RYLL-NARDZEWSKI'S THEOREM

JAMES MARSHALL REBER

CONTENTS

1. The Ryll-Nardzewski Theorem	1
1.1. What is Ryll-Nardzewski	1
1.2. Preliminaries	1
1.3. The Theorem	4
2. Applications	5
2.1. Weakly almost periodic functions	5
2.2. Construction of a Haar measure	6
References	8

1. The Ryll-Nardzewski Theorem

This section heavily follows Granas and Dugundji [2].

1.1. What is Ryll-Nardzewski. The Ryll-Nardzewski theorem highlights the interplay between the natural topology of a locally convex space and its weak topology. Essentially one is able to extract information on whether there is a fixed point using only weak topology information. Some major applications of the Ryll-Nardzewski theorem are the construction of a Haar measure on a compact group, the existence of a left-invariant mean on W(G) (the space of weakly periodic functions), and the existence of invariant linear functionals under the action of a group of isometries. We present some of these here.

1.2. Preliminaries. We need a few definitions before diving in.

Definition (Fixed Point). If \mathcal{F} is a family of maps of a space X into itself, a *fixed point for* \mathcal{F} is a point $x_0 \in X$ so that for all $f \in \mathcal{F}$, we have $f(x_0) = x_0$.

Definition (Noncontracting). Let \mathcal{F} be a family of self-maps of a set X in some linear topological space. The family \mathcal{F} is called *noncontracting* on X if for any distinct points $x, y \in X$, zero does not belong to the closure of the set

$$\{Tx - Ty : T \in \mathcal{F}\}.$$

Definition (Distal). The family \mathcal{F} of self-maps of a set X in some linear topological space is called *distal* on X if for any distinct $x, y \in X$ there is an open covering $\{V_{\alpha}\}$ of X such that

$$Ty \notin \bigcup_{\alpha} \{V_{\alpha} : Tx \in V_{\alpha}\}$$
 for each $T \in \mathcal{F}$.

The last two definitions will essentially be equivalent in the setting of a locally convex space, as seen in the next lemma.

Lemma 1 (Lemma 9.2 [2]). Suppose E is a locally convex space, $X \subset E$ is compact, and let \mathcal{F} be a family of self-maps of X. The following are equivalent:

- (1) \mathcal{F} is distal on X.
- (2) For each net $\{T_{\beta}\} \subset \mathcal{F}$ and any pair of distinct points $x, y \in X$, if $T_{\beta}x \to u$ and $T_{\beta}y \to v$, then $u \neq v$.
- (3) \mathcal{F} is noncontracting on X.

Proof. (1) \implies (2): Suppose \mathcal{F} is distal on X, let $\{T_{\beta}\} \subset \mathcal{F}$ be a net, and suppose $T_{\beta}x \to u$ and $T_{\beta}y \to v$ for distinct $x, y \in X$. Suppose for contradiction u = v. Consider a cover $\{V_{\alpha}\}$ of X, and consider γ so that $u \in V_{\gamma}$. Since $T_{\beta}x \to u$ and $T_{\beta}y \to u$, we get that V_{γ} contains almost every $T_{\beta}x$ and $T_{\beta}y$. In particular, this means for some β we have

$$T_{\beta}x \in V_{\gamma} \subset \bigcup_{\alpha} \{V_{\alpha} : T_{\beta}y \in V_{\alpha}\}.$$

This contradicts the fact that \mathcal{F} is distal.

