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Midterm 1: February 27
Topics:

(a) Lebesgue measure on n-dimensional Euclidean space (Chapter 2)

(b) Measurable functions (Chapter 3)

(c) Lebesgue integration, including the limit theorems (Fatou, MCT, DCT,
UCT, BCT) (Chapter 4)

(d) Fubini’s theorem (Chapter 4)

Results of Midterm 1:
Median: 47
Average: 51
Total Possible: 75

Midterm 2: April 10
Topics:

(a) Lebesgue Differentiation Theorem (Chapter 5)

(b) Differentiation of Monotone Functions (Chapter 5)

(c) Absolutely Continuous Functions (Chapter 5)

(d) Lp classes (including Banach and metric space properties) (Chapter 6)

(e) Hölder’s inequality (Chapter 6)

(f) Jensen’s inequality (Chapter 6)

(g) Convolutions (Chapter 4 Lecture 17, Chapter 6)

(h) Approximations of the identity (Chapter 6)
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Chapter 1

Prerequisites

This is more of a list of things one should know reading this rather than an
educational chapter.

Definition. For a point x P Rn and ϵ ą 0 we define the open ball of radius
ϵ to be

Bpx, ϵq “ Bϵpxq “ ty : |x ´ y| ă ϵu.

The notation will be used interchangeably (the notation on the right being mine
and the left being the books).

Definition. A point x of a set E is called an interior point of E if there exists
a δ ą 0 such that Bpx, δq Ď E. The collection of all interior points of E is called
the interior, and is denoted by Eo.

Definition. A point x0 P Rn is said to be a limit point of a set E if it is the
limit point of a sequence of distinct points in E.

Definition. A point x0 P E is said to be a isolated point of a set E if it is not
the limit of any sequence in E outside of the trivial sequence. In other words,
it is an isolated point if and only if there exists a δ ą 0 such that |x ´ y| ą δ
for all y P Eztxu.

Definition. A set is said to be open if E “ Eo.

Definition. A set is said to be closed if EC is open.

Remark 1. Open sets are closed under arbitrary union and countable intersec-
tion. DeMorgan’s Laws give us the opposite for closed sets; that is, closed sets
are closed under arbitrary intersection and countable union.

Definition. A union of a set E along with all of its limit points is called the
closure of E, and is denoted by Ē.

Definition. A function f : X Ñ Y is said to be continuous if, for all open
V Ď Y , we have that f´1pV q is open in X.
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For Euclidean space, we define continuity if

lim
xÑx0

fpxq “ fpx0q.

Definition. If f is only defined on a set E containing x0, E Ď Rn, then f is
said to be continuous at x0 relative to E if fpx0q is finite and either x0 is
an isolated point or x0 is a limit point of E and

lim
xÑx0
xPE

fpxq “ fpx0q.

Definition. Let E be a set. Then we say that F , a collection of sets, is a
cover of E if

E Ď
ď

KPF

K.

We say that F is an open cover if K P F is open for all K.

Definition. Let E be a set. Then we say that E is compact if for every open
cover tKiu

8
i“1 of E we have that there exists a finite subcollection tKiu

N
i“1 that

covers E.

Theorem 1.1. (Heine-Borel Theorem) We have that a set E Ď Rn is compact
if and only if it is closed and bounded.

Theorem 1.2. A set E Ď Rn is compact if and only if every sequence of points
of E has a subsequence that converges to a point of E.

Lemma 1.1. If ϕ is a continuous function on a compact set E, we have that f
is bounded.

Remark 2. (Open Sets in Rn) For n “ 1, every open set is a countable union
of disjoint open intervals. For n ě 2, every open set is a union of a countable
collection of non-overlapping closed boxes.

Definition. A sequence tfnunPN of continuous functions on an interval I “ ra, bs
is uniformly bounded if there is a number M such that

|fnpxq| ď M

for all n and for all x P I.

Definition. A sequence tfnunPN of continuous functions is said to be equicon-
tinuous if for every ϵ ą 0 and x there exists a δ ą 0 such that

|fnpxq ´ fnpyq| ă ϵ

whenever |x ´ y| ă δ for all functions fn in the sequence. Note that δ may
depend on ϵ and x but not y nor n.

Theorem 1.3. (Arzela-Ascoli Theorem) If a sequence tfnu of continuous func-
tions is bounded and equicontinuous, then it has a uniformly convergent subse-
quence.

8
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Definition. A sequence of functions tfnu converges pointwise to f if for all
x P E, where E is the domain, we have

lim
nÑ8

fnpxq “ fpxq.

Definition. A sequence of functions tfnu uniformly converges to f if, for
all ϵ ą 0, there exist an N such that for all n ě N , we have

|fn ´ f | ă ϵ.

Definition. We define the supremum-norm on a set S to be

||f ||8 “ ||f || “ supt|fpxq| : x P Su.

Theorem 1.4. (Stone-Weierstrauss Theorem) Suppose f is a continuous real-
valued function defined on an interval ra, bs. For every ϵ ą 0, there exists a
polynomial p such that for all x P ra, bs we have |fpxq´ppxq| ă ϵ, or equivalently
the supremum-norm ||f ´ p|| ă ϵ.

Remark 3. In other words, for every continuous function ϕ on a compact set
E we can construct a sequence of polynomials Pn which converge uniformly to
ϕ on E.

Definition. A partition of an interval I “ ra, bs is a set P “ tx0, x1, . . . , xnu

such that x0 “ a, xn “ b, and xi ď xi`1 for all 0 ď i ď n ´ 1. We say that P is
size n ` 1, and denote this by |P| “ n ` 1.

Definition. Given a bounded function f : ra, bs Ñ R and partition P of [a,b]
of size n ` 1 with associated partitioning intervals Ii, we define the upper
Riemann sums of f with respect to P to be

Upf, ra, bs,Pq “

n
ÿ

i“1

Mipf,PqδpIiq,

where
Mipf,Pq “ sup

xPIi

fpxq,

Ii “ rxi´1, xis,

δpIiq “ xi`1 ´ xi.

Definition. In a similar setting to above, we define the lower Riemann sums
of f with respect to P to be

Lpf, ra, bs,Pq “

n
ÿ

i“1

mipf,PqδpIiq,

where
mipf,Pq “ inf

xPIi
fpxq.

9



James Marshall Reber January 6, 2020

Definition. Given a bounded function f : ra, bs Ñ R, we define the upper
Riemann integral of f on ra, bs to be

ż `

ra,bs

f “ inf
P

Upf, ra, bs,Pq.

The lower Riemann integral is defined analogously;
ż ´

ra,bs

f “ sup
P

Lpf, ra, bs,Pq.

Definition. We say that a bounded function f : ra, bs Ñ R is Riemann inte-
grable is

ż `

ra,bs

f “

ż ´

ra,bs

f.

If it is Riemann integrable, we define the Riemann integral of f on ra, bs to
be

ż

a,b

f “

ż ´

ra,bs

f “

ż `

ra,bs

f.

Remark 4. If a function is continuous, it is Riemann integrable.

Remark 5. If a function is bounded and monotone on ra, bs, then f is Riemann
integrable on ra, bs.

Definition. We define the support of a function to be the closure of the set
of points where the function is non-zero.

Definition. We say that a function f has compact support if it is 0 outside
of a compact set.

Definition. Variation is defined to be

V pf ; ra, bsq “ sup
P

n
ÿ

i“1

|fpxiq ´ fpxi´1q|,

where P is a partition of the interval ra, bs.

Definition. A function has bounded variation if V pf ; ra, bsq ď M for some
fixed M .

Definition. A vector space V over a field F is a set which is closed under
vector addition and scalar multiplication.

Definition. A norm space is a vector space V equipped with a function
|| ¨ || : V Ñ r0,8q such that

(i) ||v|| “ 0 if and only if v “ 0,

(ii) ||cv|| “ |c|||v||,

10
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(iii) ||v ` w|| ď ||v|| ` ||w||.

Definition. A sequence tanu is Cauchy if for all ϵ ą 0, there exists an N such
that for all n,m ě N we have

||an ´ am|| ă ϵ.

Definition. A sequence tanu converges if there exists an a such that for all
ϵ ą 0 there exists an N such that for all n ě N we have

|an ´ a| ă ϵ.

Definition. A space V is complete if every Cauchy sequence converges. That
is, if tanu is Cauchy, then there is some v P V such that an Ñ v.

More will be added as needed.

11
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Chapter 2

Measure on Euclidean
Space

2.1 Lecture 1 (Outer Measure)
The first goal is to define some way of measuring volume of sets in Rn. We first
start with some notation. Throughout, I “ tx P Rn : ai ď xi ď bi for i “

1, . . . , nu for some ai ă bi; i.e. I will denote closed intervals. If E Ď Rn and
E Ď

Ť

k Ik (countable), then we call tIku a cover of E.

Definition. We define the volume of a closed interval to be

vpIq “
ź

i

pbi ´ aiq.

Definition. We define the outer measure or exterior measure of a set E
to be

|E|e “ inf
covers tIku of E

ÿ

k

vpIkq.

Intuitively, the exterior measure is just covering the set with smallest number
of cubes possible and then adding up the volume of those cubes. This is almost
the definition of measure we’re going to use. The problem is that there are some
sets where this measure is not any good; that is, we want the outer measure
to be the same as the inner measure, and in some cases this will not happen.
When it does, though, we will call this set measurable.

Theorem 2.1. (Properties of The Outer Measure)

(i) |I|e “ vpIq for all closed intervals I.

(ii) If E1 Ď E2, then |E1|e ď |E2|e.
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(iii) If tEku is a countable collection of sets, then
ˇ

ˇ

ˇ

ˇ

ˇ

ď

k

Ek

ˇ

ˇ

ˇ

ˇ

ˇ

e

ď
ÿ

k

|Ek|e.

Proof. (i) First, note that I is a cover of itself. Thus, we get |I|e ď vpIq. For
the reverse, let I Ď

Ť

k Ik. Let I˚
k be a “small blowup”; that is,

Ik Ď pI˚
k qo Ď I˚

k

be such that
vpI˚

k q ď p1 ` ϵqvpIkq, ϵ ą 0.

Since I is compact,

I Ď

N
ď

k“1

pI˚
k qo Ď

N
ď

k“1

I˚
k .

Now, I Ď
ŤN

k“1 I
˚
k implies vpIq ď

řN
k“1 vpI˚

k q. Thus, we get

vpIq ď

N
ÿ

k“1

vpI˚
k q ď p1 ` ϵq

N
ÿ

k“1

vpIkq ď p1 ` ϵq
ÿ

k

vpIkq.

Thus, vpIq ď
ř

k vpIkq for any I Ď
Ť

k Ik, and so we get vpIq ď |I|e.

(ii) This comes directly from the definition. Since E1 Ď E2, we get that all
covers of E2 also cover E1, and so we get that the measure of E2 can be
at most the measure of E1.

(iii) We cover Ek by
Ť

j I
pkq
j such that

ÿ

j

v
´

I
pkq
j

¯

ď |Ek|e ` ϵ2´k,

where ϵ ą 0 is arbitrary. Thus, we have that
Ť

k Ek is covered by
Ť

j,k I
pkq
j .

So
ˇ

ˇ

ˇ

ˇ

ˇ

ď

k

Ek

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

j,k

v
´

I
pkq
j

¯

ď
ÿ

k

`

|Ek|e ` ϵ2´k
˘

“
ÿ

k

|Ek|e ` ϵ.

Since ϵ was arbitrary, take the limit as ϵ Ñ 0. This gives us the desired
result.

Q.E.D

2.2 Lecture 2 (Lebesgue Measure)
We now want to briefly discuss the independence of outer measure from the
choice of axis. When discussing outer measure originally, we covered our plane
with boxes which have edges parallel to the axis. What if, however, we had
diagonal axis? It should be that this gives us the same result. For notation
purposes, we will denote things in alternative axis with a prime.

14
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Theorem 2.2. For E Ď Rn, we have

|E|e “ |E|1e.

Proof. We will first prove a claim.

Claim 2.1. For I 1 an interval on alternate axis, we have

|I 1|e “ |I 1|1e.

Proof. Take a slight blow up of I 1, denoted by I 1˚, so that I 1 Ď pI 1˚qo and

vpI 1˚q ď vpI 1q ` ϵ.

Since pI 1˚qo is open, we may write

pI 1˚qo “
ď

k

Ik

which are non-overlapping (see Remark 1). We then take a finite collection
and note that we have

N
ÿ

k“1

vpIkq ď vpI 1˚q.

Thus, taking the limit as N Ñ 8, we get
8
ÿ

k“1

vpIkq ď vpI 1˚q ď vpI 1q ` ϵ.

This tells us that |I 1|e ď vpI 1q ` ϵ. Taking the limit as ϵ Ñ 0, we get that

|I 1|e ď vpI 1q “ |I 1|1e.

An analogous argument gives us the reverse direction, and so we get equality.
Q.E.D

The above argument also gives us the following for free.

Corollary 2.2.1. For I an interval, we have

|I|e “ |I|1e.

Take a general set E Ď Rn and cover it by “normal intervals” (that is,
intervals on the standard axis); i.e. take E Ď

Ť

k Ik such that
ÿ

k

vpIkq ď |E|e ` ϵ{2.

We can cover the Ik with alternate intervals. Take a collection I 1
k,j such that

Ik Ď
ď

j

I 1
k,j ,

15
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ÿ

j

vpI 1
k,jq ď vpIkq ` pϵ{2q 2´k.

By transitivity we get
E Ď

ď

k,j

I 1
k,j .

Moreover, we get

|E|1e ď
ÿ

k,j

vpI 1
k,jq ď

ÿ

k

`

vpIkq ` pϵ{2q 2´k
˘

ď |E|e ` ϵ.

So, we get that |E|1e ď |E|e`ϵ and moreover |E|1e ď |E|e. A symmetric argument
gives us the other direction. Q.E.D

We now are going to talk about measurable sets, or Lebesgue measur-
able sets. We will first, however, discuss a relation between outer measure and
open sets.

Lemma 2.1. For any E Ď Rn and ϵ ą 0, there exists an open set G such that
E Ď G and

|G|e ď |E|e ` ϵ.

Corollary 2.2.2. For any E Ď Rn, we get that

|E|e “ inf
G open
EĎG

|G|e.

We now prove the lemma.

Proof. We what now seems to be the standard trick. Take a cover of tIku of E
such that

ÿ

k

vpIkq ď |E|e ` ϵ{2.

Now take a blowup of the Ik such that Ik Ď pI˚
k qo and

vpI˚
k q ď vpIkq ` ϵ{22´k.

Take G to be the union of the interiors of the blow up; that is,

G “
ď

k

pI˚
k qo.

This is open, and we have

|G|e ď
ÿ

k

v
`

pI˚
k q

o˘

ď
ÿ

k

`

vpIkq ` pϵ{2q 2´k
˘

ď |E|e ` ϵ.

Q.E.D

This now leads us to the definition of a measurable set.

16
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Definition. A set E Ď Rn is said to be measurable or Lebesgue measurable
if for all ϵ ą 0 there is an open set G such that E Ď G and |G ´ E|e ă ϵ.
Definition. If E is measurable, then the measure of E is |E|e; that is,

|E|e “ |E| “ µpEq.

Remark 6. Again, note that Lemma 2.1 gave us no information on this
definition. Just because |G|e ´|E|e ă ϵ does not imply that |G´E|e ă ϵ. This
highlights one of the issues with outer measure.
Remark 7. There are nonmeasurable sets, however most sets in your life are
measurable (in other words, if you can write it down, it’s measurable).

So what sets are exactly measurable, then?
Example 2.1. (i) Open sets are measurable. This is clear, taking G “ E.

(ii) Sets with outer measure 0 are measurable.1 Let E Ď Rn be such
that |E|e “ 0. Then by Lemma 2.1 we have that there is a G such that
E Ď G and |G|e ď |E|e ` ϵ. Since |E|e “ 0, we get that |G|e ď ϵ. Thus,
we have

|G ´ E|e ď |G|e ď ϵ.

So E is measurable.

(iii) Countable unions of measurable sets are measurable. Take E “
Ť

k Ek. Take tGku for each k such that Ek Ď Gk and |Gk ´ Ek|e ă ϵ2´k

(this is fine since the Ek are measurable). Let G “
Ť

k Gk Then we have

|G ´ E|e ď

ˇ

ˇ

ˇ

ˇ

ˇ

ď

k

pGk ´ Ekq

ˇ

ˇ

ˇ

ˇ

ˇ

e

ď
ÿ

k

|Gk ´ Ek|e ă ϵ.

(iv) Intervals are measurable. First, we prove a claim.
Claim 2.2. A set E Ď Rn consisting of a single point x has outer measure
0. Moreover, it is measurable.

Proof. Take the open sets

Gϵ “ Bϵpxq “ ty P Rn : |x ´ y| ă ϵu.

Then we have E Ď Gϵ for all ϵ, and moreover

0 ď |E|e ď inf |Gϵ|e “ 0.

Q.E.D

Note that I “ BI Y Io. We have Io open, and so measurable, and we
have BI “

Ť

txu such that x P I ´ Io, which is a countable union of
points. These have measure zero, and so BI is measurable and moreover
has measure 0. Therefore, I is measurable. In particular, |I| “ |Io|.

1I slightly diverge from the lecture notes since I have an issue with the proof as I have it.
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2.3 Lecture 3 (σ-algebra)

(v) Closed sets are measurable. First, we need a definition and a lemma.

Definition. Let F,H Ď Rn be two sets. Then we define the distance
between the sets as

dpF,Hq “ inft|x ´ y| : x P F, y P Hu.

Lemma 2.2. If dpE1, E2q ą 0, then |E1 Y E2| “ |E1|e ` |E2|e.

Proof. Let’s say E1 Y E2 Ď
Ť

k Ik, where
ř

k |Ik| ă |E1 Y E2|e ` ϵ, such
that there is no Il Ď E1 X E2 (do this by subdivisions). Thus, we have
that E1 Ď

Ť

l Il and E2 Ď
Ť

h Ih. Then we get

|E1|e ` |E2|e ď
ÿ

l

|Il| `
ÿ

h

|Ih| “
ÿ

k

|Ik| ă |E1 Y E2|e ` ϵ.

This implies that |E1|e ` |E2|e ď |E1 Y E2|e. We know the converse
inequality is true by Theorem 2.1 (iii). Thus, we have equality. Q.E.D

Lemma 2.3. If tIkuNk“1 is a collection of nonoverlapping intervals, then
ˇ

ˇ

ˇ

ˇ

ˇ

N
ď

k“1

Ik

ˇ

ˇ

ˇ

ˇ

ˇ

“

N
ÿ

k“1

|Ik|.

Proof. We have by Theorem 2.1 (iii)
ˇ

ˇ

ˇ

ˇ

ˇ

N
ď

k“1

Ik

ˇ

ˇ

ˇ

ˇ

ˇ

ď

N
ÿ

k“1

|Ik|,

so it suffices to show the other direction. Suppose that
ŤN

k“1 Ik is covered
by intervals tJju. In other words,

N
ď

k“1

Ik Ď
ď

j

Jj .

For ϵ ą 0 fixed and for each interval Jj , pick an interval J˚
j containing Jj

in its interior, and such that

|J˚
j | ď p1 ` ϵq|Jj |.

Then since
ŤN

k“1 Ik is compact (it is bounded and a countable union of
closed sets, and so closed) it is in fact covered by finitely many of the J˚

j .
Hence, we have

N
ď

k“1

Ik Ď

M
ď

j“1

J˚
j .

18
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It follows then that
ˇ

ˇ

ˇ

ˇ

ˇ

M
ď

j“1

J˚
j

ˇ

ˇ

ˇ

ˇ

ˇ

ě

N
ÿ

k“1

|Ik|.

On the other hand, we get
ˇ

ˇ

ˇ

ˇ

ˇ

M
ď

j“1

J˚
j

ˇ

ˇ

ˇ

ˇ

ˇ

ď

M
ÿ

j“1

|J˚
j | ď p1 ` ϵq

M
ÿ

j“1

|Jj | ď p1 ` ϵq
ÿ

j

|Jj |.

Hence, for any cover tJju of
ŤN

k“1 Ik, we have

1

1 ` ϵ

N
ÿ

k“1

|Ik| ď
ÿ

j

|Jj |.

Take the infimum over all such covers and let ϵ Ñ 0. Q.E.D

We will also establish two claims that are used implicitly in the next ar-
gument.

Claim 2.3. If G open, F Ď G compact, then G ´ F is open.

Proof. Notice that G´F “ GXF c, F compact implies it is closed so that
F c is open, and this is therefore the intersection of two open sets. Q.E.D

Claim 2.4. If F,H compact and F X H “ ∅ (that is, they are disjoint),
then dpF,Hq ą 0.

Proof. Assume otherwise. That is, assume dpF,Hq “ 0. Then per defini-
tion this says that

inft|x ´ y| : x P F, y P Hu “ 0.

But F and H being closed implies closed implies that there exists x, y such
that |x ´ y| “ 0, or x “ y, since there exists txnu P F , tynu P H such
that |xn ´ yn| Ñ 0, but xn Ñ x P F and yn Ñ y P H. Thus, we have
F X H ‰ ∅, a contradiction. Q.E.D

We now have enough tools to prove that closed sets are measurable. Through-
out, let F be a closed set. We first start with the case where F is compact.
Choose open G with F Ď G and |G| ă |F |e ` ϵ, ϵ ą 0. Since G ´ F is
open, we can write it as

G ´ F “
ď

k

Ik,

where the tIku are nonoverlapping intervals. Thus, we get that

|G ´ F |e ď
ÿ

k

|Ik|.
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Note that

G “ F Y pG ´ F q “ F Y

˜

ď

k

Ik

¸

.

We can then take a finite collection of the Ik, and note that

F Y

˜

N
ď

k“1

Ik

¸

Ď G.

Notice as well that this is closed and bounded, and so therefore com-
pact and disjoint. Hence, they have positive distance, and so we may use
Lemma 2.2 to get

|F |e `

N
ÿ

k“1

|Ik| ď |G|.

Rewriting this, we get
N
ÿ

k“1

|Ik| ď |G| ´ |F |e ă ϵ.

Since this is true for all N , we may take the limit to get

|G ´ F |e ď
ÿ

k

|Ik| ď |G| ´ |F |e ă ϵ.

For F not compact, write

F “
ď

k

pF X Bkpxqq .

Since this is a countable union of compact sets, we win.

(vi) The complement of a measurable set is measurable. For any k ě 1,
pick an open set Gk with E Ď Gk and |Gk ´ E|e ă 1{k. If we look at the
complement, we have GC

k Ď EC . Moreover,
Ť

k G
C
k Ď EC , and denote

Ť

k G
C
k “ G. Let Z “ EC ´ H. We claim |Z|e “ 0. Looking at Z, we see

it is Z “ EC X HC “ EC X pXkGkq. Certainly Z Ď Ec X Gk “ Gk ´ EC ,
and so we see |Z|e ď |Gk ´ E|e ă 1{k. Thus, we see Ec “ Z Y H, a union
of two measurable sets.

(vii) The Cantor set is measurable. Take the interval r0, 1s, and subdivide it
into thirds. Remove the interior of the middle third, leaving us with

`

1
3 ,

2
3

˘

.
Each successive step follow this pattern; take each interval, subdivide it
into thirds, and then remove the interior of the middle third. Denoting
the set after the kth step as Ck, we have the Cantor set C is what is left
over after repeating this an infinite number of times; that is,

C “

8
č

k“1

Ck.
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Since Ck is closed, it follows C is closed, and so (v) gives us that this is
measurable. We see that |C|e “ 0, since

|C|e ď 2k3´k @k.

Definition. A non-empty collection Σ of sets is called a σ-algebra if

(i) Σ is closed under countable unions.

(ii) Σ is closed under complements.

Remark 8. Notice that (i) and (ii) imply that it is closed under countable
intersection as well.

If we let M be the collection of measurable sets, then M is a σ-algebra.

Definition. The Borel σ-algebra (denoted by B) is the smallest σ-algebra
containing the open sets.

Remark 9. The sets in B are measurable.

2.4 Lecture 4 (Limits)
We want to work with limits of sets as well. If tEku8

k“1 is a sequence of sets
such that Ek Ď Ek`1 for all k, then we define the limit of these sets to be the
union. In other words, Ek Õ

Ť

k Ek. The other direction is analogous with
intersection and decreasing sets.

Definition. We define the lim inf En to be

lim inf En “

8
ď

m“1

8
č

n“m

En.

Analogously, we define the lim supEn to be

lim supEn “

8
č

m“1

8
ď

n“m

En.

It’s good to also notice what these actually mean in terms of words. We
have that lim supEn is the set of all elements such that the elements are in
infinitely many En. Likewise, the lim inf En is the set of all elements such that
those limits are in En for all n ě n0, where n0 can depend on that element.

Example 2.2. (i) Let tfiu be a sequence of continuous functions. Then we
claim that

E “ tx : lim
nÑ8

|fnpxq| “ 0u

21



James Marshall Reber January 6, 2020

is measurable. To show this, we need to recall that the limit being zero
implies that there is an ϵ ą 0 such that |fnpxq| ă ϵ for all n ě n0, where
n0 depends on x. Take ϵ “ 1{k. Then we may rewrite this all as

E “

8
č

k“1

"

x : |fnpxq| ă
1

k
@n ě n0pxq

*

.

However, the inside is a liminf! Using this, we may rewrite the whole thing
as

E “

8
č

k“1

8
ď

m“1

8
č

n“m

"

x : |fnpxq| ă
1

k

*

.

The set on the inside is open, since f is continuous, and so this is all just
a bunch of unions and intersections of open sets. Since M is a σ-field, we
get that this means E is measurable.

(ii) (Mandelbrot Set) Let fcpzq “ z2 ` c over C. Then the Mandelbrot set
M “ tc P C : fcp0q, fcpfcp0qq, . . . , f

pnq
c p0q is bounded sequenceu is called

the Mandelbrot set. We rewrite this as

M “

8
ď

k“1

8
č

n“1

tc P C : |f pnq
c p0q| ď ku.

The set on the inside is closed by an argument involving polynomial in-
equalities (also could note that it’s the pullback on a closed set of a con-
tinuous function).

(iii) (Normal numbers) We have a base-2 decimal expansion for x P r0, 1q

is defined to be

x “ b1b2 . . . bn . . . “

8
ÿ

n“1

bi
2n

.

where bi P t0, 1u. Some numbers have two different base-2 decimal expan-
sions, however we’ll just consider the one ending in all 0s for simplicity.
Let’s look at

E “ tx P r0, 1q : decimal exp of x has equal number of 0s and 1su.

