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Abstract

In this talk, we discuss finding integral solutions to the Pell equation,
which is a Diophantine equation of the form x2 − Dy2 = 1 for integral
solutions x, y ∈ Z and D > 0 a square-free integer. In particular, we focus
on finding fundamental solutions for the Pell equation, which in turn will
give us all solutions for the Pell equation.

History

Diophantine equations were of great interest to the Greeks. In particular,
Archimedes (287 - 212 BC) had a fascination with finding solutions to a partic-
ular Diophantine equation, which we now know is a particular Pell equation.
The problem has to do with calculating the number of cattle of particular colors
in a herd which belonged to the sun God, the poem itself which outlines this
problem is 40 lines. Letting W, B, D, Y denote white, black, dappled, and yel-
low cows, and w, b, d, y denote their respective colors but for cows. Then for
example, one of these restriction was

W =

(
1
2
+

1
3

)
b + y.

This was not the hard part; one could solve this system of restrictions in order to
find a particular number of cows and cattle using linear algebra. The real kicker
of this problem was what followed, and in particular Archimedes said that if
one could solve this, then one could consider themselves "... most skilled in
numbers." [4] Archimedes then said that the number of white bulls added to the
number of black pulls must be a square number, and the nummber of dappled

1



cows added to the number of yellow bulls must be a triangular number. This
could eventually be reformatted into

u2 − (606)(7766)2v2 = 1

where we have D + y = v(v + 1)/2 and u = 2v + 1. Many tried to solve this
problem, using a variety of different techniques, but what was really required
in order to solve this was an efficient algorithm to find a Fundamental solution
to the Pell equation; that is, the smallest integer tuple (u, v) so that they satisfy
the equation. This was not an easy task, and it wasn’t until Amthor in 1880
discovered the way to find it that the problem was finally satisfied (Amthor es-
tablished that the number would be extremely large and thus nearly impossible
to calculate by hand; it wasn’t until the advent of computers that we actually
had the exact answer).

The key issues with the Pell equation is two fold; do solutions exist to
the equation, and if so how do we find these solutions? The existence issue
wouldn’t be realized for long after Archimedes, but finding a solutions was of
much interest to Indian mathematicians in 628 B.C.. Brahmagupta (598 - 670
AD) discovered the identity of composition of forms (referred to at the time as
samsa). Using this, Brahmagupta found an ad hoc way to discover fundamental
solutions to the Pell equation. Later, Bhaskara II found a more cyclic algorithm
to find solutions to solve the Pell equation, which resembles the modern PQA
algorithm. [5]

The history of the Pell equation fell silent until Fermat posed the question,

"Given any number whatever that is not a square, there are also given an
infinite number of squares such that, if the square is multiplied into the given

number and unity is added to the product, the result is a square."

Brounecker (1620-1684) found an algorithmic solution method to this prob-
lem, but Euler would later mistakenly attribute this to Pell (hence the name).
Thus, we see that Brounecker, Euler, Brahmagupta, and Brahska II all found
similar methodologies to finding these fundamental solutions, but none of them
were concerned about whether or not this would always succeed in finding a
solution for all D > 0 which are not square. This was later rectified by Lagrange,
although Weil claims that Fermat had an unpublished solution. [1]

Using Algebraic Number Theory, the algorithms built by Euler, Lagrange,
et al. were improved upon and made more efficient, and it evolved into what
we now refer to as the PQA algorithm (or sometimes as the continued fraction
method). We now explore the specifics of what the Pell equation entails.

Existence and Finding a Fundamental Solution.

Lagrange was able to notice two main facts about solutions to the Pell equation
that allowed him to generate a good algorithm for finding all solutions. First, he
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noticed that the set of solutions is a cyclic group generated by something called
a fundamental unit, and second he noticed that this fundamental unit is related
to the continued fraction expansion of the quadratic surd; or, in other words,
if the equation is of the form x2 − dy2 = 1, then the fundamental solution is
related to to the continued fraction expansion of

√
d.

To start, we define the norm mapping, which we’ll be using throughout.

Definition 1. If K is an extension of a field F, and K/F is separable, then for
any α ∈ K we have

NK/F(α) =
n

∏
i=1

σi(α),

where the σi are all of the isomorphisms of K into the algebraic closure F̄ of F
fixing the elements of F.

Notice that if d > 0 is a square-free integer, we have that Q(
√

d)/Q is a
Galois extension. Moreover, Gal(Q(

√
d)/Q) = {Id, σ} where σ :

√
d 7→ −

√
d;

i.e. the conjugate mapping. We can then simplify our definition of the norm
mapping to our more specific case.