(2) \implies (3): The goal is to show that \mathcal{F} is noncontracting. Assume for contradiction

$$0 \in \overline{\{Tx - Ty : T \in \mathcal{F}\}}.$$

This means that we can construct a net $\{T_{\beta}\} \subset \mathcal{F}$ so that $T_{\beta}x - T_{\beta}y \to 0$. Since X is compact, we can refine this so that $T_{\beta}x \to u$ and $T_{\beta}y \to v$. This implies that u = v, contradicting (2). (3) \implies (2): If $x, y \in X$ are distinct, then being noncontracting says that

$$0 \notin \overline{\{Tx - Ty : T \in \mathcal{F}\}}.$$

In particular, there is a neighborhood of the origin containing no Tx - Ty for all $T \in \mathcal{F}$. Choose a balanced neighborhood $U \subset W$ with $U - U \subset W$. Shifting is a homeomorphism, so

$$\{X \cap (U+p) : p \in X\}$$

is an open cover of X. In particular, there is no $T \in \mathcal{F}$ so Tx and Ty belong to a common U + p, for if there were then

$$\{Tx, Ty\} \subset U + p \implies Tx - Ty = (Tx - p) - (Ty - p) \in U - U \subset W,$$

which is impossible. Thus we have that \mathcal{F} is distal on X.

Definition (\mathcal{F} -invariant). If \mathcal{F} is a family of self-maps of X, a subset $A \subset X$ is called \mathcal{F} -invariant if $T(A) \subset A$ for all $T \in \mathcal{F}$.

Definition (Minimal closed \mathcal{F} -invariant subset). A closed nonempty $A \subset X$ that is \mathcal{F} -invariant and has no proper closed \mathcal{F} -invariant subset is called a *minimal closed* \mathcal{F} -invariant subset.

Denote by co(A) the convex hull of a set A, denote by $\overline{co}(A)$ the convex closure, and denote by E(A) the set of extreme points of A. We will utilize an extended version of Krein-Milman in locally convex spaces. That is, we will use the following.

Theorem 1 (Theorem 3.24, 3.25 [4]). Let *E* be a locally convex space, $A \subset E$.

- (1) If $\overline{co}(A)$ is compact, then $\overline{co}(A)$ has extreme points.
- (2) If A is also compact, then $E(\overline{co}(A)) \subset A$.

Utilizing this result, we get the following.

Theorem 2 (Theorem 9.3 [2]). Let C be a nonempty compact convex set in a locally convex space E, and let \mathcal{F} be a semigroup of continuous affine maps of C into itself. If \mathcal{F} is distal on each minimal closed \mathcal{F} -invariant set, then \mathcal{F} has a fixed point.

Proof. We break this up into four steps.

Step 1: We first claim there is a minimal nonempty compact convex subset that is \mathcal{F} -invariant. To do this, we use Zorn's Lemma.

Proof of Step 1. Let \mathcal{G} be the collection of all nonempty compact convex subsets that are \mathcal{F} -invariant. Note that \mathcal{G} is nonempty, since $C \in \mathcal{G}$. This set is partially ordered by inclusion, and if $\{K_{\alpha}\} \subset \mathcal{G}$ is a descending chain then $\bigcap K_{\alpha} \in \mathcal{G}$ is a lower bound. By Zorn's Lemma, we get a minimal $C_0 \subset C$ in \mathcal{G} .

Step 2: Next, we claim there is a smallest nonempty compact subset of C_0 that is \mathcal{F} -invariant. To prove this, we again use Zorn's Lemma.

Proof of Step 2. Let \mathcal{G}_0 be the collection of all nonempty compact subsets of C_0 . Note $C_0 \in \mathcal{G}_0$, so it is nonempty. Again, this has a partial ordering given by inclusion, and again if we have a descending chain $\{K_\alpha\} \subset \mathcal{G}_0$, then $\bigcap K_\alpha \in \mathcal{G}_0$ is a lower bound. So we have a minimal $X \subset C_0$.

Step 3: We now claim that X has one point.

Proof of Step 3. We proceed by contradiction. Assume $x, y \in X$ are such that $x \neq y$. Since C_0 is convex, we get $(x+y)/2 \in C_0$. Since C_0 is \mathcal{F} -invariant,

$$A = \left\{ T\left(\frac{x+y}{2}\right) : T \in \mathcal{F} \right\} \subset C_0.$$

Note three things about A:

- (a) If we take the closure of A, we have $\overline{A} \subset C_0$.
- (b) We have that \overline{A} is \mathcal{F} -invariant.
- (c) Since each T is affine, we have

$$\operatorname{co}(\overline{A}) \subset C_0$$

is also compact.