Then we’d like to show that E is measurable. Let rnpxq be the number
of 1’s in the first n digits after the decimal point for the base-2 decimal
expansion of x. Then

E “

"

x P r0, 1q : lim
nÑ8

1

n
rnpxq “

1

2

*

“

8
č

k“1

8
ď

m“1

8
č

n“m

"

x P r0, 1q :

ˇ

ˇ

ˇ

ˇ

1

n
rnpxq ´

1

2

ˇ

ˇ

ˇ

ˇ

ď
1

k

*
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“

8
č

k“1

8
ď

m“1

8
č

n“m

!

x P r0, 1q :
n

2
´

n

k
ď rnpxq ď

n

2
`

n

k

)

“

8
č

k“1

8
ď

m“1

8
č

n“m

t n
2 ` n

k u
ď

r“r n
2 ´ n

k s

En,r,

where En,r is the set of numbers in r0, 1q whose first n digits after the
decimal point consist of exactly r ones and n´ r zeroes. We see that En,r

is measurable, since it is the disjoint union of
`

n
r

˘

intervals of the form
rj{2n, pj ` 1q{2nq.

Now we would like to explore two properties of the Lebesgue measure.

Proposition 2.1. (i) If tEku are disjoint measurable sets, then
ˇ

ˇ

ˇ

ˇ

ˇ

ď

k

Ek

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

k

|Ek|.

(ii) If Ek Õ E, then limnÑ8 |En| “ |E|. If Ek Œ E and at least one |Ek| ă 8,
then limnÑ8 |En| “ |E|.

Before starting the proof, we need a lemma.

Lemma 2.4. We have that E is measurable if and only if for all ϵ ą 0 there
exists an F Ď E closed with |E ´ F | ă ϵ.

Proof. Since we are in a σ-field, we have that E is measurable if and only if Ec

is measurable. Since E is measurable, we have that there is an open set G such
that E Ď G and |G ´ E| ă ϵ for all ϵ ą 0. Let Gc “ F . Then we have F Ď E
closed. Moreover,

G ´ E “ G X Ec “ F c X E “ Ec ´ F,

so that |Ec ´ F | ă ϵ. Q.E.D

We now prove the proposition.

Proof. (i) We first break this up into cases.
Case 1: Assume the Ek are bounded. Choose subsets Fk Ď Ek closed
with |Ek ´ Fk| ă ϵ2´k. Then we must have

|Ek| ď |Ek ´ Fk| ` |Fk| ď |Fk| ` ϵ2´k. (2.1)

Now, since the Ek are disjoint, we have that the Fk are disjoint. Moreover,
since the Ek are bounded, then the Fk are also bounded. Since the Fk are
closed, bounded, and disjoint, we get that they are compact and disjoint.
Compact disjoint sets are separated (see Claim 2.4), and so we may use
Lemma 2.2 to get

ˇ

ˇ

ˇ

ˇ

ˇ

N
ď

n“1

Fn

ˇ

ˇ

ˇ

ˇ

ˇ

“

N
ÿ

n“1

|Fn|.
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Noting that
ď

k

Fk Ď
ď

k

Ek,

we get
N
ÿ

n“1

|Fn| ď

ˇ

ˇ

ˇ

ˇ

ˇ

ď

k

Ek

ˇ

ˇ

ˇ

ˇ

ˇ

.

This is then true for arbitrary N , and so we can take the limit to get

ÿ

k

|Fk| ď

ˇ

ˇ

ˇ

ˇ

ˇ

ď

k

Ek

ˇ

ˇ

ˇ

ˇ

ˇ

.

Using the inequality above, we then have

ÿ

k

`

|Ek| ´ ϵ2´k
˘

“
ÿ

k

|Ek| ´ ϵ ď

ˇ

ˇ

ˇ

ˇ

ˇ

ď

k

Ek

ˇ

ˇ

ˇ

ˇ

ˇ

.

The choice of ϵ is arbitrary, so letting it go to zero gives us the desired
inequality.
Case 2: Now we do not assume the Ek are bounded. Let Rn “

Ť

k Ik “
Ť

k pIk ´ Ik´1q, assuming Ik Õ Rn. Now we take

Ek “
ď

j

pEk X pIj ´ Ij´1qq .

This is disjoint and bounded, and so we may use the first case to get our
desired inequality.

(ii) Assume Ek Õ E. Define H1 “ E, Hk “ Ek ´ Ek´1 for k ě 2. So
E “

Ů

k Hk. Note that Ek “
Ůk

j“1 Hj . Because this is disjoint, we get

|E| “
ÿ

k

|Hk| “ lim
nÑ8

n
ÿ

k“1

|Hk| “ lim
nÑ8

|En|.

Decreasing is a similar trick.
Q.E.D

2.5 Lecture 5 (Characterizations)
Definition. We say a set is of type Gδ if it is a countable intersection of open
sets. Analogously, we say a set is of type Fσ if it is a countable union of closed
sets.

Note that these are more general than open/closed sets. Notice as well
that countable union/intersections preserve measure, and open/closed sets are
measurable, so that sets of these types are measurable.
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Theorem 2.3. The following statements are equivalent:

(i) E is measurable.

(ii) E “ H ´ Z, where H is of type Gδ, |Z| “ 0.

(iii) E “ H Y Z, where H is of type Fσ, |Z| “ 0.

In other words, this characterization says that we can closely approximate
measurable sets with Gδ and Fσ sets.

Proof. piiq ùñ piq and piiiq ùñ piq are trivial; H and Z in both instances are
measurable sets, and so differences of measurable sets and unions of measurable
sets are measurable, thus giving us that E is measurable.
piq ùñ piiq : Let Gk be a sequence of open sets such that E Ď Gk and
|Gk ´ E| ă 1{k. Let H “

Ş

k Gk. Clearly H is of type Gδ. Now, write
Z “ H ´ E so that E “ H ´ Z. So we are almost done; we just need to show
that |Z| “ 0. Notice that in particular we have that Z Ď Gk ´E for all k. Thus,
we have |Z| ď |Gk ´ E| ă 1{k. Since this works for all k, we get that |Z| “ 0.
piq ùñ piiiq : In this case, pick Fk Ď E closed so that |E ´ Fk| ă 1{k. Let
H “

Ť

k Fk and write Z “ E ´ H. Then this implies E “ Z Y H and moreover
we have |Z| ă |E ´ Fk| for all k, so in particular |Z| ă 1{k for all k. Thus, we
have |Z| “ 0, and we win. Q.E.D

Now, we want to discuss an alternative definition of measurability which will
come up in later chapters called Carathéodory’s definition of measurabil-
ity.

Theorem 2.4. We have that E is measurable if and only if |A|e “ |A X E|e `

|A ´ E|e for all sets A Ď Rn.

One thing to quickly note is that this does not rely on open or closed sets.
As a result, this may be a useful characterization in spaces where the topology
is not natural in any way. Another thing to note is that the A above does not
need to be measurable in any way.

Proof. We first do the implication. Assume that E is measurable. Then by
properties of outer measure we always have that |A|e ď |AXE|e ` |A´E|e. We
then want to show the other direction, that is, |AXE|e ` |A´E|e ď |A|e. Start
by choosing an open G such that A Ď G and |G| ă |A|e ` ϵ. Then we have that
|GXE| ` |A´E| “ |G| ă |E|e ` ϵ; moreover, by the inclusion relation, we have

|A X E|e ` |A ´ E|e ď |G X E| ` |G ´ E| ă |A|e ` ϵ.

Since this is for any ϵ, we take it to go to zero and get |AXE|e`|A´E|e ď |A|e,
as desired.

For the converse, we assume that |A|e “ |AXE|e`|A´E|e for all subsets A.
In particular, take A “ G, an open subset such that E Ď G and |G| ă |E|e ` ϵ.
Then we have

|G X E|e ` |G ´ E|e ă |E|e ` ϵ.
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But we assume E Ď G, so we have G X E “ E. Hence, we write this as

|E|e ` |G ´ E|e ă |E|e ` ϵ ùñ |G ´ E|e ă ϵ.

Since this holds for arbitrary ϵ, we get that this is measurable by definition.
Q.E.D

The last thing we did was talk about the construction of a non-measurable
set. I’ll omit this, and just refer the reader to this. As a corollary to the
construction from class, though, we get the following.

Corollary 2.4.1. If |A|e ą 0, then there exists a non-measurable subset of A.
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Chapter 3

Functions and Measure on
Euclidean Space

3.1 Lecture 6 (Functions that preserve measure)
We first recall what a Lipschitz function is.

Definition. We say that a function T : Rn Ñ Rn is Lipschitz if

|T pxq ´ T pyq| ď C|x ´ y|

for all x, y and C P R.

We also recall what the diameter of a set is.

Definition. The diameter of a set E is defined to be

diampEq “ supt|x ´ y| : x, y P Eu.

This leads us to a theorem.

Theorem 3.1. If T : Rn Ñ Rn is Lipschitz and if E Ď Rn is measurable, then
T pEq is measurable. In short, Lipschitz functions preserve measurability.

We will first prove a lemma.

Lemma 3.1. If f : X Ñ Y is a function, then for tUαu such that Uα Ď X for
all α we get

f

˜

ď

α

Uα

¸

“
ď

α

fpUαq.

We will also need a claim for this lemma.

Claim 3.1. If f is continuous, E is compact, then fpEq is compact (that is,
the image of a compact set under a continuous function is compact).
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Proof. Let E Ď
ŤM

n“1 f
´1pVnq. Then we have that

fpEq Ď

M
ď

n“1

Vn.

Q.E.D

Proof. If y P f p
Ť

α Uαq, then we have x P
Ť

α Uα such that fpxq “ y. Thus,
x P Uα for some α, and we get fpxq “ y P fpUαq. But since this works for all
α, we get

y P
ď

α

fpUαq.

The other directon analogous. Q.E.D

Remark 10. We have that

f

˜

č

α

Uα

¸

Ď
č

α

fpUαq,

where equality may not hold.

Proof. We first show that T preserve Fσ sets. Suppose first we have a compact
set. Since T is Lipschitz, it is also continuous, and so we have that T pEq is also
compact. If E is closed, we have that it is a union of compact sets, and since
T p

Ť

k Ekq “
Ť

k T pEkq, we have that T pEq is also closed. Using this again, we
get that if E is of type Fσ, then T pEq is also of type Fσ.

Next, we quickly note that if |Z| “ 0, then |T pZq| “ 0. Since T is Lipschitz,
we have diampT pEqq ď CdiampEq. Then we have a constant C 1 such that
|T pIq|e ď C 1|I|. This gives us that |T pEq|e ď C 1|E|e. So if we have measure 0
on the right, we get measure 0 on the left.

This is all we need, since by Theorem 2.3 if E is measurable we may write
it as E “ H YZ, where H is of type Fσ and |Z| “ 0. Using Lemma 3.1 again,
we get that T pEq is measurable. Q.E.D

So Lipschitz functions preserve measurable sets. The next theorem shows
that we can do better than that.

Theorem 3.2. If T is a linear transformation of Rn, then |T pEq| “ | detpT q|¨|E|

for all measurable E Ď Rn.

Proof. Recall from linear algebra that

|T pIq| “ | detpT q| ¨ |I|.

From this, it follows that |T pEq|e ď | detpT q| ¨ |E|e. So for measure 0 sets the
conclusion follows. Without loss of generality, we may assume that detpT q ą 0
since the conclusion also follows from this. Since detpT q ą 0, we have that T is
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invertible. Now, note that theorem is true for open sets, since for open U we
may write it as

U “
ď

k

Ik,

where the Ik are non-overlapping. Hence, we have

T pUq “
ď

k

T pIkq,

and so
|T pUq| “ detpT q

ÿ

k

|T pIkq|.

Let’s now explore sets of type Gδ. Let H “
Ş

k Gk, and let Hn “
Şn

k“1 Gk.
Then Hn Œ H. Assuming |Hn| Ñ |H| (that is, at least one of the Hi has finite
measure), we know T pHnq Œ T pHq, using the fact that T is invertible. So we
know that |T pHnq| Ñ |T pHq|, and we know that T pHnq “ detpT q ¨ |Hn|, but
this converges to T pHq “ detpT q ¨ |H|.

Why may we assume that |Hn| Ñ |H|? Write

H “

8
ď

n“1

pH X tx P Rn : |x| ă nuq “

8
ď

n“1

En.

Each of the En is of type Gδ, where the above argument works. We have
En Õ H, and so |En| Õ |H|.

Finally, let E be an arbitrary measurable set. Again, by Theorem 2.3, we
have that we may write E “ HzZ, where H is of type Gδ and |Z| “ 0. We
also take E Ď H. Then we have T pEq “ T pHq ´ T pZq, using the fact that T is
invertible. So

|T pEq| “ |T pHq| ´ |T pZq| “ |T pHq| “ detpT q ¨ |H|.

Note that |H| “ |E| by assumption, so we get |T pEq| “ detpT q ¨ |E|. Q.E.D

Remark 11. The Cantor Function is related to the Cantor set, C “
Ş

n Cn.
Let Dn “ r0, 1s ´ Cn “

Ť2n´1
j“1

`

Inj
˘o. Define a function

fnpxq “

#

j{2n if x P Inj
linear otherwise

.

This function is continuous, but maps a measurable set to a non-measurable
set. To see this, let fpxq “ limnÑ8 fnpxq. Notice that f surjects onto r0, 1s, so
use Vitali’s theorem to find a non-measurable set V Ď r0, 1s. Then we have that
f´1pV q Ď C, and so |f´1pV q| ď |C| “ 0. Therefore, f´1pV q is measurable, and
f maps this set to V , a non-measurable set.
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3.2 Lecture 7 (Measurable Functions)
The book defines a measurable function as follows.

Definition. Given a subset E Ď Rn (not necessarily measurable) and a function
f : E Ñ R, we say that f is a measurable function on E if tx P E : fpxq ą au

is a measurable set for all a P R.

We will use a similar definition, given below.

Definition. A function f : Rn Ñ R is a measurable function if tx : fpxq ą

au is measurable for all a P R.

We abbreviate the pullback tx : fpxq ą au to simply be tf ą au throughout.

Example 3.1. (i) We have that continuous functions are measurable func-
tions. The set pa,8q is an open set, and so we have f´1ppa,8qq “ tf ą au

is an open set, and so by Example 2.1 (i) we have that it is measurable.

(ii) The characteristic function of measurable sets is measurable. Recall
that for a set A we define the characteristic function as

χApxq “

#

1 if x P A

0 if x R A
.

Then if E Ď Rn is measurable, we have χE is a measurable function.
First, take a ě 1. We have then that χ´1

E “ ∅, and so measurable. For
0 ď a ă 1, we have χ´1

E “ E, a measurable set. Finally, if a ď 0, we have
that χ´1

E “ Rn, a measurable set.

The choice of tf ą au is not unique, as we see in the following theorem.

Theorem 3.3. The following are conditions are equivalent for a function f .

(i) tf ą au is measurable for all a P R.

(ii) tf ě au is measurable for all a P R.

(iii) tf ă au is measurable for all a P R.

(iv) tf ď au is measurable for all a P R.

Proof. piq ùñ piiq: We have that

tf ě au “

8
č

k“1

tf ą a ´ 1{ku.

Since this is a countable intersection of measurable sets, it is also measurable.
piiq ùñ piiiq: Measurability is preserved under complements, and we have
that

tf ě auC “ tf ă au.
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piiiq ùñ pivq: Again, we see that

tf ď au “

8
ď

k“1

tf ă a ` 1{ku.

A countable union of measurable sets is measurable.
pivq ùñ piq: Measurability is preserved under complements, and we have that

tf ď auC “ tf ą au.

Q.E.D

Using this, we can construct some nicer measurable sets.

Corollary 3.3.1. If f a measurable function, then the following are measurable
sets:

(i) ta ď f ď bu,

(ii) tf “ au,

(iii) ta ă f ď bu and ta ď f ă bu,

(iv) tf ă 8u.

We can also obtain some alternative criteria for measurability using this
definition.

Theorem 3.4. We have that f is a measurable function if and only if f´1pGq

is a measurable set for all G Ď R open.

Proof. ðù : is clear. We have that pa,8q is an open set for all a P R, and so
furthermore f´1ppa,8qq is a measurable set for all a. By definition, this means
that f is a measurable function.
ùñ : Let G Ď R be open. Then since we are in R, we may use Remark 1 to
get that there is an open cover of G of open disjoint intervals. Notationally, we
have

G “
ğ

k

pak, bkq.

Now, the pullback of G is

f´1pGq “
ğ

k

f´1ppak, bkqq.

Notice that we preserve the disjointness since we are in R. The pullback of these
open intervals is measurable since f is a measurable function, and so we have a
disjoint union of measurable sets, which is measurable. Q.E.D

We also note that we need not check the condition for all a P R, but rather
just for a P A Ď R where ClpAq “ R (i.e. a dense subset).
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Theorem 3.5. If A is a dense subset of R, then f is a measurable function if
and only if tf ą au is measurable for all a P A.

Proof. ùñ : is clear. By definition, we have tf ą au is measurable for all a P R,
and so by extension for all a P A.
ðù : What if a R A? Since A is dense, we can take a sequence taku such that
ak Œ a. Then we have

tf ą aku Õ tf ą au.

So we have a limit of increasing measurable sets, and so by Proposition 2.1
(ii) we get that tf ą au is measurable. Q.E.D

Definition. We say that a property holds almost everywhere (abbreviated
by a.e.) if it holds everywhere except in some set of measure 0.

Example 3.2. (i) Let fpxq “ χQpxq. We claim f “ 0 a.e. We see it holds
everywhere except on Q. So we must show Q has measure 0.

Claim 3.2. The measure of Q is 0.

Proof. We may write
Q “

ğ

qPQ
tqu.

Since Q is countable, we have that this is a countable union of sets of
measure 0. Furthermore,

|Q| “
ÿ

qPQ
|tqu| “

ÿ

qPQ
0 “ 0.

Q.E.D

Thus, we have the property holds a.e.

(ii) We say f “ g a.e. if |tx : fpxq ‰ gpxqu| “ 0.

We may extend Example 3.2 (ii) to show that if one of the functions is
measurable, then the other must also be measurable.

Theorem 3.6. If f is a measurable function, and f “ g a.e., then g is measur-
able and |tf ą au| “ |tg ą au| for all a.

Proof. Let Z “ tx : fpxq ‰ gpxqu. Then since f “ g a.e., we have |Z| “ 0.
Furthermore, for all a, we have

tg ą au Y Z “ tf ą au Y Z.

Since tg ą au YZ is measurable and differs from tg ą au by a set of measure 0,
we have that tg ą au is measurable and shares the same measure. Furthermore,

|tg ą au| “ |tg ą au Y Z| “ |tf ą au Y Z| “ |tf ą au|.

Q.E.D
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Do these measurability conditions hold under composition? The answer is
sometimes.

Theorem 3.7. If ϕ : R Ñ R is continuous and f : Rn Ñ R is measurable, then
ϕ ˝ f is measurable.

Proof. We have the following diagram:

Rn R R

f´1pϕ´1pGqq “ G2 ϕ´1pGq “ G1 G

f ϕ

f´1 ϕ´1

Notice that G1 is open, since ϕ is continuous, and G2 is measurable, since f is
a measurable function. Thus, we have that ϕ ˝ f is measurable. Q.E.D

Corollary 3.7.1. If f is measurable, then so are the following:

(i) |f |,

(ii) |f |p,

(iii) ecf , where c is a constant,

(iv) f` “ maxt0, fu,

(v) f´ “ ´mint0, fu.

Remark 12. Note that Theorem 3.7 is not true in general. We are not
guaranteed ϕ ˝ f is measurable if ϕ is measurable, since we only know that
ϕ´1pGq is a measurable set, not open.

3.3 Lecture 8 (Egorov’s Theorem)
We now prove some properties about measurable functions.

Theorem 3.8. (i) If f is a measurable function, c P R, then cf is measurable.

(ii) If f and g are measurable functions, then so is f ` g.

(iii) If f is a measurable function, then so is f2.

(iv) If f and g are measurable functions, then so is fg.

(v) If f and g are measurable functions, and g ‰ 0 a.e., then f{g is measurable
as well.

(vi) If tfnu is a sequence of measurable functions, then inf fn and sup fn are
also measurable.
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(vii) If tfnu is a sequence of measurable functions, then lim sup and lim inf are
also measurable.

(viii) If limnÑ8 fn “ fpxq a.e., then f is measurable.

Proof. (i) We would like to show that the set tcf ą au is measurable for all
a P R. We may rewrite this as tf ą a{cu, and since f is measurable we
know that this set is measurable as well for all a P R.

(ii) We first need a lemma (most likely trivial and should be known, but I’ll
leave it in for completeness):

Lemma 3.2. Between any two real numbers is a rational number.

Proof. Assume without loss of generality that x, y ą 0 (the argument is
analogous in the other cases). Let x, y P R such that y ą x. Then we have
y ´ x ą 0. By the Archimedean Principle, we have that there exists an
n P N such that y ´ x ą 1{n ą 0. Choose the largest k P N so that

k

n
ď x.

Then since this was the largest, we have

x ă
k ` 1

n
.

Assume that y ď k`1
n . Then we have

y ´ x ď
k ` 1

n
´

k

n
“

1

n
,

which is a contradiction. Hence, we must have that y ą k`1
n , and therefore

x ă k`1
n ă y strictly. Q.E.D

We would like to show tf ` g ą au is measurable for all a. Rewrite this as
tf ą a´gu. Since a´g and f are real numbers for all x, we get that there
is at least one rational q in between them. In particular, we may rewrite
this as

ď

qPQ
ptf ą qu X tq ą a ´ guq “

ď

qPQ
ptf ą qu X tg ą a ´ quq .

We know that these two sets are measurable, and so therefore this is a
union of measurable sets and so measurable for all a.

(iii) We would like to show that tf2 ą au is measurable. We may rewrite this
as tf2 ą au “ tf ą

?
au Y tf ă ´

?
au. We know that these sets are

measurable, and so the original set is measurable.
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(iv) Notice that pf ` gq2 ´ pf ´ gq2 “ f2 ` 2fg ` g2 ´ f2 ` 2fg ´ g2 “ 4fg. So
we have

fg “
pf ` gq2 ´ pf ´ gq2

4
.

We know that measurability is preserved under addition, subtraction,
squares, and multiplication by constants. Hence, fg is measurable.

(v) If g is a measurable function such that g ‰ 0 a.e., then we may define a
new function h, which is equal to g a.e. and is equal to 1 where g “ 0.
Since h “ g a.e., we get that h is measurable. Furthermore, we see that
we clearly get that f{h is measurable, and since f{g “ f{h a.e. we have
that f{g is measurable by Theorem 3.6.

(vi) Notice that
"

sup
k

fk ą a

*

“
ď

k

tfk ą au,

"

inf
k
fk ă a

*

“
č

k

tfk ă au,

and so we get that these functions are measurable.

(vii) Note that lim sup fnpxq “ infm supněm fnpxq and lim inf fnpxq “ supm infněm fnpxq.
Then by the prior property we get that these are measurable.

(viii) If limnÑ8 fnpxq “ fpxq a.e., then we get that it is equal to the lim sup
a.e., and so in particular we get that this f is measurable.

Q.E.D

Using these properties, we can build some crazy things. Moreover, we will
show that even though we can get some crazy functions, these functions are well
approximated by some nice functions.

Definition. A simple function is a function taking on only finitely many
finite values. In other words, it is a function taking on a1, . . . , aN P R on sets
E1, . . . , EN which are disjoint and whose union is Rn. We may represent this
function then by

f “

N
ÿ

i“1

aiχEi
pxq.

Lemma 3.3. We have that a simple function f is measurable if and only if the
Ei are measurable for all i.

Proof. This is a relatively clear lemma. If f is measurable, then we have that
tx : fpxq ą au is measurable for all a. But this can be represented as a union
of the Ei, and so we must have that the Ei are all measurable. For the other
direction, if the Ei are all measurable, then we have tx : fpxq ą au “

Ůk
i“1 Ei

for all a, where k depends on a. This is going to then be measurable for all
a. Q.E.D
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We now show that these simple functions are good approximators of all
functions. We will use a sort of “Lebesgue philosophy” to do so. The following
theorem will be extremely important moving forward.

Theorem 3.9. Every measurable function f can be expressed as the limit of
simple measurable functions; i.e.

fpxq “ lim
nÑ8

fnpxq.

Moreover, if the f ě 0 for all x, then we can choose the fn so that fn Õ f .

Proof. We first assume f ě 0. Let

fnpxq “

n2n
ÿ

j“1

ˆˆ

j ´ 1

2n

˙

χt
j´1
2n ăfď

j
2n u

˙

` nχtfěnu.

What is this function doing? It divides up the plane horizontally into dyadic
intervals of length 2n from 0 to n. Within each of these intervals, it takes the
smallest value of f within this interval. If the function then goes above n, it just
cuts off the function there. Certainly, then, we see that fn Õ f , and we achieve
our desired result. What if, however, f ă 0 at some points? We may write
f “ f` ´ f´ (see Corollary 3.7.1). Both of these functions are non-negative,
and so we just use the prior argument to get the desired result. One may worry
that we might get 8 ´ 8; however notice that if one function is non-zero at
some point, the other must be zero. Q.E.D

Example 3.3. To see this convergence, let’s animate an example. Let

fpxq “ |x sinpxq|.

Using Maple, we plot this graph;
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Animating from 0 ď x ď 10 and 1 ď n ď 8, we get the following gif. The end
results is as follows;

Thus, it seems pretty evident that the sequence of functions converge.

3.4 Lecture 9 (Semi-Continuity)
Definition. Suppose that we have f : E Ñ R. Then we say f is upper
semi-continuous (abbreviated by usc) at x0 P E if

lim sup
xÑx0,xPE

fpxq ď fpx0q.

Likewise, we say that f is lower semi-continuous (abbreviated lsc) at x0 P E
if

lim inf
xÑx0,xPE

fpxq ě fpx0q.

In other words, we have that f is usc if whenver there is a jump, we take the
uppermost value, and it is lsc if whenever there is a jump we take the lowermost
value.

Example 3.4. (a) Suppose f “ χF , F Ď Rn closed. Then f is usc. To see
this, say x0 R F . If xn Ñ x0 is some sequence of points converging to x0,
then we must have xn P F c by the closed property for all n large. So then
χF pxnq “ 0 for all n large enough; hence, lim supn χF pxnq “ 0 “ χF pxq.
If x0 P F , then we have that χF px0q “ 1. Since this is the characteristic
function, we trivially get that χF px0q ě lim supx χF pxq, since we have that
the rightmost value can be at most 1. Below is a picture of this kind of a
case for χr1,2s
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(b) Analogously, if f “ χG, G Ď Rn open, then f is lsc. Below is a picture of
this kind of case for χp1,2q.

