc) at zp € E if

lim  swp  f(2) < f(zo):

r—zo,2eF

Likewise, we say that f is lower semi-continuous (abbreviated lsc) at zg € E
if
lim inf  f(z) = f(=zo).
r—zo,xe€F
In other words, we have that f is usc if whenver there is a jump, we take the
uppermost value, and it is Isc if whenever there is a jump we take the lowermost
value.

Example 3.4. (a) Suppose f = xr, FF < R" closed. Then f is usc. To see
this, say xg ¢ F. If x, — xg is some sequence of points converging to x,
then we must have z,, € F° by the closed property for all n large. So then
Xxr(xzy) = 0 for all n large enough; hence, limsup,, xrp(z,) = 0 = xr(x).
If zy € F, then we have that xp(zo) = 1. Since this is the characteristic
function, we trivially get that xr(xg) = limsup, x(x), since we have that
the rightmost value can be at most 1. Below is a picture of this kind of a
case for x[q o
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(b) Analogously, if f = xg, G € R™ open, then f is Isc. Below is a picture of
this kind of case for x(1,2)-

0.8+

0.6

0.4+

0.2+

We now discuss an alternate characterization of usc and Isc.

Theorem 3.10. (i) We have that a function f is usc if and only if the sets
{f = a} are closed for all a € R.

(ii) We have that a function f is Isc if and only if {f < a} are closed for all
acR.
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Proof. We first note that (i) and (ii) are equivalent, since the negative of a usc
is a lsc function and vice versa.

(=) Assume that f is usc. Let a € R be fixed, and let xg € {f > a}; i.e. the
closure. Then we want to show ¢ € {f = a}. Since xg is in the closure, we have
a sequence of z, € {f = a} which converge to xg. Then we have f(z,) = a for
all n. Since f is usc, then we have

lim sup f(zn) < f(2o).

n—ao0

Therefore, we can chain this together to get

a <lim sup f(z,) < f(xo).
n—0o0
But this implies that f(xg) > a, which gives us that xg € {f > a}. So we have
that the set is equal to it’s closure, and so is closed.
(<= ) Let x¢ be a limit point of EF that is in E. If f is not usc at xg, then
f(zo) < oo and there exists M and {z} such that f(z¢) < M, 2y € E, 2, — o,
and f(zg) = M. Hence, {z : f(z) = M} is not relatively closed since it does
not contain all its limit points that are in . So by contradiction we get that
f(xo) is usc. Q.E.D

We now want to talk about Egorov’s Theorem. The idea behind Egorov’s
Theorem is that almost everywhere convergence implies uniform convergence on
a “large” subset. We give the more formal statement below.

Theorem 3.11. (Egorov) If f,, — f a.e. on E and |E| < oo, then for all € > 0
there exists F' € F closed with |E\F| < € such that f,, — f uniformly on F.

Example 3.5. Take the function f,(x) = z™. Then we see that it converges
to 0 uniformly on (—1,1). So we have that for all § > 0, f,, — 0 uniformly on
[-1+6,1-4].

Before proving the theorem, we need a lemma.

Lemma 3.4. Suppose that {f,} is a sequence of measurable functions that
converges almost everywhere on a set E, |E| < o0, to a function f. Then given
€,n > 0, there is a closed subset F' of E and an integer K such that |[E\F| <7
and |f(z) — fr(x)] < €| forall z € F and k > K.

Proof. Fix ¢,n > 0. For each m, let E,, = {|fx — f| < € Vk > m}. Thus,

Ep = [ {lfi— fl < e},

k>m

so that E,, is measurable. Clearly, we get that E,, < E,,+1. Moreover, since
fx — fae. in E and f is finite, F,,, / E\Z, where |Z| = 0. Hence, we have
that |E,,| — |E\Z| = |E|. Since |E| < o0, we have that |E — E,,| — 0. We
may thus choose an mq so that |E — E,,,| < %77, and let F' be a closed subset
of Ep, with |Ep, — F| < 4n. Then |E — F| < n, and |f — fi| < € in F if
k > mo. Q.ED
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The lemma is almost the same thing as the theorem, except we need to show
uniform convergence. We now proceed to use the lemma to prove this.

Proof. Given € > 0, for each k > 1, choose closed Fy, < E and m > 1, such that
(i) |[E\Fy| < e27F,
(i) Fr < Moz flfo — fl < 1/k}.

By the lemma, we know that we may do this. Let F' = ﬂ,f;l Fy. Then Fis a
closed subset of F, and we need to check that the statements of the theorem
hold. First, we see that |[E\F| < ¢, since E\(\,_, Fr = Uj_, |E\Fk|- Next, we
need to check the uniform convergence property. Given § > 0, pick k > 1 such
that 1/k < 6. Then F € Fy. If x € F, then |f,(z) — f(x)| < 1/k for all n = m.
So |fn — f| < 0 by chaining these inequalities together. Thus, we get uniform
convergence. Q.E.D

3.5 Lecture 10 (Lusin’s Theorem)

We now want to go into Lusin’s theorem. Intuitively, we have that Lusin’s
theorem says that “measurable functions are almost continuous.” To properly
say this, though, we need a few definitions.

Definition. We say that a function f : X — Y is continuous relative to a
set F if for all g € E, we have

lim f(x) = f(zo).

r—zg,ze€F

Definition. A function f has property C on F if, given € > 0, there exists a
closed subset F' € F with

(i) |E\F| <e.
(ii) f is continuous relative to F.
This leads us to the following lemma.
Lemma 3.5. Simple measurable functions have property C.

Proof. Let {E;}Y; be a collection of disjoint sets, and
N
f = Z i XE;-
i=1

Let E = |_|f\i1 E; as well. For each i, choose closed subsets F; € F; such that
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Let F = |_|f\;1 F;. Then we have

|[E\F| =

N
U (Ei\F;)

N N e
< 21|Ei\Fi| <> =
i= =1

Thus, we just need to check that f is relatively continuous on F'. Take zo € F.
Then we want to show

lim  f(z) = f(zo).
r—zg,reF
Since the F; are disjoint, we have xg € F;. Thus, since x,, — xg and F; closed,
we have z,, € F; for n large enough. Thus, we must get

lim _ f(z) =a; = f(zo).

r—xz,xeF
This works for all zyp € F' and so we get that the statement holds. Q.E.D

We now have enough to prove and state Lusin’s theorem.

Theorem 3.12. (Lusin) If f is a finite function on measurable E, then f is
measurable if and only if f has property C.

Proof. ( <= ) Assume f has property C. Then for all k£ > 1, we can choose
F), € FE so that
|ENFi| < 1/k

and f is relatively continuous on Fj. Let H, = UZ:l Fy. Then H,, is closed,
since we have a countable union of closed sets, and H,, € H, 1. Notice as well
that

‘E\Hn| < 1/”7

since F,, € H,, and
|E\H,| < |E\F,| < 1/n.

Notice as well that f is relatively continuous on H,,. Then we see that H, ~
H < FE with |[E\H| = 0. Now, let
(o) = {f(a:) it 2 & Ha,
0 otherwise.

Then lim,,_,o gn(z) = f(z) for all z € H. Notice that g, is measurable as well;
examining {g, > a}, if we have a > 0 then we have it pulls back to H, n G
by relative continuity, and for a < 0 we have that it pulls back to everything.
Notice as well that since |E\H| = 0, we get that lim, . gn(x) = f(z) a.e. By
Theorem 3.8 (vii), we see that f is then measurable.

( =) We assume that f is measurable. By Theorem 3.9, we may write it as

the limit of a sequence of {f,} where f, is a simple measurable function. We
then break this up into cases.
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Case 1: Assume |E| < 0. By Lemma 3.5, we see that each f, has property
C, and so we can pick F;, € FE closed such that

|E\F,| < %2*"

and f, is relatively continuous on F;,,. We need to have an additional set as
well; take Fy € F closed such that

[E\R| < 3,

and f, — f uniformly on F;. We may do so by Egorov’s theorem, Theorem
3.11. Let us take then F' = (,_, Fy € E. Then F is closed, and |E\F| < e.
We need to show that f is continuous on F. On F, we have that the f, are
all relatively continuous, and f,, — f uniformly. Since this is uniform, we have
that f is continuous on F.

Case 2: We assume now that |E| = co. Write E = | J Ej, where

By=E( Yo : k—1< |z <k}

i.e., E intersected with the set of washers. Choose closed F, € FEx where
|Ex\Fx| < €27%, and f continuous on Fj. Now, let F = UZO:l Fi.. We almost
win; we just need to check that F' is closed, and that f is continuous on F'.
Let’s first show that F is closed. Examine = € F, and take a sequence z,, —
such that z,, € F. We see that x, must eventually be in some washer Fj for
some k and n large. Therefore, we get that = € F}, and so z € F. Continuity
follows easily from this. Q.E.D

Remark 13. We used the standard trick of getting infinite sets from unions of
smaller sets which we understand well, but notice that we needed to be clever
with the choice of our smaller sets.

We now want to discuss convergence in measure, which is weaker form of
convergence.

Definition. We say that a sequence of functions {f,} converges in measure
on E to a function f, written f, — f, if for all € > 0 we have

HxeE : |fu(z) - f(z)] > €e}| = 0.

Remark 14. The reason this is weaker is that this doesn’t necessarily imply
the same thing for fixed points. It just works for overall collections.

Example 3.6. Let Q) be the enumeration of the rationals in [0,1]. Let f =
X[qu,qn+1/k]- Then fi = 0 only.

The next theorem says that this sequence gives us almost everywhere con-
vergence for a subsequence.
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Theorem 3.13. If f,, °> f on E, then there exists a subsequence {n;} with
fn. — f almost everywhere.

Proof. For each k > 1, choose {n;} so that
{z o |fau (@) = fl2)] > 1/k} <27

Notice we may do this by the definition of convergence in measure. Without
loss of generality, assume that ng.1 > ny; if this were not the case, we just drop
that and go to the next term. Let

By ={z : |fa,(2) = f(z)| > 1/k}.
We see that

0
k=1

By Borel-Cantelli (from Homework 1), we get that |limsup, Ex| = 0. But, if
x € E, where f(x) = limg_q fn, (z), then

|fui (@) = f(2)| >0
for infinitely many k, and in particular we get
|foi(@) = f2)| > 0> 1/k

for some eventual k. Thus, we get « € limsup, E), which has measure zero.
Thus, f,, — f a.e. Q.E.D

Remark 15. This trick is especially important, and is abused often for proving
a.e. convergence. We formalize this trick with the next corollary.

Corollary 3.13.1. If for all € > 0 we have
0
D Hfa = fl> e}l < oo
n=1

then f, — f a.e.

3.6 Lecture 11 (Finishing Results)

We now prove a similar theorem to Theorem 3.13.

Theorem 3.14. Let f,, f be measurable functions which are finite a.e. on F,
and |E| < co. If f,, — f a.e. then f, *> f.

Before proving this, we’d like to establish a basic result.
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Lemma 3.6. (i) If || J,, En| < ®0 and E, is a measurable set for all n, then

(ii)

lim sup F,

n—o0

lim sup |F,| <
n—0o0

If F, is a measurable set for all n, then

lim inf |E,|> ‘lim inf En‘
n—0o0 n—0o0

Proof. (i) Let H, = |J-_, E,. We see that this forms a decreasing sequence,

m=n

and moreover by definition we see that H, \, limsup E,,. By Proposition
2.1 (ii), we get

0
lim |H,| = lim U E,,| = [lim sup E,|.
n—oo n—oo 2 n—00

Now we have E), C Ufz:n E,, for all k = m, so therefore

0

U En

m=n

|Ek| <

Therefore,

[00)
sup [B| < | | Enm
m=n

m=n

and so substituting this in we have

lim sup |FE,| < |lim sup E,

This is proved analogously. Let H,, = r]ﬁ:n E,,. Then we see this forms
an increasing sequence, and moreover by definition we see that H,,
liminf E,. By Proposition 2.1 (i), we get

o0
lim |H,|= lim | () Ep|=|lim inf B,
n—o0 n—0o0 n—0o0
m=n

Now, notice that

Therefore,
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Thus
o0
() Em| < inf |E,l.
- m=n

So we get

lim inf E,|<lim inf |E,|
n—aoo n—0o0

Q.E.D
Now we may prove the theorem.
Proof. Look at Fy, . = {x : |fn—f| > €}. Then we need to show that |F,, (| — 0

as n — oo for all € > 0. Using Lemma 3.6 (i), it suffices to then show that

lim sup Fj, | = 0.

n—o0

We have

lim sup F, . ={z : |fn—f| > € for infinitely many n} < {z : f(z) # lirréo fu(x)}.

n—00

By assumption, this has measure 0. So therefore we get that the limit of the
measure goes to 0. Q.E.D

Example 3.7. Here, we give an example that convergence in measure does not
imply almost everywhere convergence. Let n = 2% + j for j € {0,1,...,2F1}.
Notice that we may write every integer in such a form. Let f, be a function
such that

fn = Xtgjax 1) /2%)-
Then we have
fi= X[0,1)5
Jo = X[0,1/2)s 3 = X[1/2,1)s
Ja= X[0,1/4)5 5= X[1/4,1/2)> Je = X[1/2,3/4)> fr= X[3/4,1)-

That is, we have that foi, ..., fo;+1_;1 cover the interval [0,1). We first want to
see that it converges in measure to 0. That is, we want to show that

lim [{z : |fa—0| > €} = 0.

n—0o0

We may find a j so that

1
Hz : |fo =0l > €} < 55

for all € > 0 by construction (since |fa;| = 1/27). Hence, taking the limit as
n — o, we get that this goes to 0, and so we get convergence in measure.
However, for every z € [0, 1] we have infinitely many n where it is 0 and where
it is 1. Therefore, f, does mot converge almost everywhere to 0. This is an
example of how the points may move around the interval.
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We will finish this chapter off by stating a fact which will not be proven in
the class due to time.

Theorem 3.15. We have that f,, —> if and only if lim,, no |[{fn — fin| >
e}| = 0. That is, convergence in measure is equivalent to Cauchy convergence
in measure.
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Chapter 4

Lebesgue Integration

4.1 Lecture 11 (Lebesgue Integral)

The idea of Lebesgue integration is that we want to define SE f(z)dx = SE f to
be the net volume/area of the region between the graph of f and the z-plane,
whatever that may be. We say net because the garph below the plane should
be associate with a negative value.

We'll start by only dealing with non-negative functions.

Definition. We define the graph of f over E to be

I(f, E) = {(z, f(x)) : x€E}.
Definition. We define the region underneath a function over FE to be
R(f,E)={(z,y) : zeE, 0<y< f(z)if f <oo,0or 0 <y < wif f(z) = 0}.

Definition. We define the Lebesgue integral of [ over FE, denoted by SE 7,
to be |R(f, E)| if this region is measurable.

The next theorem connects our study of measurable functions (Chapter 3)
with integrability.

Theorem 4.1. If f > 0 on a measurable set F, then SE f is defined if and only
if f is measurable.

Before proving this, we first look at an important example.

Example 4.1. Let
n
f=2 aixe >0
i=1

be a simple measurable function, and E = | J!_; E;. We examine then

R(f, E) = (E7 X [O,(h]) .

-

1
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Since the E; are disjoint by assumption, we may write this as

n n

R(,B) = Y B0, i) = . | Eila; = L .

i=1 i=1
This gives us that simple measurable functions are integrable.

We will also need a somewhat easy lemma and a not so easy lemma before
proving the theorem. Following is the somewhat easy lemma.

Lemma 4.1. If f is a measurable function over E, f > 0, then we have
IT(f, E)| = 0.