Since C_0 is minimal, we get that $co(\overline{A}) = C_0$.

Let $z \in E(C_0)$ be an extreme point. Since A is compact, the extended Krein-Milman theorem says that $z \in \overline{A}$. So we can find a net $T_{\alpha}((x+y)/2) \to z$. We have $T_{\alpha}x$ and $T_{\alpha}y$ are both in the compact set X, so assume $T_{\alpha}x \to u$ and $T_{\alpha}y \to v$, both in X. Then

$$z = \lim \frac{T_{\alpha}x + T_{\alpha}y}{2} = \frac{u+v}{2}$$

Since z is an extreme point, u = v = z. Let $\{V_{\alpha}\}$ be an open cover of X, and let β be such that $u \in V_{\beta}$. Then almost every $T_{\alpha}x$, $T_{\alpha}y \in V_{\beta}$, contradicting the fact that \mathcal{F} is distal on X. This tells us that X must only have one point.

Step 4: Since $X = \{x_0\}$ has one point and X is \mathcal{F} -invariant, we see that $T(x_0) = x_0$ for all $T \in \mathcal{F}$. This forces x_0 to be a fixed point for \mathcal{F} .

Corollary 1 (Theorem 9.4 [2]). Let C be a compact convex subset of a locally convex space E, and let \mathcal{F} be a semigroup of continuous affine self-maps of C. If \mathcal{F} is distal on C, then \mathcal{F} has a fixed point.

Proof. Let $X \subset C$ be a closed subset. Then we have that X is compact. We claim that \mathcal{F} being distal on C implies \mathcal{F} is distal on X. We use **Lemma 1** to see this. Let $x, y \in X \subset C$ be distinct points, $\{T_{\beta}\} \subset \mathcal{F}$ a net, and suppose $T_{\beta}x \to u$ and $T_{\beta}y \to v$. Since $x, y \in C$, we have that $u \neq v$. Since this applies for each net and every pair of distinct points in X, we get that \mathcal{F} is distal on X.

Since \mathcal{F} is a self-map of C, any minimal closed \mathcal{F} -invariant set will be contained in C, and so \mathcal{F} must be distal on each minimal closed \mathcal{F} -invariant set by the above observation. Using **Theorem 2**, we get that \mathcal{F} has a fixed point.

1.3. The Theorem. We can now present the Ryll-Nardzewski theorem as a generalization of Theorem 1.

Theorem 3 (Theorem 9.6 [2]). Let C be a nonempty weakly compact convex set in a locally convex space E. Let \mathcal{F} be a semigroup of weakly continuous affine self-maps of C. If \mathcal{F} is strongly noncontracting on C, then \mathcal{F} has a fixed point.

Proof. Let $Fix(T) = \{x \in E : T(x) = x\}$ be the collection of fixed points for a map T. Then the collection of fixed points for the family \mathcal{F} can be expressed as

$$A := \bigcap \{ \operatorname{Fix}(T) : T \in \mathcal{F} \}.$$

The goal is to show that $A \neq \emptyset$. Like before, we break this into a few steps.

- Step 1: We note that $\operatorname{Fix}(T)$ is weakly closed, hence weakly compact. By the finite intersection property, it suffices to show that finite intersections of $\operatorname{Fix}(T)$ are nonempty. Doing so, we can deduce A is nonempty. Let $T_1, \ldots, T_n \in \mathcal{F}$ and let $\mathcal{G} = \langle T_1, \ldots, T_n \rangle$ the semigroup generated by the T_j . Note that \mathcal{G} is countable. If we show \mathcal{G} has a fixed point, then $\bigcap_{i=1}^n \operatorname{Fix}(T_j) \neq \emptyset$ and we are done.
- Step 2: Pick $c_0 \in C$ and consider

$$Q = \overline{\operatorname{co}}\{T(c_0) : T \in \mathcal{G}\}.$$

Because \mathcal{G} is countable, Q is strongly separable. Because each T is affine, Q is \mathcal{G} -invariant, and since Q is a closed convex subset of C, it is weakly closed and hence weakly compact. So it is enough to prove it for Q and \mathcal{G} . Relabeling, we may assume C is Q and \mathcal{G} is \mathcal{F} . We get the additional assumption that C is strongly separable.

