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The reason for writing these notes is that I am unable to find nice proofs online for these facts,
so I’d like to have a centralized place to reference them. All definitions can be found in my notes or
on Wikipedia. The goal will be to prove the mean of a binomial/negative binomial random variable
via algebraic manipulations. We proceed with the calculations now.

The core behind these proofs is the following observation.

Claim. Suppose n ≥ k ≥ 0. We have that

k

(
n

k

)
= (n− k + 1)

(
n

k − 1

)
.

This will be proven in the first two claims, and then assumed for the rest of the time.

Claim. The mean of a binomial random variable X ∼ Bin(n, p) is

E(X) = np.

Proof. The nicest proof I’ve found is on Wikipedia, which uses the linearity of expectation. The
gist is to rewrite the binomial random variable as a sum of i.i.d. Bernoulli random variables, and
then use the fact that a Bernoulli random variable has mean p. To be consistent with the proof for
the negative binomial random variable, we will try to instead prove it from scratch.

Let’s first just write the definition. We have

E(X) =
∞∑
k=0

k

(
n

k

)
pk(1− p)n−k.

The first observation I’ll make here is that we will define
(
n
k

)
= 0 for k > n (so that this series is

defined). The next observation to make is to note that at k = 0 this sum is just zero, so without
loss of generality we can just start the series at k = 1. The final observation is to notice that

k

(
n

k

)
= k · n!

k!(n− k)!
=

n!

(k − 1)!(n− k)!
=

n− k + 1

n− k + 1

n!

(k − 1)!(n− k)!

= n− k + 1
n!

(k − 1)!(n− k + 1)!
= (n− k + 1)

(
n

k − 1

)
.

We use this substitution to rewrite the above as

E(X) =

∞∑
k=1

(n− k + 1)

(
n

k − 1

)
pk(1− p)n−k

=
∞∑
k=1

n

(
n

k − 1

)
pk(1− p)n−k −

∞∑
k=1

(k − 1)

(
n

k − 1

)
pk(1− p)n−k.

1

https://marshareb.github.io/files/ProbabilityNoteswithProofs.pdf
https://en.wikipedia.org/wiki/Binomial_distribution


In the term on the left, this is almost just the sum of the pmf from k = 1 to ∞. Pulling out terms,
we have

∞∑
k=1

n

(
n

k − 1

)
pk(1− p)n−k =

np

1− p

∞∑
k=1

(
n

k − 1

)
pk−1(1− p)n−k+1

=
np

1− p

∞∑
k=0

(
n

k

)
pk(1− p)n−k =

np

1− p
.

Now examining the term on the right, we almost have the expected value. Let’s pull out terms
again. This gives us

∞∑
k=1

(k − 1)

(
n

k − 1

)
pk(1− p)n−k =

p

1− p

∞∑
k=1

(k − 1)

(
n

k − 1

)
pk−1(1− p)n−k+1

=
p

1− p

∞∑
k=0

k

(
n

k − 1

)
pk(1− p)n−k =

p

1− p
E(X).

Putting it all together, we have

E(X) =
np

1− p
− p

1− p
E(X).

We can add p/(1− p)E(X) to both sides to get(
p

1− p
+ 1

)
E(X) =

E(X)

1− p
=

np

1− p
.

Multiply both sides by 1− p to get
E(X) = np,

as desired. �

Of course in the above proof it would have been much faster to just use the linearity trick,
however the advantage of going about the proof this way is that we can adapt it for the negative
binomial random variable.

Claim. The mean of a negative binomial random variable X ∼ NB(k, p) is

E(X) =
kp

1− p
.

Remark. There are many definitions for the negative binomial random variable. We are using the
one with the pmf defined by

P (X = n) =

(
n + k − 1

n

)
pn(1− p)k−1.

In other words, we are measuring the probability of n success before k − 1 failures occur. See
Wikipedia for the alternative formulations and their means.

Proof. We use the same trick as before (and since it’s the exact same trick, I’m going to be a little
careless with details). By definition, the mean is

E(X) =

∞∑
n=0

n

(
n + k − 1

n

)
pn(1− p)k−1.

Notice

n

(
n + k − 1

n

)
= n

(n + k − 1)!

n!(k − 1)!
=

(n + k − 1)!

(n− 1)!(k − 1)!
= (n+k−1)

(n− 1 + k − 1)!