We now discuss an alternate characterization of usc and lsc.

Theorem 3.10. (i) We have that a function f is usc if and only if the sets
tf ě au are closed for all a P R.

(ii) We have that a function f is lsc if and only if tf ď au are closed for all
a P R.
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Proof. We first note that (i) and (ii) are equivalent, since the negative of a usc
is a lsc function and vice versa.
p ùñ q Assume that f is usc. Let a P R be fixed, and let x0 P tf ě au; i.e. the
closure. Then we want to show x0 P tf ě au. Since x0 is in the closure, we have
a sequence of xn P tf ě au which converge to x0. Then we have fpxnq ě a for
all n. Since f is usc, then we have

lim sup
nÑ8

fpxnq ď fpx0q.

Therefore, we can chain this together to get

a ď lim sup
nÑ8

fpxnq ď fpx0q.

But this implies that fpx0q ě a, which gives us that x0 P tf ě au. So we have
that the set is equal to it’s closure, and so is closed.
p ðù q Let x0 be a limit point of E that is in E. If f is not usc at x0, then
fpx0q ă 8 and there exists M and txku such that fpx0q ă M , xk P E, xk Ñ x0,
and fpxkq ě M . Hence, tx : fpxq ě Mu is not relatively closed since it does
not contain all its limit points that are in E. So by contradiction we get that
fpx0q is usc. Q.E.D

We now want to talk about Egorov’s Theorem. The idea behind Egorov’s
Theorem is that almost everywhere convergence implies uniform convergence on
a “large” subset. We give the more formal statement below.

Theorem 3.11. (Egorov) If fn Ñ f a.e. on E and |E| ă 8, then for all ϵ ą 0
there exists F Ď E closed with |EzF | ă ϵ such that fn Ñ f uniformly on F .

Example 3.5. Take the function fnpxq “ xn. Then we see that it converges
to 0 uniformly on p´1, 1q. So we have that for all δ ą 0, fn Ñ 0 uniformly on
r´1 ` δ, 1 ´ δs.

Before proving the theorem, we need a lemma.

Lemma 3.4. Suppose that tfnu is a sequence of measurable functions that
converges almost everywhere on a set E, |E| ă 8, to a function f . Then given
ϵ, η ą 0, there is a closed subset F of E and an integer K such that |EzF | ă η
and |fpxq ´ fkpxq| ă ϵ| for all x P F and k ą K.

Proof. Fix ϵ, η ą 0. For each m, let Em “ t|fk ´ f | ă ϵ @k ą mu. Thus,

Em “
č

kąm

t|fk ´ f | ă ϵu,

so that Em is measurable. Clearly, we get that Em Ă Em`1. Moreover, since
fk Ñ f a.e. in E and f is finite, Em Õ EzZ, where |Z| “ 0. Hence, we have
that |Em| Ñ |EzZ| “ |E|. Since |E| ă 8, we have that |E ´ Em| Ñ 0. We
may thus choose an m0 so that |E ´ Em0 | ă 1

2η, and let F be a closed subset
of Em0

with |Em0
´ F | ă 1

2η. Then |E ´ F | ă η, and |f ´ fk| ă ϵ in F if
k ą m0. Q.E.D

39



James Marshall Reber January 6, 2020

The lemma is almost the same thing as the theorem, except we need to show
uniform convergence. We now proceed to use the lemma to prove this.

Proof. Given ϵ ą 0, for each k ě 1, choose closed Fk Ď E and m ě 1, such that

(i) |EzFk| ă ϵ2´k,

(ii) Fk Ď
Ş8

n“mt|fn ´ f | ă 1{ku.

By the lemma, we know that we may do this. Let F “
Ş8

k“1 Fk. Then F is a
closed subset of E, and we need to check that the statements of the theorem
hold. First, we see that |EzF | ă ϵ, since Ez

Ş8
k“1 Fk “

Ť8
k“1 |EzFk|. Next, we

need to check the uniform convergence property. Given δ ą 0, pick k ě 1 such
that 1{k ď δ. Then F Ď Fk. If x P F , then |fnpxq ´ fpxq| ă 1{k for all n ě m.
So |fn ´ f | ă δ by chaining these inequalities together. Thus, we get uniform
convergence. Q.E.D

3.5 Lecture 10 (Lusin’s Theorem)
We now want to go into Lusin’s theorem. Intuitively, we have that Lusin’s
theorem says that “measurable functions are almost continuous.” To properly
say this, though, we need a few definitions.

Definition. We say that a function f : X Ñ Y is continuous relative to a
set E if for all x0 P E, we have

lim
xÑx0,xPE

fpxq “ fpx0q.

Definition. A function f has property C on E if, given ϵ ą 0, there exists a
closed subset F Ď E with

(i) |EzF | ă ϵ.

(ii) f is continuous relative to F .

This leads us to the following lemma.

Lemma 3.5. Simple measurable functions have property C.

Proof. Let tEiu
N
i“1 be a collection of disjoint sets, and

f “

N
ÿ

i“1

aiχEi
.

Let E “
ŮN

i“1 Ei as well. For each i, choose closed subsets Fi Ď Ei such that

|EizFi| ă ϵ{N.
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Let F “
ŮN

i“1 Fi. Then we have

|EzF | “

ˇ

ˇ

ˇ

ˇ

ˇ

N
ď

i“1

pEizFiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

N
ÿ

i“1

|EizFi| ă

N
ÿ

i“1

ϵ

N
“ ϵ.

Thus, we just need to check that f is relatively continuous on F . Take x0 P F .
Then we want to show

lim
xÑx0,xPF

fpxq “ fpx0q.

Since the Fi are disjoint, we have x0 P Fi. Thus, since xn Ñ x0 and Fi closed,
we have xn P Fi for n large enough. Thus, we must get

lim
xÑx0,xPF

fpxq “ ai “ fpx0q.

This works for all x0 P F and so we get that the statement holds. Q.E.D

We now have enough to prove and state Lusin’s theorem.

Theorem 3.12. (Lusin) If f is a finite function on measurable E, then f is
measurable if and only if f has property C.

Proof. p ðù q Assume f has property C. Then for all k ě 1, we can choose
Fk Ď E so that

|EzFk| ă 1{k

and f is relatively continuous on Fk. Let Hn “
Ťn

k“1 Fk. Then Hn is closed,
since we have a countable union of closed sets, and Hn Ď Hn`1. Notice as well
that

|EzHn| ă 1{n,

since Fn Ď Hn and
|EzHn| ă |EzFn| ă 1{n.

Notice as well that f is relatively continuous on Hn. Then we see that Hn Õ

H Ď E with |EzH| “ 0. Now, let

gnpxq “

#

fpxq if x P Hn,

0 otherwise.

Then limnÑ8 gnpxq “ fpxq for all x P H. Notice that gn is measurable as well;
examining tgn ą au, if we have a ą 0 then we have it pulls back to Hn X G
by relative continuity, and for a ď 0 we have that it pulls back to everything.
Notice as well that since |EzH| “ 0, we get that limnÑ8 gnpxq “ fpxq a.e. By
Theorem 3.8 (vii), we see that f is then measurable.
p ùñ q We assume that f is measurable. By Theorem 3.9, we may write it as
the limit of a sequence of tfnu where fn is a simple measurable function. We
then break this up into cases.
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Case 1: Assume |E| ă 8. By Lemma 3.5, we see that each fn has property
C, and so we can pick Fn Ď E closed such that

|EzFn| ă
ϵ

2
2´n

and fn is relatively continuous on Fn. We need to have an additional set as
well; take F0 Ď E closed such that

|EzF0| ă
ϵ

2
,

and fn Ñ f uniformly on F0. We may do so by Egorov’s theorem, Theorem
3.11. Let us take then F “

Ş8
k“0 Fk Ď E. Then F is closed, and |EzF | ă ϵ.

We need to show that f is continuous on F . On F , we have that the fn are
all relatively continuous, and fn Ñ f uniformly. Since this is uniform, we have
that f is continuous on F .
Case 2: We assume now that |E| “ 8. Write E “

Ť

Ek, where

Ek “ E
č

tx : k ´ 1 ă |x| ă ku;

i.e., E intersected with the set of washers. Choose closed Fk Ď EK where
|EkzFk| ă ϵ2´k, and f continuous on Fk. Now, let F “

Ť8
k“1 Fk. We almost

win; we just need to check that F is closed, and that f is continuous on F .
Let’s first show that F is closed. Examine x P F̄ , and take a sequence xn Ñ x

such that xn P F . We see that xn must eventually be in some washer Fk for
some k and n large. Therefore, we get that x P Fk, and so x P F . Continuity
follows easily from this. Q.E.D

Remark 13. We used the standard trick of getting infinite sets from unions of
smaller sets which we understand well, but notice that we needed to be clever
with the choice of our smaller sets.

We now want to discuss convergence in measure, which is weaker form of
convergence.

Definition. We say that a sequence of functions tfnu converges in measure
on E to a function f , written fn

m
ÝÑ f , if for all ϵ ą 0 we have

|tx P E : |fnpxq ´ fpxq| ą ϵu| Ñ 0.

Remark 14. The reason this is weaker is that this doesn’t necessarily imply
the same thing for fixed points. It just works for overall collections.

Example 3.6. Let Qk be the enumeration of the rationals in r0, 1s. Let fk “

χrqk,qk`1{ks. Then fk
m

ÝÑ 0 only.

The next theorem says that this sequence gives us almost everywhere con-
vergence for a subsequence.
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Theorem 3.13. If fn m
ÝÑ f on E, then there exists a subsequence tnku with

fnk
Ñ f almost everywhere.

Proof. For each k ě 1, choose tnku so that

|tx : |fnk
pxq ´ fpxq| ą 1{ku| ă 2´k.

Notice we may do this by the definition of convergence in measure. Without
loss of generality, assume that nk`1 ą nk; if this were not the case, we just drop
that and go to the next term. Let

Ek “ tx : |fnk
pxq ´ fpxq| ą 1{ku.

We see that
8
ÿ

k“1

|Ek| ă 8.

By Borel-Cantelli (from Homework 1), we get that | lim supk Ek| “ 0. But, if
x P E, where fpxq “ limkÑ8 fnk

pxq, then

|fnk
pxq ´ fpxq| ą δ

for infinitely many k, and in particular we get

|fnk
pxq ´ fpxq| ą δ ą 1{k

for some eventual k. Thus, we get x P lim supk Ek, which has measure zero.
Thus, fnk

Ñ f a.e. Q.E.D

Remark 15. This trick is especially important, and is abused often for proving
a.e. convergence. We formalize this trick with the next corollary.

Corollary 3.13.1. If for all ϵ ą 0 we have

8
ÿ

n“1

|tfn ´ f | ą ϵu| ă 8

then fn Ñ f a.e.

3.6 Lecture 11 (Finishing Results)
We now prove a similar theorem to Theorem 3.13.

Theorem 3.14. Let fn, f be measurable functions which are finite a.e. on E,
and |E| ă 8. If fn Ñ f a.e. then fn

m
ÝÑ f .

Before proving this, we’d like to establish a basic result.
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Lemma 3.6. (i) If |
Ť

n En| ă 8 and En is a measurable set for all n, then

lim sup
nÑ8

|En| ď

ˇ

ˇ

ˇ

ˇ

lim sup
nÑ8

En

ˇ

ˇ

ˇ

ˇ

.

(ii) If En is a measurable set for all n, then

lim inf
nÑ8

|En| ě

ˇ

ˇ

ˇ
lim inf

nÑ8
En

ˇ

ˇ

ˇ
.

Proof. (i) Let Hn “
Ť8

m“n Em. We see that this forms a decreasing sequence,
and moreover by definition we see that Hn Œ lim supEn. By Proposition
2.1 (ii), we get

lim
nÑ8

|Hn| “ lim
nÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

8
ď

m“n

Em

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

lim sup
nÑ8

En

ˇ

ˇ

ˇ

ˇ

.

Now we have Ek Ď
Ť8

m“n Em for all k ě m, so therefore

|Ek| ď

ˇ

ˇ

ˇ

ˇ

ˇ

8
ď

m“n

Em

ˇ

ˇ

ˇ

ˇ

ˇ

, @k ě m.

Therefore,

sup
měn

|Em| ď

ˇ

ˇ

ˇ

ˇ

ˇ

8
ď

m“n

Em

ˇ

ˇ

ˇ

ˇ

ˇ

,

and so substituting this in we have

lim sup
nÑ8

|En| ď

ˇ

ˇ

ˇ

ˇ

lim sup
nÑ8

En

ˇ

ˇ

ˇ

ˇ

.

(ii) This is proved analogously. Let Hn “
Ş8

m“n Em. Then we see this forms
an increasing sequence, and moreover by definition we see that Hn Õ

lim inf En. By Proposition 2.1 (i), we get

lim
nÑ8

|Hn| “ lim
nÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

8
č

m“n

Em

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
lim inf

nÑ8
En

ˇ

ˇ

ˇ
.

Now, notice that
8
č

m“n

Em Ď Ek, @k ě m.

Therefore,
ˇ

ˇ

ˇ

ˇ

ˇ

8
č

m“n

Em

ˇ

ˇ

ˇ

ˇ

ˇ

ď |Ek|, @k ě m.
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Thus
ˇ

ˇ

ˇ

ˇ

ˇ

8
č

m“n

Em

ˇ

ˇ

ˇ

ˇ

ˇ

ď inf
měn

|Em|.

So we get
ˇ

ˇ

ˇ
lim inf

nÑ8
En

ˇ

ˇ

ˇ
ď lim inf

nÑ8
|En|.

Q.E.D

Now we may prove the theorem.

Proof. Look at Fn,ϵ “ tx : |fn´f | ą ϵu. Then we need to show that |Fn,ϵ| Ñ 0
as n Ñ 8 for all ϵ ą 0. Using Lemma 3.6 (i), it suffices to then show that

ˇ

ˇ

ˇ

ˇ

lim sup
nÑ8

Fn,ϵ

ˇ

ˇ

ˇ

ˇ

“ 0.

We have

lim sup
nÑ8

Fn,ϵ “ tx : |fn´f | ą ϵ for infinitely many nu Ď tx : fpxq ‰ lim
nÑ8

fnpxqu.

By assumption, this has measure 0. So therefore we get that the limit of the
measure goes to 0. Q.E.D

Example 3.7. Here, we give an example that convergence in measure does not
imply almost everywhere convergence. Let n “ 2k ` j for j P t0, 1, . . . , 2k´1u.
Notice that we may write every integer in such a form. Let fn be a function
such that

fn “ χrj{2k,pj`1q{2kq.

Then we have
f1 “ χr0,1q,

f2 “ χr0,1{2q, f3 “ χr1{2,1q,

f4 “ χr0,1{4q, f5 “ χr1{4,1{2q, f6 “ χr1{2,3{4q, f7 “ χr3{4,1q.

That is, we have that f2j , . . . , f2j`1´1 cover the interval r0, 1q. We first want to
see that it converges in measure to 0. That is, we want to show that

lim
nÑ8

|tx : |fn ´ 0| ą ϵu| “ 0.

We may find a j so that

|tx : |f2j ´ 0| ą ϵu| ă
1

2j

for all ϵ ą 0 by construction (since |f2j | “ 1{2j). Hence, taking the limit as
n Ñ 8, we get that this goes to 0, and so we get convergence in measure.
However, for every x P r0, 1s we have infinitely many n where it is 0 and where
it is 1. Therefore, fn does not converge almost everywhere to 0. This is an
example of how the points may move around the interval.
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We will finish this chapter off by stating a fact which will not be proven in
the class due to time.

Theorem 3.15. We have that fn
m

ÝÑ if and only if limm,nÑ8 |tfn ´ fm| ą

ϵu| “ 0. That is, convergence in measure is equivalent to Cauchy convergence
in measure.
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Chapter 4

Lebesgue Integration

4.1 Lecture 11 (Lebesgue Integral)
The idea of Lebesgue integration is that we want to define

ş

E
fpxqdx “

ş

E
f to

be the net volume/area of the region between the graph of f and the x-plane,
whatever that may be. We say net because the garph below the plane should
be associate with a negative value.

We’ll start by only dealing with non-negative functions.

Definition. We define the graph of f over E to be

Γpf,Eq “ tpx, fpxqq : x P Eu.

Definition. We define the region underneath a function over E to be

Rpf,Eq “ tpx, yq : x P E, 0 ď y ď fpxq if f ă 8, or 0 ď y ă 8 if fpxq “ 8u.

Definition. We define the Lebesgue integral of f over E, denoted by
ş

E
f ,

to be |Rpf,Eq| if this region is measurable.

The next theorem connects our study of measurable functions (Chapter 3)
with integrability.

Theorem 4.1. If f ě 0 on a measurable set E, then
ş

E
f is defined if and only

if f is measurable.

Before proving this, we first look at an important example.

Example 4.1. Let

f “

n
ÿ

i“1

aiχEi
ě 0

be a simple measurable function, and E “
Ťn

i“1 Ei. We examine then

Rpf,Eq “

n
ď

i“1

pEi ˆ r0, aisq .
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Since the Ei are disjoint by assumption, we may write this as

|Rpf,Eq| “

n
ÿ

i“1

|Ei||r0, ais| “

n
ÿ

i“1

|Ei|ai “

ż

E

f.

This gives us that simple measurable functions are integrable.

We will also need a somewhat easy lemma and a not so easy lemma before
proving the theorem. Following is the somewhat easy lemma.

Lemma 4.1. If f is a measurable function over E, f ě 0, then we have
|Γpf,Eq| “ 0.

Proof. Fix ϵ ą 0 and let Ek “ tx : kϵ ď fpxq ă pk ` 1qϵu. In other words, we
cut everything up into strips and collect the points which map into those strips.
We look now at

Γpf,Eq Ď
ď

k

pEk ˆ rkϵ, pk ` 1qϵqq .

Therefore, we have

|Γpf,Eq|e ď
ÿ

k

|Ek||ϵ| “ |ϵ|
ÿ

k

|Ek|.

Since the Ek are disjoint, we get
ÿ

k

|Ek| “ |E|.

Thus, we have
|Γpf,Eq|e ď |E||ϵ|.

If |E| ă 8, we have then that |Γpf,Eq|e “ 0 by just taking the infimum over
all ϵ. Otherwise, we must examine |Γpf,E X t|x| ď nu|e. By our prior work, we
see that this is 0 for all n, and since thsi goes to Γpf,Eq as we let n Ñ 8 and
this is an increasing sequence we get that |Γpf,Eq| “ 0. Q.E.D

Following this is the not so easy lemma.

Lemma 4.2. If A Ď Rn is such that A ˆ ra, bs is measurable for some a ă b,
then A is measurable.

Proof. We prove this in a series of steps, following the proof found here.

(Step 1) For any A Ď Rn, |A ˆ r0, 1s|e ď |A|e.

Proof. For any ϵ ą 0, take an cover of intervals A Ď
Ť

k Ik such that
ř

k |Ik| ă |A|e ` ϵ. Then we have

|A ˆ r0, 1s|e ď
ÿ

k

|Ik ˆ r0, 1s| “
ÿ

k

|Ik| ă |A|e ` ϵ.

Since this works for any ϵ we get the results. Q.E.D
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(Step 2) If A ˆ r0, 1s is measurable, then for any ϵ ą 0 there exists an open set
G containing A such that pGzAq ˆ r0, 1s is measurable and |pGzAq ˆ

r0, 1s| ă ϵ.

Proof. If A ˆ r0, 1s is measurable, then we have that we may pick an
open H Ď Rn`1 so that Aˆr0, 1s Ď H and |HzpAˆr0, 1sq| ă ϵ. Fixing
an x P A, the function y ÞÑ distppx, yq,Hcq is a continuous, positive
function on r0, 1s, and so there is a positive minimum which we denote
by δx ą 0. Therefore,

px ´ δx, x ` δxq ˆ r0, 1s Ď H

for all x P A. Letting

G “
ď

xPA

px ´ δx, x ` δxq,

we have that G is an open set which contains A such that Gˆ r0, 1s Ď

H. Since G and A are measurable, pGzAq ˆ r0, 1s “ pG ˆ r0, 1sqzpA ˆ

r0, 1sq is also measurable. Furthermore,

|pGzAq ˆ r0, 1s| ď |HzpA ˆ r0, 1sq| ă ϵ.

Q.E.D

(Step 3) If A ˆ r0, 1s is measurable, then |A ˆ r0, 1s| “ |A|e.

Proof. Take G open as in Step 2. Then we get that, for all ϵ ą 0,

|A ˆ r0, 1s| “ |G ˆ r0, 1s| ´ |pGzAq ˆ r0, 1s| ą |G ˆ r0, 1s| ´ ϵ,

per Step 2. Using the fact that |G ˆ r0, 1s| “ |G|, we then get that

|A ˆ r0, 1s| ą |G| ´ ϵ.

Since A Ď G, we get that |A|e ď |G|, so that

|A ˆ r0, 1s| ą |A|e ´ ϵ.

This works for all ϵ, so taking the supremum gives

|A|e ď |A ˆ r0, 1s|.

By Step 1, we get equality. Q.E.D

(Step 4) If A ˆ r0, 1s is measurable, then A is measurable.

Proof. Taking G again as in Step 2, we have for all ϵ ą 0

|GzA|e “ |pGzAq ˆ r0, 1s| ă ϵ.

By definition we win. Q.E.D

49



James Marshall Reber January 6, 2020

This then concludes the proof. Q.E.D

We now prove the theorem.

Proof. p ðù q Assume f is measurable, f ě 0. By Theorem 3.9, we get that
there is a sequence of fn Õ f almost everywhere. For simple functions, we have
that Rpfn, Eq is measurable by Example 4.1. This almost approaches Rpf,Eq;
however, it could be that this misses the actual graph of f . Thus, throwing this
in, we get

Rpfn, Eq Y Γpf,Eq Õ Rpf,Eq.

Since Γpf,Eq has measure 0 by Lemma 4.1 and the Rpfn, Eq are all measur-
able, we get that Rpf,Eq is measurable. p ùñ q It suffices to prove that tf ą 0u

is measurable, since measurability is preserved under shifts. To see that this is
measurable, let

R1pf,Eq “ tpx, yq : x P E, 0 ă y ď fpxqu.

Since R1 is measurable (by assumption), we get that any vertical stretch of
R1 is also measurable, since a stretch is just a Lipschitz transformation. More
precisely, we have for n ě 1 that

Rn “ tpx, yq : x P E, 0 ă y ď nfpxqu

is measurable. We get that Rn Õ tf ą 0uˆp0,8q, and so this set is measurable.
Intersecting this with Rn ˆ r1, 2s, we get that tf ą 0u ˆ r1, 2s is measurable. By
Lemma 4.2, this gives us that tf ą 0u is measurable. Q.E.D

4.2 Lecture 12 (Non-Negative Lebesgue Integral
Properties)

Theorem 4.2. (Properties of Lebesgue Integral) Assume throughout that all
functions are measurable and non-negative.

(i) If 0 ď g ď f then
ş

E
g ď

ş

E
f .

(ii) If
ş

E
f ă 8, then f ă 8 a.e. on E.

(iii) If E1 Ď E2, then
ş

E1
f ď

ş

E2
f .

(iv) If E “
Ť8

j“1 Ej , Ej disjoint, then
ż

E

f “

8
ÿ

j“1

ż

Ej

f.

(v) If |E| “ 0, then
ş

E
f “ 0.

(vi) If g ď f a.e. on E, then
ş

E
g ď

ş

E
f .
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(vii) If f “ g a.e. on E, then
ş

E
g “

ş

E
f .

(viii) Assuming |E| ą 0, we have
ş

E
f “ 0 if and only if f “ 0 a.e. on E.

(ix) Integration is linear; that is, for α, β P R, we have
ż

E

pαf ` βgq “ α

ż

E

f ` β

ż

E

g.

Before proving the theorem, we will state some important theorems that we
will use along the way.

Theorem 4.3. (Monotone Convergence Theorem) If tfnu is a sequence of non-
negative functions such that fn Õ f a.e. on E, then limnÑ8

ş

E
fn “

ş

E
f .

Proof. Examine Rpfn, Eq. Since fn is increasing, then Rpfn, Eq is increasing
to Rpf,Eq, except we may miss Γpf,Eq. Thus, we have Rpfn, Eq Y Γpf,Eq Õ

Rpf,Eq. Now, using the definition of integral and the fact that |Γpf,Eq| “ 0
from Lemma 4.1, we have

ż

E

f “ |Rpf, eq| “ lim
nÑ8

|Rpfn, Eq Y Γpf,Eq| “ lim
nÑ8

|Rpfn, Eq| “ lim
nÑ8

ż

E

fn.

Q.E.D

Theorem 4.4. (Chebychev’s Theorem) We have for measurable non-negative
f that

|tx P E : f ą au| ď
1

a

ż

E

f.

Proof. We may bound
ş

E
f below by

ż

EXtfąau

f ď

ż

E

f.

We may bound this below again by the constant function a; that is, we have
the chain

ż

EXtfąau

a ď

ż

EXtfąau

f ď

ż

E

f.

Solving the integral on the far left, we have
ż

EXtfąau

a “ a ¨ |tx P E : f ą au|.

So rewriting everything we have

a ¨ |tx P E : f ą au| ď

ż

E

f.

Dividing throughout by a gives the desired result. Q.E.D
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We now prove Theorem 4.2.

Proof. (i) This follows clearly, since Rpg,Eq Ď Rpf,Eq and so |Rpg,Eq| ď

|Rpf,Eq|.

(ii) We may bound the integral below by

|tf “ 8u ˆ r0,8q| ď

ż

E

f ă 8.

Now notice we may write the left hand side as

|tf “ 8u ˆ r0,8q| “ |tf “ 8u| ¨ 8.

Since we require this to be finite, the only way we can get that is if |tf “

8u| “ 0. So, we get that f ă 8 a.e. on E.

(iii) Again, we have Rpf,E1q Ď Rpf,E2q so that |Rpf,E1q| ď |Rpf,E2q|.

(iv) We may write

Rpf,Eq “

8
ď

j“1

Rpf,Ejq.

Since the Ej are disjoint, the Rpf,Ejq are also disjoint. Thus, taking it’s
measure, we get

ˇ

ˇ

ˇ

ˇ

ˇ

8
ğ

j“1

Rpf,Ejq

ˇ

ˇ

ˇ

ˇ

ˇ

“

8
ÿ

j“1

|Rpf,Ejq| “

8
ÿ

j“1

ż

Ej

f.

(v) We have Rpf,Eq Ď E ˆ r0,8q. Thus, |Rpf,Eq| ď |E| ¨ 8 “ 0. So
|Rpf,Eq| “ 0.

(vi) We may write
ż

E

g “

ż

EXtfăgu

g `

ż

EXtfěgu

g.