Step 3: The goal is to show \mathcal{F} is weakly distal on each weakly closed minimal \mathcal{F} -invariant set $X \subset C$. Let X be such a set, and suppose $x \neq y$ are distinct in X. By assumption, \mathcal{F} is strongly noncontracting, so there exists a strongly open neighborhood of the origin V so that

$$V \cap \{Tx - Ty : T \in \mathcal{F}\} = \emptyset.$$

Choose W convex so that $\overline{W} - \overline{W} \subset V$. Then \overline{W} is a strongly closed convex body, and since C is strongly separable, a countable number of translates $\overline{W}_i = \overline{W} + x_i$ cover X. Each \overline{W}_i is strongly closed and convex, so they are also weakly closed. Hence $\{X \cap \overline{W}_i\}$ is a countable weakly closed cover of the weakly compact set X. By Baire's theorem, at least one of these sets contains a weakly open set (must have nonempty interior). Let $U \subset X \cap (\overline{W} + x_0)$ be the weakly open nonempty set.

Step 4: If we show that the family $\{T^{-1}(U) : T \in \mathcal{F}\}$ satisfies the distal property for \mathcal{F} , we win by applying **Theorem 2** to find our fixed point. Notice that these sets must cover X, since otherwise

$$X \setminus \bigcup \{ T^{-1}(U) : T \in \mathcal{F} \}$$

would be a weakly compact \mathcal{F} -invariant proper subset of X, contradicting the minimality of X. Next, we note that for no $S \in F$ do we have Sx and Sy belonging to a common $T^{-1}(U)$. Otherwise we have TSx and TSy would belong to $UX \cap (\overline{W} + x_0)$ so that $TSx - TSy \in \overline{W} - \overline{W} \subset V$, and since $TS \in \mathcal{F}$ and \mathcal{F} strongly noncontracting this would contradict our choice of V. Thus, it is indeed distal, showing \mathcal{F} is weakly distal on X.

2. Applications

2.1. Weakly almost periodic functions. This section will heavily follow Burckel [1].

Let G be a locally compact abelian topological group G. Denote by C(G) the space of bounded complex-valued continuous functions x(t) on G under the norm

$$||x|| = \operatorname{supp}_{t \in G} |x(t)|.$$

Definition. We call a function $f \in C(G)$ weakly almost periodic (denoted $f \in W(G)$) if its orbit

$$\mathcal{O}(f) = \{L_x f : x \in G\}$$

is relatively compact with respect to the weak topology in C(G), where

$$L_x(f)(y) = f(xy).$$

The goal here is to show that W(G) admits a left-invariant mean. We give a few more definitions before jumping into the main result.

Definition (Stationary). Let $CO(f) := co(\mathcal{O}(f)) = \overline{co}(\mathcal{O}(F))$ be the (weak) closure of the convex hull of the orbit of f. G is said to be W(G)-stationary if for each $f \in W(G)$, $\overline{co}(\mathcal{O}(F))$ contains a constant function.

Definition (Invariant Mean). For G a locally compact abelian topological group, A a norm closed subspace of C(G), an *invariant mean* on A is any linear functional M on A satisfying

- (1) $M \neq 0$ and M(1) = 1 if $1 \in A$.
- (2) $f \in A, f \ge 0$ implies $M(f) \ge 0$.
- (3) $M(L_x f) = M(f)$ for all $x \in G, f \in A$.

Definition (Amenable). For G a locally compact abelian topological group, A a norm closed subspace of C(G), we say that A is *amenable* if there is an invariant mean.

We assume the results of the following theorems.