(n− 1)!(k − 1)!
= (n+k−1)

(
n + k − 2

n− 1

)
.
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Rewriting the above, we have

E(X) =

∞∑
n=1

(n + k − 1)

(
n + k − 2

n− 1

)
pn(1− p)k−1

=
∞∑
n=1

(n− 1)

(
n + k − 2

n− 1

)
pn(1− p)k−1 +

∞∑
n=1

k

(
n + k − 2

n− 1

)
pn(1− p)k−1

= p

∞∑
n=1

(n− 1)

(
n + k − 2

n− 1

)
pn−1(1− p)k−1 + kp

∞∑
n=1

(
n + k − 2

n− 1

)
pn−1(1− p)k−1

= p
∞∑
n=0

n

(
n + k − 1

n

)
pn(1− p)k−1 + kp

∞∑
n=0

(
n + k − 1

n

)
pn(1− p)k−1

= pE(X) + kp.

Now we rearrange again to get

(1− p)E(X) = kp.

Divide both sides by 1− p to get

E(X) =
kp

1− p
.

�

Notice that this trick will also give us the variance for both the binomial and the negative
binomial.

Claim. If X ∼ Bin(n, p), then

Var(X) = np(1− p).

Proof. Details will be sparse in this part because it follows the same trick as before.
Recall the variance can be defined as

Var(X) = E(X2)− E(X)2.

We know E(X), so the goal is to figure out E(X2). By definition, we see

E(X2) =
∞∑
k=0

k2
(
n

k

)
pk(1− p)n−k.

Use the trick from before (writing k2 = k · k) to get

E(X2) =

∞∑
k=1

k

(
k

(
n

k

))
pk(1− p)n−k =

∞∑
k=1

k(n− k + 1)

(
n

k − 1

)
pk(1− p)n−k.

Now, we can rewrite

k(n− k + 1) = −k(k − 1) + nk.

Distributing the sum, we have

E(X2) =

∞∑
k=1

nk

(
n

k − 1

)
pk(1− p)n−k −

∞∑
k=1

k(k − 1)

(
n

k − 1

)
pk(1− p)n−k.

Focusing on the term on the left, we can simplify a little to get

np

1− p

∞∑
k=1

k

(
n

k − 1

)
pk−1(1− p)n−k+1.
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Ideally we’d like a (k − 1) term on the inside instead of k since this would match everything else.
We can add and subtract to get this. Notice that

np

1− p

∞∑
k=1

k

(
n

k − 1

)
pk−1(1− p)n−k+1 =

np

1− p

∞∑
k=1

k

(
n

k − 1

)
pk−1(1− p)n−k+1

− np

1− p

∞∑
k=1

(
n

k − 1

)
pk−1(1− p)n−k+1 +

np

1− p

∞∑
k=1

(
n

k − 1

)
pk−1(1− p)n−k+1

=
np

1− p

∞∑
k=1

(k − 1)

(
n

k − 1

)
pk−1(1− p)n−k+1 +

np

1− p

∞∑
k=1

(
n

k − 1

)
pk−1(1− p)n−k+1.

Now the term on the far left in this sum can be rewritten as

np

1− p

∞∑
k=0

k

(
n

k

)
pk(1− p)n−k =

np

1− p
E(X).

The term on the far right can be rewritten as

np

1− p

∞∑
k=0

(
n

k

)
pk(1− p)n−k =

np

1− p
.

Thus
np

1− p

∞∑
k=1

k

(
n

k − 1

)
pk−1(1− p)n−k+1 =

np

1− p
(E(X) + 1).

Going back to our original sum, we focus on the term on the right. We have
∞∑
k=1

k(k − 1)

(
n

k − 1

)
pk(1− p)n−k.

This is close to having a (k−1)1 term in the middle. If we subtract and add, we can get that term.
Doing so, we have

∞∑
k=1

k(k − 1)

(
n

k − 1

)
pk(1− p)n−k =

∞∑
k=1

k(k − 1)

(
n

k − 1

)
pk(1− p)n−k

−
∞∑
k=1

(k − 1)

(
n

k − 1

)
pk(1− p)n−k +

∞∑
k=1

(k − 1)

(
n

k − 1

)
pk(1− p)n−k

=
∞∑
k=1

(k − 1)2
(

n

k − 1

)
pk(1− p)n−k +

∞∑
k=1

(k − 1)

(
n

k − 1

)
pk(1− p)n−k.