Definition 2. If d > 0 is a square-free integer, K = Q(
√

d), and F = Q, then we
define the norm mapping to be

NK/F(α) = αᾱ.

There is a special feature of the norm that allows us to determine the units
within our field. We need a special feature of the norm mapping in order to
establish this, though.

Remark. Throughout, we’ll be using N to denote the norm mapping instead of NK/F.

Lemma 1. The norm mapping is multiplicative; that is, for a, b ∈ K defined as prior,
we have N(ab) = N(a)N(b).

Proof. This readily follows by the multiplicativity of conjugates. Notice N(ab) =
abāb = abāb̄ = aābb̄ = N(a)N(b). �

Using this, we can determine the units using the norm mapping.

Corollary 1. We have that a ∈ K is a unit if and only if N(a) = ±1.

Now, we go back to the Pell equation. Recall that it is an equation of the
form x2 − dy2 = 1. We can factor the left hand side in the order Z[

√
d] to be

(x −
√

dy)(x +
√

dy) = 1. Let α = x +
√

dy. Then, using the norm, we can
rewrite this as N(α) = 1. Thus, we can see that the norm is related to the units
of the order Z[

√
d]. Define G = {α ∈ K : N(α) = 1}. We’ll observe that this is

an abelian group.

Lemma 2. G as defined prior is an Abelian group.
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Proof. We need to go through the five requirements for an Abelian group. It’s
closed; that is, if a, b ∈ G we have ab ∈ G, since N(a) = N(b) = 1 and so
N(a)N(b) = N(ab) = 1. Next, we notice that there is an identity; we clearly
have N(1) = 1. Inverses follows since aā = N(a) = 1, so dividing both sides
gives us ā = 1/a. We then see that ā ∈ Z[

√
d] and N(ā) = 1. Associativity fol-

lows, since N(a)(N(b)N(c)) = (N(a)N(b))N(c) clearly. Finally, commutativity
follows since N(ab) = N(a)N(b) = N(b)N(a) = N(ba). �

So we see that the set of solutions for the Pell equation forms a group. How
do we know that this group is nontrivial though? Moreover, can we show that
this group is cyclic and therefore generated by a cyclic element? If it is a non-
trivial group, what is the size of the group (or, informally, how many equations
are there)? Finally, if the group is cyclic, how do we find the generator? These
questions (suggestive as they may be) did not follow in this order throughout
history; as discussed, the second and third question were answered before
Lagrange was able to really answer the first. We will go through them as stated.

Lemma 3. The equation x2 − dy2 = 1, where d > 1 and square-free, has at least one
solution where y 6= 0.

Proof. To prove this, we will need a lemma that we’ll state without proof.

Lemma 4. There are infinitely many solutions of the equation x2 − dy2 = k, d, k ∈ Z

and d square-free, where x, y ∈ Z>0 for some k with |k| < 1 + 2
√

d.

We utilize the proof by LeVeque [7]. Using this lemma, there is an integer
for which one of the two equations N(a) = ±k has infinitely many solutions
a in Z[

√
d]. Since there are only finitely many residue classes mod k in Z[

√
d],

some residue classes must contain at least three of these solutions. Let N(a1) =
N(a2) = ±k and a1 ≡ a2 (mod k), but that a1 6= ±a2. Then a1 ā2 = a2 ā2 ≡ 0
(mod k), so that b = a1 ā2/k is an element of Z[

√
d]; that is, it has integral

components. Since

N(b) = bb̄ =
a1 ā2 · ā1a2

k2 =
N(a1)N(a2)

k2 = 1,

b yields a solution of the equation. If the second component of b were 0, then
N(b) = 1 would imply that b = ±1, whence

a1 ā2 = ±k = ±a1 ā1

ā2 = ±ā1

a2 = ±a1,

contrary to hypothesis. �
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With the existence of at least one solution, we are led to the next question
– are these solutions generated by a single element? It turns out yes, and it’s
generated by what we call the fundamental solution; that is, the smallest such
solution.

Lemma 5. Let d > 0 be a square-free integer, and assume that there is a solution to
x2 − dy2 = 1. Then there exists a unique f ∈ G so that f > 1 and for all a ∈ G, we
have a = ± f n for some n ∈ Z.