Proof. Fix e > 0 and let By, = {z : ke < f(z) < (k+ 1)e}. In other words, we
cut everything up into strips and collect the points which map into those strips.
We look now at

L(f,B) < | (Ex x [ke, (k +1)e)) .

k
Therefore, we have

ID(f, B)le < Y, [Bkllel = [e] D | Bxl-
k k

Since the Ej, are disjoint, we get

B = |l

k

Thus, we have
T(f, E)le < |E|le]-

If |[E| < oo, we have then that |T'(f, E)|. = 0 by just taking the infimum over
all . Otherwise, we must examine |I'(f, E n {|z| < n}|.. By our prior work, we
see that this is 0 for all n, and since thsi goes to I'(f, E) as we let n — o0 and
this is an increasing sequence we get that |I'(f, E)| = 0. Q.E.D

Following this is the not so easy lemma.

Lemma 4.2. If A € R" is such that A x [a,b] is measurable for some a < b,
then A is measurable.

Proof. We prove this in a series of steps, following the proof found .
(Step 1) For any A € R™, |A x [0,1]]c < |A4|e.

Proof. For any e > 0, take an cover of intervals A < |J, I such that
> k| < |Ale + €. Then we have

|A X [0,1]]c < YTk x [0,1]] = D] Tk| < Al + €.
k k
Since this works for any € we get the results. Q.E.D
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(Step 2)

(Step 3)

(Step 4)

If A x [0,1] is measurable, then for any € > 0 there exists an open set
G containing A such that (G\A) x [0, 1] is measurable and |(G\A) x
[0,1]] <e.

Proof. If A x [0,1] is measurable, then we have that we may pick an
open H € R"*! so that Ax[0,1] € H and |H\(Ax [0, 1])| < e. Fixing
an x € A, the function y — dist((x,y), H¢) is a continuous, positive
function on [0, 1], and so there is a positive minimum which we denote
by d; > 0. Therefore,

(x — g,z +9,) x[0,1] < H
for all z € A. Letting
G=|J@—=6n2+5),

zeA

we have that G is an open set which contains A such that G x [0,1] <
H. Since G and A are measurable, (G\A) x [0,1] = (G x [0,1])\(A x
[0,1]) is also measurable. Furthermore,

(G\A) x [0,1]] < [H\(A x [0, 1])] <
Q.E.D
If A x [0,1] is measurable, then |A x [0,1]] = |A]e.
Proof. Take G open as in Step 2. Then we get that, for all € > 0,
|4 [0, 1] = |G > [0, 1]] = [(G\A) > [0, 1] > |G > [0,1]] — e,
per Step 2. Using the fact that |G x [0,1]| = |G|, we then get that
|A % [0,1]] > |G| —e.
Since A € G, we get that |A|. < |G, so that
|A x [0,1]] > |Al. — €.
This works for all €, so taking the supremum gives
[Ale < [Ax [0, 1]].
By Step 1, we get equality. Q.E.D
If A x [0, 1] is measurable, then A is measurable.

Proof. Taking G again as in Step 2, we have for all € > 0
[G\Ale = [(G\A) x [0,1]] <e.
By definition we win. Q.E.D
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This then concludes the proof. Q.E.D
We now prove the theorem.

Proof. (<= ) Assume f is measurable, f > 0. By Theorem 3.9, we get that
there is a sequence of f,, " f almost everywhere. For simple functions, we have
that R(fn, F) is measurable by Example 4.1. This almost approaches R(f, F);
however, it could be that this misses the actual graph of f. Thus, throwing this
in, we get

R(fn, E) W I(f, E) / R(f, E).

Since I'(f, E) has measure 0 by Lemma 4.1 and the R(f,, E) are all measur-
able, we get that R(f, E) is measurable. ( = ) It suffices to prove that {f > 0}
is measurable, since measurability is preserved under shifts. To see that this is
measurable, let

Rl(faE) = {(Jf,y) cwek, O<y<f(l')}

Since R; is measurable (by assumption), we get that any vertical stretch of
R, is also measurable, since a stretch is just a Lipschitz transformation. More
precisely, we have for n > 1 that

Ro = {(a,y) : v B, 0<y<nf(x)

is measurable. We get that R,, /" {f > 0} x (0, o0), and so this set is measurable.
Intersecting this with R™ x [1, 2], we get that {f > 0} x [1, 2] is measurable. By
Lemma 4.2, this gives us that {f > 0} is measurable. Q.E.D

4.2 Lecture 12 (Non-Negative Lebesgue Integral
Properties)

Theorem 4.2. (Properties of Lebesgue Integral) Assume throughout that all

functions are measurable and non-negative.
(i) f0<g < fthen {,g<§.7/.
(i) If §, f < o, then f < o a.e. on E.
(iii) If By € E5, then SEl f< SEQ f.
)

(iv) If £ = chzl E;, E; disjoint, then

RE

(v) If |[E| = 0, then {, f = 0.
(vi) If g < f a.e.on E, then {, g <. f.
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(vii) If f = g a.e. on E, then {9 =1, f.
(viii) Assuming |E| > 0, we have {, f = 0 if and only if f = 0 a.e. on E.

(ix) Integration is linear; that is, for «, 8 € R, we have

| @resn=af r+5] o

Before proving the theorem, we will state some important theorems that we
will use along the way.

Theorem 4.3. (Monotone Convergence Theorem) If {f,,} is a sequence of non-
negative functions such that f,, /' f a.e. on E, then lim, o §, fn = {, f.

Proof. Examine R(f,,F). Since f, is increasing, then R(f,,E) is increasing
to R(f, F), except we may miss I'(f, ). Thus, we have R(f,,FE) v I(f,E) /
R(f,E). Now, using the definition of integral and the fact that |I'(f, E)| = 0
from Lemma 4.1, we have

| = 1RO = lim B B) UL B)] = Yo RO B = N | o
E E

Q.E.D

Theorem 4.4. (Chebychev’s Theorem) We have for measurable non-negative
f that

1
{zeFE : f>a}|<aJEf.

Proof. We may bound §,. f below by

fEﬁ{f>a} f< J;E A

We may bound this below again by the constant function a; that is, we have

the chain
En{f>a} En{f>a} E

Solving the integral on the far left, we have
J a=a-{xeE : f>a}l
En{f>a}
So rewriting everything we have
a-{xekE : f>a}|<J f-
E
Dividing throughout by a gives the desired result. Q.E.D
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We now prove Theorem 4.2.

Proof. (i) This follows clearly, since R(g, F) < R(f,E) and so |R(g, E)| <
|R(f, E)l.

(ii) We may bound the integral below by
=) x00) < | f<ee.
E

Now notice we may write the left hand side as

{f =00} x [0,0)] = [{f = 0} -

Since we require this to be finite, the only way we can get that is if [{f =
oo} = 0. So, we get that f < o a.e. on E.

(i) Again, we have R(f, E1) < R(f, E2) so that |R(f, E1)| < |R(f, E2)|.
(iv) We may write

C8

R(f’E): (fv )

1

bjm

Since the Ej; are disjoint, the R(f,
measure, we get

;) are also disjoint. Thus, taking it’s

|i| i R(f.E |—2ff

(v) We have R(f,E) < E x [0,0). Thus, |R(f,E)] < |[E|-o = 0. So

E En{f<g} En{f>g}

(vi) We may write
Now, since f > g almost everywhere, we have that En{f < g} has measure

0. Therefore, we get
f 9= J g < f f;
E En{f=g} E

(vii) We use the prior property, with the inequality going both ways.

as desired.
(viii) (<= This follows by the prior property.
(=) We use Theorem 4.4 here. Since 0 = SE f, we have

1
{zeE : f>a}|<aJEf=0.

Now, for a decreasing to 0, we get {r € F : f>a} " {xeE : f>0}.
Therefore, we have that {x € E f > 0}| = 0.
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(ix) We prove this in two steps.

(Step 1)

(Step 2)

For ¢ constant, we have {,cf =c{, f

Proof. The transformation L(z,y) = (z,cy) is a linear transfor-
mation, which can be represented by the matrix

o %)

and so det(L) = ¢. So, applying this to the set R(f, E), we have
R(cf,E). By Theorem 3.2 we get

|R(cf, E)| = c|R(f,E)|.
Q.E.D

For f,g non-negative measurable functions, we have § s(f+g) =
Sef+ 19

Proof. We first prove this for simple functions. Let f and g
be simple measurable functions. Then by definition, we may
represent them by

n m
= Z a;XA;, 9= Z ijBj?
i=1 =1

where E' = uj  A; = ujL B;. Therefore, we have
f+g= Z Z(a’l + bj)XAz:f\Bj'

i=1j=1

Integrating this over E, we get

J (f+9) =ii (a; + b;)|Ai N By
E o

Now, expanding and using the finite Fubini theorem grants us

Z Z(ai-‘rbj”AiﬂBj‘ = 2 Z ai|AiﬁBj|+Z ij|Asz]|

i=1j=1 i=1j=1 j=1i=1

= >la; YA 0 Bj| + Y b Y |Ai 0 Byl.
i=1  j=1

j=1 =1
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Since the A; and B; are disjoint and cover the space, we see that
summing |A; N Bj| over j gives us just |4;|, and summing it over
i gives us just |B;|. Hence, we get

m

a; Z ‘Al N B]| + Z bj 2 |Al (@) BJ‘ = Z a2|AZ| + Z b]|B]|
j=1 i=1

=1 j=1 i=1 j=1
= J f +J g.
E E

So for simple measurable non-negative functions, we get the de-
sired result.

Now, take f and g to just be non-negative measurable functions.
Then by Theorem 3.9, we get that there are sequences of simple
measurable non-negative functions {f,} / f and {g,} " ¢g. We
use Theorem 4.3 to get

| g0 = | (s a0

We showed that linearity holds for simple measurable non-negative
functions, so we have

n—o0 n—0o0

lim | (fn+gn) = lim f fo+ lim | gn.
E no0 g E
Using Theorem 4.3 again, we get
lim | fn+ lim gn:jf—kfg.
n—0o0 E n—o0 E E E
Thus, we have the desired result. Q.E.D

(Step 1) and (Step 2) in conjunction give us the desired result.
Q.E.D

These properties give us the following corollary.

Corollary 4.4.1. If f,, > 0 on F, then

N N
JE 7;0 = nz:]() JE b

Proof. This follows by the linearity property of the Lebesgue integral. Q.E.D

However, we can actually use these in conjunction with the prior theorems
to get that this holds for even countable sums.
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Corollary 4.4.2. If f,, > 0 on E, then

[T N

n=0

Proof. Let Fy = ZnN=0 fn. Then we have Fyy /' F =" | f,. By Theorem
4.3, we have

lim Fsz F.
N—w E E

Notice that we may rewrite the left hand side to be

N
i J, 2o

The sum on the inside of the integral is a finite sum, and so by Corollary 4.4.1
we have

b 2 J e B

n=0

Thus, we have the desired result. Q.E.D

We now move on to discuss a little about integration limit theorems. The
Monotone Convergence Theorem, Theorem 4.3, tells us that we can sometimes
pull the limit inside of an integral and things work out fine. One may ask
whether this always holds, and the answer is a resounding “Not always.” Below
are some examples where this does not hold.

Example 4.2. (a) Let

n? 2
Lrfor0<zx< =,

fn(x) =<2 . "
0 otherwise.

That is, we have a triangle with base [0,2/n] and height n. We have f;
plotted below:
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0.9+

0.8+

0.7

0.6+

0.5

0.4+

0.2

0.2

0.1+

and fo plotted below:

1.8+
1.6
1.4

1.2

0.8+
0.6+
0.4+

0.2

So we see as n gets larger we get a thinner, taller triangle. We see for all
that for n large enough we will have f,, () = 0, so we have that f, — 0 as
n — 0. However, we have that

2/n 2
J n—:ﬂdm =1
0 2

for all n. Therefore, we have

lim fnzl;éf lim f, =0.

n—o0
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(b) Let
r—nforn<zr<n+1
@)= —z+n+2forn+1<z<n+2
0 otherwise.

The plot of f; is given below:

0.91
0.81
0.71
0.64
0.51
0.4+
0.34
0.24

0.14

The plot of f3 is given below:

0.84

0.64

0.44

0.24
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So we see that it is a triangle of area 1 moving along the x axis. Again, for
any fixed z, we see that f,(x) = 0 for n sufficiently large. So we get

lim fnzl;aéj lim f, =0
n—0o0 E En—»OO

again.

We state some theorems which will be proven in the next lecture. These
theorems give us some idea of when we are allowed to pull in the limit.

Theorem 4.5. (Fatou’s Lemma) If f, >0,

J (hm inf fn) <lim inf J .
E n—o0 n—0o0 E

Theorem 4.6. (Dominated Convergence Theorem) If f,, = 0, f,, — f a.e. and
there exists a ¢ > 0 such that

(i) fo<¢ae,

(ii) SE ¢ < o,
then

AR

4.3 Lecture 13 (Non-Negative Fatou, General
Lebesgue Integral)

We will first prove Fatou’s Lemma.

Proof. Let g, = inf,,,>, fin- Then we see that g, /" liminf f,, by definition. We
have that Theorem 4.3 tells us that

J liminf f, = lim | g,.
E

n—0oo n—ao0 E

Notice that f,, = g, for all n. Then Theorem 4.2 (i) tells us that
f fn = f I
E E

liminf | f, = lim | g,.

and in particular

Chaining these inequalities together gives us the desired result. Q.E.D

It turns out that the Dominated Convergence Theorem is just a consequence
of Fatou’s Lemma. We prove this now.
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Proof. Fatou gives us half of what we want. That is, since we have almost
everywhere convergence, we get that

liminf f, = lim f, = f a.e.

n—o0 n—o0

and so by Fatou’s we have

f féliminff f.
E n—© JE
In order to get the desired result, we must then show
limsupf fn < f I
n—o0 FE E

Let g, = ¢ — f,. Then we have that g, > 0, and by Fatou again we have

n—0o0 n—o0

f liminf g, < lim ian In-
E E

Writing out, this is
J (6 —f) < liminff (6 — fn)-
E n=% Jg

Linearity of integrals almost gives us what we want. However, we only have this
for addition. We can cheat this by setting

o=(o—f)+ /[

by linearity. Since §,, ¢ is finite, we can subtract {,, f (which must also be finite)

to get
ngﬁifEf - JE(d)if).

So, rewriting the above inequality using this result, we have

Now, distributing the limit, we have

[ R R G R R e

Using the finiteness of everything, we are allowed to rearrange this to get

limsupf fngj f.
n—ow JE E

Then we have

Q.E.D
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The next question we want to explore is how to integrate general functions.
The idea is to break it down into it’s non-negative components and try to use
prior results on that. This leads us to our first definition.

Definition. For general functions, we write

F=ft-r

Jor=Jor =l

as long as either { f* <o or {, f~ <o0.

We thus set

We now can talk about the Lebesgue integral for general functions.

Definition. We say that a function f is Lebesgue integrable on E, denoted
by fe L(E), if §, f exists and is finite.

Remark 16. We may have that the integral exists, even though the function
itself is not integrable.

Lemma 4.3. We have that f € L(F) if and only if |f| € L(E).

Proof. Note that we define |f| = f* + f~. Assume that f integrable. Then we

have
-l e

This implies that we must have that §, f* and {, f~ are both finite. Likewise,

lf e[+ <

then both §. f* and {,, f~ exist and are finite. Q.E.D

< fm
-l L

By the triangle inequality, we get
[ Lol ]+ |- [n
E E E E E

We now get a theorem of properties of the Lebesgue integral, which is similar
to that of Theorem 4.2. We will omit the proof of most of these as a result.

Lemma 4.4. We have

Proof. We see that

—+

Q.E.D
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Theorem 4.7. (i) We have that f € L(FE) implies |f| < o0 almost everywhere
on E.

(ii) If f < g almost everywhere and f,g € L(E), then {. f < {,_g.

(iii) If F1 € E9 and f € L(Es), then f € L(E;) as well (Notice no inequal-
ity).
(iv) If fe L(E) and E = | |, E), then

f= f

Jo7=3J,
and moreover f € L(Ey) for each k.