Theorem 4 (Theorem A.21 [1]). If X is a Banach space, $K \subset X$ is weak compact, then $\overline{co}(K)$ is also weak compact.

Theorem 5 (Theorem 1.25 [1]). For G a locally compact abelian topological group, the following two statements are equivalent.

- (1) G is W(G)-stationary.
- (2) W(G) is amenable.

Assuming this, we can use Ryll-Nardzewski (Theorem 3) to say the following.

Theorem 6 (Corollary 1.26 [1]). If G is a locally compact abelian topological group, then W(G) has an invariant mean. In other words, W(G) is amenable.

Proof. Let $f \in W(G)$. We claim that CO(f) is weakly compact. Note that by definition $\mathcal{O}(f)$ is compact, so $\overline{\operatorname{co}}(\overline{\mathcal{O}}(f)) = CO(F)$ is compact by **Theorem 4**. Since G is a group, each R_x is a linear isometry on C(G). Hence $\{R_x : x \in G\}$ acts noncontractively and weakly continuously on the weak compact convex set CO(f). Applying **Theorem 3**, there exists an $h \in CO(f)$ which is invariant under all R_x . So $h(e) = R_x h(e) = h(x)$ for all $x \in G$. So h is constant, and therefore $CO(f) \cap \mathbb{C} \neq \emptyset$. This tells us that G is W(G)-stationary, and applying the **Theorem 5** tells us that W(G) has an invariant mean M.

Remark. This shows that for every locally compact abelian topological group, the space of weakly almost periodic functions is amenable.

2.2. Construction of a Haar measure. This section will heavily follow Kiesenhofer [3].

G now denotes a compact topological Hausdorff group. We write \cdot' to denote the topological dual versus the algebraic dual \cdot^* .

Definition (Haar measure). A *Haar measure* on G is a measure μ on the Borel sets of G which satisfies the following:

- (1) We have that μ is a Radon measure (inner regular and finite on compact sets).
- (2) We have that μ is invariant under translation:

$$\mu(Ag) = \mu(A) = \mu(gA)$$

for all Borel sets $A \subset G$ and elements $g \in G$.

The goal is to establish the existence of a Haar measure for such a G. That is, to prove the following theorem.

Theorem 7. If G is a compact topological Hausdorff group, then G admits a Haar measure.

Note that since μ is a Radon measure, meaning finite on compact sets, we can normalize μ so that $\mu(G) = 1$. So without loss of generality we can assume μ is a probability measure. Examine the space

 $Q := \{\mu : \mu \text{ is a Radon measure and } \mu(G) = 1\}.$

If our Haar measure μ exists, we have that $\mu \in Q$. Furthermore, μ must be fixed under the mappings

$$\mathcal{F} = \{R_g : g \in G\} \cup \{L_g : g \in G\}$$

where

$$R_g(\mu)(A) = \mu(Ag),$$
$$L_g(\mu)(A) = \mu(gA).$$

Denote by C(G) the set of continuous complex valued functions on G. We recall the Riesz-Representation theorem.

Theorem 8 (Theorem 3.1 [3]). Let G be a locally compact Hausdorff space. The mapping

$$\mu \mapsto I_{\mu} := \int_{G} \cdot d\mu$$

is a bijection from the set of Radon measures on G to the set of positive linear functionals on $C_c(G)$.

View $\widehat{Q} := \Phi(Q) \subset C_c(G)^*$. Since G is compact, all functions have compact support, so $C_c(G) = C(G)$. Since every Radon measure μ on G is finite, we have that the corresponding functional I_{μ} is continuous on C(G) with respect to the supremum norm. So $\widehat{Q} \subset C(G)'$ (the topological dual). So we can write

$$\widehat{Q} = \{ I \in C(G)' : I \text{ is positive and } I(1) = 1 \}.$$

Let $\operatorname{Eval}(f) : C(G)' \to \mathbb{C}$ denote

$$\operatorname{Eval}(f)(I) = I(f).$$

This is a linear functional, and we see that we can express \widehat{Q} as

$$\widehat{Q} = \overline{B(C(G)')} \cap \operatorname{Eval}_1^{-1}(1) \cap \bigcap_{f \ge 0} \operatorname{Eval}_f^{-1}(\mathbb{R}_0^+),$$