Now, since f ě g almost everywhere, we have that EXtf ă gu has measure
0. Therefore, we get

ż

E

g “

ż

EXtfěgu

g ď

ż

E

f,

as desired.

(vii) We use the prior property, with the inequality going both ways.

(viii) p ðù q This follows by the prior property.
p ùñ q We use Theorem 4.4 here. Since 0 “

ş

E
f , we have

|tx P E : f ą au| ď
1

a

ż

E

f “ 0.

Now, for a decreasing to 0, we get tx P E : f ą au Õ tx P E : f ą 0u.
Therefore, we have that |tx P E f ą 0u| “ 0.
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(ix) We prove this in two steps.

(Step 1) For c constant, we have
ş

E
cf “ c

ş

E
f .

Proof. The transformation Lpx, yq “ px, cyq is a linear transfor-
mation, which can be represented by the matrix

ˆ

1 0
0 c

˙

,

and so detpLq “ c. So, applying this to the set Rpf,Eq, we have
Rpcf,Eq. By Theorem 3.2 we get

|Rpcf,Eq| “ c|Rpf,Eq|.

Q.E.D

(Step 2) For f, g non-negative measurable functions, we have
ş

E
pf ` gq “

ş

E
f `

ş

E
g.

Proof. We first prove this for simple functions. Let f and g
be simple measurable functions. Then by definition, we may
represent them by

f “

n
ÿ

i“1

aiχAi
, g “

m
ÿ

j“1

bjχBj
,

where E “ \n
i“1Ai “ \m

j“1Bj . Therefore, we have

f ` g “

n
ÿ

i“1

m
ÿ

j“1

pai ` bjqχAiXBj .

Integrating this over E, we get
ż

E

pf ` gq “

n
ÿ

i“1

m
ÿ

j“1

pai ` bjq|Ai X Bj |.

Now, expanding and using the finite Fubini theorem grants us

n
ÿ

i“1

m
ÿ

j“1

pai `bjq|Ai XBj | “

n
ÿ

i“1

m
ÿ

j“1

ai|Ai XBj |`

m
ÿ

j“1

n
ÿ

i“1

bj |Ai XBj |.

“

n
ÿ

i“1

ai

m
ÿ

j“1

|Ai X Bj | `

m
ÿ

j“1

bj

n
ÿ

i“1

|Ai X Bj |.
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Since the Ai and Bj are disjoint and cover the space, we see that
summing |Ai XBj | over j gives us just |Ai|, and summing it over
i gives us just |Bj |. Hence, we get

n
ÿ

i“1

ai

m
ÿ

j“1

|Ai X Bj | `

m
ÿ

j“1

bj

n
ÿ

i“1

|Ai X Bj | “

n
ÿ

i“1

ai|Ai| `

n
ÿ

j“1

bj |Bj |

“

ż

E

f `

ż

E

g.

So for simple measurable non-negative functions, we get the de-
sired result.
Now, take f and g to just be non-negative measurable functions.
Then by Theorem 3.9, we get that there are sequences of simple
measurable non-negative functions tfnu Õ f and tgnu Õ g. We
use Theorem 4.3 to get

ż

E

pf ` gq “ lim
nÑ8

ż

E

pfn ` gnq.

We showed that linearity holds for simple measurable non-negative
functions, so we have

lim
nÑ8

ż

E

pfn ` gnq “ lim
nÑ8

ż

E

fn ` lim
nÑ8

ż

E

gn.

Using Theorem 4.3 again, we get

lim
nÑ8

ż

E

fn ` lim
nÑ8

ż

E

gn “

ż

E

f `

ż

E

g.

Thus, we have the desired result. Q.E.D

(Step 1) and (Step 2) in conjunction give us the desired result.
Q.E.D

These properties give us the following corollary.

Corollary 4.4.1. If fn ě 0 on E, then

ż

E

N
ÿ

n“0

fn “

N
ÿ

n“0

ż

E

fn.

Proof. This follows by the linearity property of the Lebesgue integral. Q.E.D

However, we can actually use these in conjunction with the prior theorems
to get that this holds for even countable sums.

54



James Marshall Reber January 6, 2020

Corollary 4.4.2. If fn ě 0 on E, then

ż

E

8
ÿ

n“0

fn “

8
ÿ

n“0

ż

E

fn.

Proof. Let FN “
řN

n“0 fn. Then we have FN Õ F “
ř8

n“0 fn. By Theorem
4.3, we have

lim
NÑ8

ż

E

FN “

ż

E

F.

Notice that we may rewrite the left hand side to be

lim
NÑ8

ż

E

N
ÿ

n“0

fn.

The sum on the inside of the integral is a finite sum, and so by Corollary 4.4.1
we have

lim
NÑ8

N
ÿ

n“0

ż

E

fn “

8
ÿ

n“0

ż

E

fn.

Thus, we have the desired result. Q.E.D

We now move on to discuss a little about integration limit theorems. The
Monotone Convergence Theorem, Theorem 4.3, tells us that we can sometimes
pull the limit inside of an integral and things work out fine. One may ask
whether this always holds, and the answer is a resounding “Not always.” Below
are some examples where this does not hold.

Example 4.2. (a) Let

fnpxq “

#

n2

2 x for 0 ď x ď 2
n ,

0 otherwise.

That is, we have a triangle with base r0, 2{ns and height n. We have f1
plotted below:
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and f2 plotted below:

So we see as n gets larger we get a thinner, taller triangle. We see for all x
that for n large enough we will have fnpxq “ 0, so we have that fn Ñ 0 as
n Ñ 8. However, we have that

ż 2{n

0

n2

2
xdx “ 1

for all n. Therefore, we have

lim
nÑ8

ż

E

fn “ 1 ‰

ż

E

lim
nÑ8

fn “ 0.
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(b) Let

fnpxq “

$

’

&

’

%

x ´ n for n ď x ď n ` 1

´x ` n ` 2 for n ` 1 ď x ď n ` 2

0 otherwise.

The plot of f1 is given below:

The plot of f2 is given below:
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So we see that it is a triangle of area 1 moving along the x axis. Again, for
any fixed x, we see that fnpxq “ 0 for n sufficiently large. So we get

lim
nÑ8

ż

E

fn “ 1 ‰

ż

E

lim
nÑ8

fn “ 0

again.

We state some theorems which will be proven in the next lecture. These
theorems give us some idea of when we are allowed to pull in the limit.

Theorem 4.5. (Fatou’s Lemma) If fn ě 0,
ż

E

´

lim inf
nÑ8

fn

¯

ď lim inf
nÑ8

ż

E

fn.

Theorem 4.6. (Dominated Convergence Theorem) If fn ě 0, fn Ñ f a.e. and
there exists a ϕ ě 0 such that

(i) fn ď ϕ a.e.,

(ii)
ş

E
ϕ ă 8,

then
lim
nÑ8

ż

E

fn “

ż

E

f.

4.3 Lecture 13 (Non-Negative Fatou, General
Lebesgue Integral)

We will first prove Fatou’s Lemma.

Proof. Let gn “ infměn fm. Then we see that gn Õ lim inf fn by definition. We
have that Theorem 4.3 tells us that

ż

E

lim inf
nÑ8

fn “ lim
nÑ8

ż

E

gn.

Notice that fn ě gn for all n. Then Theorem 4.2 (i) tells us that
ż

E

fn ě

ż

E

gn,

and in particular
lim inf
nÑ8

ż

E

fn ě lim
nÑ8

ż

E

gn.

Chaining these inequalities together gives us the desired result. Q.E.D

It turns out that the Dominated Convergence Theorem is just a consequence
of Fatou’s Lemma. We prove this now.
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Proof. Fatou gives us half of what we want. That is, since we have almost
everywhere convergence, we get that

lim inf
nÑ8

fn “ lim
nÑ8

fn “ f a.e.

and so by Fatou’s we have
ż

E

f ď lim inf
nÑ8

ż

E

f.

In order to get the desired result, we must then show

lim sup
nÑ8

ż

E

fn ď

ż

E

f.

Let gn “ ϕ ´ fn. Then we have that gn ě 0, and by Fatou again we have
ż

E

lim inf
nÑ8

gn ď lim inf
nÑ8

ż

E

gn.

Writing out, this is
ż

E

pϕ ´ fq ď lim inf
nÑ8

ż

E

pϕ ´ fnq.

Linearity of integrals almost gives us what we want. However, we only have this
for addition. We can cheat this by setting

ϕ “ pϕ ´ fq ` f.

Then we have
ż

E

ϕ “

ż

E

pϕ ´ fq `

ż

E

f

by linearity. Since
ş

E
ϕ is finite, we can subtract

ş

E
f (which must also be finite)

to get
ż

E

ϕ ´

ż

E

f “

ż

E

pϕ ´ fq.

So, rewriting the above inequality using this result, we have
ż

E

ϕ ´

ż

E

f ď lim inf
nÑ8

ˆ
ż

E

ϕ ´

ż

E

f

˙

.

Now, distributing the limit, we have
ż

E

ϕ ´

ż

E

f ď

ż

E

ϕ `

ˆ

lim inf
nÑ8

´

ż

E

fn

˙

“

ż

E

ϕ ´ lim sup
nÑ8

ż

E

fn.

Using the finiteness of everything, we are allowed to rearrange this to get

lim sup
nÑ8

ż

E

fn ď

ż

E

f.

Q.E.D
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The next question we want to explore is how to integrate general functions.
The idea is to break it down into it’s non-negative components and try to use
prior results on that. This leads us to our first definition.

Definition. For general functions, we write

f “ f` ´ f´.

We thus set
ż

E

f “

ż

E

f` ´

ż

E

f´,

as long as either
ş

E
f` ă 8 or

ş

E
f´ ă 8.

We now can talk about the Lebesgue integral for general functions.

Definition. We say that a function f is Lebesgue integrable on E, denoted
by f P LpEq, if

ş

E
f exists and is finite.

Remark 16. We may have that the integral exists, even though the function
itself is not integrable.

Lemma 4.3. We have that f P LpEq if and only if |f | P LpEq.

Proof. Note that we define |f | “ f` ` f´. Assume that f integrable. Then we
have

ż

E

f “

ż

E

f` ´

ż

E

f´ ă 8.

This implies that we must have that
ş

E
f` and

ş

E
f´ are both finite. Likewise,

if
ż

E

|f | “

ż

E

f` `

ż

E

f´ ă 8,

then both
ş

E
f` and

ş

E
f´ exist and are finite. Q.E.D

Lemma 4.4. We have
ˇ

ˇ

ˇ

ˇ

ż

E

f

ˇ

ˇ

ˇ

ˇ

ď

ż

E

|f |.

Proof. We see that
ˇ

ˇ

ˇ

ˇ

ż

E

f

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

E

f` ´

ż

E

f´

ˇ

ˇ

ˇ

ˇ

.

By the triangle inequality, we get
ˇ

ˇ

ˇ

ˇ

ż

E

f` ´

ż

E

f´

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż

E

f`

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

E

f´

ˇ

ˇ

ˇ

ˇ

“

ż

E

|f |.

Q.E.D

We now get a theorem of properties of the Lebesgue integral, which is similar
to that of Theorem 4.2. We will omit the proof of most of these as a result.
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Theorem 4.7. (i) We have that f P LpEq implies |f | ă 8 almost everywhere
on E.

(ii) If f ď g almost everywhere and f, g P LpEq, then
ş

E
f ď

ş

E
g.

(iii) If E1 Ď E2 and f P LpE2q, then f P LpE1q as well (Notice no inequal-
ity).

(iv) If f P LpEq and E “
Ů

k Ek, then
ż

E

f “
ÿ

k

ż

Ek

f,

and moreover f P LpEkq for each k.

(v) |E| “ 0 implies
ş

E
f “ 0.

(vi) f “ 0 almost everywhere in E implies that
ş

E
f “ 0.

(vii) If f P LpEq, then cf P LpEq, and moreover
ż

E

cf “ c

ż

E

f.

(viii) If f, g P LpEq, then f ` G P LpEq and moreover
ż

E

pf ` gq “

ż

E

f `

ż

E

g.

Proof. We include the proof for the last property. First, notice that f`g P LpEq,
since |f ` g| ď |f | ` |g| by the triangle inequality. By Lemma 4.3, the first
property, and Theorem 4.2, we get

ż

E

|f | `

ż

E

|g| ă 8 ùñ

ż

E

|f ` g| ă 8,

and since |f `g| P LpEq we have f `g P LpEq. Now, we show the second part. If
f, g ě 0, we win. Let’s show it holds if f ě 0, g ă 0, and f ` g ě 0 everywhere.
Write f “ pf ` gq ` p´gq. Then this implies that we have
ż

E

f “

ż

E

pf ` gq `

ż

E

p´gq “

ż

E

pf ` gq ´

ż

E

g ùñ

ż

E

f `

ż

E

g “

ż

E

pf ` gq,

since things are finite. Abusing multiplication by ´1, we see that we have that
as long as f, g and f ` g have constant sign over E, then we win. But we can
just divide up E into a disjoint union of Ek, k P t1, . . . , 6u, where in each Ek

we have that they have constant sign. Therefore, we have
ż

E

pf ` gq “

6
ÿ

k“1

ż

Ek

pf ` gq “

6
ÿ

k“1

ˆ
ż

Ek

f `

ż

Ek

g

˙

“

6
ÿ

k“1

ż

Ek

f `

6
ÿ

k“1

ż

Ek

g

“

ż

E

f `

ż

E

g.

Q.E.D
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We’d like to now translate the limit theorems to statement about general
functions.

Theorem 4.8. (MCT revised)

(i) If fn Õ f and ϕ ď fn with ϕ P LpEq, then
ş

E
fn Ñ

ş

E
f .

(ii) If fn Œ f and fn ď ϕ with ϕ P LpEq, then
ş

E
fn Ñ

ş

E
f .

Proof. We prove (i). The proof of (ii) is just (i) but multiplied by -1. Examing
gn “ fn ´ ϕ. By the old MCT, we have that

ż

E

gn Ñ

ż

E

g.

Rewriting this, we have
ż

E

fn ´ ϕ Ñ

ż

E

f ´ ϕ,

and so by linearity we get
ż

E

fn Ñ

ż

E

f.

Q.E.D

Theorem 4.9. (Fatou’s Lemma revised)

(i) If there exists a ϕ P LpEq such that fn ě ϕ for all n, then
ż

E

lim inf
nÑ8

fn ď lim inf
nÑ8

ż

E

fn.

(ii) If there exists a ϕ P LpEq such that fn ď ϕ for all n, then
ż

E

lim sup
nÑ8

fn ě lim sup
nÑ8

ż

E

fn.

Proof. (i) Apply the old Fatou’s lemma (Theorem 4.5) to fn ´ ϕ and use
linearity.

(ii) Use the proof of Theorem 4.6, noting that

lim inf
nÑ8

´fn “ ´ lim sup
nÑ8

fn.

Q.E.D

Theorem 4.10. (DCT revised) If fn Ñ f a.e. on E and supn |fn| ď ϕ P LpEq,
then

ż

E

fn Ñ

ż

E

f.

Proof. This is a consequence of Theorem 4.9, using that ´ϕ ď fn ď ϕ and
then using parts (i) and (ii). Q.E.D
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4.4 Lecture 14 (BCT, UCT, Riemann Integral)
We want to talk about two more limit theorems which are extremely useful. For
these, we will note that we need another assumption; that is, we need |E| ă 8.

Theorem 4.11. (Bounded Convergence Theorem) If |E| ă 8, fn Ñ f almost
everywhere on E, and |fnpxq| ď M for all x P E and for all n ě 1, then

ż

E

fn Ñ

ż

E

f.

Proof. This is actually a corollary of Theorem 4.6, because ϕ “ M is integrable
on a set of finite measure. Q.E.D

Theorem 4.12. (Uniform Convergence Theorem) If |E| ă 8, fn Ñ f uni-
formly on E, and fn P LpEq, then

ż

E

fn Ñ

ż

E

f,

and furthermore f P LpEq.

Proof. Recall that fn Ñ f uniformly means that for all ϵ ą 0 there exists an n0

such that for all n ě n0,

|fnpxq ´ fpxq| ă ϵ, @ϵ ą 0.

Notice that we may write

fpxq “ fpxq ´ fnpxq ` fnpxq.

By the triangle inequality, we have

|fpxq| ď |fpxq ´ fnpxq| ` |fnpxq|.

Taking n sufficiently large, we have that this is bounded above by

|fpxq| ď ϵ ` |fnpxq|.

Integrating both sides gives us
ż

E

|f | ď

ż

E

ϵ `

ż

E

|fn| “ |E|ϵ `

ż

E

|fn|

Since the right hand side is finite (assuming fn P LpEq and |E| ă 8), we get
that the left hand side is finite. So |f | P LpEq, which by Lemma 4.3 implies
f P LpEq. This gives us the second part. For the first part, we want to prove
that

ż

E

fn Ñ

ż

E

f,
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or, in other words,
ˇ

ˇ

ˇ

ˇ

ż

E

fn ´

ż

E

f

ˇ

ˇ

ˇ

ˇ

Ñ 0.

By the linearity of integration, the inside may be rewritten as
ˇ

ˇ

ˇ

ˇ

ż

E

pfn ´ fq

ˇ

ˇ

ˇ

ˇ

.

By the proof of Theorem 4.7, we get
ˇ

ˇ

ˇ

ˇ

ż

E

pfn ´ fq

ˇ

ˇ

ˇ

ˇ

ď

ż

E

|fn ´ f |.

Now, since we have uniform convergence, for fixed ϵ we know that for n suffi-
ciently large we have |fn ´ f | ă ϵ uniformly over E. So we get

ż

E

|fn ´ f | ď

ż

E

ϵ “ |E|ϵ.

Since this applies for all ϵ ą 0, we take ϵ Ñ 0 to get
ż

E

|fn ´ f | ď 0,

as desired. Q.E.D

We now want to relate Lebesgue and Riemann integrals. For notations sake,
we will denote the Riemann integral by

pRq

ż b

a

f “ lim
meshpπnqÑ0

ÿ

i

fpx˚
i qpxi ´ xi`1q,

where πn denotes some partition

a “ x0 ă x1 ă . . . ă xn “ b,

x˚
i P rxi´1, xis, and meshpπnq denotes the max distance between two consecutive

points in the partition.

Theorem 4.13. Let f be bounded on ra, bs. If f is Riemann integrable on
ra, bs, then f P Lpra, bsq and

pRq

ż b

a

f “

ż b

a

f “

ż

ra,bs

f.

Remark 17. The assumption that f bounded is not necessary, as we will see
towards the end.
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Proof. For n ě 1, let πn be the partition txiu
2n

i“0. That is, the partition of
Dyadic intervals. More specifically, we have that

xk “ a `
k

2n
pb ´ aq.

Now, let

lnpxq :“
2n
ÿ

k“1

ˆ

inf
rxk´1,xks

fpxq

˙

χrxk´1,xkspxq,

unpxq :“
2n
ÿ

k“1

˜

sup
rxk´1,xks

fpxq

¸

χrxk´1,xkspxq,

Ln “

ż b

a

lnpxq,

Un “

ż b

a

unpxq,

where the Ln and Un are Lebesgue integrals. The assumption was that f was
Riemann integrable, which gives us that L ´ n and Un converge to the same
limit as n Ñ 8;

Ln Ñ pRq

ż b

a

f,

Un Ñ pRq

ż b

a

f.

So all we need to prove is that these converge as Lebesgue integrals as well.
Let’s next note that ln forms an increasing sequence pointwise, while un

forms a decreasing sequence pointwise, since we are taking subdivisions. We see
that they are probably increasing to f , but we can’t say that for certain quite
yet. For now, denote these limits as l and u respectively. The BCT (Theorem
4.11) tells us that

ż b

a

ln Ñ

ż b

a

l,

ż b

a

un Ñ

ż b

a

u.

So we have

pRq

ż b

a

f “

ż b

a

l “

ż b

a

u.

Note that, by construction, u ´ l ě 0. Then we have
ż b

a

u ´ l “ 0,
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which implies that u ´ l “ 0 almost everywhere. This is the same as saying
y “ k almost everywhere on ra, bs. So since l ď f ď u, we get l “ f “ u almost
everywhere on ra, bs. So

ż b

a

l “

ż b

a

f “

ż b

a

u

by prior results. Q.E.D

This proof also gives us a nice characterization of Riemann integrals.

Theorem 4.14. Assume f is bounded on ra, bs. Then f is Riemann integrable
on ra, bs if and only if f is continuous a.e. on ra, bs.

Proof. p ùñ q Assume it is Riemann integrable. Let ln, un, l, u be as above.
Then we know l “ f “ u almost everywhere. Say Z0 “ tx P ra, bs : lpxq ‰

upxqu. Then since it’s almost everywhere, we have |Z0| “ 0. Let Z1 “ tx P

ra, bs : x “ a` b
2n pb´aq, n ě 1, k ď 2nu. Then |Z1| “ 0 since it is a countable

collection of points. Let Z “ Z0 Y Z1. Then by construction |Z| “ 0. We then
claim that if x R Z, w ehave f is continuous at x. Fix an ϵ ą 0, and pick n
large enough so that lnpxq ą fpxq ´ ϵ, unpxq ă fpxq ` ϵ. We may do this since
x R Z0. For this n fixed, we have x P px

pnq

k´1, x
pnq

k q, where this is an open interval
since x R Z1. For y in this interval, we know that |fpxq ´ fpyq| ă ϵ, since ln is
an infimum and un a supremum. Thus, we have found an appropriate interval,
and so it is continuous a.e.
p ðù q Assume f is continuous a.e Let πn be some sequence of partitions with
the mesh going to 0. Let ln, un be the corresponding step function for the
upper and lower Riemann sums. If f is continuous at x, then lnpxq Ñ fpxq and
un Ñ fpxq a.e. Therefore, by the BCT, we have

ż b

a

ln Ñ

ż b

a

f,

ż b

a

un Ñ

ż b

a

f.

Since these are the same, we get that f is Riemann integrable. Q.E.D

We end by talking about improper Riemann integrals.

Remark 18. Note that there is no need for “improper” Lebesgue integrals, by
definition.

Theorem 4.15. Assume f ě 0 on ra, bs and f is Riemann integrable (and
therefore bounded) on ra ` ϵ, bs for all ϵ ą 0. If

lim
ϵÑ0

pRq

ż b

a`ϵ

f “ I,

then f P Lpra, bsq and
ż b

a

f “ I.
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Proof. We sketch the proof her. Let fϵpxq “ fpxqχra`ϵ,bs. Note that fϵpxq Õ

fpxqχpa,bspxq as ϵ Ñ 0. Then

pRq

ż b

a`ϵ

f “

ż

fϵ Ñ

ż b

a

f

by the MCT on ra, bs. Q.E.D

Remark 19. Here, note that the f ě 0 assumption is necessary.

4.5 Lecture 15 (Fubini’s Theorem)
The question we’d like to answer today is, assuming fpx, yq is a measurable
function on Rn`m, where x P Rn and y P Rm, when is

ż

fpx, yqpdxdyq “

ż
ˆ

ż

fpx, yqdx

˙

dy “

ż
ˆ

ż

fpx, yqdy

˙

dx.

That is, when can we take an iterated integral? To answer this question, we
must consider two other sub-questions: for x fixed, is y ÞÑ fpx, yq a measurable
function, and is F pxq :“

ş

fpx, yqdy a measurable function? Regarding the first
question, let’s consider fpx, yq “ χEpx, yq, E Ď Rn`m measurable. Write fpx, ¨q

as a function of y where x is fixed. Thus, we have

fpx, yq “

#

1 if y P Ex

0 if y R Ex.

We then need to think about what Ex is. For a fixed x, Ex “ ty P Rm : px, yq P

Eu. In other words, these are the slices of E. So fpx, ¨q “ χEx is measurable if
and only if Ex measurable for fixed x. If E is measurable, is it always true that
Ex must be measurable? The answer to this question turns out to “almost.”

Example 4.3. Take F Ď r0, 1s to be a non-measurable set. Take

E “ rp0, 1q ˆ p0, 1qs Y rt1u ˆ F s.

Then we see that E1 “ F , a non-measurable set, even though we have that E is
measurable (the slice where it is not measurable has measure 0). This provides
us with the key – we’ll be able to say that Ex is measurable a.e.

We also see that the conclusion of Fubini is not always true.

Example 4.4. We define a function f over R3, which will be hard to graph.
Instead, we will just describe how it looks. Form a sequence of unit squares,
starting from the origin and moving towards infinity diagonally. Divide the
squares into fourths, and in each square repeat the same pattern. That is,
denoting the nth unit square by Sn, we have x P S1, y P S1,

fpx, yq “

#

1 if 0 ď x, y ď 1{2 or 1{2 ď x, y ď 1,

0 if 0 ď x ď 1{2, 1{2 ď y ď 1 or 0 ď y ď 1{2, 1{2 ď x ď 1.
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Repeat this pattern for all n. Then we see that
ż ż

|f | “

ż

f` `

ż

f´ “ 8 ` 8 “ 8,

so f is not integrable. Furthermore,
ş ş

f is not defined, since we have 8 ´ 8.
On the other hand,

ş

fpx, yqdy “ 0 for any x.

Let us define a class of functions which will be helpful moving forward.

Definition. Let F be the class of measurable functions, f , on Rn`m such that

(i) f P LpRn`mq,

(ii) For almost every x, fpx, ¨q is measurable and integrable on Rm,

(iii) F pxq :“
ş

fpx, yqdy is measurable and integrable on Rn and
ş ş

f “
ş

F .

This leads us to Fubini’s theorem.

Theorem 4.16 (Fubini’s Theorem). If f P LpRn`mq, then f P F .

We will prove this using a series of lemmas. We will prove the following
lemma in this lecture, and will finish the proof in the next.

Lemma 4.5. We have that F is closed under linear combinations and under
monotone limits, as long as the limit is integrable.

Proof. We first prove it for linear combinations. Take f “
řN

i“1 aifi, where
fi P F . Let Zi “ tx L fipx, ¨q R Mu. By assumption, |Zi| “ 0. Let Z “
ŤN

i“1 Zi. We note that |Z| “ 0. So for x R Z, we get fipx, ¨q is measurable and
also integrable. We therefore know that f “

řN
i“1 aifipx, ¨q is measurable and

integrable. Define F pxq :“
ş

řN
i“1 aifipx, ¨q if x R Z and 0 otherwise (it’s fine to

do this since Z has measure 0). Then using linearity, we get

F pxq “

ż N
ÿ

i“1

aifipx, ¨q “

N
ÿ

i“1

ai

ż

fipx, ¨q “

N
ÿ

i“1

aiFipxq.