(v) |E| =0 implies {, f =

(vi) f = 0 almost everywhere in E implies that SE f=0.
(vii) If f € L(E), then ¢f € L(F), and moreover

JE o= CJE’ )

(viii) If f,g € L(E), then f + G € L(E) and moreover

foreo=[s+ ]

Proof. We include the proof for the last property. First, notice that f+g € L(FE),
since |f + g| < |f| + |g| by the triangle inequality. By Lemma 4.3, the first
property, and Theorem 4.2, we get

i ot <o — | 1791 <

and since |f +g| € L(F) we have f+g € L(E). Now, we show the second part. If
f,9 =0, we win. Let’s show it holds if f > 0, g <0, and f + g > 0 everywhere.
Write f = (f + g) + (—g). Then this implies that we have

JEf:JE(ergHL(—) f(f+g fg — J f+fg—J (f+9).

since things are finite. Abusing multiplication by —1, we see that we have that
as long as f,¢g and f + g have constant sign over E, then we win. But we can
just divide up E into a disjoint union of Ey, k € {1,...,6}, where in each Ej
we have that they have constant sign. Therefore, we have

ff+g ZJ (f+9) = “(ka+f&> Ekf+,§1Lkg
:JEf+JEg

Q.E.D
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We’d like to now translate the limit theorems to statement about general

functions.

Theorem 4.8. (MCT revised)
(i) If fn /" f and ¢ < fn with ¢ € L(E), then §,; f, — § f.
(ii) If f, \\ f and f, < ¢ with ¢ € L(E), then {_ fr — {. f.

Proof. We prove (i). The proof of (ii) is just (i) but multiplied by -1. Examing

gn = fn — ¢. By the old MCT, we have that

fEfn—¢—>JEf—¢,

Theorem 4.9. (Fatou’s Lemma revised)

Rewriting this, we have

and so by linearity we get

(i) If there exists a ¢ € L(E) such that f, > ¢ for all n, then

f liminf f, <lim inff fn-
E E

n—o0 n—o0

(ii) If there exists a ¢ € L(E) such that f, < ¢ for all n, then

J limsup f, = lim supf -
E E

n—oo n—0oo0

Q.E.D

Proof. (i) Apply the old Fatou’s lemma (Theorem 4.5) to f, — ¢ and use

linearity.
(ii) Use the proof of Theorem 4.6, noting that

liminf —f,, = —limsup f,.
n—0 n—00

Q.E.D

Theorem 4.10. (DCT revised) If f, — f a.e. on E and sup,, |fn| < ¢ € L(E),

then

Proof. This is a consequence of Theorem 4.9, using that —¢ < f,, < ¢ and

then using parts (i) and (ii).

Q.E.D

62



James Marshall Reber January 6, 2020

4.4 Lecture 14 (BCT, UCT, Riemann Integral)

We want to talk about two more limit theorems which are extremely useful. For
these, we will note that we need another assumption; that is, we need |E| < .

Theorem 4.11. (Bounded Convergence Theorem) If |E| < o0, f, — f almost
everywhere on E, and |f,(x)] < M for all x € E and for all n > 1, then

JE f” - JE f

Proof. This is actually a corollary of Theorem 4.6, because ¢ = M is integrable
on a set of finite measure. Q.E.D

Theorem 4.12. (Uniform Convergence Theorem) If |E| < o, f, — f uni-
formly on F, and f, € L(F), then

JE fn - JE f7

Proof. Recall that f,, — f uniformly means that for all € > 0 there exists an ng
such that for all n = ng,

and furthermore f € L(E).

|fn(x) — f(z)] <€, Ve>0.
Notice that we may write
f(@) = f(x) = fu(2) + ful2).
By the triangle inequality, we have
[f (@) < [f(2) = ful@)] + [fn(@)]-
Taking n sufficiently large, we have that this is bounded above by
[f(@)] < €+ [fu(2)].

Integrating both sides gives us

| R MR WP

Since the right hand side is finite (assuming f,, € L(F) and |E| < o), we get
that the left hand side is finite. So |f| € L(F), which by Lemma 4.3 implies
f € L(E). This gives us the second part. For the first part, we want to prove

that
fE fn - JE f7
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oo

By the linearity of integration, the inside may be rewritten as

Jgnﬂw

By the proof of Theorem 4.7, we get

waﬁﬂgLn—f.

Now, since we have uniform convergence, for fixed ¢ we know that for n suffi-
ciently large we have |f,, — f| < € uniformly over E. So we get

| if=1<] e=1me

Since this applies for all € > 0, we take ¢ — 0 to get

or, in other words,

[ 10-s1<0
E
as desired. Q.E.D

We now want to relate Lebesgue and Riemann integrals. For notations sake,
we will denote the Riemann integral by

b
(Mjf= i f(F) (@ — 2is1),

a mesh(m,)—0 7
where m,, denotes some partition
a=x9g<x1<...<xp =D,

x} € [x;-1,x;], and mesh(m,) denotes the max distance between two consecutive
points in the partition.

Theorem 4.13. Let f be bounded on [a,b]. If f is Riemann integrable on
[a,b], then f € L([a,b]) and

(mff—ff—Lﬂﬁ

Remark 17. The assumption that f bounded is not necessary, as we will see
towards the end.
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Proof. For n > 1, let 7, be the partition {z;}?",. That is, the partition of
Dyadic intervals. More specifically, we have that

k
k—a+27(b—a).

( ) X[wkflﬁvk](z)?
[Ik 1,0“

= Z ( sup f > wk,l,wk](x)v

k=1 \[Zr-1,2k]

Now, let

i
TP

U, = Jb U (),

where the L, and U, are Lebesgue integrals. The assumption was that f was
Riemann integrable, which gives us that L — n and U, converge to the same

limit as n — oo;
b

a

b
Un— (R) | [

a

So all we need to prove is that these converge as Lebesgue integrals as well.
Let’s next note that [,, forms an increasing sequence pointwise, while u,,
forms a decreasing sequence pointwise, since we are taking subdivisions. We see
that they are probably increasing to f, but we can’t say that for certain quite
yet. For now, denote these limits as [ and u respectively. The BCT (Theorem

4.11) tells us that
b b
Jot .t
b b
Jowe e
b b b
R)f fzf ZZJ u

Note that, by construction, © — > 0. Then we have

b
Ju—lzo,

So we have
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which implies that v — 1 = 0 almost everywhere. This is the same as saying
y = k almost everywhere on [a,b]. So since | < f < u, we get | = f = u almost

everywhere on [a, b]. So
b b b
Jo=goe= L

by prior results. Q.E.D
This proof also gives us a nice characterization of Riemann integrals.

Theorem 4.14. Assume f is bounded on [a, b]. Then f is Riemann integrable
on [a,b] if and only if f is continuous a.e. on [a, b].

Proof. ( => ) Assume it is Riemann integrable. Let [,,u,,{,u be as above.
Then we know | = f = u almost everywhere. Say Zy = {x € [a,b] : I(z) #
u(z)}. Then since it’s almost everywhere, we have |Zy| = 0. Let Z; = {z €
[a,0] : o =a+ & (b—a), n>1, k<2"}. Then |Z;| = 0 since it is a countable
collection of points. Let Z = Zy u Z;. Then by construction |Z| = 0. We then
claim that if x ¢ Z, w ehave f is continuous at x. Fix an ¢ > 0, and pick n
large enough so that I, (x) > f(z) — ¢, un(z) < f(x) + . We may do this since
x ¢ Zy. For this n fixed, we have z € (1:,(;1)1, xé”)), where this is an open interval
since & ¢ Z;. For y in this interval, we know that |f(z) — f(y)| < e, since [,, is
an infimum and u,, a supremum. Thus, we have found an appropriate interval,
and so it is continuous a.e.

( <= ) Assume f is continuous a.e Let 7, be some sequence of partitions with
the mesh going to 0. Let l,,u, be the corresponding step function for the
upper and lower Riemann sums. If f is continuous at x, then I, (x) — f(z) and
u, — f(x) a.e. Therefore, by the BCT, we have

[
[l

Since these are the same, we get that f is Riemann integrable. Q.E.D
We end by talking about improper Riemann integrals.

Remark 18. Note that there is no need for “improper” Lebesgue integrals, by
definition.

Theorem 4.15. Assume f > 0 on [a,b] and f is Riemann integrable (and
therefore bounded) on [a + €,b] for all € > 0. If

hmﬂﬂﬂ;f—L

e—0
b
Jf:I.

then f € L([a,b]) and
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Proof. We sketch the proof her. Let f.(z) = f()X[qa+ep). Note that fc(z) /
f(2)X(ap) () as € — 0. Then

R>Lb+€f = Lbf
by the MCT on [a, b]. Q.E.D

Remark 19. Here, note that the f > 0 assumption is necessary.

4.5 Lecture 15 (Fubini’s Theorem)

The question we’d like to answer today is, assuming f(z,y) is a measurable
function on R"*™, where x € R™ and y € R™, when is

([ ) )

That is, when can we take an iterated integral? To answer this question, we
must consider two other sub-questions: for z fixed, is y — f(z,y) a measurable
function, and is F(z) := { f(z,y)dy a measurable function? Regarding the first
question, let’s COIlbldeI" f(x y) = xe(z,y), E € R"""™ measurable. Write f(z,-)
as a function of y where z is fixed. Thus, we have

lifye E,

We then need to think about what E, is. For a fixed z, E, = {y e R™ : (z,y) €
E}. In other words, these are the slices of E. So f(x,-) = xg, is measurable if
and only if F, measurable for fixed z. If E is measurable, is it always true that
E, must be measurable? The answer to this question turns out to “almost.”

Example 4.3. Take F' < [0, 1] to be a non-measurable set. Take

E =[(0,1) x (0,1)] u [{1} x F].

Then we see that F; = F', a non-measurable set, even though we have that E is
measurable (the slice where it is not measurable has measure 0). This provides
us with the key — we’ll be able to say that E, is measurable a.e.

We also see that the conclusion of Fubini is not always true.

Example 4.4. We define a function f over R?, which will be hard to graph.
Instead, we will just describe how it looks. Form a sequence of unit squares,
starting from the origin and moving towards infinity diagonally. Divide the
squares into fourths, and in each square repeat the same pattern. That is,
denoting the nth unit square by S,,, we have x € S1, y € 51,
Fag) = {1#0 2,y <1/20r1/2
0<x<1/2,1/2<

)

y<1
or0<y<1/2,1/2<z<1.

<z
y<1

//\ //\

0 if
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Repeat this pattern for all n. Then we see that

Jﬁﬂ=fﬁ+fﬁ=w+w=w,

so f is not integrable. Furthermore, §{ f is not defined, since we have o0 — .
On the other hand, § f(z,y)dy = 0 for any .

Let us define a class of functions which will be helpful moving forward.
Definition. Let F be the class of measurable functions, f, on R"*™ such that
(i) fe L®mm),
(ii) For almost every x, f(x,-) is measurable and integrable on R™,
(iii) F(z):= § f(z,y)dy is measurable and integrable on R™ and {§{ f = { F.
This leads us to Fubini’s theorem.
Theorem 4.16 (Fubini’s Theorem). If f € L(R™*™), then f € F.

We will prove this using a series of lemmas. We will prove the following
lemma in this lecture, and will finish the proof in the next.

Lemma 4.5. We have that F is closed under linear combinations and under
monotone limits, as long as the limit is integrable.

Proof. We first prove it for linear combinations. Take f = Zf\il a; f;, where

fie F. Let Z; = {z L fi(z,-) ¢ M}. By assumption, |Z;| = 0. Let Z =
Ui]il Z;. We note that |Z| = 0. So for = ¢ Z, we get f;(x,-) is measurable and
also integrable. We therefore know that f = Zi\;l a; fi(x,-) is measurable and
integrable. Define F(z) := SZf\Ll a;fi(x, ) if x ¢ Z and 0 otherwise (it’s fine to
do this since Z has measure 0). Then using linearity, we get

N N N
ﬂm—fggﬁmo—ggjﬁm)—gwﬂ@.

Furthermore, integrating F'(x) gives us

LOE fimac) —ifmc) -]+

and so we win.

We now prove it holds for monotone limits. Assume that fr /' f € L(R"™™),
freF. Let Z, = {x : fi(z,-) ¢ M}. Set Z = |J,. Zk, and note |Z| = 0. For
x ¢ Z, we have fr(x,-) / f(x,:). Furthermore, since this is an increasing
sequence, we have fi(z,-) < fr(z,) < f(z,-) for all k, and so we get

| sty = | 16y
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by the Monotone Convergence Theorem (Theorem 4.8). We then get that the
integral is well-defined, and exists, but we do not know that f(x, ) is integrable,
since it might infinite. Let Fj (20 = { fi(x,y)dy, and again let Fy(z) = 0 if
x € Z. Then we have

Fy(z) — F(x).

Furthermore, we have Fj(xz) / F(z). Thus, F(z) is measurable. We use the

MCT again to get
e

noting again that Fj(z) < Fi(z). Now

R

as k — oo by MCT. Furthermore, we have

[l
fr-ffs

Since f € L(R™" ™), we have that { F' < co and integrable, which forces F < co.
This then implies that f(x,-) is integrable as well. This gives us the result.
Q.E.D

so this implies

4.6 Lecture 16 (Proving Fubini, Tonelli’s Theo-
rem)
Lemma 4.6. If E € R"*™ is measurable and |E| < oo, then xg € F.
Proof. We prove this by building things up.
(i) We start with half open intervals. That is, the sets
J =la1,b1) x - X [anym, bnim)-
Notice that we may write this as J = J; x Jo, where
Ji=[a1,b1) X -+ X [an,by)

and
J2 = [ant1,0n11) X+ X [@ntm, bnsm)-
Then we may write xs(z,y) = xJ,(z)xs,(y). Now, we want to prove

that x; is in F. We first note that x; € L(R"*™) trivially, since it is
a characteristic function over a set of finite measure. Next, we’d like to
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show that for almost all x, x(x,-) is measurable and integrable. Since
Xs(x,7) = X ()X ("), we have that x(z,) = x5 () or xs(z,-) = 0,
depending on whether x € J; or not. So it is measurable for all x, and
furthermore it is integrable since it is either a characteristic function or
zero. Now, we need to show that

F(z) = fxm,y)dy

is measurable and integrable as well. We rewrite this as

F(z) = f o (@)X W)y = X () j v (®)dy = X (@) .

Since |Ja| < 00, we have that this is a measurable function. Furthermore,
integrating this over = gives us

JF(w)dx - |J2|fo1<m>dx YATRAL

We know from prior that

Tal[a] = [y % o] = 1] = ”mm).

So we have that it is integrable, and that it is equal to the double integral.
This gives us that it must be in F.

Now let’s prove it for open sets. Let G < R"™™ be open. Then we
know that we may cover G by non-overlapping closed intervals. Taking
these intervals to be half open, we get that they must actually be disjoint.
Hence, we may write

e}
G=]%n
k=1
Now, taking the characteristic functions, we have
(e 0]
XG = )\ X
k=1
Let’s cap this off at n; that is, examine
n
fn = Z XJk'
k=1

Since xj, € F for each k, Lemma 4.5 tells us that the sum from 1 to n of
these functions must also be in F. Now, notice that f, /" f = 2120:1 X T -
Lemma 4.5 tells us that F is closed under monotone limits, and so we
get that f € F as well. Therefore, we have that yg = f is in F.
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(iii)

Since we have it for open sets, we can also show it holds for sets of type
Gs. Let H be such a set. Then we have H = (), G, where G}, are open
for all k. Without loss of generality, take these to be decreasing sets. Then
we have that xg, \, xg. Again, this is a monotone limit, and so since
Xa, € F we must have xg € F.

We also need to show it holds for sets of measure 0. Let Z be such a set.
Then we can find a Gy set H such that Z € H and |H| = |Z] = 0. We
must now show yz € F. We have that xz € L(R™"*™) by default. Fixing
x, we have that xz(z,-) is measurable a.e. since xz(z, ) = xm(z,) =0
for a.e. . Furthemore, we see that yz(z,-) is integrable. Let

F(z) = JXZ(%y)dy = 0.