Now, focusing on the term on the left in this sum, we have
∞∑
k=1

(k − 1)2
(

n

k − 1

)
pk(1− p)n−k =

p

1− p

∞∑
k=1

(k − 1)2
(

n

k − 1

)
pk−1(1− p)n−k+1 =

p

1− p
E(X2).

Focusing on the term on the right in this sum, we have
∞∑
k=1

(k − 1)

(
n

k − 1

)
pk(1− p)n−k =

p

1− p

∞∑
k=1

(k − 1)

(
n

k − 1

)
pk−1(1− p)n−k+1 =

p

1− p
E(X).

Thus
∞∑
k=1

k(k − 1)

(
n

k − 1

)
pk(1− p)n−k =

p

1− p
E(X2) +

p

1− p
E(X).
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Putting it all together, we see

E(X2) =
np

1− p
E(X) +

np

1− p
− p

1− p
E(X2)− p

1− p
E(X)

=
(n− 1)p

1− p
E(X) +

np

1− p
− p

1− p
E(X2).

Using the fact that E(X) = np and solving for E(X2), we have

E(X2) = np(np− p + 1).

Thus

Var(X) = E(X2)− E(X)2 = (np)2 − np2 + np− (np)2 = np(1− p).

�

Claim. If X ∼ NB(k, p), then

Var(X) =
kp

(1− p)2
.

Proof. Again, details will be sparse in this part because it follows the same trick as before.
Recall the variance can be defined as

Var(X) = E(X2)− E(X)2.

We see that

E(X2) =

∞∑
n=0

n2

(
n + k − 1

n

)
pn(1− p)k−1.

Notice we can apply the trick once to get

E(X2) =
∞∑
n=1

n(n + k − 1)

(
n + k − 2

n− 1

)
pn(1− p)k−1.

Expanding out, we have n(n + k − 1) = n(n− 1) + nk. Thus rewriting the above yields

E(X2) =
∞∑
n=1

(n(n− 1) + nk)

(
n + k − 2

n− 1

)
pn(1− p)k−1

=

∞∑
n=1

n(n− 1)

(
n + k − 2

n− 1

)
pn(1− p)k−1 + k

∞∑
n=1

n

(
n + k − 2

n− 1

)
pn(1− p)k−1.

Focusing on the term on the left, we need to do a common analysis trick of adding zero. The
motivation for this is that the term looks almost like (n−1)2, which would be great since that gives
us back E(X2). So we will subtract off whatever is necessary to get this, and then add it back on
to ensure we still have the same term. Doing so, we have the term is equal to

∞∑
n=1

n(n− 1)

(
n + k − 2

n− 1

)
pn(1− p)k−1 −

∞∑
n=1

(n− 1)

(
n + k − 2

n− 1

)
pn(1− p)k−1

+

∞∑
n=1

(n− 1)

(
n + k − 2

n− 1

)
pn(1− p)k−1

=
∞∑
n=1

(n− 1)2
(
n + k − 2

n− 1

)
pn(1− p)k−1 +

∞∑
n=1

(n− 1)

(
n + k − 2

n− 1

)
pn(1− p)k−1

= pE(X2) + pE(X).
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Focusing on the term on the right, we repeat the same trick. We notice it is close to (n− 1), so we
subtract off whatever we need to in order to get that and then add it back on. Doing so, we have
the term is equal to

k

∞∑
n=1

n

(
n + k − 2

n− 1

)
pn(1− p)k−1 − k

∞∑
n=1

(
n + k − 2

n− 1

)
pn(1− p)k−1 + k

∞∑
n=1

(
n + k − 2

n− 1

)
pn(1− p)k−1

k
∞∑
n=1

(n− 1)

(
n + k − 2

n− 1

)
pn(1− p)k−1 + k

∞∑
n=1

(
n + k − 2

n− 1

)
pn(1− p)k−1

= kpE(X) + kp.

Putting it all together, we have

E(X2) = pE(X2) + (kp + p)E(X) + kp,

or

E(X2) =
kp(kp + 1)

(1− p)2
.

Now we need to subtract off E(X)2 in order to get the variance. Doing so, we have

Var(X) = E(X2)− E(X)2 =
kp

(1− p)2
.

�
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