Furthermore, integrating F pxq gives us
ż

F pxq “

ż N
ÿ

i“1

aiFipxq “

N
ÿ

i“1

ai

ż

Fipxq “

ż ż

f,

and so we win.
We now prove it holds for monotone limits. Assume that fk Õ f P LpRn`mq,

fk P F . Let Zk “ tx : fkpx, ¨q R Mu. Set Z “
Ť

k Zk, and note |Z| “ 0. For
x R Z, we have fkpx, ¨q Õ fpx, ¨q. Furthermore, since this is an increasing
sequence, we have f1px, ¨q ď fkpx, ¨q ď fpx, ¨q for all k, and so we get

ż

fkpx, ¨qdy Ñ

ż

fpx, ¨qdy
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by the Monotone Convergence Theorem (Theorem 4.8). We then get that the
integral is well-defined, and exists, but we do not know that fpx, 9q is integrable,
since it might infinite. Let Fkpx0 “

ş

fkpx, yqdy, and again let Fkpxq “ 0 if
x P Z. Then we have

Fkpxq Ñ F pxq.

Furthermore, we have Fkpxq Õ F pxq. Thus, F pxq is measurable. We use the
MCT again to get

ż

Fk Ñ

ż

F,

noting again that F1pxq ď Fkpxq. Now
ż ż

fk Ñ

ż ż

f

as k Ñ 8 by MCT. Furthermore, we have
ż ż

fk “

ż

Fk,

so this implies
ż

F “

ż ż

f.

Since f P LpRn`mq, we have that
ş

F ă 8 and integrable, which forces F ă 8.
This then implies that fpx, ¨q is integrable as well. This gives us the result.

Q.E.D

4.6 Lecture 16 (Proving Fubini, Tonelli’s Theo-
rem)

Lemma 4.6. If E Ď Rn`m is measurable and |E| ă 8, then χE P F .

Proof. We prove this by building things up.

(i) We start with half open intervals. That is, the sets

J “ ra1, b1q ˆ ¨ ¨ ¨ ˆ ran`m, bn`mq.

Notice that we may write this as J “ J1 ˆ J2, where

J1 “ ra1, b1q ˆ ¨ ¨ ¨ ˆ ran, bnq

and
J2 “ ran`1, bn`1q ˆ ¨ ¨ ¨ ˆ ran`m, bn`mq.

Then we may write χJpx, yq “ χJ1pxqχJ2pyq. Now, we want to prove
that χJ is in F . We first note that χJ P LpRn`mq trivially, since it is
a characteristic function over a set of finite measure. Next, we’d like to
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show that for almost all x, χJpx, ¨q is measurable and integrable. Since
χJpx, ¨q “ χJ1pxqχJ2p¨q, we have that χJpx, ¨q “ χJ2p¨q or χJpx, ¨q “ 0,
depending on whether x P J1 or not. So it is measurable for all x, and
furthermore it is integrable since it is either a characteristic function or
zero. Now, we need to show that

F pxq :“

ż

χJpx, yqdy

is measurable and integrable as well. We rewrite this as

F pxq “

ż

χJ1
pxqχJ2

pyqdy “ χJ1
pxq

ż

χJ2
pyqdy “ χJ1

pxq|J2|.

Since |J2| ă 8, we have that this is a measurable function. Furthermore,
integrating this over x gives us

ż

F pxqdx “ |J2|

ż

χJ1
pxqdx “ |J1||J2|.

We know from prior that

|J1||J2| “ |J1 ˆ J2| “ |J | “

ż ż

χJpx, yq.

So we have that it is integrable, and that it is equal to the double integral.
This gives us that it must be in F .

(ii) Now let’s prove it for open sets. Let G Ď Rn`m be open. Then we
know that we may cover G by non-overlapping closed intervals. Taking
these intervals to be half open, we get that they must actually be disjoint.
Hence, we may write

G “

8
ğ

k“1

Jk.

Now, taking the characteristic functions, we have

χG “

8
ÿ

k“1

χJk
.

Let’s cap this off at n; that is, examine

fn “

n
ÿ

k“1

χJk
.

Since χJk
P F for each k, Lemma 4.5 tells us that the sum from 1 to n of

these functions must also be in F . Now, notice that fn Õ f “
ř8

k“1 χJk
.

Lemma 4.5 tells us that F is closed under monotone limits, and so we
get that f P F as well. Therefore, we have that χG “ f is in F .
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(iii) Since we have it for open sets, we can also show it holds for sets of type
Gδ. Let H be such a set. Then we have H “

Ş

k Gk, where Gk are open
for all k. Without loss of generality, take these to be decreasing sets. Then
we have that χGk

Œ χH . Again, this is a monotone limit, and so since
χGk

P F we must have χH P F .

(iv) We also need to show it holds for sets of measure 0. Let Z be such a set.
Then we can find a Gδ set H such that Z Ď H and |H| “ |Z| “ 0. We
must now show χZ P F . We have that χZ P LpRn`mq by default. Fixing
x, we have that χZpx, ¨q is measurable a.e. since χZpx, ¨q “ χHpx, ¨q “ 0
for a.e. x. Furthemore, we see that χZpx, ¨q is integrable. Let

F pxq “

ż

χZpx, yqdy “ 0.

We get that this is therefore measurable and integrable. Furthermore,
ż

F pxqdy “

ż ż

χZdxdy “ 0.

(v) For general measurable sets E, Theorem 2.3 (ii) says that we may write
it as E “ HzZ, where H is of type Gδ and |Z| “ 0. Hence, χE “ χH ´χZ .
Since χH , χZ P F , we get that χE P F by using the fact that it’s closed
under linear combinations.

Q.E.D

We now finally prove Fubini’s theorem.

Proof. We again build things up.

(i) Simple functions which are integrable are in F by Lemma 4.5 and Lemma
4.6.

(ii) Non-negative integrable functions f are in F , since Theorem 3.9 gives
us that we have a sequence of simple measurable functions fk Õ f , and F
is closed under monotone limits.

(iii) For general f , we write it as f “ f` ´ f´. Since each of these are in F ,
and F is closed under linear combinations, we have that f P F .

Q.E.D

We also have a similar theorem called Tonelli’s theorem, which is a very close
relative to Fubini’s theorem.

Theorem 4.17 (Tonelli’s Theorem). If fpx, yq is a non-negative measurable
function on Rn`m, then

ż ż

fdxdy “

ż
ˆ

ż

fdx

˙

dy “

ż
ˆ

ż

fdy

˙

dx,

and fpx, ¨q and F pxq “
ş

fpx, yqdy are measurable.
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Proof. It turns out that this is just a consequence of Fubini’s theorem. Define
a ^ b “ minta, bu. Let

fn “ pfpx, yq ^ nqχtpx,yq : |px,yq|ănu

. Then we see that fn is just a linear multiple of a characteristic function,
and so fn P F for all n. Furthermore, let Zn “ tx : fnpx, ¨q R Mu. Then
|Zn| “ 0. Letting Z “

Ť

n Zn, we have |Z| “ 0. Furthermore, if x R Z,
fpx, ¨q “ limnÑ8 fnpx, ¨q, and is therefore measurable. Similarly, the MCT tells
us

ż

fnpx, yqdy Ñ

ż

fpx, yqdy.

This tells us that Fnpxq Ñ F pxq, and that they are measurable and integrable.
Finally, we see that

ż

F “ lim
nÑ8

ż

Fn “ lim
nÑ8

ż ż

fn “

ż ż

f.

Thus, f P F . Q.E.D

We now go on to discuss some applications.

Lemma 4.7. If
ř8

k“1 |fk| P LpRnq, then
ş

ř8
k“1 fk “

ř8
k“1

ş

fk.

Proof. This will follow later by seeing that sums are just discrete integrals. For
now, let

fpx, yq “

8
ÿ

k“1

fkpxqχrk,k`1qpyq.

Then we see that
ż

ˆ
ż

fpx, yqdy

˙

dx “

ż 8
ÿ

k“1

fkpxqdx.

Q.E.D

Lemma 4.8. We have that

zp “

ż z

0

pyp´1dy.

Lemma 4.9. For any f , we have
ż

|f |pdx “

ż 8

0

pyp´1ω|f |pyqdy.

Proof. Using the prior lemma, we have
ż

|f |pdx “

ż

˜

ż |f |

0

pyp´1dy

¸

dx “

ż
ˆ

ż 8

0

pyp´1χyď|f |dy

˙

dx
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“

ż 8

0

ˆ
ż

pyp´1χyď|f |dx

˙

dy “

ż 8

0

pyp´1

ˆ
ż

χyď|f |dx

˙

dy.

Solving the integral
ż

χyď|f |dx,

we see that we just ge the measure of the set tx : |f | ě yu, which we may
rewrite as ω|f |pyq “ |tx : |fpxq| ě yu| (the reason we may drop the inequality is
that ω|f | is a non-increasing function, and so has finitely many discontinuities).
Putting this together, we get

ż

|f |pdx “

ż 8

0

pyp´1ω|f |pyqdy,

an improper Riemann–Stieltjes integral. Q.E.D

4.7 Lecture 17 (Convolutions)
We finish this section by talking a little about convolutions, which gives us a
final application of Fubini’s theorem.

Definition. If f, g are measurable functions on Rn, then the convolution f ˚g
is defined by

pf ˚ gqpxq “

ż

Rn

fpx ´ yqgpyqdy,

so long as the integral exists.

Remark 20. One quick remark is that we have f ˚ g “ g ˚ f through a change
of variables.

Theorem 4.18. If f, g P LpRnq, then f ˚ g exists a.e. is in LpRnq, and
ż

|f ˚ g| ď

ˆ
ż

|f |

˙ ˆ
ż

|g|

Furthermore, if f, g ě 0, then
ż

f ˚ g “

ˆ
ż

f

˙ ˆ
ż

g

˙

.

Before proving the theorem, we need a lemma.

Lemma 4.10. If f is measurable on Rn, then F px, yq :“ fpx´yq is measurable
on R2n.

Proof. The proof is really a geometric proof. We want to show that tpx, yq P

R2n : F px, yq ą au is a measurable set for all a. But this, in particular, is just
the set tpx, yq P R2n : fpx´yq ą au for all a. Notice F px0, y0q ą a implies that
the hyperplane x ´ b “ y, where b “ x0 ´ y0 also satisfies this property. Since
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the slope is given, we have that these lines are completely determined by their y
intercept. So, we may look at ts P Rn : fpsq ą au ˆRn, which is a measurable
set. Using a Lipschitz transformation T which maps this set to tpx, yq P R2nu

by multiplying the values together tells us that tpx, yq : F px, yq ą au is
measurable. Q.E.D

Proof. We start by proving the second half. Let f, g ě 0. Then
ż

pf ˚ gqpxqdx “

ż
ˆ

ż

fpx ´ yqgpyqdy

˙

dx “

ż

gpyq

ˆ
ż

fpx ´ yqdx

˙

dy

by Tonelli’s theorem. Now, since y is fixed, we use the fact that the Lebesgue
integral for non-negative functions is simply a measure of area underneath the
curve to see that

ż

fpx ´ yqdx “

ż

fpxqdx.

Hence, we can pull everything out to get
ż

pf ˚ gq “

ˆ
ż

f

˙ ˆ
ż

g

˙

.

Now, notice that

|f ˚ g| “

ˇ

ˇ

ˇ

ˇ

ż

fpx ´ yqgpyqdy

ˇ

ˇ

ˇ

ˇ

ď

ż

|fpx ´ yq||gpyqdy “ |f | ˚ |g|,

using the triangle inequality. Hence, we have

|f ˚ g| ď

ˆ
ż

|f |

˙ ˆ
ż

|g|

˙

.

Since f, g P LpRnq, then so is |f |, |g|. In particular, this tells us that f ˚ g P

LpRnq. Q.E.D
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Chapter 5

Lebesgue Differentiation

5.1 Lecture 18 (Lebesgue Differentiation)
We now want to find an analogue for the F.T.C. for Lebesgue integrals. One
important consequence of this is that we will develop a characterization of when

fpbq ´ fpaq “

ż b

a

f 1pxqdx

holds.

Definition. For an integrable function f on Rn, the indefinite integral F is
defined by

F pAq “

ż

A

fpxqdx.

Notice that A is a set here.

Definition. A set function is a function on a σ-algebra Σ that is finite for all
A P Σ and is countable additive; that is, if tAiu are disjoint in Σ< then

F
´

ď

An

¯

“
ÿ

F pAnq.

Remark 21. We see that the indefinite integral F satisfies being a set function.

Definition. For f P LpRnq, the indefinite integral F is differentiable at x P Rn

with derivative fpxq if

lim
rÑ0

1

|Qrpxq|
F pQrpxqq “ fpxq,

where Qrpxq is the cube centered at x with sidelength 2r.

We state the following theorem, though it will take a few lectures to prove.
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Theorem 5.1. (Lebesgue Differentiation Theorem) If f P LpRnq, then the
indefinite integral F is differentiable, with derivative fpxq at almost every x.

Remark 22. (1) In dimension 1, this says

lim
rÑ0

1

2r

ż x`r

x´r

fpyqdy “ fpxq

a.e. We’ll see later that it’s also true

lim
rÑ0

1

r

ż x`r

x

fpyqdy “ fpxq.

That is, the average property over a very small interval must just be the
value at the (center) of the inteval.

(2) This is (obviously) true for continuous functions.

First, we need to see why it is true that limrÑ0 F pQrpxqq “ 0. To see this,
notice that we have

lim
rÑ0

F pQrpxqq “ lim
rÑ0

ż

Qpxq

fpyqdy

by definition. Now, we can switch this to be an integral over all of Rn by using
a characteristic function. That is,

lim
rÑ0

ż

Qpxq

fpyqdy “ lim
rÑ0

ż

Rn

fpyqχQrpyqdy.

Now, we want to be able to justify pulling the limit into the integral. One way
to do so is by using the Dominated Convergence Theorem. That is, we have
that this is dominated by fpxq, and we know fpxq satisfies the conditions. So
pulling the limit in, we get

lim
rÑ0

ż

Rn

fpyqχQrpyqdy “

ż

Rn

fpyq lim
rÑ0

χQrpyqdy “ 0.

We now talk about a few more definitions.

Definition. An abstract set function F is continuous if

lim
diampAqÑ0

F pAq “ 0.

What we’ve just established is that F is continuous. But we can get even
stronger results.

Definition. A set function F is absolutely continuous if

lim
|A|Ñ0

F pAq “ 0.

76



James Marshall Reber January 6, 2020

We now want to show that F is absolutely continuous.

Theorem 5.2. If f P LpRN q, then F is absolutely continuous.

Proof. Let ϵ ą 0, then we want to find a δ ą 0 so that |A| ă δ implies |F pAq| ă ϵ.
First, we note that

ż

tfěnu

f Ñ 0

as n Ñ 8. So we can take n sufficiently large so that
ˇ

ˇ

ˇ

ˇ

ˇ

ż

tfěnu

f

ˇ

ˇ

ˇ

ˇ

ˇ

ă
ϵ

2
.

Now,

|F pAq| ď

ˇ

ˇ

ˇ

ˇ

ˇ

ż

AXtfěnu

f

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

AXtfănu

f

ˇ

ˇ

ˇ

ˇ

ˇ

.

We know that we can bound this by
ˇ

ˇ

ˇ

ˇ

ˇ

ż

AXtfěnu

f

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

AXtfănu

f

ˇ

ˇ

ˇ

ˇ

ˇ

ă
ϵ

2
`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

AXtAXtfănu

f

ˇ

ˇ

ˇ

ˇ

ˇ

.

Since we have |A| ă δ, and f bounded above by n, take |A| ă ϵ{p2nq. Then we
get

|F pAq| ă ϵ,

as desired. Q.E.D

5.2 Lecture 19 (Proving Lebesgue Differentia-
tion)

To prove the theorem, we’re going to set up a few lemmas ahead of time and
then work backwards proving those lemmas.

Lemma 5.1. If f P LpRnq, then there exists a sequence ϕk of continuous
functions with compact support such that

lim
kÑ8

ż

|f ´ ϕk| “ 0.

We say that this converges in L1.

Remark 23. We had before that the Lebesgue differentiation theorem clearly
held true for continuous functions, so this gets us somewhat close to showing it
for measurable functions.
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Definition. If f P LpRnq, we define the Hardy-Littlewood maximal func-
tion f˚ by

f˚pxq :“ sup
rą0

1

|Qrpxq|

ż

Qrpxq

|f |.

The Hardy-Littlewood function is asking what is the biggest average value
that we could get. This will help us establish whether the limit makes sense
in the first place. Using this, we establish the second lemma we’ll need (which
seems a little like Chebychev’s).

Lemma 5.2. If f P LpRnq, then there exists a constant depending only on n,
Cn, such that

|tf˚ ą au| ď
Cn

a

ż

|f |.

Note that as a Ñ 8, the right hand side goes to 0, so we get that f˚ is finite
almost everywhere. In other words, we have that f˚ is almost integrable; an
idea that we’ll formalize. Note that if g P LpRnq, then

|tg ą au| ď
1

a

ż

|g|.

Definition. If we have
|tg ą au| ď

c

a
,

then we say that g is weakly integrable, and we say that is in weak-LpRnq.

Remark 24. We have that the function f˚ is never integrable unless f “ 0
identically.

We now prove the Lebesgue Differentiation Theorem using these tools.

Proof. For notation sake, let ϕ be a continuous function with compact support
and let Q “ Qrpxq. We then want to compare

ˇ

ˇ

ˇ

ˇ

1

|Q|

ż

Q

fpyqdy ´ fpxq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

1

|Q|

ˇ

ˇ

ˇ

ˇ

.

Notice that we can add and subtract terms as well as use the triangle inequality
to get the following upper bound;

ˇ

ˇ

ˇ

ˇ

1

|Q|

ż

Q

f ´
1

|Q|

ż

Q

ϕ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

1

|Q|

ż

Q

ϕ ´ ϕpxq

ˇ

ˇ

ˇ

ˇ

` |ϕpxq ´ fpxq| .

Now, as Q Œ x, we have that
ˇ

ˇ

ˇ

ˇ

1

|Q|

ż

Q

ϕ ´ ϕpxq

ˇ

ˇ

ˇ

ˇ

Ñ 0.
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So we can say (after bringing the absolute value in)

lim sup
rÑ0

ˇ

ˇ

ˇ

ˇ

1

|Q|

ż

Q

f ´ fpxq

ˇ

ˇ

ˇ

ˇ

ď lim sup
rÑ0

1

|Q|

ż

Q

|f ´ ϕ| ` |ϕpxq ´ fpxq|.

We can then bound this above by

pf ´ ϕq˚pxq ` |ϕpxq ´ fpxq|.

So looking at the sets, we have
ˇ

ˇ

ˇ

ˇ

"

x : lim sup
rÑ0

ˇ

ˇ

ˇ

ˇ

1

|Q|

ż

Q

f ´ fpxq

ˇ

ˇ

ˇ

ˇ

ą ϵ

*ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

!

pf ´ ϕq˚ ą
ϵ

2

)ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

!

|ϕ ´ f | ą
ϵ

2

)ˇ

ˇ

ˇ
.

We use Chebychev to get

|t|ϕ ´ f | ą ϵ{2u| ď
2

ϵ

ż

|ϕ ´ f |,

and we use Lemma 5.2 to get

|tpf ´ ϕq˚ ą ϵ{2u| ď
2Cn

ϵ

ż

|ϕ ´ f |.

So we can put things together based on these. Nothing on the left depends on
ϕ, so we can choose ϕ based on Lemma 5.1 so that everything on the right
goes to 0, thus giving us our desired result. Q.E.D

We now prove Lemma 5.1.

Proof. Let A be the class of functions such that the lemma holds. We will show
that LpRnq Ď A. We do this by working our way up.

Claim 5.1. A is closed under linear combinations.

Proof. Take
ř

aifi where fi P A. Then for each fi we can create a sequence
ϕi,k Ñ fi. We guess then that the appropriate sequence is

ř

aiϕi,k. To show
that this is the correct sequence, we check

ż

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

aifi ´
ÿ

i

aiϕi,k

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

i

|ai|

ż

|ϕi,k ´ fi| Ñ 0.

Q.E.D

Claim 5.2. A is closed in L1; that is, if fk P A, and
ż

|fk ´ f | Ñ 0,

then f P A.
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Proof. Take ϕk Ñ fk. Then we have
ż

|f ´ ϕk| ď

ż

|f ´ fk| `

ż

|fk ´ ϕk| Ñ 0.

Q.E.D

We now build up sets. It’s clear that for any interval I Ď Rn, we have that
χI P A. Next, let G be open and |G| ă 8. Then we have that there are a
sequence of non-overlapping intervals In so that

G Ď
ď

n

In.

Since they are non-overlapping, we get

χG “
ÿ

n

χIn a.e.

Now, take the finite partial sums. Then we have
N
ÿ

n“1

χIn Õ χG.

Notice that for each N ,
řN

n“1 χIn P A. We then check
ż

ˇ

ˇ

ˇ

ˇ

ˇ

χG ´
ÿ

n

χIn

ˇ

ˇ

ˇ

ˇ

ˇ

“

ż

˜

χG ´
ÿ

n

χIn

¸

Ñ 0

by the MCT.
Now, we want to get general measurable sets E with |E| ă 8. We know

E “ HzZ, |Z| “ 0 and H of type Gδ. So there exists a sequence of open sets
Gk Œ H, and so χGk

Œ χE a.e. Therefore, we have
ż

|χGk
´ χE | Ñ 0

again by the MCT. So we thus get all measurable functions. Q.E.D

To prove Lemma 5.2, we will need another lemma.

Lemma 5.3. (Simple Vitali Lemma) Let E Ď Rn with |E|e ă 8 and let K
be a collection of cubes that cover E. Then there exists a finite collection of
disjoint cubes tQkunk“1 Ď K such that

N
ÿ

k“1

|Qk| ě
1

2 ¨ 5n
|E|e.

We will prove this lemma in the next lecture. For now, we use it to prove
Lemma 5.2.
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Proof. For R ă 8, let Ek “ tf˚ ą au X t|x| ă Ru. If x P Ek, then there exists
a cube Qx such that

1

|Qx|

ż

Qx

|f | ą a ðñ |Qx| ă
1

a

ż

Qx

|f |.

Let K “ tQ : Q satisfies the inequality aboveu. Note that ER Ď
Ť

QPK Q. We
can use the Simple Vitali Lemma to find Q1, . . . , QN such that

N
ÿ

k“1

|Qk| ą
1

2 ¨ 5n
|Ek|.

On the other hand, |ER| ă p2 ¨ 5nq
řN

k“1 QK . But the measure of those cubes
satisfies

|Qk| ă
1

a

ż

Qx

|f |.

So therefore we have

|ER| ă
2 ¨ 5n

a

ÿ

ż

Qx

|f | ď
2 ¨ 5n

a

ż

|f |,

since the cubes were disjoint. Finally, ER Õ tf˚ ą au, and so

|tf˚ ą au| ă
2 ¨ 5n

a

ż

|f |.

Q.E.D

5.3 Lecture 20 (Proving Simple Vitali Lemma)
We’ll first note that we can actually say something stronger about the Lebesgue
differentiation theorem, which is that it holds if f is just locally integrable,
instead of globally integrable. We formalize this thought now.

Definition. A function f is locally integrable if it is integrable on all bounded
subsets. We denote this by f P LlocpRnq.

It’s clear that theorem holds under only the assumption of locally integrable,
since it is really a local problem. We can also make yet another stronger state-
ment. We first need to declare what a Lebesgue point of f is.

Definition. We say that x is a Lebesgue point of f if

lim
rÑ0

1

|Qrpxq|

ż

Qrpxq

|fpyq ´ fpxq|dy “ 0.

The absolute value is what makes this stronger.
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Theorem 5.3. If f is locally integrable, then almost every x P Rn is a Lebesgue
point of f .
Proof. For every q P R, we have that |f ´ q| is still locally integrable. Now, by
assumption note that every point in Rn is a Lebesgue point for |f ´ q|, where
we take q P Q. Then we have

1

|Q|

ż

Q

|fpyq ´ fpxq|dy ď
1

|Q|

ż

Q

|fpyq ´ q|dy ` |q ´ fpxq|.

Letting |Q| Ñ 0, we see that
1

|Q|

ż

Q

|fpyq ´ q|dy Ñ |fpxq ´ q|.

So we have

lim sup
rÑ0

1

|Qrpxq|

ż

Qrpxq

|fpyq ´ fpxq|dy ď 2|q ´ fpxq|.

Since Q is dense, we can take q arbitrarily close to fpxq, giving us that this goes
to 0. Q.E.D

We also note that we don’t have to just take cubes, but can take sets which
satisfy some strict properties.
Definition. A family of sets S is regularly shrinking to a point x if

(i) diampSq Ñ 0,

(ii) There is a constant k such that if Q is the smallest cube centered at x
containing S, then

|Q| ă k|S|.

Example 5.1. The set rx, x`hs is regularly shrinking, since the smallest cubes
containing this are rx ´ h, x ` hs and we have

|Q| ď 2|S|.

Theorem 5.4. If f P LlocpRnq, then at every Lebesgue point,

lim
SŒtxu

1

|S|

ż

S

|fpyq ´ fpxq|dy “ 0

for any family of sets S that is regularly shrinking to x.
Proof. We have

1

|S|

ż

S

|fpyq ´ fpxq|dy ď
1

|S|

ż

Q

|fpyq ´ fpxq|dy,

where S Ď Q. We can then bound this above by
k

|Q|

ż

Q

|fpyq ´ fpxq|dy Ñ 0.

Q.E.D
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We implicitly used the fact that f˚ is a measurable function. We now prove
this.

Claim 5.3. The Hardy-Littlewood maximal function is a measurable function.
More specifically, the set tf˚ ą au is an open set for all a.

Proof. Select x P tf˚ ą au. Then we want to show that every point which is
sufficiently close to x is also greater than a. Assume for contradiction that this
is not the case. That is, we have a sequence xk Ñ x where f˚pxkq ď a for all k
but f˚pxq ą a. Using the definition, we see that this is saying

1

|Qr1 pxkq|

ż

Qr1 pxkq

fpyqdy,

where we choose r1 such that the cube Qr1 pxkq is the biggest cube contained in
Qrpxq. The dominated convergence theorem tells us that

1

|Qr1 pxkq|

ż

Qr1 pxkq

fpyqdy Ñ
1

|Qrpxq|

ż

Qrpxq

fpyqdy,

but this gives us a contradiction, since this would force the right hand side to
be less than or equal to a. Q.E.D

Remark 25. This, in fact, proves that f˚ is lsc.

We start the proof of the Simple Vitali Lemma (Lemma 5.3).