We get that this is therefore measurable and integrable. Furthermore,

J Pla)dy — f f \zdzdy = 0,

For general measurable sets E, Theorem 2.3 (ii) says that we may write
it as E = H\Z, where H is of type G5 and |Z| = 0. Hence, xg = xXg —Xz-
Since xm,xz € F, we get that xp € F by using the fact that it’s closed
under linear combinations.

Q.E.D

We now finally prove Fubini’s theorem.

Proof. We again build things up.

(i)

(i)

(iii)

Simple functions which are integrable are in F by Lemma 4.5 and Lemma
4.6.

Non-negative integrable functions f are in F, since Theorem 3.9 gives
us that we have a sequence of simple measurable functions f ' f, and F
is closed under monotone limits.

For general f, we write it as f = f* — f~. Since each of these are in F,
and F is closed under linear combinations, we have that f € F.

Q.E.D

We also have a similar theorem called Tonelli’s theorem, which is a very close
relative to Fubini’s theorem.

Theorem 4.17 (Tonelli’s Theorem). If f(z,y) is a non-negative measurable
function on R**™ then

[ v () ] )

and f(z,-) and F(z) = { f(z,y)dy are measurable.
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Proof. It turns out that this is just a consequence of Fubini’s theorem. Define
a A b =min{a,b}. Let
fo = (F(@:9) A )X((@) : |@y)<n)

Then we see that f, is just a linear multiple of a characteristic function,
and so f, € F for all n. Furthermore, let Z, = {z : f.(z,-) ¢ M}. Then
|Z,| = 0. Letting Z = |J,, Zn, we have |Z| = 0. Furthermore, if 2 ¢ Z,
f(z,) =lim, o fn(z,), and is therefore measurable. Similarly, the MCT tells
us

J.fn(% y)dy — Jf(% y)dy.

This tells us that F,(z) — F(z), and that they are measurable and integrable.
Finally, we see that

Jrotm |t 0] ]
Thus, f € F. Q.E.D

We now go on to discuss some applications.

Lemma 4.7. If 3,7 | | fi| € L(R™), then §3777 | fo = 20, § fa-

Proof. This will follow later by seeing that sums are just discrete integrals. For
now, let

flz,y) = Z Te (@)X, ke+1) (V)
k=1

f(Jf(x,y)dy) dz —Ji fula)da.

k=1

Then we see that

Q.E.D

Lemma 4.8. We have that

z
2P = J py"~dy.
0

Lemma 4.9. For any f, we have

f\fl”d-r = L py" " wy g (y)dy.

Proof. Using the prior lemma, we have

flfl”dw = f (ﬂﬂpy”ldy) da = f (fopyplxysfdy) da
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o0 00
= J (fpy”lxyst) dy = f py" ! (JXyélfldl") dy.
0 0

Solving the integral

JXy<|f|d$7

we see that we just ge the measure of the set {x : |f| = y}, which we may
rewrite as w) s (y) = {z : |f(z)| = y}| (the reason we may drop the inequality is
that wjs| is a non-increasing function, and so has finitely many discontinuities).
Putting this together, we get

loe]
flflpdx = L py" wyp (y)dy,

an improper Riemann—Stieltjes integral. Q.E.D

4.7 Lecture 17 (Convolutions)

We finish this section by talking a little about convolutions, which gives us a
final application of Fubini’s theorem.

Definition. If f, g are measurable functions on R™, then the convolution f g
is defined by

(f #g)(x) = . flz—y)g(y)dy,
so long as the integral exists.

Remark 20. One quick remark is that we have f* g = g * f through a change
of variables.

Theorem 4.18. If f, g € L(R™), then f * g exists a.e. is in L(R"™), and

[ir=ai< (Junt) ([ 1o

Furthermore, if f,g > 0, then

froa- (1) (1)

Before proving the theorem, we need a lemma.

Lemma 4.10. If f is measurable on R", then F(z,y) := f(z—y) is measurable
on R?",

Proof. The proof is really a geometric proof. We want to show that {(z,y) €
R?" : F(xz,y) > a} is a measurable set for all a. But this, in particular, is just
the set {(z,y) e R* : f(x—y) > a} for all a. Notice F(zq, o) > a implies that
the hyperplane x — b = y, where b = xg — yo also satisfies this property. Since
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the slope is given, we have that these lines are completely determined by their y
intercept. So, we may look at {s € R™ : f(s) > a} x R™, which is a measurable
set. Using a Lipschitz transformation 7" which maps this set to {(x,y) € R?"}
by multiplying the values together tells us that {(z,y) : F(z,y) > a} is
measurable. Q.E.D

Proof. We start by proving the second half. Let f,g = 0. Then

[ = [ ([ o= ngmar) as = [t ( [ 16~ pac) ay

by Tonelli’s theorem. Now, since y is fixed, we use the fact that the Lebesgue
integral for non-negative functions is simply a measure of area underneath the
curve to see that

| e =iz = [ sayaa.

Hence, we can pull everything out to get

fir-a- (1) ()

fogl = \ [ 1@ = spatwra < [ 11t = llatwray = 171l

Now, notice that

using the triangle inequality. Hence, we have

real= (1) ([1a).

Since f,g € L(R™), then so is |f],|g|. In particular, this tells us that f =g €
L(R™). Q.E.D
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Chapter 5

Lebesgue Differentiation

5.1 Lecture 18 (Lebesgue Differentiation)

We now want to find an analogue for the F.T.C. for Lebesgue integrals. One
important consequence of this is that we will develop a characterization of when

b
F(b) — fla) = f f(@)dz

holds.

Definition. For an integrable function f on R"™, the indefinite integral F' is
defined by

F(A) = f f(z)dx.
A
Notice that A is a set here.

Definition. A set function is a function on a o-algebra X that is finite for all
A € ¥ and is countable additive; that is, if {A;} are disjoint in X< then

F (U A”) = Y F(A,).

Remark 21. We see that the indefinite integral F' satisfies being a set function.

Definition. For f € L(R™), the indefinite integral F is differentiable at z € R™
with derivative f(x) if

1 o
lim mF(Qr(x)) = f(=),

where @Q,.(z) is the cube centered at x with sidelength 2r.

We state the following theorem, though it will take a few lectures to prove.
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Theorem 5.1. (Lebesgue Differentiation Theorem) If f € L(R™), then the
indefinite integral F' is differentiable, with derivative f(x) at almost every z.

Remark 22. (1) In dimension 1, this says
1 T+T
im —

r—0 27 T

a.e. We'll see later that it’s also true

1 T+r
lim — f)dy = f(z).

r—0r x

That is, the average property over a very small interval must just be the
value at the (center) of the inteval.

(2) This is (obviously) true for continuous functions.

First, we need to see why it is true that lim,_q F(Q,(z)) = 0. To see this,
notice that we have

lim F(Q(2)) = lim f(y)dy
r— m=0JQ()

by definition. Now, we can switch this to be an integral over all of R by using
a characteristic function. That is,

lim fy)dy = limj FW)xq. () dy-
r=0JQ(w) =0 g

Now, we want to be able to justify pulling the limit into the integral. One way
to do so is by using the Dominated Convergence Theorem. That is, we have
that this is dominated by f(x), and we know f(x) satisfies the conditions. So
pulling the limit in, we get

lim fR FW)xa,wdy = JR f(y) lim xq, (yydy = 0.

r—0
We now talk about a few more definitions.

Definition. An abstract set function F' is continuous if

lim F(A)=0.
diam(A)—0

What we’ve just established is that F' is continuous. But we can get even
stronger results.

Definition. A set function F' is absolutely continuous if

lim F(A)=0.
|A]—0
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We now want to show that F' is absolutely continuous.
Theorem 5.2. If f € L(RY), then F is absolutely continuous.

Proof. Let ¢ > 0, then we want to find a ¢ > 0 so that |A| < § implies |F/(A)] <.
First, we note that

Jie 70
{f=n}
as n — 00. So we can take n sufficiently large so that
f fl< <
{f>n}
Now,
LR I o I
An{f=n} An{f<n}
We know that we can bound this by
€
f fl+ f fl<=+ J fl-
An{f=n} An{f<n} 2 An{An{f<n}

Since we have |A| < §, and f bounded above by n, take |A| < €¢/(2n). Then we
get
[F(A)| <e

as desired. Q.E.D

5.2 Lecture 19 (Proving Lebesgue Differentia-
tion)

To prove the theorem, we’re going to set up a few lemmas ahead of time and
then work backwards proving those lemmas.

Lemma 5.1. If f € L(R™), then there exists a sequence ¢ of continuous
functions with compact support such that

g&fV—¢u=a

We say that this converges in L'.

Remark 23. We had before that the Lebesgue differentiation theorem clearly
held true for continuous functions, so this gets us somewhat close to showing it
for measurable functions.
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Definition. If f € L(R"), we define the Hardy-Littlewood maximal func-
tion f* by
1

7”>0 |QT( )l Qr(z)

The Hardy-Littlewood function is asking what is the biggest average value
that we could get. This will help us establish whether the limit makes sense
in the first place. Using this, we establish the second lemma we’ll need (which
seems a little like Chebychev’s).

fH(x) = [f1-

Lemma 5.2. If f € L(R"), then there exists a constant depending only on n,
C},, such that

% Cn
7> ajl < = [ 11,

Note that as a — o0, the right hand side goes to 0, so we get that f* is finite
almost everywhere. In other words, we have that f* is almost integrable; an
idea that we’ll formalize. Note that if g € L(R™), then

1
> < - .
to>a)l < [1o
Definition. If we have
{g>a}l < -
then we say that g is weakly integrable, and we say that is in weak-L(R™).

Remark 24. We have that the function f* is never integrable unless f = 0
identically.

We now prove the Lebesgue Differentiation Theorem using these tools.

Proof. For notation sake, let ¢ be a continuous function with compact support
and let @ = @, (z). We then want to compare

‘mff = (@) bd

Notice that we can add and subtract terms as well as use the triangle inequality
to get the following upper bound;

ke

Now, as (Q \, x, we have that

M;L¢—mw

+o(x) — f(2)]
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So we can say (after bringing the absolute value in)

1
@JQf—f(@

We can then bound this above by

(f = ¢)*(z) + |¢(z) — f(z)]-

So looking at the sets, we have
> }

1
MJfo(f)
o= f1> /2 <2 [1o- 11,

lim sup
r—0

< lim sup

1
r—0 |Q|

[ 17=61+ 106 - sl
Q

{x : limsup <H(f*d))*>§}‘+H|¢ff|>%}‘.

r—0

We use Chebychev to get

and we use Lemma 5.2 to get

=6 =2 < 22 [Jo - 1.

So we can put things together based on these. Nothing on the left depends on
¢, so we can choose ¢ based on Lemma 5.1 so that everything on the right
goes to 0, thus giving us our desired result. Q.E.D

We now prove Lemma 5.1.

Proof. Let A be the class of functions such that the lemma holds. We will show
that L(R™) < A. We do this by working our way up.

Claim 5.1. A is closed under linear combinations.

Proof. Take ) a;f; where f; € A. Then for each f; we can create a sequence
@i — fi- We guess then that the appropriate sequence is Y, a;¢; 5. To show
that this is the correct sequence, we check

f Z&ifi _Zai¢i,k < Z |ai|f\¢i,k — fil = 0.

Claim 5.2. A is closed in L'; that is, if fx € A, and

Q.E.D

J|fk¢_f|_)0a
then f € A.
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Proof. Take ¢, — fr. Then we have

[1r=o < [1r=sd+ (1= aul o

Q.E.D

We now build up sets. It’s clear that for any interval I < R", we have that
x1 € A. Next, let G be open and |G| < . Then we have that there are a
sequence of non-overlapping intervals I,, so that

GQUIn.

Since they are non-overlapping, we get
XG = ZXI" a.e.

n
Now, take the finite partial sums. Then we have

N
Z X1, /" XG-
n=1

Notice that for each NV, 22[:1 x1, € A. We then check

f Xa _ZXI” = J (m _ZXI,L> —0
by the MCT.

Now, we want to get general measurable sets E with |E| < o0. We know
E = H\Z, |Z| = 0 and H of type Gs. So there exists a sequence of open sets
G \\ H, and so xg, \\ X a.e. Therefore, we have

jm ~xsl =0

again by the MCT. So we thus get all measurable functions. Q.E.D
To prove Lemma 5.2, we will need another lemma.

Lemma 5.3. (Simple Vitali Lemma) Let E € R™ with |E|. < o0 and let K
be a collection of cubes that cover E. Then there exists a finite collection of
disjoint cubes {Qx}}_; < K such that

al 1
D 1Qkl = | Bl
= 2-5

We will prove this lemma in the next lecture. For now, we use it to prove
Lemma 5.2.
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Proof. For R < o, let Ey, = {f* > a} n {|z| < R}. If x € E}, then there exists
a cube @, such that

1 1
o) 1me = 1ed< g 1

x

Let K = {Q : @ satisfies the inequality above}. Note that Fr < UQeK Q. We
can use the Simple Vitali Lemma to find Q1,...,Qy such that

N 1
Z |Qk| > 2.5n|Ek|-
k=1

On the other hand, |Eg| < (2-5") Z],Ll Qx. But the measure of those cubes
satisfies

1
Qx| < ;f If]-

x

So therefore we have

2.5" 2.5"
Bal < 20| <2 [

since the cubes were disjoint. Finally, Er /" {f* > a}, and so

= <25 1,

a

Q.E.D

5.3 Lecture 20 (Proving Simple Vitali Lemma)

We'll first note that we can actually say something stronger about the Lebesgue
differentiation theorem, which is that it holds if f is just locally integrable,
instead of globally integrable. We formalize this thought now.

Definition. A function f is locally integrable if it is integrable on all bounded
subsets. We denote this by f € Lio.(R™).

It’s clear that theorem holds under only the assumption of locally integrable,
since it is really a local problem. We can also make yet another stronger state-
ment. We first need to declare what a Lebesgue point of f is.

Definition. We say that x is a Lebesgue point of [ if

1 -
}%m o0to) |f(y) — f(x)|dy = 0.

The absolute value is what makes this stronger.
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Theorem 5.3. If f is locally integrable, then almost every x € R™ is a Lebesgue
point of f.

Proof. For every q € R, we have that |f — g is still locally integrable. Now, by
assumption note that every point in R™ is a Lebesgue point for |f — ¢g|, where
we take g € Q. Then we have

107 ) 1£0) — @iy < 3 | 176) ~aldy + 1o~ o)
Letting |Q| — 0, we see that

1
il fQ |f(y) —qldy — |f(x) —ql.
So we have

i 1
hmsupwfw)m f(@)ldy < 2q — f()].

r—0

Since Q is dense, we can take ¢ arbitrarily close to f(x), giving us that this goes
to 0. Q.E.D

We also note that we don’t have to just take cubes, but can take sets which
satisfy some strict properties.

Definition. A family of sets S is regularly shrinking to a point z if
(i) diam(S) — 0,

(ii) There is a constant k such that if @ is the smallest cube centered at x
containing S, then

QI < K|S].

Example 5.1. The set [z, 2+ h] is regularly shrinking, since the smallest cubes
containing this are [x — h,z + h] and we have

|Qf < 2/5].
Theorem 5.4. If f € Lj,.(R™), then at every Lebesgue point,

1 B
Jim o | 1) = @y -0

for any family of sets .S that is regularly shrinking to x.
Proof. We have

151 |10~ 1@y < g [ 1960 - sy

where S € Q. We can then bound this above by

] J ) = fl@)ldy = 0.
Q.E.D
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We implicitly used the fact that f* is a measurable function. We now prove
this.

Claim 5.3. The Hardy-Littlewood maximal function is a measurable function.
More specifically, the set {f* > a} is an open set for all a.