where B := B(C(G)') is the unit ball in C(G)'. By definition of the weak^{*} topology and Banach-Alaoglu, we get that \widehat{Q} is weakly compact and convex. We now need to translate the problem in terms of the topological dual of C(G) now. We had before that a measure $\mu \in Q$ is a fixed point for the family \mathcal{F} iff it is a Haar measure. Now if μ is a Haar measure, we have that I_{μ} needs to be a fixed point of the map

$$\widehat{F} = \{\widehat{R}_x : x \in G\} \cup \{\widehat{L}_x : x \in G\},\$$

where

$$\widehat{R}_x(I_\mu)(f) = \int_G f(xz)d\mu(z)$$

for $f \in C(G)$. Let $S = \langle \widehat{F} \rangle$ be the semigroup generated by \widehat{F} . Finally, we observe a nice lemma.

Lemma 2 (Lemma 3.2 [3]). Let G be a compact group, $I \in \widehat{Q} \subset C(G)'$. Then

$$\rho: G \times G \to C(G)': (g,h) \mapsto \widehat{R}_g \widehat{L}_h(I)$$

is continuous.

We now have all of the tools to prove our theorem.

Proof of **Theorem 7**. To use **Theorem 3**, we need to show that the elements in S are weakly continuous affine self-maps of Q which are (strongly) noncontracting on C. First, let's show that the elements in S are affine. Take $\hat{R}_x \in S$ (the argument will be analogous for \hat{L}_x). Consider $(t_i)_{i=1}^n \subset [0,1]$ with $\sum t_i = 1$, $I_i \in \hat{Q}$. Then

$$\widehat{R}_x\left(\sum_{i=1}^n t_i I_i\right)(f) = t_i \sum_{i=1}^n \int f(xz) d\mu_i(z) = t_i \sum_{i=1}^n \widehat{R}_x(I_i).$$

Thus the elements are affine, since compositions will preserve this property.

Next, observe that every $S \in S$ is continuous. Again, it suffices to check this on \widehat{R}_x (the argument for \widehat{L}_x will be the same). It suffices to check that it is continuous at 0, and to do that we just check via nets. Let $(I_i) \subset \widehat{Q}$ be a net. Then $I_i \to 0$ implies

$$\operatorname{Eval}_f(I_i) = I_i(f) \to 0 \text{ for all } f \in C(G)$$

implies

$$I_i(f(x \cdot)) = R_x I_i(f) \to 0$$
 for all $f \in C(G)$

implies $R_x I_k \to 0$. So the map is continuous.

We now show noncontracting. Let $M := \{S(I) - S(J) : S \in S\}$, $I \neq J$ arbitrary elements in \widehat{Q} . The elements of S are injective, so $0 \notin M$. If we can show M is closed, we are done. We can write

$$M = \{\widehat{R}_x \widehat{L}_y(I) - \widehat{R}_x \widehat{L}_y(J) : x, y \in G\}$$

using the definition of S. Thus we see $\rho(G \times G) = M$, where ρ as in **Lemma 2**. This implies M is closed, and we get that the family is noncontracting on \hat{Q} . We now apply **Theorem 3** to get that there is a Haar measure.

Remark.

- One can also see that the Haar measure is unique with a nice trick involving Fubini-Tonelli (see [3]).
- As noted in [3], this heavily depends on compactness. We can weaken to locally compact abelian groups using the Markov-Kakutani theorem.

References

- [1] Robert Burckel. Weakly Almost Periodic Functions on Semigroups.
- [2] Andrzej Granas and James Dugundji. Fixed Point Theory.
- [3] Anna Kiesenhofer. Haar measure on compact groups. Link.
- [4] Walter Rudin. Functional Analysis. Second Edition.