Proof. Without loss of generality, assume that the cubes are not arbitrarily large
(if they were, we win by default). Let d1 be the supremum of the side lengths
of cubes in K. Pick Q1 with side length greater than or equal to d1{2. Now,
decompose K into two parts, denoted by K2 and K 1

2, where K 1
2 is the collection

of cubes intersecting Q1 and K2 is the collection of cubes disjoint from Q1. Let
d2 be the supremum of the side lengths of cubes in K2. Choose Q2 so that it
has side length greater than or equal to d2{2. Repeat this process. Note that
we have formed a non-increasing sequence d1 ě d2 ě ¨ ¨ ¨ . We then divide this
up into cases.

Case 1 If the dj ě δ for all j, δ ą 0, then we have an infinite sequence of cubes
that are disjoint, and they all have side length greater than or equal to
δ{2. This then says |Qj | ě pδ{2qn for all J . We just have to pick N
large enough, then.

Case 2 What if dN ą 0, dN`1 “ 0. Notice then that we have

K “

N
ď

n“2

K 1
n.

Let Qj P K 1
j`1, and pick Q P K 1

j`1. For any such Q, we claim Q Ď ĂQj ,
which is the cocentric cube centered at Qj but with 5 times the edge
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length. This is becasue the side length of the Q’s are at most 2 times
the side length of Qj . Then, since K covers E, we have that the set E
is covered by these blown up cubes. Thus, we get

|E|e ď

N
ÿ

j“1

|ĂQj | “

N
ÿ

j“1

5n|Qj |,

which tells us
N
ÿ

j“1

|Qj | ą
1

5n
|E|e ą

1

2 ¨ 5n
|E|e.

5.4 Lecture 21 (Vitali Covering Lemma)

Case 3 Now consider the case where dn Ñ 0, dn ą 0 for all n. Then we may
have an infinite sequence Qj of disjoint cubes, and we denote ĂQj to be
the blow up from Case 2. Recall that if a cube Q P K 1

j`1, then Q Ď ĂQj .
Now, we use this to claim that if Q P K, then Q is covered by

Ť

j
ĂQj .

Assume that is not; that is, Q Ę
Ť

j
ĂQj . Then Q R K 1

j`1 for every j,
so Q P Kj`1 for every j. This means that the side length of Q ď dj`1

for all j. Since dn Ñ 0, we must have that the side length of Q goes to
0 as well.

Remark 26. Here, we note that cubes are not points. That is, a cube
can not have side length 0.

So we have that E Ď
Ť

j
ĂQj . Then

|E|e ď
ÿ

j

| rQj | ď 5n
ÿ

j

Qj .

Thus, we have
8
ÿ

j“1

|Qj | ě
1

5n
|E|e.

Now, we pick N large enough so that

N
ÿ

j“1

|Qj | ě
1

2 ¨ 5n
|E|e.

Q.E.D

We now want to cover the Big Vitali Lemma, or the Vitali Covering Lemma.
First, we need a definition.
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Definition. A collection K covers E in the Vitali sense if, for every x P E
and every δ ą 0, there is a cube in K containing x with diameter less than δ.

This will be helpful in generalizing Vitali’s lemma.

Theorem 5.5. (Vitali Covering Lemma) If E Ď Rn is covered in the Vitali
sense by K, and E is a set such that 0 ă |E|e ă 8, then given ϵ ą 0 there exists
a sequence tQju8

j“1 of disjoint cubes with the following two properties:

(i)
ˇ

ˇ

ˇ

ˇ

ˇ

E ´

8
ď

j“1

Qj

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0

(ii)
ÿ

j

|Qj | ă p1 ` ϵq|E|e.

Proof. First, pick an open set G such that E Ď G and |G| ă p1 ` ϵq|E|e.
Without loss of generality, assume all cubes in K are contained in G, since the
cubes cover in the Vitali sense. So al lwe need to do is get the first property,
since the second property comes from the fact that

ˇ

ˇ

ˇ

ˇ

ˇ

ď

j

Qj

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

j

|Q|j ď |G| ă p1 ` ϵq|E|e.

Without loss of generality, take ϵ ă p3{10qp1{5nq. If we show this for such ϵ,
then we can get that it holds for larger ϵ by just capping it off.

By the Simple Vitali Lemma (Lemma 5.3), there exists a sequence of dis-
joint cubes tQju

N1
j“1 with

N1
ÿ

j“1

|Qj | ě
1

2 ¨ 5n
|E|e.

Then notice
ˇ

ˇ

ˇ

ˇ

ˇ

E ´

N1
ď

j“1

Qj

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

G ´

N1
ď

j“1

Qj

ˇ

ˇ

ˇ

ˇ

ˇ

“ |G| ´

N1
ÿ

j“1

|Qj |

ď p1 ` ϵq|E|e ´
1

2 ¨ 5n
|E|e “

ˆ

1 ` ϵ ´
1

2 ¨ 5n

˙

|E|e ď

ˆ

1 ´
1

5n`1

˙

|E|e.

Now, cover this portion using the Simple Vitali Lemma again. Doing so, we get
a sequence tQiu

N2

i“N1`1, and we have
ˇ

ˇ

ˇ

ˇ

ˇ

E ´

N2
ď

i“1

Qi

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ

1 ´
1

5n`1

˙

ˇ

ˇ

ˇ

ˇ

ˇ

E ´

N1
ď

i“1

Qj

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ

1 ´
1

5n`1

˙2

|E|e.
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Since
`

1 ´
`

1{5n`1
˘˘k

Ñ 0 as k Ñ 8, we find that
ˇ

ˇ

ˇ

ˇ

ˇ

E ´

8
ď

j“1

Qj

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0,

thus giving us the first property. Q.E.D

We can then use this to get a nice Corollary on finite collections.

Corollary 5.5.1. Under the same assumptions as the Vitali Covering Lemma
Theorem 5.5, there exists a finite sequence Q1, Q2, . . . , QN of disjoint cubes
such that

(i)
ˇ

ˇ

ˇ

ˇ

ˇ

E ´

N
ď

j“1

Qj

ˇ

ˇ

ˇ

ˇ

ˇ

ă ϵ

(ii)
ÿ

j

|Qj | ă p1 ` ϵq|E|e

(iii)
N
ÿ

j“1

|Qj | ě

ˇ

ˇ

ˇ

ˇ

ˇ

E X

˜

N
ď

j“1

Qj

¸ˇ

ˇ

ˇ

ˇ

ˇ

ą p1 ´ ϵq|E|e.

Remark 27. The third property is the one of interest, as the other two are
really just results from Theorem 5.5. It turns out that it is also a direct result
of (i) and (ii).

Proof. First, note that

N
ÿ

j“1

|Qj | ě

ˇ

ˇ

ˇ

ˇ

ˇ

E X

˜

N
ď

j“1

Qj

¸ˇ

ˇ

ˇ

ˇ

ˇ

.

Next, we note that

|E|e “

ˇ

ˇ

ˇ

ˇ

ˇ

E X

˜

N
ď

j“1

Qj

¸ˇ

ˇ

ˇ

ˇ

ˇ

e

`

ˇ

ˇ

ˇ

ˇ

ˇ

E ´

N
ď

j“1

Qj

ˇ

ˇ

ˇ

ˇ

ˇ

e

by Theorem 2.4. Thus, using (i), we get the desired result. Q.E.D
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5.5 Lecture 22 (Differentiability of Monotone Func-
tions)

Theorem 5.6. If fpxq is non-decreasing (the book uses increasing) on pa, bq,
then f has a measurable derivative f 1pxq on ra, bs, and furthermore

0 ď

ż b

a

f 1pxqdx ď fpb´q ´ fpa`q,

where fpb´q “ limxÑb´ fpxq and fpa`q “ limxÑa` fpxq.
Remark 28. The fundamental theorem of Calculus gives us the idea that we
should expect equality. It is somewhat surprising that we, in fact, do not have
equality always. We will explore why later this lecture.
Proof. There are four “derivatives” we need to check:

D1fpxq “ lim sup
hÑ0`

fpx ` hq ´ fpxq

h
,

D2fpxq “ lim inf
hÑ0`

fpx ` hq ´ fpxq

h
,

D3fpxq “ lim sup
hÑ0´

fpx ` hq ´ fpxq

h
,

D4fpxq “ lim inf
hÑ0´

fpx ` hq ´ fpxq

h
.

So we need to have D1 “ D2 “ D3 “ D4 a.e. on ra, bs. Let’s start with
D1f “ D4f a.e. In order to do this, we’ll show

|tD1f ą D4fu| “ 0

and
|tD4f ą D1fu| “ 0.

First, let’s note that

tD1f ą D4fu “
ď

r,sPQ
tD1f ą r ą s ą D4fu.

So we just need to show that for all r, s P Q,

|tD1f ą r ą s ą D4fu| “ 0.

Fix r, s, and let A “ tD1f ą r ą s ą D4fu. Assume for contradiction that
|A| ą 0. Since D4pxq ă s on A, we can cover the set A by intervals rx ´ h, xs

such that
fpxq ´ fpx ´ hq

h
ă s

for h arbitrarily small. We rewrite it as fpxq´fpx´hq ă sh. So these cubes that
cover A cover it in a Vitali sense. Using the Vitali Covering Lemma (Theorem
5.5), we get that there exist intervals rxi ´ hi, xis for i “ 1, . . . , N with
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(i) fpxiq ´ fpxi ´ hiq ă shi,

(ii)
ř

i hi ď p1 ` ϵq|A| for ϵ ą 0 fixed.

So this gives us some information on the left derivative. Let’s now focus on the
right derivative. Let

B “ A X

˜

N
ď

i“1

rxi ´ hi, xiq

¸

.

The set B is going to have finite positive measure. That is, we have |B| ą

|A| ´ ϵ ą 0 (see Corollary 5.5.1). The Vitalli Covering lemma implies there
exist ryj , yj ` hjs, j “ 1, . . . ,M , such that

(i) fpyj ` hjq ´ fpyjq ą rhj ,

(ii)
ř

j hj ą |B| ´ ϵ,

(iii) ryj , yj ` hjs ď rxi ´ hi, xis for some i.

Stringing these facts together, we have

M
ÿ

j“1

fpyj ` hjq ´ fpyjq ą r
M
ÿ

j“1

hj ą rp|B| ´ ϵq ě rp|A| ´ 2ϵq.

Now, we use monotonicity to note that

M
ÿ

j“1

fpyj ` hjq ď

N
ÿ

i“1

fpxiq ´ fpxi ´ hiq ă s
N
ÿ

i“1

hi ă sp1 ` ϵq|A|.

Putting things together, we have

rp|A| ´ 2ϵq ă sp1 ` ϵq|A|.

However, we assumed that s ă r. So this results in a contradiction for ϵ suffi-
ciently small.

Now, we just need to show that

0 ď

ż b

a

f 1pxqdx ď fpb´q ´ fpa`q.

We’re going to extend the definition of fpxq so that f “ fpb´q for x ě b. We
do this to form

fkpxq “
fpx ` 1{kq ´ fpxq

1{k
,

where fk Ñ f 1 a.e. in pa, bq. Furthermore,

0 ď fkpxq ď f 1
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a.e. in pa, bq. So we get

0 ď

ż b

a

f 1pxqdx.

Now we use Fatou’s lemma (Theorem 4.9) to see
ż b

a

f 1pxqdx ď lim inf
kÑ8

ż b

a

fkpxqdx.

Notice that on the right hand side we have

lim inf
kÑ8

ż b

a

fkpxqdx “ lim inf
kÑ8

ż b

a

fpx ` 1{kq ´ fpxq

1{k
dx “ lim inf

kÑ8

ż b

a

fpx ` 1{kq

1{k
dx´lim inf

kÑ8

ż b

a

fpxq

1{k

“ lim inf
kÑ8

k

˜

ż b`1{k

a`1{k

fpxqdx ´

ż b

a

fpxqdx

¸

“ lim inf
kÑ8

k

˜

ż b`1{k

b

fpxqdx ´

ż a`1{k

a

fpxqdx

¸

lim inf
kÑ8

k

ˆ

fpb´q

k
´

fpa`q

k

˙

“ fpb´q ´ fpa`q,

since f is monotone, fpxq « fpa`q in pa, a ` 1{kq.

Remark 29. I think you can simplify this using the fact that fpa`q ď fpaq for
x P pa, bq to just get a bound, but he did it this way.

Q.E.D

We now explore some examples where there is not equality.
Example 5.2. Let fpxq be the Cantor function. Then

ż 1

0

f 1pxqdx “ 0,

since f 1pxq “ 0 a.e. However, fp1q ´ fp0q “ 1. So we do not have equality, and
the fundamental theorem of Calculus fails.

We now want to determine when exactly the FTC will hold. We will first
need a definition.
Definition. A function f is absolutely continuous on ra, bs if, given ϵ ą

0, there exists a δ ą 0 such that if trai, bisui is a countable family of non-
overlapping subintervals of ra, bs, then

ÿ

i

|fpbiq ´ fpaiq| ă ϵ

if
ÿ

i

|bi ´ ai| ă δ.

It turns out that this is a sufficient condition for the FTC.
Theorem 5.7. We have that f is absolutely continuous on ra, bs if and only if
f 1 exists a.e. and fpxq “ fpaq `

şx

a
f 1pyqdy for x P ra, bs.
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5.6 Lecture 23 (Conditions for FTC to hold pt.
1)

Remark 30. It turns out that this definition of absolutely continuous aligns
with our definition of absolutely continuous for set functions.

Below we explore some examples of absolutely continuous functions.

Example 5.3. (i) The indefinite integral

F pAq “

ż

A

gpxqdx

is an absolutely continuous function. Let’s say

fpxq “

ż x

a

gptqdt.

Then we can see that fpxq is absolutely continuous on some interval ra, bs,
since

fpbiq ´ fpaiq “

ż

rai,bis

gptqdt “ F prai, bisq.

(ii) A Lipschitz function is clearly absolutely continuous.

(iii) A non-example is the Cantor function.

Lemma 5.4. If f is absolutely continuous, then f P BV pra, bsq, where BV pra, bsq
is the set of all functions with bounded variation on ra, bs.

Remark 31. This will imply the derivative exists almost everywhere. We have
that f P BV pra, bsq implies that f “ P ´ N , where P and N are monotone
non-decreasing functions, and last week tells us the derivatives exists a.e. for
monotone functions. So f 1 “ P 1 ´ N 1 exists a.e.

Proof. Since we have absolutely continuous, let’s fix a δ ą 0 so that if
ÿ

i

pbi ´ aiq ă δ

are non-overlapping, then
ÿ

i

|fpbiq ´ fpaiq| ă 1.

Now, divide ra, bs into N intervals of length b´a
N , where we make N large enough

so that b´a
N ă δ. Then we have that

V arpf ; ra, bsq “

N
ÿ

i“1

V ar

ˆ

f ;

„

a `
i ´ 1

N
pb ´ aq, a `

i

N
pb ´ aq

ȷ˙
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and we have that

V ar

ˆ

f ;

„

a `
i ´ 1

N
pb ´ aq, a `

i

N
pb ´ aq

ȷ˙

ď 1.

Therefore, we get
V arpf ; ra, bsq ď N ă 8.

Q.E.D

Definition. A function f is singular on ra, bs if f 1 “ 0 a.e. on ra, bs.

Remark 32. From Calculus, one might expect singular functions to always be
constant, but the Cantor function is singular.

Lemma 5.5. If f is absolutely continuous and singular on ra, bs, then f is
constant.

Proof. It is enough to show that fpaq “ fpbq, since we can apply the same
argument for ra, xs, x P pa, bs. Fix some ϵ ą 0, then there exists a δ ą 0 such
that

ÿ

i

pbi ´ aiq ă δ ùñ
ÿ

i

|fpbiq ´ fpaiq| ă ϵ.

Examine E “ tx : f 1pxq “ 0u. Note that |E| “ b ´ a. Thus, for every x P E,
we can find an h ą 0 such that |fpx ` hq ´ fpxq| ă ϵh. So we apply the Vitali
Covering Lemma (Theorem 5.5) to get trxi, xi ` hisu

N
i“1 such that

(i)
|fpxi ` hiq ´ fpxiq| ă ϵhi,

(ii)
ÿ

i

hi ą pb ´ aqδ.

Remark 33. Note here that
řN

i“1 |fpxi ` hiq ´ fpxiq| ď ϵ
řN

i“1 hi ď ϵpb ´ aq.

The complement of rxi, xi ` his is non-overlapping intervals of total length less
than δ. So the increments on this are less than ϵ. So this means that |fpbq ´

fpaq| ď (increments on rxi, xi ` hisq` (increments not in rxi, xi ` hisq ď ϵpb ´

aq ` ϵ. Let ϵ Ñ 0, and we win. Q.E.D

5.7 Lecture 24 (Conditions for FTC to hold pt.
2, Convex functions)

We now finally prove Theorem 5.7.
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Proof. ( ðù ) We established in the prior lecture that x ÞÑ
şx

a
f 1pyqdy is abso-

lutely continuous (see Example 5.3). We therefore get that F is absolutely
continuous.
( ùñ ) We showed last time that f 1 exists exists a.e. (see Lemma 5.4 and Re-
mark 31). Let’s suppose F pxq “

şx

a
f 1pyqdy. We know that F pxq is absolutely

continuous and F 1 “ f 1 a.e. by Lebesgue differentiation. If we look at F ´ f ,
we see that pF ´ fq1 “ F 1 ´ f 1 “ 0, so that this is singular. Hence, F ´ f is
constant. Now, examine F pxq ´ fpxq “ F paq ´ fpaq. We have that F paq “ 0,
and we have

F pxq ´ fpxq “

ż x

a

f 1pyqdy ´ fpxq “ ´fpaq.

Rearranging terms gives us
ż x

a

f 19yq “ fpxq ´ fpaq.

Q.E.D

Thus, we now have the condition where the FTC holds!

Corollary 5.7.1. If f P BV pra, bsq, then f “ g ` h, where g is absolutely
continuous and h is singular. Furthermore, this representation is unique up to
constants.

Proof. f P BV pra, bsq implies that f 1 exists a.e. and f 1 P Lpra, bsq. Now, we can
set up the function

gpxq “

ż x

a

f 1pyqdy,

which is absolutely continuous. Let

hpxq “ fpxq ´ gpxq.

Then we have
h1pxq “ f 1pxq ´ g1pxq “ f 1pxq ´ f 1pxq “ 0.

So hpxq must be singular. To see that this is unique up to constants, use the
prior theorem. Q.E.D
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Chapter 6

Inequalities and Lp spaces

We first want to discuss convex functions.

Definition. A function ϕ is convex on pa, bq if

ϕptx0 ` p1 ´ tqx1q ď tϕpx0q ` p1 ´ tqϕpx1q

for all x0, x1 P pa, bq and for all t P r0, 1s.

Geometrically, there’s a nice way of viewing convex functions. We have that
the line segment connecting ϕpx0q to ϕpx10 always lies above the graph.

Theorem 6.1. If ϕ1 exists and is non-decreasing on pa, bq, then ϕ is convex. In
particular, if ϕ2 ě 0, then ϕ is convex.

Using this theorem, we can create some examples of convex functions.

Example 6.1. (i) ϕpxq “ eax is convex.

(ii) ϕpxq “ xp is convex for p ě 1.

(iii) ϕpxq “ |x|p is convex.

(iv) ϕpxq “ ´ logpxq for x ą 0 is convex.

Proof. Fix x0 ă x1 in pa, bq. Let xt “ p1 ´ tqx0 ` tx1. We do so in order to
have xt|t“0 “ x0 and xt|t“1 “ x1. In order to prove this, we need to show
that ϕpxtq ď tϕpx1q ` p1 ´ tqϕpx0q. On the boundary, this condition is easy
to show, and so we restrict ourselves to viewing x0 ă xt ă x1. We then use
the mean value theorem, since ϕ1 exists. That is, we have ξ1, ξ1 such that
x0 ă ξ1 ă xt ă ξ2 ă x1, and

ϕ1pξ1q “
ϕpxtq ´ ϕpx0q

xt ´ x0
,

ϕ1pξ2q “
ϕpx1q ´ ϕpxtq

x1 ´ xt
.
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We can simplify this to

ϕ1pξ1q “
ϕpxtq ´ ϕpx0q

tpx1 ´ x0q
,

ϕ1pξ2q “
ϕpx1q ´ ϕpxtq

p1 ´ tqpx1 ´ x0q
.

Since ϕ1 is non-decreasing, we get

ϕ1pξ1q ď ϕ1pξ2q,

which tells us
ϕpxtq ´ ϕpx0q

tpx1 ´ x0q
ď

ϕpx1q ´ ϕpxtq

p1 ´ tqpx1 ´ x0q
.

Simplifying, we just get

ϕpxtq ´ ϕpx0q

t
ď

ϕpx1q ´ ϕpxtq

p1 ´ tq
,

which reduces down to

ϕpxtq ď tϕpx1q ` p1 ´ tqϕpx0q,

as desired. Q.E.D

Now we want to explore what you can say about a function if it is convex.

Theorem 6.2. If ϕ is convex on pa, bq, then

(i) ϕ is continuous on pa, bq,

(ii) ϕ1pxq exists at all but at most countably many points in pa, bq, and is
non-decreasing.

Proof. Let
D`ϕpxq “ lim

hÑ0`

ϕpx ` hq ´ ϕpxq

h
,

D´ϕpxq “ lim
hÑ0`

ϕpxq ´ ϕpx ` hq

h
.

Convexity tells us that D`ϕpxq is decreasing in h, and D´ϕpxq is increasing
in h. Since these are monotone and bounded, we have that the limits exist
everywhere. Using convexity, we can also see that

´8 ă D´ϕpxq ď D`ϕpxq ă 8.

This is then enough to prove that ϕ is continuous, since if it wasn’t continuous
we’d have a discontinuity with a non-finite derivative, which is a contradiction.
For any x ă y, we have

D`ϕpxq ď
ϕpyq ´ ϕpxq

y ´ x
ď D´ϕpyq.
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Therefore, we get that

D´ϕpxq ď D`ϕpxq ď D´ϕpyq ď D`ϕpyq.

Note that D`ϕ and D´ϕ are monotone, and so we have that (using a prop-
erty about monotone functions) there are only countably many discontinuities.
Suppose x is a point where they are both continuous, Then we get equality by
dragging the limit in; that is

D`ϕpxq ď lim
yÑx

D´ϕpyq “ D´ϕpxq.

So the derivative exists at all but countably many points. Q.E.D

Corollary 6.2.1. If ϕ convex on pa, bq, then ϕ is Lipschitz on rx1, x2s Ď pa, bq,
and, in particular,

ϕpx2q ´ ϕpx1q “

ż x2

x1

ϕ1pxqdx.

6.1 Lecture 25 (Inequalities (Jensen, Holder, Young))
There are two big inequalities we’d like to discuss: Jensen’s inequality (both
discrete and continuous) and Holder’s inequality. We’ll first talk about Jensen’s
inequality, and specifically the discrete case.

Theorem 6.3. (Jensen’s Inequality (Discrete)) Let ϕ be a convex function on
pa, bq. If we have x1, . . . , xn P pa, bq and t1, . . . , tn ě 0 such that

řn
i“1 ti “ 1,

then

ϕ

˜

n
ÿ

i“1

tixi

¸

ď

n
ÿ

i“1

tiϕpxiq.

Proof. The proof is done via induction. The cases n “ 1 and 2 are not inter-
esting, and so we’ll jump to the case n “ 3. With n “ 3, we want to examine
ϕpx1t1 ` x2t2 ` x3t3q. Rewrite this as

ϕ

ˆ

t1x1 ` p1 ´ t1q
t2x2 ` t3x3

1 ´ t1

˙

.

Using the definition of convexity, we get

ϕ

ˆ

t1x1 ` p1 ´ t1q
t2x2 ` t3x3

1 ´ t1

˙

ď t1ϕpx1q ` p1 ´ t1qϕ

ˆ

t2x2 ` t3x3

1 ´ t1

˙

.

Use it again, noting that t2`t3
1´t1

“ 1 to get that

t1ϕpx1q`p1´t1qϕ

ˆ

t2x2 ` t3x3

1 ´ t1

˙

ď t1ϕpx1q`p1´t1q

ˆ

t2
1 ´ t1

ϕpx2q `
t3

1 ´ t1
ϕpx3q

˙

“ t1ϕpx1q ` t2ϕpx2q ` t3ϕpx3q.

For induction, we just abuse this type of trick. Q.E.D
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We now look at the “continuous” case.

Theorem 6.4. (Jensen’s Inequality (Continuous)) If ppxq ě 0 and
ş

A
ppxqdx “

1 and ϕ is convex on fpAq Ď pa, bq, then

ϕ

ˆ
ż

A

fpxqppxqdx.

˙

ď

ż

A

ϕpfpxqqppxqdx.

Before proving this, we want to explore a special case which may make this
easier to remember.

Example 6.2. Let ppxq “ 1
|A|

¨ χA. Then Jensen’s Inequality says

ϕ

ˆ

1

|A|

ż

A

fpxqdx

˙

ď
1

|A|

ż

A

ϕpfpxqqdx.

That is, ϕpAverage of fq ď Average of ϕpfq. Therefore, we have

pAverage of fq2 ď Average of f2.

From probability, we know that

VarpXq “ EpX2q ´ EpXq2 ě 0,

which tells us the same thing.

Proof. Let γ “
ş

A
fpxqppxqdx for notational simplicity. Then we have α ď

γ ď b. Since ϕ is convex, there exists a “supporting line,” which is almost
what we would define to be a tangent line. The issue is that, as discussed
in Theorem 5.9 (ii), there are countably many points where ϕ1pxq does not
exist. At these points, there is no such thing as well defined supporting line, so
to remediate that we just define a supporting line to be a line that is through
the point and is always less than or equal to ϕ, and we’ll just take one of these
possibilities. Therefore, we have that the supporting line looks something like
y “ mpx ´ γq ` ϕpγq., and the fact that it is a supporting line tells us that

mpx ´ γq ` ϕpγq ď ϕpxq

for all x P pa, bq. Now, we can say that

mpfpxq ´ γq ` ϕpγq ď ϕpfpxqq,

since fpxq P pa, bq. Taking integrals of both sides and multiplying by ppxq

preserves this inequality, and so we get
ż

A

mppxqfpxqdx ´

ż

A

mppxqγdx `

ż

A

ppxqϕpγq ď

ż

A

ϕpfpxqqppxqdx.

Recall that we forced
ż

A

ppxq “ 1,

96



James Marshall Reber January 6, 2020

and so moving things around we have

m

ż

A

ppxqfpxqdx ´ mγ ` ϕpγq ď

ż

A

ϕpfpxqqppxqdx.

By how we defined γ, we can rewrite this as

mγ ´ mγ ` ϕpγq “ ϕpγq “ ϕ

ˆ
ż

A

ppxqfpxqdx

˙

ď

ż

A

ϕpfpxqqppxqdx.