Proof. Select z € {f* > a}. Then we want to show that every point which is
sufficiently close to x is also greater than a. Assume for contradiction that this
is not the case. That is, we have a sequence xy — x where f*(xz)) < a for all k
but f*(z) > a. Using the definition, we see that this is saying

1
— d
wawLLw@wf@)%

where we choose 1’ such that the cube @, () is the biggest cube contained in
Q(x). The dominated convergence theorem tells us that

1 1
S — dy — ——— d
|QW@ML&ﬂ@0f@>y Q@) Jo. W

but this gives us a contradiction, since this would force the right hand side to
be less than or equal to a. Q.E.D

Remark 25. This, in fact, proves that f* is Isc.
We start the proof of the Simple Vitali Lemma (Lemma 5.3).

Proof. Without loss of generality, assume that the cubes are not arbitrarily large
(if they were, we win by default). Let d; be the supremum of the side lengths
of cubes in K. Pick @; with side length greater than or equal to d;/2. Now,
decompose K into two parts, denoted by Ky and K), where K is the collection
of cubes intersecting ()1 and K> is the collection of cubes disjoint from (. Let
ds be the supremum of the side lengths of cubes in K. Choose Q2 so that it
has side length greater than or equal to da/2. Repeat this process. Note that
we have formed a non-increasing sequence d; > ds = ---. We then divide this
up into cases.

Case 1 If the d; > ¢ for all j, 6 > 0, then we have an infinite sequence of cubes
that are disjoint, and they all have side length greater than or equal to
d/2. This then says |Q;| = (§/2)™ for all J. We just have to pick N
large enough, then.

Case 2 What if dy > 0, dy+1 = 0. Notice then that we have

N
K= QZK;.

Let Q; € K}, and pick @ € K7 ;. For any such @, we claim Q < @Vj,
which is the cocentric cube centered at ); but with 5 times the edge
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Case 3

length. This is becasue the side length of the Q)’s are at most 2 times
the side length of @);. Then, since K covers £, we have that the set £
is covered by these blown up cubes. Thus, we get

N — N
Ele < ) 1Q51 = D} 5"1Qj1,
=1 =1

which tells us

N 1 1
| > —|FE|. > ——|F|,.
2,190 > gl > gl

5.4 Lecture 21 (Vitali Covering Lemma)

Now consider the case where d,, — 0, d,, > 0 for all n. Then we may
have an infinite sequence @Q; of disjoint cubes, and we denote @\; to be
the blow up from Case 2. Recall that if a cube Q € K7, then Q < @;
Now, we use this to claim that if Q € K, then @ is covered by Uj @vj

Assume that is not; that is, Q@ & Uj @ Then @ ¢ K, for every j,
so @ € K41 for every j. This means that the side length of Q < dj4+1
for all j. Since d,, — 0, we must have that the side length of @ goes to
0 as well.

Remark 26. Here, we note that cubes are not points. That is, a cube
can not have side length 0.

So we have that £ < Uj @; Then
|Ele < Z|Qj| < 5"2@;*
J J

Thus, we have

Now, we pick N large enough so that

N 1
> Q] = El,.
Jj=1

Q.E.D

We now want to cover the Big Vitali Lemma, or the Vitali Covering Lemma.
First, we need a definition.
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Definition. A collection K covers E in the Vitali sense if, for every x € F
and every § > 0, there is a cube in K containing x with diameter less than §.

This will be helpful in generalizing Vitali’s lemma.

Theorem 5.5. (Vitali Covering Lemma) If E < R"™ is covered in the Vitali
sense by K, and E is a set such that 0 < |E|. < oo, then given € > 0 there exists
a sequence {Q;}72, of disjoint cubes with the followmg two properties:

(1)

_ UQJ =
j=1

(i)
2,105l < (1 + ) Ele.

J

Proof. First, pick an open set G such that £ € G and |G| < (1 + ¢)|E|e.
Without loss of generality, assume all cubes in K are contained in G, since the
cubes cover in the Vitali sense. So al lwe need to do is get the first property,
since the second property comes from the fact that

U

Without loss of generality, take ¢ < (3/10)(1/5™). If we show this for such e,
then we can get that it holds for larger € by just capping it off.

By the Simple Vitali Lemma (Lemma 5.3), there exists a sequence of dis-
joint cubes {Qj}j-v:ll with

Z Ql; < |Gl < (1 + €)|E]e.

Z |Q] 2. 5n| ‘e'
Then notice
N, Ny Ny
E-Jel<c-1Ja)|=161-3 e
j=1 j=1 j=1

1 1 1
<@+l - 5Bl = (14— 5 ) 1Bl < (1- ) 1B

Now, cover this portion using the Simple Vitali Lemma again. Doing so, we get
a sequence {Qi}?’leH, and we have
2
< (1-51) 181

No
_!1621' <( 5“1) UQJ
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Since (1 — (1/5”+1))k — 0 as k — oo, we find that

=0,

0
E-Je

j=1
thus giving us the first property. Q.E.D

We can then use this to get a nice Corollary on finite collections.
Corollary 5.5.1. Under the same assumptions as the Vitali Covering Lemma

Theorem 5.5, there exists a finite sequence @1, Qo,...,Qn of disjoint cubes
such that

(i)

<€

N
E-J@
j=1

21051 < (1 +¢)lEl

J

#+(Ue)

Remark 27. The third property is the one of interest, as the other two are
really just results from Theorem 5.5. It turns out that it is also a direct result
of (i) and (ii).

(iii)

N
>1Q;l = > (1—¢)|E|..
j=1

Proof. First, note that

N
Qs =
j=1

Em@Q)’

Next, we note that

N N
|El. = |E n (U Qj> +E-J@,
=1/, izt
by Theorem 2.4. Thus, using (i), we get the desired result. Q.E.D

86



James Marshall Reber January 6, 2020

5.5 Lecture 22 (Differentiability of Monotone Func-
tions)

Theorem 5.6. If f(z) is non-decreasing (the book uses increasing) on (a,b),
then f has a measurable derivative f'(z) on [a,b], and furthermore

b
0< J Fl@)de < f(b—) — flat),

where f(b—) = lim,_,;,~ f(z) and f(a+) = lim,_, 4+ f(z).

Remark 28. The fundamental theorem of Calculus gives us the idea that we
should expect equality. It is somewhat surprising that we, in fact, do not have
equality always. We will explore why later this lecture.

Proof. There are four “derivatives” we need to check:

Dy f(x) = limsup M7
h—0*t h

o f@th) — f(2)
Daf() = liminf ===, ———

Dsf(x) = limsup / A ,
h—0—
)

T
D = liminf —«—F———=,
1f (@) = Iimin h
So we need to have Dy = Dy = D3 = Dy a.e. on [a,b]. Let’s start with
D,f = D,4f a.e. In order to do this, we’ll show

{D1f > Daf}[ =0
and
|{D4f > le}| =0.
First, let’s note that
{Dif > Dufy = |JAD1f > 7> 5> Daf}.
r,s€Q
So we just need to show that for all r,s € Q,

{D1f >r>s> Dyf} =0.

Fix r,s, and let A = {D1f > r > s > Dyf}. Assume for contradiction that
|A] > 0. Since Dy(z) < s on A, we can cover the set A by intervals [z — h, z]

such that
f(x) = flz = h)
h
for h arbitrarily small. We rewrite it as f(z)—f(z—h) < sh. So these cubes that
cover A cover it in a Vitali sense. Using the Vitali Covering Lemma (Theorem
5.5), we get that there exist intervals [z; — h;,x;] for i = 1,..., N with

<s
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(1) f(xi) = f(@i — hi) < shi,
(ii) >3 hi < (14 €)]A| for € > 0 fixed.

So this gives us some information on the left derivative. Let’s now focus on the

right derivative. Let
N
B=An (U[SCZ — h“xl)> .

i=1

The set B is going to have finite positive measure. That is, we have |B| >
|A] — e > 0 (see Corollary 5.5.1). The Vitalli Covering lemma implies there
exist [y;,y; + hj], 7 =1,..., M, such that

(1) f(ys + hy) = fy;) > rhy,
(ii) 25 h; > Bl —¢,
(iil) [y;,y; + h;] < [®; — hy, x;] for some 1.
Stringing these facts together, we have
M M
Dy +hy) = fyg) > Y by > r(|B] =€) = r(|A] - 26).
j=1 j=1
Now, we use monotonicity to note that
M N N
DA+ hy) < f@i) = flw—hi) < s hi < s(1+)|Al.
j=1 i=1 i=1
Putting things together, we have

r(|A] - 2€) < s(1 + €)|A.

However, we assumed that s < r. So this results in a contradiction for e suffi-
ciently small.
Now, we just need to show that

b
0< f Fl@)de < f(b—) — flat).

We're going to extend the definition of f(z) so that f = f(b—) for © = b. We

do this to form
flz+1/k) — f(2)

fe(x) = 1k :

where f, — f’ a.e. in (a,b). Furthermore,
0< fi(z) < f
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b
0< J f'(z)dz

Now we use Fatou’s lemma (Theorem 4.9) to see

a.e. in (a,b). So we get

b b
L f(z)dr < h;?ii:gfL fx(z)dz.

Notice that on the right hand side we have

b
hm mfj fr(z)dx = hm 1nf f z+1/k) - f )dsc = hm 1an f@ + 1/k) ———~dr—liminf @
1/k k- J, 1/k
b+1/k b+1/k at1/k
= liminf & J x)dx — J f(z = hmmfk f fla)dx — f f(z)dx
k—0o0 a+1/k k—o0 b a

lint & (’E(,bg) - (?j)) - J6-) = flat),

since f is monotone, f(z) ~ f(a+) in (a,a + 1/k).

Remark 29. I think you can simplify this using the fact that f(a+) < f(a) for
x € (a,b) to just get a bound, but he did it this way.

Q.E.D

We now explore some examples where there is not equality.

Example 5.2. Let f(z) be the Cantor function. Then

| () =

since f'(z) = 0 a.e. However, f(1) — f(0) = 1. So we do not have equality, and
the fundamental theorem of Calculus fails.

We now want to determine when exactly the FTC will hold. We will first
need a definition.

Definition. A function f is absolutely continuous on [a,b] if, given € >
0, there exists a 6 > 0 such that if {[a;,b;]}; is a countable family of non-
overlapping subintervals of [a, b], then

Z|f fla)| <e
Z|bi—ai\<6.

i
It turns out that this is a sufficient condition for the FTC.
Theorem 5.7. We have that f is absolutely continuous on [a, b] if and only if
f! exists a.e. and f(z) = ) + S ' (y)dy for z € [a,b].
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5.6 Lecture 23 (Conditions for FTC to hold pt.
1)

Remark 30. It turns out that this definition of absolutely continuous aligns
with our definition of absolutely continuous for set functions.

Below we explore some examples of absolutely continuous functions.

Example 5.3. (i) The indefinite integral

Then we can see that f(z) is absolutely continuous on some interval [a, b],
since

£(b) — flar) = f[ | 90 = F(las b,

(ii) A Lipschitz function is clearly absolutely continuous.
(iii) A non-example is the Cantor function.

Lemma 5.4. If f is absolutely continuous, then f € BV ([a, b]), where BV ([a, b])
is the set of all functions with bounded variation on [a, b].

Remark 31. This will imply the derivative exists almost everywhere. We have
that f € BV ([a,b]) implies that f = P — N, where P and N are monotone
non-decreasing functions, and last week tells us the derivatives exists a.e. for
monotone functions. So f' = P’ — N’ exists a.e.

Proof. Since we have absolutely continuous, let’s fix a 6 > 0 so that if

Db —a;) <6

%

are non-overlapping, then
Z | f (i fla;)] < 1.

Now, divide [a, b] into N intervals of length b*T“, where we make IV large enough
so that 252 ~+ < 6. Then we have that

Var(f ZVar( [ Nl(ba),a+]i[(ba)]>
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and we have that

1—1

Var (f; [a+ N (b—a),a+]i[(b—a)D <L

Therefore, we get
Var(f;[a,b]) < N < .

Q.E.D
Definition. A function f is singular on [a,b] if f' =0 a.e. on [a, b].

Remark 32. From Calculus, one might expect singular functions to always be
constant, but the Cantor function is singular.

Lemma 5.5. If f is absolutely continuous and singular on [a,b], then f is
constant.

Proof. Tt is enough to show that f(a) = f(b), since we can apply the same
argument for [a,z], = € (a,b]. Fix some € > 0, then there exists a ¢ > 0 such
that

2bi—ai) <6 = HIf(b) — fla)] <e.

9

Examine F = {z : f’(z) = 0}. Note that |E| = b — a. Thus, for every z € E,
we can find an h > 0 such that |f(x + h) — f(x)| < eh. So we apply the Vitali
Covering Lemma (Theorem 5.5) to get {[x;, z; + h;]}Y; such that

(i)
[f (@i + hi) = f(2)] < ehi,
(i)
D lhi> (b—a)s.
Remark 33. Note here that Zf\il |f(zi + hy) — fz)] < 52?7:1 h; < e(b—a).

The complement of [z;,x; + h;] is non-overlapping intervals of total length less
than §. So the increments on this are less than e. So this means that |f(b) —
f(a)] < (increments on [x;,z; + h;])+ (increments not in [z, z; + h;]) < €(b —
a) + €. Let € > 0, and we win. Q.E.D

5.7 Lecture 24 (Conditions for FTC to hold pt.
2, Convex functions)

We now finally prove Theorem 5.7.
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Proof. ( <= ) We established in the prior lecture that x — SZ 1 (y)dy is abso-
lutely continuous (see Example 5.3). We therefore get that F is absolutely
continuous.

(=) We showed last time that f’ exists exists a.e. (see Lemma 5.4 and Re-
mark 31). Let’s suppose F(z) = § f'(y)dy. We know that F(x) is absolutely
continuous and F” = f’ a.e. by Lebesgue differentiation. If we look at F' — f,
we see that (F' — f) = F' — f/ = 0, so that this is singular. Hence, F — f is
constant. Now, examine F(z) — f(z) = F(a) — f(a). We have that F(a) = 0,
and we have

F@) = 5@ = [ £y - 1) = ~50).

Rearranging terms gives us

f F'9) = f(z) — f(a).

Q.E.D
Thus, we now have the condition where the FTC holds!

Corollary 5.7.1. If f € BV ([a,b]), then f = g + h, where g is absolutely
continuous and h is singular. Furthermore, this representation is unique up to
constants.

Proof. f e BV([a,b]) implies that f’ exists a.e. and f’ € L([a,b]). Now, we can
set up the function

g(z) = f f'(y)dy,

which is absolutely continuous. Let

Then we have

W(z) = f'(z) —g'(x) = f'(x) = f'(z) = 0.
So h(z) must be singular. To see that this is unique up to constants, use the
prior theorem. Q.E.D
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Chapter 6

Inequalities and LP spaces

We first want to discuss convex functions.

Definition. A function ¢ is convex on (a,b) if

P(two + (1 —t)x1) < to(zo) + (1 —t)P(21)
for all g, z1 € (a,b) and for all ¢ € [0, 1].

Geometrically, there’s a nice way of viewing convex functions. We have that
the line segment connecting ¢(xg) to ¢(x10 always lies above the graph.

Theorem 6.1. If ¢ exists and is non-decreasing on (a, b), then ¢ is convex. In
particular, if ¢” > 0, then ¢ is convex.

Using this theorem, we can create some examples of convex functions.
Example 6.1. (i) ¢(z) = e*® is convex.
(ii) ¢(x) = 2P is convex for p > 1.
(iii) ¢(z) = |x|P is convex.
(iv) ¢(x) = —log(z) for x > 0 is convex.