Proof. This follows the proof stated in LeVeque [7]. Let a ∈ G. We notice that
a, 1/a,−a and −1/a give four solutions to Pell’s equation, differing only by
signs of x and y. So we need to show that every a > 1 with N(a) = 1 is of the
form a = f n where f is the fundamental solution; i.e. the smallest such solution.

Since a > 1 and we chose f to be minimal, we have a ≥ f . Hence, there is a
positive integer n such that f n ≤ a < f n+1. Now notice that a/ f n = a f̄ n is in
Z[
√

d], and N(a/ f n) = 1. Thus, a/ f n = b gives an integral solution of Pell’s
equation. From the definition of n, we have 1 ≤ b < f and by how we defined
f we cannot have 1 < b < f . Hence, b = 1 and a = f n, as we required. �

Remark. This result should seem very similar to Dirichlet’s Unit theorem. This is
because it is, in fact, a special case of it. However, this was proven before Dirichlet’s
Unit theorem, and so we provide the proof without using this result.

So we have that the group has two generators, −1 and f where f is the
fundamental solution, and f is of infinite order, that is, there are infinitely many
solutions. We now have the final question; how do we find such a solution?
This is where the method of continued fractions comes into play. In order to
discuss the method of continued fractions, we must make some preliminary
definitions.

Definition 3. Given any irrational number x, define the sequence of irrational
numbers recursively by

x0 = x, xk+1 =
1

xk − bxkc
for k = 0, 1, 2, . . .

in terms of the floor function. The continued fraction of x is the infinite nested
fraction

a0 +
1

a1 + 1 1
a2+···

where ak = bxkc is an integer.

We really only want to deal with finitely many terms, so this leads us to
another definition.

Definition 4. Denote the nth convergent as the quantity which is obtained by
the first n terms of the continued fraction

{a0; a1, a2, . . . , an−1} = a0 +
1

a1 +
1

a2+
1

···+ 1
an−1

.
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Lagrange was able to use these continued fractions to establish his theorem.

Theorem 1. (Lagrange) Fix d > 0 square-free.
(a) The continued fraction of

√
d is in the form

√
d = {a0; a1, a2, . . . , ah−1, 2a0}

where the bar means that the sequence repeats indefinitely.
(b) Write the hth convergent of the continued fraction above as the rational number

{a0; a1, a2, . . . , ah−1} =
uh
vh

.

Then uh and vh are positive integers which satisfy the relation u2
h − dv2

h = (−1)h.

Moreover, using this we get how to find the fundamental solution.

Corollary 2. Let h denote the smallest period of the continued fraction sequence. Then
we have that the fundamental solution f is

f =

{
uh + vh

√
d, if h ≡ 0 (mod 2)

u2h + v2h
√

d = (uh + vh
√

d)2, if h ≡ 1 (mod 2).

Instead of proving these results, we’ll show an example of it in action.

Example 1. Let d = 7. Then we have the sequence {2; 1, 1, 1, 4, 1, 1, 1, 4, . . .}.
Moreover, we see h = 4 (cutting it off before 4), and so we calculate 2+ 1

1+ 1
1+1

=

8
3 ; or, in other words, uh = 8, vh = 3, and our fundamental solution is 8 + 3

√
7.

Final Thoughts and Open Problems

From prior, we saw that in the case x2 − dy2 = 1, we have infinitely many
solutions and we have a "good" algorithm in order to find all of these solutions.
What about the equation x2 − dy2 = k for arbitrary k ∈ Z? It turns out that
Lagrange’s method gives us a good algorithm for also finding out if there are
solutions in the case k = −1, and if there are solutions Lagrange’s theorem also
gives us a way to find all of the solutions. This case is dubbed the negative
Pell equation. In fact, Lagrange’s continued fraction method can be used to
generate all solutions to the Pell equation for arbitrary k, although it is not
always guaranteed to have a solution (such as in the case where k = −1).

Thus, Pell’s equation shows us that we have a "good" algorithm for finding
a generator for the units of the order O = Z[

√
d] ⊆ K = Q(

√
d). One then

wonders is there always a good algorithm for finding the generator for the units
of any arbitrary order? It turns out that currently there is no such algorithm. It
is, in fact, the "holy grail" of algebraic number theory to find such an algorithm.
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There is still yet more to the Pell equation. This short presentation has
really only skimmed the topic as a whole. For more details on Pell’s equation, I
recommend reading "Fundamentals of Number Theory" [7] and "Solving the Pell
equation" [5]. LeVeque gives a good introduction to the topic, while Jacobson
and Williams really go into depth on the topic as a whole.
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