Q.E.D

We mention briefly another inequality.

Lemma 6.1. (Young’s Inequality) If a, b ě 0, p, q ě 1, 1{p ` 1{q “ 1, then

ab ď
1

p
ap `

1

q
bq.

Proof. This will be done via areas of a graph. Let y “ xp´1 be a graph, then
we see that x “ y1{pp´1q. Pick arbitrary a on the x-axis and arbitrary b on the
y-axis. Then we have that the area from 0 to a of y is

ż a

0

xp´1dx “
1

p
ap.

That is, the area in the graph below is 1{pap;

Likewise, finding the area from 0 to b of x, we have
ż b

0

y
1

p´1 dy “
p ´ 1

p
b

p
p´1 .
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Notice that since

1

p
`

1

q
“ 1,

we have

1

q
“ 1 ´

1

p
“

p ´ 1

p
,

so that the area is

1

q
bq.

This is the area in the graph below;

So putting this together, we have that the total area is going to be

1

p
ap `

1

q
bq,

which corresponds to the area of the graph below;
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Now, compare this to the area of the box with height b and width a. This would
simply be ab, which is the area of the graph given below;

Comparing this to the graph prior, we see that it is contained in it. Visually,
we have
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But notice that this means that

ab ď
1

p
ap `

1

q
bq,

as desired. This does not rely on picking a b smaller than our a either; we can
follow the same procedure and get the same result. Q.E.D

We now use this inequality to prove Holder’s Inequality.

Theorem 6.5. (Holder’s Inequality) If 1 ă p ă 8 and 1
p ` 1

q “ 1, then

ż

|fg| ď

ˆ
ż

|f |p
˙1{p ˆ

ż

|g|q
˙1{q

.

Remark 34. We will eventually show that we can let p “ 1 and p “ 8 and
get the same result.

Proof. First, let’s suppose that
ż

|f |p “ 1,

ż

|g|q “ 1.

Note that
|fg| ď

1

p
|f |p `

1

q
|g|q

by Young’s Inequality. Then we can integrate both sides to get
ż

|fg| ď

ż
ˆ

1

p
|f |p `

1

q
|g|q

˙

.
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Using linearity and pulling out constants, we have
ż

|fg| ď
1

p

ż

|f |p `
1

q

ż

|g|q “
1

p
`

1

q
“ 1 “

ˆ
ż

|f |p
˙1{p ˆ

ż

|g|q
˙1{q

.

Now, it may seem that this was a restrictive case and so pointless, however
we will see that this captures all functions. Now, take f and g to be general
functions. Consider

rfpxq “
fpxq

`ş

|f |p
˘1{p

.

Since
ˆ

ż

|f |p
˙1{p

is just going to be some constant, let’s rewrite

rfpxq “ Afpxq.

Define rgpxq analogously. Notice that we have
ż

| rf |p “ Ap

ż

|f |p “

ş

|f |p
ş

|f |p
“ 1,

and likewise
ż

|rg|q “ Bq

ż

|g|q “ 1.

So for rf , rg, we have that Holder’s inequality holds by our prior work. Now, let’s
notice that

ż

| rfrg| “

ż

AB|fg| “ AB

ż

|fg|.

Likewise, notice that
ˆ

ż

| rf |p
˙1{p ˆ

ż

|rg|q
˙1{q

“ AB

ˆ
ż

|f |p
˙1{p ˆ

ż

|g|q
˙1{q

.

We thus find that
ż

| rfrg| ď

ˆ
ż

| rf |p
˙1{p ˆ

ż

|rg|q
˙1{q

Ø

ż

|fg| ď

ˆ
ż

|f |p
˙1{p ˆ

ż

|g|q
˙1{q

.

Q.E.D

This leads us to a very famous Corollary.

Corollary 6.5.1. (Cauchy-Schwartz Inequality) We have

ż

|fg| ď

d

ż

f2

ż

g2.
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We now want to reword this in terms of Lp norms, but to do that we need
to first understand an Lp space.

Definition. We have that the Lp space over E is

LppEq “

"

f :

ż

E

|f |p ă 8

*

.

Definition. We define the Lp norm to be

||f ||p “ ||f ||p,E “

ˆ
ż

E

|f |p
˙1{p

.

We generally drop the E since it’s understood in context.

One thing we’ve seen/used is that

||cf ||p “ c||f ||p.

We may now also reword the Lp space definition. That is, the Lp space over
E is

LppEq “ tf : ||f ||p ă 8u .

We can also define the L8pEq space to be the set of bounded functions. The
L8pEq norm, ||f ||8, is the essential supremum of f over E. That is,

||f ||8 “ inftM : |fpxq| ď M a.e. on Eu “ the essential supremum of f.

Going back to Holder’s inequality, we may rewrite it in the form

||fg||1 ď ||f ||p||g||q.

With this, it makes sense to also define things when p “ 8 and p “ 1. Assume
wlog that p “ 8, then q “ 1. Therefore, we have

ż

|fg| ď

ż

||f ||8|g| ď ||f ||8

ż

|g| “ ||f ||8||g||1.

6.2 Lecture 26 (Lp space structure)
One may ask why we define things differently when p “ 8. The reason is that
this adheres to limits.

Theorem 6.6. If |E| ă 8, then ||f ||8 “ limpÑ8 ||f ||p.

Proof. Fix a ă ||f ||8 and consider Ea “ t|f | ą au. We can use Chebychev’s
Inequality (Theorem 4.4) to note that

|Ea| ď
1

a

ż

E

f.
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Equivalently, we may write Ea “ t|f |p ą apu. Then we have

|Ea| ď
1

ap

ż

E

fp Ø ap|Ea| ď

ż

E

fp.

Now, take both sides to the 1{p power to get

pap|Ea|q
1{p

“ a|Ea|1{p ď

ˆ
ż

E

fp

˙1{p

“ ||f ||p.

We note that |Ea| ă 8, and we will need a result from Freshman Calculus.

Claim 6.1. If c P Rą0, then

lim
xÑ8

c1{x “ 1.

Proof. Let y “ c1{x. Then taking the log of both sides, we have

logpyq “
logpcq

x
.

Taking the limit as x Ñ 8 gives

lim
xÑ8

logpyq “ 0.

Hence, we have
lim
xÑ8

elogpyq “ lim
xÑ8

c1{x “ e0 “ 1.

Q.E.D

Since a ă ||f ||8, we get that |Ea| ą 0 (provided |E| ‰ 0 and ||f ||8 ‰ 0).
Hence, we have

a ď lim inf
pÑ8

||f ||p.

Now, since this works for all a ă ||f ||8, we get that

||f ||8 ď lim inf
pÑ8

||f ||p.

Next, we notice that for all p we have

||f ||p ď ||f ||8|E|1{p.

So, as p Ñ 8, we get
lim sup
pÑ8

||f ||p ď ||f ||8.

Chaining things together, we get

||f ||8 ď lim inf
pÑ8

||f ||p ď lim sup
pÑ8

||f ||p ď ||f ||8.

Hence,
lim
pÑ8

||f ||p “ ||f ||8.

Q.E.D
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Theorem 6.7. If |E| ă 8, 0 ă p1 ă p2 ď 8, then

Lp2pEq Ď Lp1pEq.

Proof. Notice that
ż

E

|f |p1 “

ż

E

|f |p1 ¨ χE .

Now, we use Hölder’s inequality with p “ p2{p1 and 1{q “ pp2 ´ p1q{p2 to get
ż

E

|f |p1 ¨ χE ď

ˆ
ż

E

|f |p2

˙p1{p2
ˆ

ż

E

|χE |q
˙1{q

“ ||f ||p1
p2

|E|1{q.

Since |E| ă 8, we have |E|1{q ă 8. If ||f ||p2 ă 8, then we get for free that
||f ||p1

p2
ă 8, and the above inequality tells us that ||f ||p1

ă 8. Q.E.D

We want to now talk about the structure of these Lp spaces.

Definition. A Banach space is a vector space (over either R or C) with a
norm that is complete. In shorter words, it is a complete normed vector space.

See the Chapter 1 for the definition of vector space, complete space,
and norm space.

Remark 35. Banach spaces are the prototypical example of infinite dimensional
vector spaces.

Theorem 6.8. LppEq is a Banach space for any 1 ď p ď 8 over R or C on the
equivalence classes of „, where f „ g if and only if f “ g a.e.

Proof. We break this up into each aspect. Throughout, let F “ R or C be the
field which this space is over.
Vector space: If f P Lp, then for c P F we have cf P Lp. This is because
f P Lp implies

ˆ
ż

E

|cpfp|

˙1{p

“ |c|

ˆ
ż

E

|f |p
˙1{p

ă 8.

For the closure under addition, we will need a result.

Lemma 6.2. For any p ě 1 and n ě 1, there exists a constant Cn,p ą 0 such
that

˜

n
ÿ

k“1

ak

¸p

ď Cn,p

n
ÿ

k“1

apk,

for any non-negative numbers a1, . . . , an.

Proof. Example 5.4 (ii) says that ϕpxq “ xp is a convex function if p ě 1.
Theorem 5.10 then tells us

ϕ

ˆřn
k“1 ak
n

˙

ď

řn
k“1 ϕpakq

n
.
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Hence, we have
p
řn

k“1 akq
p

np
ď

řn
k“1 a

p
k

n
.

So, rewriting this, we get
˜

n
ÿ

k“1

ak

¸p

ď np´1
n

ÿ

k“1

apk.

Q.E.D

Now, using Lemma 5.7, we get that

|f ` g|p ď 2p´1 p|f |p ` |g|pq .

This tells us that f, g P Lp, then f ` g P Lp for 1 ď p ă 8 by integrating and
using the linearity of integration. For p “ 8, we clearly get

||f ` g||8 ď ||f ||8 ` ||g||8.

Thus, it is a vector space.
Norm: Notice from above that

||cf ||p “ |c|||f ||p.

Now, we need to establish ||f ||p “ 0 if and only if f “ 0 a.e. This follows from
Theorem 4.2 (viii). Finally, we need to establish the triangle inequality; that
is,

||f ` g||p ď ||f ||p ` ||g||p.

It turns out that this is an important inequality known as Minkowski’s inequal-
ity.

Theorem 6.9. (Minkowski Inequality) If 1 ď p ď 8,

||f ` g||p ď ||f ||p ` ||g||p.

Proof. Case 1: Let p “ 1. Then we have the normal triangle inequality;

|f ` g| ď |f | ` |g|.

Integrate both sides to get

||f ` g||1 ď ||f ||1 ` ||g||1.

Case 2: Let p “ 8. Then we have

|fpxq ` gpxq| ď |fpxq| ` |gpxq| ď ||f ||8 ` ||g||8 a.e.

Therefore, the least upper bound property gives us

||f ` g||8 ď ||f ||8 ` ||g||8.
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Case 3: Now, let 1 ă p ă 8. Then we have

||f ` g||pp “

ż

E

|f ` g|p “

ż

E

|f ` g|p´1|f ` g|.

The triangle inequality gives us
ż

E

|f ` g|p´1|f ` g| ď

ż

E

|f ` g|p´1|f | `

ż

E

|f ` g|p´1|g|.

Now, Hölder’s inequality with p1 “ p{pp ´ 1q and q “ p gives us

ż

E

|f`g|p´1|f | ď

ˆ
ż

E

|f ` g|p
˙pp´1q{p ˆ

ż

E

|f |p
˙1{p

`

ˆ
ż

E

|f ` g|p
˙pp´1q{p ˆ

ż

E

|g|p
˙1{p

ď ||f ` g||p´1
p p||f ||p ` ||g||pq .

Dividing both sides by ||f ` g||p´1
p gives

||f ` g||p ď ||f ||p ` ||g||p.

Q.E.D

6.3 Lecture 27 (More Properties on Lp spaces)
Now, we need to establish that the space is complete. We break this up into
cases

Case 1: Let p “ 8. Let Zn,m “ tx : |fnpxq ´ fmpxq| ą ||fn ´ fm||8u. By
definition, |Zn,m| “ 0. Notice that if

Zn,m “
ď

n,m

Zn,m,

then |Z| “ 0 as well. If x R Z, then |fnpxq ´ fmpxq| ď ||fn ´ fm||8.
Assume that, @ϵ ą 0, DNpϵq such that @n,m ě Npϵq, ||fn ´ fm||8 ă ϵ.
That is, tfnu is Cauchy in L8. Thus, for x R Z, we get tfnpxqu is
also Cauchy. Since this is a sequence of real or complex numbers, the
completeness of these spaces tells us that this converges. Let fpxq :“
limnÑ8 fnpxq. THen we need to show that ||fn´f ||8 Ñ 0. Notice that
for x R Z, fnpxq ´ fpxq| “ limnÑ8 |fnpxq ´ fmpxq| ď lim infnÑ8 ||fn ´

fm||8. We certainely have that

lim sup
nÑ8

||fn ´ f ||8 ď lim sup
nÑ8

lim inf
nÑ8

||fn ´ fm||8 “ 0.

We are almost done. We need to establish that f P L8. We see this
by noting ||f ||8 ă ||f ´ fn||8 ` ||fn||8 ă 8.
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Case 2: Let 1 ď p ă 8. We follow the same general strategy. First, assume
tfnu is Cauchy in Lp. Note by Chebychev (Theorem 4.4), we get
that

|t|fn ´ fm| ą ϵu| ď
1

ϵp
||fn ´ fm||pp.

For n,m sufficiently large, we have that ||fn ´ fm||pp ă ϵp. So we have
that tfnu is Cauchy in measure, which implies that tfnu is convergent
in measure. Since it is convergent in measure, we have that there is a
subsequence tfnk

u which converges to a function almost everywhere,
denote this by f . The argument in Case 1 gives us that

||fn ´ f ||p ď

ˆ
ż

lim
kÑ8

|fn ´ fnk
|p

˙1{p

.

Fatou’s Lemma (Theorem 4.5) then tells us
ˆ

ż

lim
kÑ8

|fn ´ fnk
|p

˙1{p

ď lim inf
kÑ8

||fn ´ fnk
||p ď ϵ

if n ě Npϵq. Finally, f P Lp by the same reason as in Case 1.

Q.E.D

We now want to discuss separability.

Definition. A metric space is separable if there exists a countable dense sub-
set.

Example 6.3. R is separable, since Q Ď R is countable and Q is dense.

We will see that Lp is almost always separable!

Theorem 6.10. If 1 ď p ă 8, then LppEq is separable.

Remark 36. Why don’t we have p “ 8 is separable? Because it’s not true!
Explicitly, examine L8pr0, 1sq, and consider the family of function F “

tχr0,tqu. Examine
||χr0,tq ´ χr0,sq||8 “ 1, t ‰ s.

Now, suppose there were a countably dense subset. Take a ball of radius 1{3
around the points in this subset. Since this is a dense set, the union of these balls
would be the whole space r0, 1s. However, each of these balls can only contain
1 function from the family, due to the fact that the L8 norm is 1. Therefore,
we have a contradiction – the countable set must be uncountable.

Let’s now prove the theorem.

Proof. Let S be the collection of all functions of the form
m
ÿ

i“1

qiχQi ,
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where qi P Q, m ă 8, and the Qi are dyadic cubes. That is,

Qk “ 2´kz⃗ ` r0, 2´ksn

for some z⃗ P Z. We now have countably many functions, since our cubes are
countable and the coefficients are countable. Note as well that f P S implies
that f P LppRnq.

Let S̄ be the Lp closure of S. We want to show that S̄ “ LppRnq. We break
this up into steps.
Step 1. We want to show that χG P S̄ for G open with |G| ă 8. In such a case,

a variation of Remark 2 tells us that G is covered by dyadic cubes;
that is, G “

Ť

i Qi. Then we have that

χG “
ÿ

i

χQi a.e.

Furthermore, this tells us

|G| “
ÿ

i

|Qi|.

Now, we look at
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

χG ´

N
ÿ

i“1

χQi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“N`1

χQi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

.

Using the definition of the Lp norm, we get that this is
˜

ż 8
ÿ

i“N`1

χQi

¸1{p

.

Tonelli (Theorem 4.17) gives us that we can rearrange the sum and
integral to get

˜

8
ÿ

i“N`1

ż

χQi

¸1{p

“

˜

8
ÿ

i“N`1

|Qi|

¸

Ñ 0

as we let N Ñ 8.

Step 2. We now want to show that χE P S̄ for E measurable, |E| ă 8. How-
ever, this is clear by the fact that we can estimate measurable sets with
open sets.

Step 3. We now want simple functions f P S̄ for f with finite support. This
also follows by a similar argument to Step 1, though.

Step 4. We have that non-negative functions f P Lp are in S̄.

Step 5. Finally, we get that all functions f P Lp are in S̄.
Q.E.D
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6.4 Lecture 28 (Missed due to OSU)
I will not include proofs here, as they will just be ripped from the book. I am
mostly trying to guess what results I missed.

Theorem 6.11. If 0 ă p ă 1, LppEq is a complete, separable metric space with
distance defined by

dpf, gq “ ||f ´ g||
p
p,E .

Theorem 6.12. If f P LppRnq, 1 ď p ă 8, then

lim
|h|Ñ0

||fpx ` hq ´ fpxq||p “ 0.

Remark 37. This implies that continuity is preserved under Lp norms. We
also remark that this theorem is true for 0 ă p ă 1, however, it breaks for
p “ 8.

Theorem 6.13. Let 1 ď p ď 8, f P LppRnq and g P L1pRnq. Then f ˚ g P

LppRnq and
||f ˚ g||p ď ||f ||p||g||1.

Theorem 6.14. (Young’s Convolution Theorem) Let p and q satisfy 1 ď p, q ď

8 and 1{p` 1{q ě 1, and let r be defined by 1{r “ 1{p` 1{q ´ 1. If f P LppRnq

and g P LqpRnq, then f ˚ g P LrpRnq, and

||f ˚ g||r ď ||f ||p||g||q.

6.5 Lecture 29 (Convolutions, Approx to the Iden-
tity)

We now set up some notation. If α “ pα1, . . . , αnq, then

Dαfpxq “

ˆ

Bα1

Bx1
¨ ¨ ¨

Bαn

Bxn

˙

f.

That is, this is a compact way of denoting mixed partial fractions.

Definition. |α| “
řn

i“1 αi is defined to be the order of the derivative Dα.

We denoted by Cm the set of functions where Dαf exists and is continuous
for all |α| ď m. For m “ 8, we have that it is the set of smooth functions.
We denote by Cm

0 the set of functions which are in Cm and where they have
compact support.

Theorem 6.15. If f P Lp for some 1 ď p ď 8, and g P Cm
0 , then f ˚ g P Cm

and
Dαpf ˚ gq “ f ˚ Dαg

for all |α| ď m.
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Remark 38. It’s enough to prove B
Bxi

pf ˚ gq “ f ˚ B
Bxi

g, since we are just
iterating the derivatives by construction.

Proof. We first want to show that f ˚ g is continuous. It is, in fact, going to be
uniformly continuous. We start with examining

|f ˚ gpx ` hq ´ f ˚ gpxq| “

ˇ

ˇ

ˇ

ˇ

ż

fpyq pgpx ` h ´ yq ´ gpx ´ yqq dy

ˇ

ˇ

ˇ

ˇ

.

We now do a transformation. Let u “ x ´ y. Then du “ ´dy, and so we have
ˇ

ˇ

ˇ

ˇ

ż

fpx ´ uq pgpu ` hq ´ gpuqq du

ˇ

ˇ

ˇ

ˇ

ď

ż

|fpx ´ uq||gpu ` hq ´ gpuq|du

We now apply Hölder! We thus have
ż

|fpx ´ uq||gpu ` hq ´ gpuq|du ď ||f ||p||gpu ` hq ´ gpuq||q.

Now, using Theorem 5.19, we know that we can make ||gpu ` hq ´ gpuq|| as
small as we wish with regards to h so long as q ‰ 8. However, the case of
q “ 8 follows just from the fact that g is uniformly continuous.

Now, we want to check the formula. We use Remark 38 to note we only
need to check the case of a single derivative. We start with examining

pf ˚ gqpx ` heiq ´ pf ˚ gqpxq

h
“

ż

fpyq

ˆ

gpx ` heiyq ´ gpx ´ yq

h

˙

dy.

We can use the Mean Value Theorem to get that this is equal to
ż

fpyq
B

Bxi
gpx ´ y ` ξeiqdy

for some ξ P r0, hs. Since pB{Bxiqg is continuous with compact support, it is
uniformly continuous. Therefore, we have

ˇ

ˇ

ˇ

ˇ

B

Bxi
gpx ´ y ` ξeiq ´

B

Bxi
gpx ´ yq

ˇ

ˇ

ˇ

ˇ

ă ϵ

if |h| ă δ. Note that this bound is independent of x and y. Now, examine
ˇ

ˇ

ˇ

ˇ

f ˚ gpx ` heiq ´ f ˚ gpxq

h
´ f ˚

B

Bxi
gpxq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

fpyq

ˆ

B

Bxi
gpx ´ y ` ξeiq ´

B

Bxi
gpx ´ yq

˙

dy

ˇ

ˇ

ˇ

ˇ

ď

ż

|fpyq|

ˇ

ˇ

ˇ

ˇ

B

Bxi
gpx ´ y ` ξeiq ´

B

Bxi
gpx ´ yq

ˇ

ˇ

ˇ

ˇ

dy ă ϵ

ż

|fpyq|dy.
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Now, we may use Hölder to get

ϵ

ż

|fpyq|dy ď ||f ||pϵ.

Since f P Lp, we have that this goes to zero as we let ϵ Ñ 0, as desired.
Q.E.D

Remark 39. (a) IF g P C8
0 , f P Lp, then we have that f ˚ g P C8.

(b) If f does not have compact support, then neither does f ˚ g. But, if f and
g both have compact support, then f ˚ g also has compact support.

For fixed K P L1, we can define a transformation T : L1 Ñ L1, where
f ÞÑ f ˚ K. We use K because K is called the kernel of this transformation.

Definition. For K fixed, ϵ ą 0, define

Kϵpxq “
1

ϵn
K

´x

ϵ

¯

.

This is called the rescaled Kernel.

Remark 40. (a) This is so that the integral is unchanged;
ż

Rn

Kϵ “

ż

Rn

K.

(b) Notice that
lim
ϵÑ0

ż

tx : |x|ąδu

Kϵpxqdx “ 0.

That is, all the interesting information is near 0. We see that this holds
true by examining the following chain of info:

ż

tx : |x|ąδu

|Kϵpxq|dx “
1

ϵn

ż

tx : |x|ąδu

ˇ

ˇ

ˇ
K

´x

ϵ

¯ˇ

ˇ

ˇ
dx.

We now do a transformation to get
ż

ty : |y|ąδ{ϵu

|Kpyq|dy.

We can now rewrite this as
ż

Rn

|Kpyq|χpδ{ϵ,8qpyqdy.

We want to now bring in the limit. We can use the dominated convergence
theorem to do so; notice that this is dominated above by |Kpnq|, which is
integrable by assumption, and notice as well that as we let ϵ Ñ 0, we have
that the integral will be zero. Therefore, we can bring the limit in to see
that this will be 0.
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Why are these called approximations to the identity? Assume
ş

K “ 1, so
that

ş

Kϵ “ 1. Denote by fϵ “ pf ˚ Kϵqpxq, which in other words is

fϵ “

ż

fpx ´ yqKϵpyqdy « fpxq.

We would like to study the conditions where this is actually true. That is, where
the limit is actually going to be fpxq.

6.6 Lecture 30 (Approximations of the Identity
Cont.)

Remark 41. Recall from the homework that if K P C8
0 , then fϵpxq Ñ fpxq

a.e.

Theorem 6.16. If
ş

K “ 1 and f P Lp, then fϵ Ñ f in Lp. That is, ||fϵ´f ||p Ñ

0.

Proof. We first show pointwise convergence, and then we use this pointwise
result to derive Lp convergence.

First, let’s examine |fϵpxq ´ fpxq|. We may write this as

|fϵpxq ´ fpxq| “

ˇ

ˇ

ˇ

ˇ

ż

fpx ´ yqKϵpyqdy ´ fpxq

ˇ

ˇ

ˇ

ˇ

.

Now, we use Remark 40 (a) to note that we can rewrite this as
ˇ

ˇ

ˇ

ˇ

ż

fpx ´ yqKϵpyqdy ´ fpxq

ż

Kϵpyqdy

ˇ

ˇ

ˇ

ˇ

.

We can use linearity of the integrals toi simplify this to
ˇ

ˇ

ˇ

ˇ

ż

Kϵpyq pfpx ´ yq ´ fpxqq dy

ˇ

ˇ

ˇ

ˇ

ď

ż

|Kϵpyq| |fpx ´ yq ´ fpxq| dy.

Now, we notice that this is very close to Hölder. We just need to modify the
Kϵ slightly. Let p, q be such that 1{p ` 1{q “ 1. Then we write

Kϵpyq “ pKϵpyqq
1{p

pKepsilonpyqq
1{q

.

Substituting this into the above, we get

ż

|Kϵpyq| |fpx ´ yq ´ fpxq| dy “

ż

|Kϵpyq|
1{p

|fpx ´ yq ´ fpxq| |Kϵpyq|
1{q

dy.

We use Hölder to bound this above by
ˆ

ż

|fpx ´ yq ´ fpxq|
p

|Kϵpyq| dy

˙1{p ˆ
ż

|Kϵpyq| dy

˙1{q

.
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Now, notice that
ˆ

ż

|Kϵpyq| dy

˙1{q

“ ||K||
1{q
1 “ ||K||

1{q
1 ,

by Remark 40 (b). So, putting this all together, we have an upper bound of

|fϵpxq ´ fpxq| ď

ˆ
ż

|fpx ´ yq ´ fpxq|
p

|Kϵpyq| dy

˙1{p

||K||
1{q
1 .

Going back to what we want to show, examine
ş

|fϵ ´ f |p “ ||fϵ ´ f ||pp. We want
to show that this goes to 0 as ϵ goes to 0. We can use the upper bound we just
derived to bound this by

ż

|fϵpxq ´ fpxq|pdx ď

ż ż

p|fpx ´ yq ´ fpxq|p|Kϵpyq|q ||K||
p{q
1 dydx.

Pulling constants out and using Tonelli, we may rewrite the upper bound as

||K||p{q

ż
ˆ

ż

|fpx ´ yq ´ fpxq|pdx

˙

|Kϵpyq|dy.

Let gypxq “ fpx ´ yq ´ fpxq. Then we have that this upper bound is

||K||p{q

ż

||gy||pp|Kϵpyq|dy.