Proof. Fix g < x1 in (a,b). Let z; = (1 — t)zp + tx1. We do so in order to
have xt|t—o = xo and x¢|;—1 = 1. In order to prove this, we need to show
that ¢(z:) < td(x1) + (1 — t)p(x0). On the boundary, this condition is easy
to show, and so we restrict ourselves to viewing zg < x; < x;. We then use
the mean value theorem, since ¢’ exists. That is, we have &1, & such that
o <& <xp <€ <1, and

(;5/(61) _ (b(xt) B (b(l'())’

Tt — To

¢/(§2) _ (b(xl) - (b(xt) )

T1 — Tt
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We can simplify this to
p(xt) — P(x0)

t(.’l?l — :1?0)

)

¢'(&) =

ey = O@) — @)
o) = T — o)

Since ¢’ is non-decreasing, we get

¢'(&1) < ¢'(62),
which tells us
d(x¢) — d(x0) - P(1) — (1)
t(I‘l 7$0) = (].715)((]’]1 71’0).
Simplifying, we just get

P(xt) — d(z0) _ d(1) — P(z4)
t (1—t)

which reduces down to

as desired. Q.E.D
Now we want to explore what you can say about a function if it is convex.
Theorem 6.2. If ¢ is convex on (a,b), then
(i) ¢ is continuous on (a,b),

(ii) ¢'(x) exists at all but at most countably many points in (a,b), and is
non-decreasing.

Proof. Let
_ e Ot h) —o(x)
Drote) = i T
D= ¢(z) = hlirf)l+ w

Convexity tells us that DT ¢(z) is decreasing in h, and D~ ¢(x) is increasing
in h. Since these are monotone and bounded, we have that the limits exist
everywhere. Using convexity, we can also see that

—0 < D™ ¢(x) < DT ¢(z) < .

This is then enough to prove that ¢ is continuous, since if it wasn’t continuous
we’d have a discontinuity with a non-finite derivative, which is a contradiction.
For any x < y, we have

< o(y) — ¢()

D" ¢(z) -
y—x

< D™ ¢(y).
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Therefore, we get that
D™ ¢(z) < D" ¢(z) < D~ ¢(y) < D" o(y).

Note that DT¢ and D~ ¢ are monotone, and so we have that (using a prop-
erty about monotone functions) there are only countably many discontinuities.
Suppose z is a point where they are both continuous, Then we get equality by
dragging the limit in; that is

DT ¢(z) < lim D™ ¢(y) = D™ ¢(x).

y—x
So the derivative exists at all but countably many points. Q.E.D

Corollary 6.2.1. If ¢ convex on (a,b), then ¢ is Lipschitz on [z1, 23] € (a,b),
and, in particular,

(x2) — (1) = J‘W ¢ (x)dw.

6.1 Lecture 25 (Inequalities (Jensen, Holder, Young))

There are two big inequalities we’d like to discuss: Jensen’s inequality (both
discrete and continuous) and Holder’s inequality. We'll first talk about Jensen’s
inequality, and specifically the discrete case.

Theorem 6.3. (Jensen’s Inequality (Discrete)) Let ¢ be a convex function on
(a,b). If we have x1,...,2, € (a,b) and ty,...,t, = 0 such that Y ¢ = 1,

then
¢ (Z ti%) < D tid(wi).
i=1 -1

Proof. The proof is done via induction. The cases n = 1 and 2 are not inter-
esting, and so we’ll jump to the case n = 3. With n = 3, we want to examine
@(z1t1 + 2ot + w3t3). Rewrite this as

toxo + t3$3
1-1t

¢ <t1.’£1 + (1 — tl)

Using the definition of convexity, we get

tQIQ + t3$€3

¢<t1$1+(1t1) 1—1,

) <tig(zr) + (1 —t1)¢ (

tQIQ + tgl’g
1—1t

Use it again, noting that % =1 to get that

toxo + 37 ¢ t
tid(x1)+(1—t1)¢ % < t1p(m)+(1—t) [ ——(@2) + ——¢(x3)
— 1t 1—-1; 11—t
= t1¢(l‘1) + t2¢(1‘2) + t3¢($3).
For induction, we just abuse this type of trick. Q.E.D
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We now look at the “continuous” case.

Theorem 6.4. (Jensen’s Inequality (Continuous)) If p(z) = 0 and § , p(z)da =
1 and ¢ is convex on f(A) < (a,b), then

o([ fawons.) < [ otr@ias

Before proving this, we want to explore a special case which may make this
easier to remember.

Example 6.2. Let p(z) = ﬁ -x4- Then Jensen’s Inequality says

5 (ﬁu L f(x)dx) < ﬁ L o () da.

That is, ¢(Average of f) < Average of ¢(f). Therefore, we have

2

(Average of f)? < Average of f2.

From probability, we know that
Var(X) = E(X?) —E(X)? >0,
which tells us the same thing.

Proof. Let v = §, f(x)p(z)dx for notational simplicity. Then we have a <
v < b. Since ¢ is convex, there exists a “supporting line,” which is almost
what we would define to be a tangent line. The issue is that, as discussed
in Theorem 5.9 (ii), there are countably many points where ¢'(z) does not
exist. At these points, there is no such thing as well defined supporting line, so
to remediate that we just define a supporting line to be a line that is through
the point and is always less than or equal to ¢, and we’ll just take one of these
possibilities. Therefore, we have that the supporting line looks something like
y =m(xz —7) + ¢(7)., and the fact that it is a supporting line tells us that

m(z —v) + ¢(y) < ¢(x)

for all z € (a,b). Now, we can say that

m(f(z) =) + o(v) < o(f(2)),

since f(z) € (a,b). Taking integrals of both sides and multiplying by p(x)
preserves this inequality, and so we get

JA mp(e) f(z)dz — JA mp(e)ydz + Lp(xw(w < L o(f (2))p(x)dz.

Recall that we forced
| por =1
A
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and so moving things around we have

m j p(@) f(@)dz — my + (y) < f o(f (@))p(x)dz.
A A

By how we defined v, we can rewrite this as

my — o+ 6(r) = 6(7) = & ( [ p(m)f(x)d:r) < [ sr@paas

Q.E.D
We mention briefly another inequality.

Lemma 6.1. (Young’s Inequality) If a,b > 0, p,q > 1, 1/p+ 1/q = 1, then

1 1
ab < —aP + -b1.
p q

Proof. This will be done via areas of a graph. Let y = 2P~! be a graph, then
we see that z = y/(®=1)_ Pick arbitrary @ on the z-axis and arbitrary b on the
y-axis. Then we have that the area from 0 to a of y is

@ 1
J. 2P ldr = ZaP.
0 p

That is, the area in the graph below is 1/pa?;

1001
801
E0
404

204

10

Likewise, finding the area from 0 to b of x, we have

b
J iy = P Lyt
0 p
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Notice that since

1 1
-+ -=1,
p q
we have
1 1 -1
1_,_1_p-t
q p p
so that the area is
L
q
This is the area in the graph below;
1004
504
£04
404
201
o I .
o] 2 4 5 2 10

So putting this together, we have that the total area is going to be

1 1
—aP + 7bq7
p q

which corresponds to the area of the graph below;
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1001

501

E0

404

201

Now, compare this to the area of the box with height b and width a. This would
simply be ab, which is the area of the graph given below;

1001

50

60

404

207

Comparing this to the graph prior, we see that it is contained in it. Visually,
we have
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100+

B804

B0

404

204

But notice that this means that

1 1
ab < —af + =b9,
q

as desired. This does not rely on picking a b smaller than our a either; we can
follow the same procedure and get the same result. Q.E.D

We now use this inequality to prove Holder’s Inequality.

Theorem 6.5. (Holder’s Inequality) If 1 < p < c0 and % + % =1, then

fW<UWYYW©%

Remark 34. We will eventually show that we can let p = 1 and p = o and
get the same result.

Proof. First, let’s suppose that
[irr =1 [l

1 1
[fgl < =If1P + =gl
p q

Note that

by Young’s Inequality. Then we can integrate both sides to get

Jira< [ (3ise+ 21alr).
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Using linearity and pulling out constants, we have

Just <2 fup 2 flge =2+ 2 -1 (j|f|p)1/p (jw)w.

Now, it may seem that this was a restrictive case and so pointless, however
we will see that this captures all functions. Now, take f and g to be general
functions. Consider

f(z)

flay = L2
(§1£17) "

([ pr)l/p

is just going to be some constant, let’s rewrite

Since

~

f(z) = Af(x).

Define g(z) analogously. Notice that we have

[

| =B [1gtr = 1

So for f, g, we have that Holder’s inequality holds by our prior work. Now, let’s
notice that

=1

)

and likewise

[ 1721~ [aBIsol = 48 [ 179l

Likewise, notice that

()" (for)" <o) " ()"

We thus find that

(17 (fier)" (Jar) ™ fisar= (Jie) ™ (Jor) ™

This leads us to a very famous Corollary.

Corollary 6.5.1. (Cauchy-Schwartz Inequality) We have

[/ [
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We now want to reword this in terms of LP norms, but to do that we need
to first understand an L? space.

Definition. We have that the L? space over E is

@) = {r s [ e <.

Definition. We define the LP norm to be

1/p
11l = 11 Fllpz = (L Ifl”) .

We generally drop the E since it’s understood in context.

One thing we’ve seen/used is that

llefllp = cllfllp-
We may now also reword the LP space definition. That is, the LP space over
FE is
LP(E) ={f : |[fllp < oo}.

We can also define the L*(E) space to be the set of bounded functions. The
L*(E) norm, ||f||e, is the essential supremum of f over E. That is,

[|fllc = inf{M : |f(z)| < M a.e. on E} = the essential supremum of f.
Going back to Holder’s inequality, we may rewrite it in the form

gl < 1Al llgllq-

With this, it makes sense to also define things when p = o0 and p = 1. Assume
wlog that p = o0, then ¢ = 1. Therefore, we have

f\fm < f||f|\oo|g| < \|f||ooj|g| — 1 1lollglhn.

6.2 Lecture 26 (L space structure)

One may ask why we define things differently when p = c0. The reason is that
this adheres to limits.

Theorem 6.6. If |E| < oo, then || f||o = limp—o0 || f|]p-

Proof. Fix a < ||f||ec and consider E, = {|f| > a}. We can use Chebychev’s
Inequality (Theorem 4.4) to note that

1
\Ea|<ff f-
aJg
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Equivalently, we may write E, = {|f|? > a?}. Then we have

1
|Ea|<—pJ fp<—>ap|Ea\<J 7.
a” Jg E

Now, take both sides to the 1/p power to get

1/p
@) = aE < ([ ) =15l

We note that |E,| < o0, and we will need a result from Freshman Calculus.
Claim 6.1. If c € R., then

lim /% = 1.
r—00

Proof. Let y = ¢'/*. Then taking the log of both sides, we have

log(y) = @

Taking the limit as x — oo gives

lim log(y) = 0.

Tr—00

Hence, we have
lim €'°8®) = lim /% =¥ = 1.
r—00 Tr—00

Q.E.D

Since a < ||f||e0, wWe get that |E,| > 0 (provided |E| # 0 and ||f]|x # 0).
Hence, we have
a < liminf || f||,.
p—0

Now, since this works for all a < ||f]|«, we get that
[1£1loo < Yim inf [| ][,

Next, we notice that for all p we have

11l < 11110l B VP

So, as p — o0, we get
limsup || f|l, < ||f||o0-
p—0

Chaining things together, we get
[ lloo < Timinf [|£], < Timsup || f][, < {|f]loo-
p—0 p—00

Hence,
T [1£11y = 111l

Q.E.D
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Theorem 6.7. If |E| < o0, 0 < p; < py < 00, then

L (E) < LP'(E).

[ =] i

Now, we use Holder’s inequality with p = pa/p1 and 1/q = (pa — p1)/p2 to get

p1/p2 1/q
| |f|p1-xE<<f f|p2) (f |xE|q> — |\l By,
E E E

Since |E| < o0, we have |E|Y9 < oo. If ||f||,, < o0, then we get for free that
[[f[|bt < co, and the above inequality tells us that || f[|,, < 0. Q.E.D

Proof. Notice that

We want to now talk about the structure of these L spaces.

Definition. A Banach space is a vector space (over either R or C) with a
norm that is complete. In shorter words, it is a complete normed vector space.

See the Chapter 1 for the definition of vector space, complete space,
and norm space.

Remark 35. Banach spaces are the prototypical example of infinite dimensional
vector spaces.

Theorem 6.8. LP(FE) is a Banach space for any 1 < p < o0 over R or C on the
equivalence classes of ~, where f ~ ¢ if and only if f = g a.e.

Proof. We break this up into each aspect. Throughout, let ' = R or C be the
field which this space is over.
Vector space: If f € LP then for ¢ € F we have cf € LP. This is because

f € LP implies
1/p 1/p
( [ Ic”f”l) oy ( | If”) <.
E E

For the closure under addition, we will need a result.

Lemma 6.2. For any p > 1 and n > 1, there exists a constant C), , > 0 such

that
n p n
) <0 St
k=1 k=1
for any non-negative numbers aq, ..., a,.

Proof. Example 5.4 (ii) says that ¢(z) = 2P is a convex function if p > 1.
Theorem 5.10 then tells us

oSzt ¢ Ehoyoln)

n
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Hence, we have
(X1 ar,)’ < k=1 ai.

npb n

So, rewriting this, we get

Q.E.D
Now, using Lemma 5.7, we get that
|f + gl <2271 (IF1P + |g]P) -

This tells us that f,g € LP, then f + g € LP for 1 < p < o by integrating and
using the linearity of integration. For p = oo, we clearly get

1+ glloo < [[f]loo + [lglloo-

Thus, it is a vector space.
Norm: Notice from above that

el = lelllF1lp-

Now, we need to establish || f||, = 0 if and only if f = 0 a.e. This follows from
Theorem 4.2 (viii). Finally, we need to establish the triangle inequality; that
is,

f =+ gllp < |If1lp + llgllp-
It turns out that this is an important inequality known as Minkowski’s inequal-
ity.
Theorem 6.9. (Minkowski Inequality) If 1 < p < oo,

ILf+ gllp < [171lp + lgllp-
Proof. Case 1: Let p = 1. Then we have the normal triangle inequality;

[f + gl <Ifl+lgl

Integrate both sides to get
F+glls < 1f1l + llgll-
Case 2: Let p = c0. Then we have

[f (@) + g(2)] < [f (@) + [g(@)] < [[flleo + llgllo a-e.

Therefore, the least upper bound property gives us
L+ glloo < [1fleo + [g]]oo-
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Case 3: Now, let 1 < p < 0. Then we have

Hf+m@=J;U+gv=J;U+m%Hf+m

The triangle inequality gives us

j|f+m%Hf+m<J'u+mwwﬂ+f|f+mwwm
E E E

Now, Hélder’s inequality with p’ = p/(p — 1) and ¢ = p gives us

(p—1)/p 1/p (p—1)/p 1/p
p—1 P P P D
J;ﬁm||ﬂ<(Lu+m) (wa) +Q;f+m) (Lm)

< 1S +gllp= (IF1lp + llgllp) -
Dividing both sides by [|f + g[[5~" gives

1+ gllp < [If1lp + llgllp-

Q.E.D

6.3 Lecture 27 (More Properties on L” spaces)

Now, we need to establish that the space is complete. We break this up into
cases

Case 1: Let p = w0. Let Z,,, = {z 1 |fu(z) — f(2)] > ||fn — fmllo}- By
definition, |Z, ,,| = 0. Notice that if

Zn,m = U Zn,ma
n,m

then |Z] = 0 as well. If z ¢ Z, then |f () — fi(2)] < ||fn — finlloo-
Assume that, Ve > 0, AN (e) such that Yn,m = N(e), ||fn — fmllo < €
That is, {f,} is Cauchy in L®. Thus, for x ¢ Z, we get {f.(x)} is
also Cauchy. Since this is a sequence of real or complex numbers, the
completeness of these spaces tells us that this converges. Let f(z) :=
lim, o frn(z). THen we need to show that || f,— f||c — 0. Notice that
forx ¢ Z, fu(x) — f(2)| = limyo | fr(2) — frm(2)] < liminf, o || frn —
fmlloo- We certainely have that

limsup||fn — flloo < limsupliminf||f, — fim|leo = 0.
n—o0 n—a0

n—aoo0

We are almost done. We need to establish that f € L®*. We see this
by noting |||l < [If = fulleo + [|fullec < o0
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Case 2: Let 1 < p < 0. We follow the same general strategy. First, assume
{fn} is Cauchy in LP. Note by Chebychev (Theorem 4.4), we get
that

1
{fn = fnl > €}l < Sllfo = fmllp-

For n,m sufficiently large, we have that |[f, — f|[5 < €. So we have
that {f,} is Cauchy in measure, which implies that {f,} is convergent
in measure. Since it is convergent in measure, we have that there is a
subsequence {f,,} which converges to a function almost everywhere,
denote this by f. The argument in Case 1 gives us that

1/p
1= Al < ([ i 152 5l?)

Fatou’s Lemma (Theorem 4.5) then tells us

1/p
(J lim ‘fn—fnk|p) <liminf||fn_fnk”?<€
k—o0 k—00

if n > N(e). Finally, f € L? by the same reason as in Case 1.
Q.E.D
We now want to discuss separability.

Definition. A metric space is separable if there exists a countable dense sub-
set.

Example 6.3. R is separable, since Q € R is countable and Q is dense.
We will see that LP is almost always separable!
Theorem 6.10. If 1 < p < oo, then LP(F) is separable.

Remark 36. Why don’t we have p = o0 is separable? Because it’s not true!

Explicitly, examine L*([0,1]), and consider the family of function § =
{X[0,t)}- Examine

[IX[0,t) = X[0,5) |0 = 1, t # 5.

Now, suppose there were a countably dense subset. Take a ball of radius 1/3
around the points in this subset. Since this is a dense set, the union of these balls
would be the whole space [0,1]. However, each of these balls can only contain
1 function from the family, due to the fact that the L* norm is 1. Therefore,
we have a contradiction — the countable set must be uncountable.

Let’s now prove the theorem.

Proof. Let S be the collection of all functions of the form

m
=1
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where ¢; € Q, m < o0, and the Q); are dyadic cubes. That is,

Qr=2""Z+[0,27%]"

for some z € Z. We now have countably many functions, since our cubes are
countable and the coefficients are countable. Note as well that f € S implies
that f e LP(R™).

Let S be the LP closure of S. We want to show that S = LP(R"). We break
this up into steps.

Step 1.

Step 2.

Step 3.

Step 4.
Step 5.

We want to show that x¢ € S for G open with |G| < o. In such a case,
a variation of Remark 2 tells us that G is covered by dyadic cubes;
that is, G = | J,; @Qi. Then we have that
xXaG = ZXQ'i a.e.
i
Furthermore, this tells us
G| = >1Qil-
i

Now, we look at

o8]
=1 > xo

i=N+1

N
XG — Z XQi
=1

Using the definition of the LP norm, we get that this is

(£ )"

Tonelli (Theorem 4.17) gives us that we can rearrange the sum and

integral to get
0 1p o0
(£.)"-($0)
i=N+1 i=N+1

as we let N — oo.

p p

We now want to show that yg € S for E measurable, |E| < c0. How-
ever, this is clear by the fact that we can estimate measurable sets with
open sets.

We now want simple functions f € S for f with finite support. This
also follows by a similar argument to Step 1, though.

We have that non-negative functions f € LP are in S.

Finally, we get that all functions f € L are in S.
Q.E.D
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6.4 Lecture 28 (Missed due to OSU)

I will not include proofs here, as they will just be ripped from the book. I am
mostly trying to guess what results I missed.

Theorem 6.11. If 0 < p < 1, LP(E) is a complete, separable metric space with
distance defined by

d(f,9) = Ilf = 9ll} &
Theorem 6.12. If f € L?(R"), 1 < p < o0, then

Jim (£ + 1) = f@)l, = 0.

Remark 37. This implies that continuity is preserved under LP norms. We
also remark that this theorem is true for 0 < p < 1, however, it breaks for
p = 0.

Theorem 6.13. Let 1 < p < o0, f € LP(R") and g € L*(R™). Then f g €
LP(R™) and
ILf = gllp < 1F1Ipllgll-

Theorem 6.14. (Young’s Convolution Theorem) Let p and ¢ satisfy 1 < p,q <
oo and 1/p+1/q = 1, and let r be defined by 1/r = 1/p+1/q— 1. If f € LP(R™)
and g € L1(R™), then f x ge L"(R™), and

1+ gl < 11 F1Iplgllq-

6.5 Lecture 29 (Convolutions, Approx to the Iden-

tity)
We now set up some notation. If « = (ay,...,a,), then
o™ 0%n
Do = e )
f() ( - axn) i

That is, this is a compact way of denoting mixed partial fractions.
Definition. |a| =} | a; is defined to be the order of the derivative D®.

We denoted by C™ the set of functions where D f exists and is continuous
for all || < m. For m = oo, we have that it is the set of smooth functions.
We denote by CJ* the set of functions which are in C™ and where they have
compact support.

Theorem 6.15. If f € L? for some 1 < p < o0, and g € Cf*, then f*ge C™
and

D*(f xg) = f= D%

for all |a| < m.

109



James Marshall Reber January 6, 2020

Remark 38. It’s enough to prove a%(f xg) = f= #;97 since we are just

iterating the derivatives by construction.

Proof. We first want to show that f * g is continuous. It is, in fact, going to be
uniformly continuous. We start with examining

f*ﬂx+m—f*ﬂ@%=Uf@ﬂﬂw+h—w—g@—yﬂw-

We now do a transformation. Let u = x — y. Then du = —dy, and so we have

Ufu—uﬂau+m—gw»m

< [ 1= w)lgtu + 1) = glw)ldu
We now apply Holder! We thus have

Jlf(ﬂc —u)llg(u+h) = g(w)|du < |[f|pllg(w + h) = g(u)llq-

Now, using Theorem 5.19, we know that we can make ||g(u + h) — g(u)|| as
small as we wish with regards to h so long as ¢ # 0. However, the case of
q = oo follows just from the fact that ¢ is uniformly continuous.

Now, we want to check the formula. We use Remark 38 to note we only
need to check the case of a single derivative. We start with examining

(f » g)(@ + hei) — (f * g)(x) sz(y) (g(x+heiy)—9(x—y))dy.

h h

We can use the Mean Value Theorem to get that this is equal to

ff(y)a

for some & € [0,h]. Since (0/0x;)g is continuous with compact support, it is
uniformly continuous. Therefore, we have

g(x —y + Eeq)dy

7

0
x

(x—y+£qy—é’wx—yﬂ<e

‘&cig axl

if |h| < 0. Note that this bound is independent of x and y. Now, examine

* he;) — f * 0
Feoteshe) =1e50) ;0 g

~|[ 100 (ot v e - Sata ) o

K2

< f\f(yﬂ ‘aig(:c—ergei) - aig(x—y)‘dy < €J|f(y)|dy'
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Now, we may use Holder to get

c f F@)ldy < [1fllpe.

Since f € LP, we have that this goes to zero as we let ¢ — 0, as desired.
Q.E.D

Remark 39. (a) IF g€ Cf°, f € L?, then we have that f = ge C®.

(b) If f does not have compact support, then neither does f # ¢g. But, if f and
g both have compact support, then f * g also has compact support.

For fixed K € L', we can define a transformation T : L' — L', where
f— f* K. We use K because K is called the kernel of this transformation.

Definition. For K fixed, € > 0, define

K.(2) = ~K (f)

en €
This is called the rescaled Kernel.

Remark 40. (a) This is so that the integral is unchanged;

J K.=| K.
n R?L

(b) Notice that

lim K (x)dz = 0.
=0 iz |z|>6)

That is, all the interesting information is near 0. We see that this holds
true by examining the following chain of info:

Ja: ¢ |z|>8} [Ke(@)lde = ei” (@ : |a|>5) ‘K (%)‘dm

We now do a transformation to get

f K ()| dy.
{y : |y|>d/e}

We can now rewrite this as
| KGN ee w1

We want to now bring in the limit. We can use the dominated convergence
theorem to do so; notice that this is dominated above by |K(n)|, which is
integrable by assumption, and notice as well that as we let ¢ — 0, we have
that the integral will be zero. Therefore, we can bring the limit in to see
that this will be 0.
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Why are these called approximations to the identity? Assume {K = 1, so
that { K. = 1. Denote by f. = (f * K.)(z), which in other words is

- f f@— K (y)dy ~ f(z).

We would like to study the conditions where this is actually true. That is, where
the limit is actually going to be f(x).

6.6 Lecture 30 (Approximations of the Identity
Cont.)

Remark 41. Recall from the homework that if K € C°, then f(x) — f(x)
a.e.

Theorem 6.16. If { K = 1 and f € L?, then f. — fin LP. That s, ||f.—f]|, —
0.

Proof. We first show pointwise convergence, and then we use this pointwise
result to derive LP convergence.
First, let’s examine |f.(z) — f(x)|. We may write this as

fua |—fo— )y — ().

Now, we use Remark 40 (a) to note that we can rewrite this as

Uf:r )y - 1(@) | Kol dy’

We can use linearity of the integrals toi simplify this to

UKE(y) (flx—y) — f(x))dy‘ < J|K€(y)| 1z —y) — f(2)| dy.

Now, we notice that this is very close to Holder. We just need to modify the
K. slightly. Let p,q be such that 1/p + 1/q = 1. Then we write

Ke(y) = (Ke(y)""? (Kepsilon(y)) " .

Substituting this into the above, we get

| K156 =) = f@ldy = [1KW]7 15 =)~ F@ KW dy

We use Holder to bound this above by

([ire =0 s mcoia) ([ mwia)
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Now, notice that

1/q
(f|K€<y>|dy) _ KM = ]

by Remark 40 (b). So, putting this all together, we have an upper bound of

o) = @) < ([0 =0 = s 101 ) T

Going back to what we want to show, examine §|f. — f|? = || fc — f|[5. We want
to show that this goes to 0 as € goes to 0. We can use the upper bound we just
derived to bound this by

f|fe<x> ~ f@)Pds < ”uf(z ) — F@PIEL ) K| dyde.

Pulling constants out and using Tonelli, we may rewrite the upper bound as

e [ ([ 156 =00 = falPac) 1 olan

Let g,(z) = f(z —y) — f(z). Then we have that this upper bound is

K| P/ j g, 1K ()] dy.

We now use Theorem 5.19 to note that, as |y[ — 0, we have that ||g,|[} — 0.
Thus, for fixed ¢, we have that there is a § so that for [y| < d we have ||g, ||} < €.
In the case Where y is not small, i.e. |y| >, we have that [|g, ||} < 2p||f||p via
a homework problem. Hence, we get an upper bound of

K|/ (J . Kﬁ@)dy) 211l (fl y Ke<y>|dy>.

From Remark 40 (b), we know that the blue (or right) portion goes to 0 as
we take € to 0. From Remark 40 (a), we note that the red (or left) portion
can be written as ||K||1¢’. Hence, we have

timsup [ 17, - £ < €K7

Since this applies for all € > 0, we get that it must be 0. Hence, we have
convergence in LP norm. Q.E.D

Remark 42. The trick of showing pointwise convergence and then LP conver-
gence is a useful trick that we will do often.

Corollary 6.16.1. C{° is dense in LP(R) for 1 < p < o0.
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Proof. We break this up into some cases.

Case 1. Suppose f € L? and has compact support. Let { K =1 and K € C.
Then if we take f. = f * K., we have a smooth function with compact
support. The smoothness comes from Theorem 5.22, and the com-
pact support comes Remark 39 (a). Notice that this approximates
f in L? by Theorem 5.23, and we’re done.

Case 2. Now suppose f € LP and that it does not have compact support. Let
9r = fX|z|<r- We claim that gr — f in LP. Examine

1/p
mR—ﬂp:(ij—ﬂﬂ = [17beore

We may use the Dominated Convergence Theorem Theorem 4.6 here.
Notice that R — o0 on the inside will give us 0, and to use dominated
convergence theorem we dominate this function by just |f|, which we
know is integrable by assumption. Hence, we have that

1im [lg — fll, = 0.
By the previous case, we can approximate gr by smooth functions with
compact support, and so we have
I1f —g* Kcllp <IIf —grllp + llgr — gr * Kelp.
The things on the right go to 0 as we take R — o0 and € — 0.
Q.E.D

Remark 43. How do we know C{° is nonempty? That is, how do we know
there is a function which has compact support and is smooth? We will build
one later on.

Definition. We say that f(x) = O(g(x)) as z — = if |f(z)/g(x)| < C for
near xo. This is what is called big O notation.

Definition. We say that f(x) = o(g(x)) as ¢ — zo if |f(x)/g(z)] — 0 as
x — xg. This is what is is called little o notation.

Using these, we can write some interesting theorems on pointwise conver-
gence of f. which we will prove next lecture.

Theorem 6.17. If f € L®, then f.(z) — f(x) at every point of continuity of
I

Theorem 6.18. If f € L', K € L' n L*, and K(z) = o(|z|™) as |z| — 0,
then f.(x) — f(x) at every point of continuity.

Theorem 6.19. If f € L', K € L' n L*, and K(z) = O(Jz|™"*) for some
A > 0, then f.(z) — f(x) at every point in the Lebesgue set of f.

Remark 44. Note that this is for n equal to the dimension of the space L is
over.
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6.7 Lecture 31
We now prove the theorems. We start with Theorem 5.24.

Proof. We do what should now be a routine trick. Notice that we can write

f() = f F(@) K (y)dy,

fole) = j f(x— 9)K.(y)dy.

Then we have

o) - fla)| = \ [ K 7@ =)= s ay

< [ Ik~ v) - 1)y
Let ¢ > 0 be fixed. Then we pick a ¢ such that |f(x —y) — f(z)| < € for all

ly| < §. We may do this since z is point of continuity for f. We can then break
up the integral into cases; where |y| < 0 and where |y| = 0. That is, we have

(15 la=-r@lay - [

ly|<é

IKe(y)llf(I*y)*f(w)ld%J [Ke()llf (z—y)—f(z)|dy

ly|=6

<o i | K@ ) - @l

Now, we can utilize the proof of Theorem 5.23 to note that, as we let ¢ — 0,
we have

j VK@)~ @y 0

Hence, letting € — 0, our upper bound is then
|l
lyl<d

Now, we can extend the domain to make this bigger. That is,
6'] | [Ke(y)ldy < 6’JlKe(y)ldy = €Kl = €]|K]]1.
yl<d

So we simply have an upper bound of €||K||; for all ¢ > 0. Taking ¢ — 0 gives
us the desired result. Q.E.D

We now prove Theorem 5.25.
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Proof. We start the same way. That is, write

f(a) = j @)K ()dy,

fol) = f £z — 9K (y)dy.

Then again we have

[fe(@) = fl2)] < JIKe(y)Hf(I —y) — f(@)ldy.

Now, we break it up into two integrals again; for any § > 0, we get

[ 1o [

ly|<d

\Ke(y)||f(:v—y)—f($)|dy+J. (K (W)l f (z—y)—f(z)|dy.

ly|=6

Use the triangle inequality to write |f(z —y) — f(x)| < |f(z—y)|+|f(z)|. Then
we have

f |Ke<y>|\f<x—y>—f<z>|dy+j
ly|<o

ly|=6

|Ke<y>||f<x—y>|dy+f K. ()| ()]dy.

ly|=6

Now, fixing € > 0, choose d so that we have |f(x —y) — f(z)| < € for |y| < 0.
Let €y(d) = €y be such that

f K (y)dy < ¢
ly|=8

for all € < €y. Let €1(8) = €1 be such that

sup |Ke(y)| < ¢
ly|=6
for all € < €.
One should ask why we are able to do such a thing. We see this by noting
that we can use the definition to rewrite the above as

n
ly[=6 ly|=6 €

Now, since we are looking at |y| = J, we may notice that we have |y|/§ = 1. In
particular, we have (|y|/d)"™ = 1 for all n = 0, and so we can use this to bound
the above. That is,

1oy _ 1 " (v
sup —K (7) < — sup (> K <7)
wizs € €/ 0T iz \ € ¢
Now we can do a substitution on this. Let = y/e. Then this can be rewritten
as

1
— sup |z|"K(z).
O™ | 2|=6/e

116



James Marshall Reber January 6, 2020

By assumption, we have K(z) = o(Jz|™™) as * — 0. Recall that this means
that
|K (z)||z|® = 0, = — 0.