We now use Theorem 5.19 to note that, as |y| Ñ 0, we have that ||gy||pp Ñ 0.
Thus, for fixed ϵ1, we have that there is a δ so that for |y| ă δ we have ||gy||pp ă ϵ1.
In the case where y is not small, i.e. |y| ě δ, we have that ||gy||pp ď 2p||f ||pp, via
a homework problem. Hence, we get an upper bound of

||K||p{qϵ1

˜

ż

|y|ăδ

|Kϵpyq|dy

¸

`p2||f ||pqp

˜

ż

|y|ěδ

|Kϵpyq|dy

¸

.

From Remark 40 (b), we know that the blue (or right) portion goes to 0 as
we take ϵ to 0. From Remark 40 (a), we note that the red (or left) portion
can be written as ||K||1ϵ

1. Hence, we have

lim sup
ϵÑ0

ż

|fϵ ´ f |p ď ϵ1||K||
p{q`1
1 .

Since this applies for all ϵ1 ą 0, we get that it must be 0. Hence, we have
convergence in Lp norm. Q.E.D

Remark 42. The trick of showing pointwise convergence and then Lp conver-
gence is a useful trick that we will do often.

Corollary 6.16.1. C8
0 is dense in LppRq for 1 ď p ă 8.
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Proof. We break this up into some cases.
Case 1. Suppose f P Lp and has compact support. Let

ş

K “ 1 and K P C8
0 .

Then if we take fϵ “ f ˚ Kϵ, we have a smooth function with compact
support. The smoothness comes from Theorem 5.22, and the com-
pact support comes Remark 39 (a). Notice that this approximates
f in Lp by Theorem 5.23, and we’re done.

Case 2. Now suppose f P Lp and that it does not have compact support. Let
gR “ fχ|x|ďR. We claim that gR Ñ f in Lp. Examine

||gR ´ f ||p “

ˆ
ż

|gR ´ f |p
˙1{p

“

ż

|f |χ|x|ąR.

We may use the Dominated Convergence Theorem Theorem 4.6 here.
Notice that R Ñ 8 on the inside will give us 0, and to use dominated
convergence theorem we dominate this function by just |f |, which we
know is integrable by assumption. Hence, we have that

lim
RÑ0

||gR ´ f ||p “ 0.

By the previous case, we can approximate gR by smooth functions with
compact support, and so we have

||f ´ g ˚ Kϵ||p ď ||f ´ gR||p ` ||gR ´ gR ˚ Kϵ|p.

The things on the right go to 0 as we take R Ñ 8 and ϵ Ñ 0.
Q.E.D

Remark 43. How do we know C8
0 is nonempty? That is, how do we know

there is a function which has compact support and is smooth? We will build
one later on.
Definition. We say that f(x) = O(g(x)) as x Ñ x0 if |fpxq{gpxq| ď C for x
near x0. This is what is called big O notation.
Definition. We say that f(x) = o(g(x)) as x Ñ x0 if |fpxq{gpxq| Ñ 0 as
x Ñ x0. This is what is is called little o notation.

Using these, we can write some interesting theorems on pointwise conver-
gence of fϵ which we will prove next lecture.
Theorem 6.17. If f P L8, then fϵpxq Ñ fpxq at every point of continuity of
f .
Theorem 6.18. If f P L1, K P L1 X L8, and Kpxq “ op|x|´nq as |x| Ñ 8,
then fϵpxq Ñ fpxq at every point of continuity.
Theorem 6.19. If f P L1, K P L1 X L8, and Kpxq “ Op|x|´n´λq for some
λ ą 0, then fϵpxq Ñ fpxq at every point in the Lebesgue set of f .
Remark 44. Note that this is for n equal to the dimension of the space L is
over.
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6.7 Lecture 31
We now prove the theorems. We start with Theorem 5.24.

Proof. We do what should now be a routine trick. Notice that we can write

fpxq “

ż

fpxqKϵpyqdy,

fϵpxq “

ż

fpx ´ yqKϵpyqdy.

Then we have

|fϵpxq ´ fpxq| “

ˇ

ˇ

ˇ

ˇ

ż

Kϵpyq pfpx ´ yq ´ fpxqq dy

ˇ

ˇ

ˇ

ˇ

ď

ż

|Kϵpyq||fpx ´ yq ´ fpxq|dy.

Let ϵ1 ą 0 be fixed. Then we pick a δ such that |fpx ´ yq ´ fpxq| ă ϵ1 for all
|y| ă δ. We may do this since x is point of continuity for f . We can then break
up the integral into cases; where |y| ă δ and where |y| ě δ. That is, we have
ż

|Kϵpyq||fpx´yq´fpxq|dy “

ż

|y|ăδ

|Kϵpyq||fpx´yq´fpxq|dy`

ż

|y|ěδ

|Kϵpyq||fpx´yq´fpxq|dy

ď ϵ1

ż

|y|ăδ

|Kϵpyq|dy `

ż

|y|ěδ

|Kϵpyq||fpx ´ yq ´ fpxq|dy.

Now, we can utilize the proof of Theorem 5.23 to note that, as we let ϵ Ñ 0,
we have

ż

|y|ěδ

|Kϵpyq||fpx ´ yq ´ fpxq|dy Ñ 0.

Hence, letting ϵ Ñ 0, our upper bound is then

ϵ1

ż

|y|ăδ

|Kϵpyq|dy.

Now, we can extend the domain to make this bigger. That is,

ϵ1

ż

|y|ăδ

|Kϵpyq|dy ď ϵ1

ż

|Kϵpyq|dy “ ϵ1||Kϵ||1 “ ϵ1||K||1.

So we simply have an upper bound of ϵ1||K||1 for all ϵ1 ą 0. Taking ϵ1 Ñ 0 gives
us the desired result. Q.E.D

We now prove Theorem 5.25.
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Proof. We start the same way. That is, write

fpxq “

ż

fpxqKϵpyqdy,

fϵpxq “

ż

fpx ´ yqKϵpyqdy.

Then again we have

|fϵpxq ´ fpxq| ď

ż

|Kϵpyq||fpx ´ yq ´ fpxq|dy.

Now, we break it up into two integrals again; for any δ ą 0, we get
ż

|Kϵpyq||fpx´yq´fpxq|dy “

ż

|y|ăδ

|Kϵpyq||fpx´yq´fpxq|dy`

ż

|y|ěδ

|Kϵpyq||fpx´yq´fpxq|dy.

Use the triangle inequality to write |fpx´yq ´fpxq| ď |fpx´yq| ` |fpxq|. Then
we have
ż

|y|ăδ

|Kϵpyq||fpx´yq´fpxq|dy`

ż

|y|ěδ

|Kϵpyq||fpx´yq|dy`

ż

|y|ěδ

|Kϵpyq||fpxq|dy.

Now, fixing ϵ1 ą 0, choose δ so that we have |fpx ´ yq ´ fpxq| ă ϵ1 for |y| ă δ.
Let ϵ0pδq “ ϵ0 be such that

ż

|y|ěδ

Kϵpyqdy ă ϵ1

for all ϵ ă ϵ0. Let ϵ1pδq “ ϵ1 be such that

sup
|y|ěδ

|Kϵpyq| ă ϵ1

for all ϵ ă ϵ1.
One should ask why we are able to do such a thing. We see this by noting

that we can use the definition to rewrite the above as

sup
|y|ěδ

|Kϵpyq| “ sup
|y|ěδ

1

ϵn
K

´y

ϵ

¯

.

Now, since we are looking at |y| ě δ, we may notice that we have |y|{δ ě 1. In
particular, we have p|y|{δqn ě 1 for all n ě 0, and so we can use this to bound
the above. That is,

sup
|y|ěδ

1

ϵn
K

´y

ϵ

¯

ď
1

δn
sup

|y|ěδ

ˆ

|y|

ϵ

˙n

K
´y

ϵ

¯

.

Now we can do a substitution on this. Let x “ y{ϵ. Then this can be rewritten
as

1

δn
sup

|x|ěδ{ϵ

|x|nKpxq.
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By assumption, we have Kpxq “ op|x|´nq as x Ñ 8. Recall that this means
that

|Kpxq||x|n Ñ 0, x Ñ 8.

However, this is exactly what we have under the supremum! Therefore, taking
ϵ Ñ 0, we have that this pushes this to 0, since x Ñ 8.

Putting all of this together and using some of what we had in the last proof,
we have an upper bound of

|fϵpxq ´ fpxq| ď ϵ1||K||1 ` ϵ1|fpxq| ` ||f ||1ϵ
1

for all ϵ ă mintϵ0, ϵ1u. By assumption, f P L1 so that ||f ||1 ă 8. Likewise, x
is a point of continuity, and so |fpxq| ă 8. Since this applies for all ϵ1 ą 0, we
can take this to 0 to get the desired result. Q.E.D

We prove the final theorem. We will diverge from the lecture notes, as there
seems to be a (very bad) typo. We will need to discuss Riemann-Stieltjes
integrals first.
Definition. Let f and ϕ be two functions that are defined and finite on a finite
interval ra, bs. If Γ is a partition of ra, bs, we arbitrarily select intermediate
points tξiu

m
i“1 satisfying xi´1 ď ξi ď xi, and we write

RΓ “

m
ÿ

i“1

fpξiqrϕpxiq ´ ϕpxi´1qs.

RΓ is called a Riemann-Stieltjes sum for Γ,
Definition. If I “ lim|Γ|Ñ0 RΓ exists and is finite, then I is called the Riemann-
Stieltjes integral of f with respect to ϕ on ra, bs, and is denoted by

I “

ż b

a

fpxqdϕpxq “

ż b

a

fdϕ.

Remark 45. We note some nice features of this integral before moving on.
1. If ϕpxq “ x, we just get the normal Riemann integral.

2. If f is continuous on ra, bs and ϕ is continuously differentiable on ra, bs,
then

ż b

a

fdϕ “

ż b

a

fϕ1dx.

3. If ϕ is some sort of step function, it converts this into a discrete sum.

4. These integrals, for the most part, behave exactly like Riemann integrals.
They are linear w.r.t to the functions. That is,

ż

pf1 ` f2qdϕ “

ż

f1dϕ `

ż

f2dϕ,

ż

fdpϕ1 ` ϕ2q “

ż b

a

fdϕ1 `

ż b

a

fdϕ2.
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5. If f is continuous on ra, bs, and ϕ is of bounded variation on ra, bs, then
şb

a
fdϕ exists and we have

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a

fdϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

sup
ra,bs

|f |

¸

V rϕ; a, bs.

6. We also have the mean value theorem; that is, if f continuous on ra, bs, ϕ
bounded and increasing on ra, bs, then there exists a ξ P ra, bs s.t.

ż b

a

fdϕ “ fpξqrϕpbq ´ ϕpaqs.

We omit the proofs for these.

We will also need to have a lemma on Riemann-Stieltjes functions.

Lemma 6.3. If f integrable over a spherical shell a ď |x| ď b and ϕpρq is
continuous for a ď ρ ď b, 0 ď a ă b ă 8. Let F pρq “

ş

|a|ď|x|ďρ
fpxqdx for

a ď ρ ď b. Then
ż

aď|x|ďb

fpxqϕp|x|qdx “

ż b

a

ϕpρqdF pρq.

Proof. Let f “ f` ´ f´. These are two bounded increasing functions, and
so F is of bounded variation on ra, bs. Furthermore, this tells us that

şb

a
ϕdF

is well defined. We may assume that f ě 0 without loss of generality. Let
I “

ş

aď|x|ďb
fpxqϕp|x|qdx, and let ta “ ρ0 ă ρ1 ă ¨ ¨ ¨ ă ρk “ bu be a partition

of ra, bs. Then we have

I “

k
ÿ

i“1

ż

ρi´1ď|x|ďρi

fpxqϕp|x|qdx.

Since f ě 0, we get

k
ÿ

i“1

mi

ż

ρi´1ď|x|ďρi

fpxqdx ď I ď

k
ÿ

i“1

Mi

ż

ρi´1ď|x|ďρi

fpxqdx,

where Mi is the max of ϕ on ra, bs and mi is the min of ϕ on ra, bs. Use the
fundamental theorem of calculus to rewrite this as

k
ÿ

i“1

mirF pρiq ´ F pρi´1qs ď I ď

k
ÿ

i“1

MirF pρiq ´ F pρi´1qs.

We squeeze this together and use Theorem 2.24 from the book to deduce
the desired equality. Q.E.D
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Proof. Let x0 be a point of the Lebesgue set of f , so that

ρ´n

ż

|x|ăρ

|fpx0 ` xq ´ fpx0q|dx Ñ 0

as ρ Ñ 0. By considering the function rfpxq “ fpx0 ` xq, we may assume that
x0 “ 0. Since the hypothesis on K implies that Kpxq “ op|x|´nq, the conclusion
follows from the prior theorem if f is continuous at 0. Hence, subtracting from
f a continuous function with compact support which equal fp0q at 0, we may
suppose that fp0q “ 0.

We can now use the fact that |Kpxq| is bounded and that Kpxq “ Op|x|´n´λq

to get a single estimate
|Kpxq| ď

M1

p1 ` |x|qn`λ
.

Hence,

Kϵpxq ď M1
ϵλ

pϵ ` |x|qn`λ
.

Therefore,

fϵp0q| ď M1

ż

Rn

|fpxq|
ϵλ

pϵ ` |x|qn`λ
dx.

Now, let F pρq “
ş

|x|ďρ
|fpxq|dx. The hypotheses that x0 “ 0 is a Lebesgue

point of f and that fp0q “ 0 imply that given ζ ą 0, there is a δ ą 0 such that
F pρq ă ζρn if p ď δ. Write

ż

Rn

|fpxq|
ϵλ

pϵ ` |x|qn`λ
dx “

ż

|x|ďδ

`

ż

|x|ąδ

“ A ` B.

Taking

ϕpρq “
ϵλ

pϵ ` ρqn`λ

and ra, bs “ r0, δs in Lemma 5.8, we have

A “

ż δ

0

ϵλ

pϵ ` ρqn`λ
dF pρq

Integrate this by parts and use F p0q “ 0 to get

A “ ϕpδqF pδq ` pn ` λq

ż δ

0

F pρq
ϕpρq

pϵ ` ρq
dρ.

The term on the left goes to 0 as ϵ Ñ 0, and the right term, after using a
transformation ρ “ ϵt, has an upper bound of

pn ` λqζ

ż δ

0

ρn
ϕpρq

pϵ ` ρq
dρ “ pn ` λqζ

ż δ{ϵ

0

tn

p1 ` tqn`λ`1
dt.
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Hence, lim supϵÑ0 A ď cζ for some constant c. To estimate B, note that if
|x| ą δ, then ϵ ` |x| ą δ, so that

B ď
ϵλ

δn`λ

ż

|x|ąδ

|fpxq|dx ď
ϵλ

δn`λ
||f ||1.

This goes to 0 as ϵ Ñ 0. Taking ζ Ñ 0 gives us our desired result. Q.E.D

6.8 Lecture 32 (Abstract Measure Spaces)
We briefly discuss some examples of convolution kernels before moving on.

Example 6.4. (i) The Poison Kernel,

P pxq “ Kpxq “
1

πp1 ` x2q
, x P R.

(ii) The Gauss-Weierstrauss Kernel,

Kpxq “
1

?
π
e´x2

, x P R.

Remark 46. We can generalize this to higher dimensions as well.

(iii) The Fejer Kernel,

Kpxq “
1

π

ˆ

sinpxq

x

˙2

, x P R.

There are applications of using these to sort of normalize or control contin-
uous functions, but I will skip over these for conciseness.
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Chapter 7

Abstract Measure Spaces

Definition. An (abstract) measure space is a triple pX,F , µq, where X
denotes the space, F denotes a collection of subsets, and µ is a measure, which
satisfies the following properties:

(i) F is a σ-algebra of subsets of X,

(ii) µ is a measure on F :

(a) µ : F Ñ r0,8s is a set function,
(b)

µ

˜

ď

k

Ek

¸

“
ÿ

k

µpEkq

if Ek P F and Ek X Ej “ ∅ if j ‰ k.

Example 7.1. (i) Let X “ Rn, F the collection of Lebesgue measurable
sets (or Borel measurable sets), and suppose there is a fxed non-negative
measurable set function f . Define µpAq “

ş

A
fpxqdx. Then we have that

µ satisfies the properties from the definition.

(ii) Let X “ Z (or some countable set), F “ PpXq (the powerset of X),
and define µpAq “ |A| (that is, the cardinality of A). This is called the
countable measure.

(iii) Let X “ Z, F “ PpXq, and fix a non-negative sequence takukPZ. Set
µptkuq “ ak. Then µpAq “

ř

kPA ak. This gives us a probability mea-
sure if

ř

ak “ 1.

We now note some properties.

Lemma 7.1. If pX,F , µq is a measure space, we have the following:

(i) µp∅q “ 0 as long as µpAq ă 8 for some A.
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(ii) If A Ď B, then µpAq ď µpBq.

(iii) For any collection Ek P F , we have

µ

˜

ď

k

Ek

¸

ď
ÿ

k

µpEkq.

(iv) If Ek Õ E, then µpEKq Ñ µpEq. Likewise, if Ek Œ E, and µpEk0
q ă 8

for some k0, then µpEkq Ñ µpEq.

Proof. (i) If µpAq ă 8, then we have that µpA Y ∅q “ µpAq ` µp∅q “ µpAq.
Subtracting µpAq from both sides gives µp∅q “ ∅.

(ii) Write B as B “ pB ´ Aq Y A. Then these are disjoint, and so we have
µpBq “ µpB ´ Aq ` µpAq. Therefore, we have µpAq ď µpBq.

(iii) Write F1 “ E1, Fk “ Ek ´

´

Ťk´1
i“1 Ei

¯

. Then
Ť

k Fk “
Ť

k Ek, and
furthermore Fk X Fj “ ∅ if k ‰ j. So we can write this as

µ

˜

ď

k

Fk

¸

“
ÿ

k

µpFkq.

Now, µpFkq ď µpEkq for all k, and so we have

µ

˜

ď

k

Ek

¸

“

˜

ď

k

Fk

¸

ď
ÿ

k

µpEkq.

(iv) This is analogous to the proof of Proposition 2.1 (ii).
Q.E.D

We can use this to define abstract measurable functions.

Definition. Let pX,F q and pY,G q be two spaces and σ-algebras. Suppose we
have a function f : X Ñ Y . Then we say that f is a measurable function if
f´1pBq P F for all B P G .

So, in this language, what are the measurable functions that we have been
using? They are functions f : pRn,M q Ñ pR,Bq, where M is the set of all
Lebesgue measurable sets and B is the set of all Borel measurable sets. We’ve
been only using open sets, not Lebesgue measurable sets!

7.1 Lecture 33
We go over some properties of F-measurable sets.

Lemma 7.2. (i) If f and g are F-measurable, then so are f ` g and fg.
If c P R, then cf is F-measurable. If ϕ is continuous, then ϕ ˝ f is F-
measurable.
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(ii) If tfnun is a sequence of F-measurable functions, then the following are
also F-measurable:

(a) supn fn,
(b) infn fn,
(c) lim supn fn,
(d) lim infn fn,
(e) if the limit exists, limn fn.

(iii) If f is non-negative and F-measurable, then there exists non-negative sim-
ple functions which are F-measurable such that fk Õ f .

The proof to these is analogous to the proofs found in Chapter 2. We
remark here that Durett ([2]) assumes that µ is σ-finite. We define this below.

Definition. A measure µ is said to be σ-finite if there exists a sequence En Ď X
such that En Õ X and µpEnq ă 8 for all n.

We will not use this assumption, however.

Definition. We define the (abstract) integral for a simple F-measurable
function f which is non-negative to be

ż

fdµ “

n
ÿ

i“1

aiµpEiq,

where
f “

n
ÿ

i“1

aiχEi
,

and ai ě 0, Ei P F , n ă 8. We also define 8 ¨ 0 “ 0 ¨ 8 “ 0 in this.

We now list some properties of this new integral.

Lemma 7.3. Throughout, let f, g ě 0 be F-measurable simple functions. We
then have the following:

(i)
ż

pafqdµ “ a

ż

fdµ,

(ii)
ż

pf ` gqdµ “

ż

fdµ `

ż

gdµ,

(iii) If E Ď F , then
ş

E
fdµ ď

ş

F
fdµ.

(iv) If f ď g, then
ş

fdµ ď
ş

gdµ.
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Proof. (i) Examine
ş

pafqdµ. Since f is a simple function, we have that af is
defined to be

af “

n
ÿ

i“1

aaiχEi
.

Hence,
ż

pafqdµ “

n
ÿ

i“1

aaiµpEiq “ a
n

ÿ

i“1

aiµpEiq “ a

ż

fdµ.

(ii) This is a little more tricky. Let f be as in the definition and let g be
defined by

g “

m
ÿ

j“1

bjχFj .

Then we write f ` g as

f ` g “
ÿ

i,j“1

pai ` bjqχEiXFj .

Now, we can write the integral as
ż

pf ` gqdµ “
ÿ

i,j“1

pai ` bjqµpEi X Fjq.

Distribute the ai and bj to get this in the form

ż

pf ` gqdµ “
ÿ

i,j“1

aiµpEi X Fjq `
ÿ

i,j“1

bjµpEi X Fjq.

Now, notice that since the Fj are disjoint and their union is the whole
space (and likewise with the Ei), we get that this is
ż

pf`gqdµ “

n
ÿ

i“1

m
ÿ

j“1

aiµpEiXFjq`

m
ÿ

j“1

n
ÿ

i“1

bjµpEiXFjq “

n
ÿ

i“1

aiµpEiq`

m
ÿ

j“1

bjµpFjq.

(iii) We first need a definition.

Definition. We define the (abstract) integral over E of f to be
ż

E

fdµ “

ż

fχEdµ.

Now, using this, we have that this result is clear. That is, we have
ż

E

fdµ “

ż

fχEdµ “

n
ÿ

i“1

aiχEχEi ď

n
ÿ

i“1

aiχFχEi “

ż

F

fdµ.
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(iv) This is clear.
Q.E.D

We get an analogous definition to almost everywhere with regards to the
measure.

Definition. We say that a property holds µ-a.e. if the set of points where it
does not hold has µ-measure 0.

Example 7.2. We have f ď g µ-a.e. if µptf ą guq “ 0.

Using this, we can rewrite property (iv) above as follows:

Lemma 7.4. If f ď g µ-a.e., then
ş

fdµ ď
ş

gdµ.

We now want to start to expand the integral to general non-negative func-
tions (and then to general functions using the same procedure as prior).

Definition. We have the (abstract) integral of a non-negative F-measurable
function f is defined to be

ż

fdµ “ sup
0ďgďf
g simple

ż

gdµ.

We also define the integral over a set E analogously; that is, if E P F , then
ż

E

fdµ “

ż

fχEdµ.

We now get some properties on this integral.

Lemma 7.5. (i)
ż

pafqdµ “ a

ż

fdµ.

(ii) If f ď g µ-a.e., then
ż

fdµ ď

ż

gdµ.

(iii) We have Chebychev’s Inequality; that is,

µptf ě auq ď
1

a

ż

fdµ.

Note that we do not have additivity yet. This is because we will need the
monotone convergence theorem to prove this.

Proof. (a) By definition,
ż

pafqdµ “ sup
0ďgďaf
g simple

ż

gdµ.
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However, this is equivalent to

sup
0ďgďf
g simple

ż

agdµ.

Now, we can use properties of simple non-negative measurable functions to
rewrite this as

a sup
0ďgďf
g simple

ż

gdµ “ a

ż

fdµ.

(b) This is clear. If f ď g, then all simple functions h ď f have the property
that h ď g as well. Use this to get the inequality.

(c) Notice that we can write this as
ż

fdµ ě

ż

aχtfěaudµ,

and then we can note that

a

ż

χtfěaudµ “ aµptf ě auq.

Q.E.D

Theorem 7.1. (Fatou’s Lemma) Assume fn ě 0 F-measurable, then
ż

´

lim inf
nÑ8

fn

¯

dµ ď lim inf
nÑ8

ż

fndµ.

Proof. Let gn “ infkěn fk. Notice that these gk are increasing, and furthermore
they are increasing to lim infnÑ8 fn “ g. On the other hand, we have

ż

gndµ ď

ż

fndµ,

since gn is an infimum over functions including fn. So, taking the liminf of both
sides, we have

lim
nÑ8

ż

gndµ ď lim inf
nÑ8

ż

fndµ.

So it suffices to show that
ż

gdµ ď lim
nÑ8

ż

gndµ.

We now use the definition; that is, for h simple,
ż

gdµ “ sup
0ďhďg

ż

hdµ.
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We need to show that if h ď g simple, then
ż

hdµ ď lim
nÑ8

ż

gndµ,

since if we can do this for all such h we can use the least upper bound property
of the supremum. We break it up into three cases.

Case 1: Suppose h “ 0 µ-a.e. Then we win by default.

Case 2: Now suppose
0 ă

ż

hdµ ă 8.

Let E “ tx : 0 ă hpxq ă 8u. Then we have
ż

hdµ “

ż

E

hdµ.

We claim that µpEq ă 8. This is because h is simple;
ż

hdµ “
ÿ

aiµpEiq,

and so since h ă 8 µ-a.e. we must have that µpEq ă 8. Now, fix
ϵ ą 0, and for all n set En “ tx P E : gnpxq ą p1 ´ ϵqhpxqu. We
have gn Õ g ě h, so eventually every point in E will be in one of
these En. We therefore get En Õ E. So pE ´Enq Œ ∅, and therefore
µpE ´ Enq Ñ 0 (since µpEq ă 8).
Now, examine

ż

hdµ “

ż

E

hdµ “

ż

E´En

hdµ `

ż

En

hdµ.

On the left, we have that this is less than or equal to ||h||8µpE ´Enq,
which we know goes to 0 as n Ñ 8. On the right, we have that this is
less than or equal to

1

1 ´ ϵ

ż

En

gndµ ď
1

1 ´ ϵ

ż

gndµ.

So therefore, we have that
ż

hdµ ă
1

1 ´ ϵ

ż

gndµ

for n sufficiently large and for all ϵ ą 0. Taking the limit as ϵ goes to
0 then gives us

ż

hdµ ď

ż

gndµ.
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Case 3: Now assume that
ş

hdµ “ 8. Since h is a simple function, we must
have a set A Ď X with µpAq “ 8, hpxq “ a on A. Let An “ tx P A :
gn ą a{2u. Since gn Ñ g ě h “ a on A, then An Õ A. Therefore,
µpAnq Õ µpAq “ 8, and so we have

ż

gndµ ě

ż

An

gndµ ě
a

2
µpAnq Ñ 8

as n Ñ 8. Hence, we have that
ş

hdµ ď limnÑ8

ş

gndµ.

Q.E.D
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