However, this is exactly what we have under the supremum! Therefore, taking
€ — 0, we have that this pushes this to 0, since x — 0.

Putting all of this together and using some of what we had in the last proof,
we have an upper bound of

[fe(@) = f@)| < €Kl + €I f (@) + [l f]a€

for all € < min{ep, e1}. By assumption, f € L! so that ||f||; < oo. Likewise, =
is a point of continuity, and so |f(z)| < co. Since this applies for all ¢ > 0, we
can take this to 0 to get the desired result. Q.E.D

We prove the final theorem. We will diverge from the lecture notes, as there
seems to be a (very bad) typo. We will need to discuss Riemann-Stieltjes
integrals first.

Definition. Let f and ¢ be two functions that are defined and finite on a finite
interval [a,b]. If T is a partition of [a,b], we arbitrarily select intermediate
points {&;}1, satisfying z;_1 < & < x;, and we write

Rr = 37 FE)[6) — o))

Rr is called a Riemann-Stieltjes sum for T,

Definition. If I = limp|_,¢ Rr exists and is finite, then [ is called the Riemann-
Stieltjes integral of f with respect to ¢ on [a,b], and is denoted by

- ' fla)dote) - | ' fao.

Remark 45. We note some nice features of this integral before moving on.
1. If ¢(z) = x, we just get the normal Riemann integral.

2. If f is continuous on [a,b] and ¢ is continuously differentiable on [a, b],

then . .
L fdoé = f fode.

3. If ¢ is some sort of step function, it converts this into a discrete sum.

4. These integrals, for the most part, behave exactly like Riemann integrals.
They are linear w.r.t to the functions. That is,

J(ﬁ + f2)d¢ = Jf1d¢ + ff2d¢7

| rd(or + 02) - f ' fdor + f ' fao.
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5. If f is continuous on [a,b], and ¢ is of bounded variation on [a, b], then

SZ fd¢ exists and we have
({Sug |f|> Vidia,b].

f fdo| <

6. We also have the mean value theorem; that is, if f continuous on [a,b], ¢
bounded and increasing on [a, b], then there exists a £ € [a, b] s.t.

b
f fdé = (©E)[6(b) — d(a)].

We omit the proofs for these.
We will also need to have a lemma on Riemann-Stieltjes functions.

Lemma 6.3. If f integrable over a spherical shell a < lz] < b and o(p) is
cont1nu0usf0ra<p<b 0<a<b<o. Let F(p) = x)dx for

a<p<b Then

jal<lal<p

b
j F@)g(|z])dz = f S(p)AF(p).
a<|z|<b a

Proof. Let f = f* — f~. These are two bounded increasing functions, and
so F is of bounded variation on [a,b]. Furthermore, this tells us that SZ PdF
is well defined. We may assume that f > 0 without loss of generality. Let
I= Sa<|z|<b f(@)p(|z])dz, and let {a = py < p1 < -+ < pr = b} be a partition
of [a,b]. Then we have

k
= ZJ f(@)o(|x|)dx
i=1Ypi—1<|z|<p;

Since f > 0, we get

Sn

where M; is the max of ¢ on [a,b] and m; is the min of ¢ on [a,b]. Use the
fundamental theorem of calculus to rewrite this as

k
x<I<ZM¢f f(x)dzx,
i=1

|95|<01 i—1<|z|<pi

k k
Z mi[F(pi) = F(pi-1)] <1 < Z F(pi-1)].
i=1 i=1

We squeeze this together and use Theorem 2.24 from the book to deduce
the desired equality. Q.E.D
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Proof. Let xy be a point of the Lebesgue set of f, so that

wﬂf (o + ) — f(zo)ldz — 0
lz|<p

as p — 0. By considering the function f(x) = f(zo + x), we may assume that
xo = 0. Since the hypothesis on K implies that K (x) = o(]z|~™), the conclusion
follows from the prior theorem if f is continuous at 0. Hence, subtracting from
f a continuous function with compact support which equal f(0) at 0, we may

suppose that f(0) =

We can now use the fact that | K (z)] is bounded and that K (z) = O(|z|~"*)

to get a single estimate

M
|K(x)] < W
Hence,
A
K (z) < MlW.
Therefore,

e

RO < |17

————dx
€+ |z[)n+A

Now, let F(p) = Slwlép |f(z)|dx. The hypotheses that x

= 0 is a Lebesgue

point of f and that f(0) = 0 imply that given ¢ > 0, there is a § > 0 such that

F(p) < Cp™if p < 6. Write

PR
J" |f(1')| (6 + ‘x|)n+>\ o= Ja:|<6 " Jz|>6 —ArE

Taking

e

o(p) = e+ pnir
and [a,b] = [0,d] in Lemma 5.8, we have

S 6)\
A= || gt

Integrate this by parts and use F(0) = 0 to get

)
A:M®H®+W+MLF@)

é(p)
ctp)"

The term on the left goes to 0 as ¢ — 0, and the right term, after using a

transformation p = et, has an upper bound of

d/e

n+/\+1

dt.
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Hence, limsup,_ ,; A < ¢¢ for some constant c. To estimate B, note that if
|z| > d, then € + |z| > 4, so that

e

A
€
B< — dr < — .
Foix | @l < Sl
This goes to 0 as ¢ — 0. Taking ( — 0 gives us our desired result. Q.E.D

6.8 Lecture 32 (Abstract Measure Spaces)

We briefly discuss some examples of convolution kernels before moving on.

Example 6.4. (i) The Poison Kernel,

1
P(z) = K(z) = R
(@) = K(@) = oy e
(ii) The Gauss-Weierstrauss Kernel,
1
K(x) = —e*:”Q,Lx eR

Remark 46. We can generalize this to higher dimensions as well.

(iii) The Fejer Kernel,

K(x) = 1 (Sin(x))g,xeR.

s T

There are applications of using these to sort of normalize or control contin-
uous functions, but I will skip over these for conciseness.
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Chapter 7

Abstract Measure Spaces

Definition. An (abstract) measure space is a triple (X, %, u), where X
denotes the space, .% denotes a collection of subsets, and p is a measure, which
satisfies the following properties:

(i) Z is a o-algebra of subsets of X,
(ii) p is a measure on .7:

(a) p:F — [0,00] is a set function,

(b)
1 <U Ek) = > u(Ex)
k k
ifEkEﬁandEkﬂEjZQifj?fk.

Example 7.1. (i) Let X = R", & the collection of Lebesgue measurable
sets (or Borel measurable sets), and suppose there is a fxed non-negative
measurable set function f. Define u(A) = §, f(x)dz. Then we have that
1 satisfies the properties from the definition.

(ii) Let X = Z (or some countable set), .# = P(X) (the powerset of X),
and define pu(A) = |A| (that is, the cardinality of A). This is called the
countable measure.

(iii) Let X = Z, &% = P(X), and fix a non-negative sequence {aj}rez. Set
p({k}) = ax. Then pu(A) = >4 ax. This gives us a probability mea-
sure if Y a = 1.

We now note some properties.
Lemma 7.1. If (X,.%, u) is a measure space, we have the following:

(i) u(2) =0 as long as p(A) < oo for some A.
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(ii) If A < B, then p(A) < pu(B).

(iii) For any collection Ej € .%, we have

1 <U Ek) < ZM(Ek)~
2 k

(iv) If By, /' E, then u(Fx) — u(E). Likewise, if Ey \, E, and p(Ej,) < o0
for some ko, then u(Ey) — w(E).

Proof. (i) If u(A) < o0, then we have that u(A U @) = p(A) + (@) = p(A).
Subtracting p(A) from both sides gives u(@) = @.

(ii) Write B as B = (B — A) u A. Then these are disjoint, and so we have
w(B) = u(B — A) + pu(A). Therefore, we have p(A) < u(B).

(iii) Write Fy = By, F, = E), — (Ufj;f Ez> Then |J, Fr = |, B, and

furthermore I, N F; = & if k # j. So we can write this as

() g

Now, u(Fy) < u(Ey) for all k, and so we have
7 <UEk> = (UFk) < ZM(Ek)~
% k k

(iv) This is analogous to the proof of Proposition 2.1 (ii).
Q.E.D

We can use this to define abstract measurable functions.

Definition. Let (X,.%) and (Y,¥) be two spaces and o-algebras. Suppose we
have a function f: X — Y. Then we say that f is a measurable function if
f~Y(B)e Z forall Be 9.

So, in this language, what are the measurable functions that we have been
using? They are functions f : (R*, .#) — (R, %), where .# is the set of all
Lebesgue measurable sets and A is the set of all Borel measurable sets. We’ve
been only using open sets, not Lebesgue measurable sets!

7.1 Lecture 33

We go over some properties of F-measurable sets.

Lemma 7.2. (i) If f and g are F-measurable, then so are f + g and fg.
If ¢ € R, then cf is F-measurable. If ¢ is continuous, then ¢ o f is F-
measurable.
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(i) If {fn}n is a sequence of F-measurable functions, then the following are
also F-measurable:

(e) if the limit exists, lim,, f,.

(iii) If f is non-negative and F-measurable, then there exists non-negative sim-
ple functions which are F-measurable such that f;,  f.

The proof to these is analogous to the proofs found in Chapter 2. We
remark here that Durett ([2]) assumes that p is o-finite. We define this below.

Definition. A measure p is said to be o-finite if there exists a sequence E,, € X
such that E, / X and u(E,) < oo for all n.

We will not use this assumption, however.

Definition. We define the (abstract) integral for a simple F-measurable
function f which is non-negative to be

de,u' = 2 ai/u‘(Ei),
i=1
where
f = Z Qi XE;>»
i=1
and a; = 0, F; € F,n < o0. We also define o0 -0 = 0-00 = 0 in this.
We now list some properties of this new integral.

Lemma 7.3. Throughout, let f,g > 0 be F-measurable simple functions. We
then have the following:

(i)
[@hrin=a [ san
(if)
f(f + g9)dp = ffdu + fgdu,
(iii) If E < F, then §, fdu < § fdpu.
(iv) If f < g, then § fdu < § gdu.
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Proof. (i) Examine {(af)du. Since f is a simple function, we have that af is
defined to be

n
af = Z A X E; -

=1

Hence,
f af)du = Z aa;u(E;) = aZ a;p(E;) = affdﬂ.
i=1

(ii) This is a little more tricky. Let f be as in the definition and let g be

defined by
9= Z bixF;-
j=1
Then we write f + g as

f+g= Z (ai +bJ)XE1r\F7

ij=1

Now, we can write the integral as

j(f + g)dp = Z (a; + bj)u(E; N Fy).

1,j=1

Distribute the a; and b; to get this in the form

J(f +g)dp = 2 aip(E; 0 Fy) + 2 bju(E; N Fj).

ij=1 ij=1
Now, notice that since the F}; are disjoint and their union is the whole
space (and likewise with the E;), we get that this is

f(f+g)du = Z Z (EinFy) Z Z (B Fy) Z aiu(EiH—Z b u(Fy)

(iii) We first need a definition.

Definition. We define the (abstract) integral over E of [ to be

JE fdp = ffxEdﬁu

Now, using this, we have that this result is clear. That is, we have

J fdp = JfXEd,U = Z AiXEXE < Z aiXFXE; = J fdp.
E izl i=1 F
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(iv) This is clear.
Q.E.D

We get an analogous definition to almost everywhere with regards to the
measure.

Definition. We say that a property holds p-a.e. if the set of points where it
does not hold has p-measure 0.

Example 7.2. We have f < g pa.e. if u({f > g}) =0.
Using this, we can rewrite property (iv) above as follows:
Lemma 7.4. If f < g p-a.e., then § fdu < § gdp.

We now want to start to expand the integral to general non-negative func-
tions (and then to general functions using the same procedure as prior).

Definition. We have the (abstract) integral of a non-negative 7-measurable
function f is defined to be

ffdu = sup fgdu-
O0sg<f
g simple

We also define the integral over a set FE analogously; that is, if £ € F, then

JE fdp = JfXEdN-

We now get some properties on this integral.
Lemma 7.5. (i)

J(af)du =a J fdp.

deu < Jgdu.

(iii) We have Chebychev’s Inequality; that is,

(ii) If f < g p-a.e., then

plif > a)) < j fdu.

Note that we do not have additivity yet. This is because we will need the
monotone convergence theorem to prove this.

Proof. (a) By definition,

f(af)du = sup Jgdu-
0<g<af
g simple
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However, this is equivalent to

sup Jagdu.
0<g<f
g simple

Now, we can use properties of simple non-negative measurable functions to
rewrite this as

a sup Jgdu = ajfdu.
0<g<f
g simple

(b) This is clear. If f < g, then all simple functions h < f have the property
that h < g as well. Use this to get the inequality.

(¢) Notice that we can write this as

ffd,u > JGX{f%}du,
and then we can note that
@ | xissad = anl(f > a)
Q.E.D
Theorem 7.1. (Fatou’s Lemma) Assume f,, > 0 F-measurable, then
J (lim inf fn) dp < lim infffnd,u.
n—o0 n—0o0

Proof. Let g,, = infy>,, fr. Notice that these gy are increasing, and furthermore
they are increasing to liminf,,_,o f, = ¢. On the other hand, we have

J%@éfh@,

since gy, is an infimum over functions including f,. So, taking the liminf of both
sides, we have

n—o0

lim | g,dp <lim infffnd,u.
n—ao0

So it suffices to show that

Jgd,u < lim Jgndu.
n—0o0

We now use the definition; that is, for h simple,

Jgd,uz sup Jhd,u.
0<h<g
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We need to show that if h < g simple, then

fhdu < lim Jgnd,u,
n—0o0

since if we can do this for all such A we can use the least upper bound property
of the supremum. We break it up into three cases.

Case 1: Suppose h = 0 p-a.e. Then we win by default.
Case 2: Now suppose

O<Jhdu<oo.

Let E = {z : 0 < h(xz) < oo}. Then we have

Jhdu = J hdy.
E

We claim that u(E) < oo. This is because h is simple;

Jhdu = Z a; (B,

and so since h < o0 p-a.e. we must have that u(E) < oo. Now, fix
e >0, and for all n set E,, = {x € E : gu,(x) > (1 —e)h(x)}. We
have g, / g = h, so eventually every point in E will be in one of
these E,,. We therefore get E,, ,// E. So (E — E,,) \, &, and therefore
w(E — E,) — 0 (since p(F) < o).

Now, examine

fhduzf hdu:f hdpmtj hdp.
E E—-E, E,

On the left, we have that this is less than or equal to ||h||op(E — Ey),
which we know goes to 0 as n — 0. On the right, we have that this is
less than or equal to

1 1
d < — nd-
I_EJEngnu 1_Efg,u

So therefore, we have that

1
jhdu < 7fgndu
1—ce¢

for n sufficiently large and for all ¢ > 0. Taking the limit as e goes to

0 then gives us
fhdu < fgndp.
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Case 3: Now assume that {hdp = co. Since h is a simple function, we must
have a set A € X with u(A) = oo, h(z) =aon A. Let A, ={z e A :
gn > a/2}. Since g, — g = h = a on A, then A, / A. Therefore,
w(Ay) / u(A) = oo, and so we have

a
fgndﬂ > f gndp = §u(An) — 0
An

as n — 00. Hence, we have that §hdu < lim,, o § gndp.

Q.E.D
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