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1. The Ryll-Nardzewski Theorem

This section heavily follows Granas and Dugundji [2].

1.1. What is Ryll-Nardzewski. The Ryll-Nardzewski theorem highlights the interplay between
the natural topology of a locally convex space and its weak topology. Essentially one is able
to extract information on whether there is a fixed point using only weak topology information.
Some major applications of the Ryll-Nardzewski theorem are the construction of a Haar measure
on a compact group, the existence of a left-invariant mean on W (G) (the space of weakly periodic
functions), and the existence of invariant linear functionals under the action of a group of isometries.
We present some of these here.

1.2. Preliminaries. We need a few definitions before diving in.

Definition (Fixed Point). If F is a family of maps of a space X into itself, a fixed point for F is
a point x0 ∈ X so that for all f ∈ F , we have f(x0) = x0.

Definition (Noncontracting). Let F be a family of self-maps of a set X in some linear topological
space. The family F is called noncontracting on X if for any distinct points x, y ∈ X, zero does
not belong to the closure of the set

{Tx− Ty : T ∈ F}.

Definition (Distal). The family F of self-maps of a set X in some linear topological space is called
distal on X if for any distinct x, y ∈ X there is an open covering {Vα} of X such that

Ty /∈
⋃
α

{Vα : Tx ∈ Vα} for each T ∈ F .

The last two definitions will essentially be equivalent in the setting of a locally convex space, as
seen in the next lemma.

Lemma 1 (Lemma 9.2 [2]). Suppose E is a locally convex space, X ⊂ E is compact, and let F
be a family of self-maps of X. The following are equivalent:
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(1) F is distal on X.
(2) For each net {Tβ} ⊂ F and any pair of distinct points x, y ∈ X, if Tβx→ u and Tβy → v,

then u 6= v.
(3) F is noncontracting on X.

Proof. (1) =⇒ (2): Suppose F is distal on X, let {Tβ} ⊂ F be a net, and suppose Tβx → u and
Tβy → v for distinct x, y ∈ X. Suppose for contradiction u = v. Consider a cover {Vα} of X, and
consider γ so that u ∈ Vγ . Since Tβx→ u and Tβy → u, we get that Vγ contains almost every Tβx
and Tβy. In particular, this means for some β we have

Tβx ∈ Vγ ⊂
⋃
α

{Vα : Tβy ∈ Vα}.

This contradicts the fact that F is distal.
(2) =⇒ (3): The goal is to show that F is noncontracting. Assume for contradiction

0 ∈ {Tx− Ty : T ∈ F}.
This means that we can construct a net {Tβ} ⊂ F so that Tβx− Tβy → 0. Since X is compact, we
can refine this so that Tβx→ u and Tβy → v. This implies that u = v, contradicting (2).
(3) =⇒ (2): If x, y ∈ X are distinct, then being noncontracting says that

0 /∈ {Tx− Ty : T ∈ F}.
In particular, there is a neighborhood of the origin containing no Tx− Ty for all T ∈ F . Choose a
balanced neighborhood U ⊂W with U − U ⊂W . Shifting is a homeomorphism, so

{X ∩ (U + p) : p ∈ X}
is an open cover of X. In particular, there is no T ∈ F so Tx and Ty belong to a common U + p,
for if there were then

{Tx, Ty} ⊂ U + p =⇒ Tx− Ty = (Tx− p)− (Ty − p) ∈ U − U ⊂W,
which is impossible. Thus we have that F is distal on X. �

Definition (F-invariant). If F is a family of self-maps of X, a subset A ⊂ X is called F-invariant
if T (A) ⊂ A for all T ∈ F .

Definition (Minimal closed F-invariant subset). A closed nonempty A ⊂ X that is F-invariant
and has no proper closed F-invariant subset is called a minimal closed F-invariant subset.

Denote by co(A) the convex hull of a set A, denote by co(A) the convex closure, and denote by
E(A) the set of extreme points of A. We will utilize an extended version of Krein-Milman in locally
convex spaces. That is, we will use the following.

Theorem 1 (Theorem 3.24, 3.25 [4]). Let E be a locally convex space, A ⊂ E.

(1) If co(A) is compact, then co(A) has extreme points.
(2) If A is also compact, then E(co(A)) ⊂ A.

Utilizing this result, we get the following.

Theorem 2 (Theorem 9.3 [2]). Let C be a nonempty compact convex set in a locally convex
space E, and let F be a semigroup of continuous affine maps of C into itself. If F is distal on each
minimal closed F-invariant set, then F has a fixed point.

Proof. We break this up into four steps.

Step 1: We first claim there is a minimal nonempty compact convex subset that is F-invariant. To
do this, we use Zorn’s Lemma.
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Proof of Step 1. Let G be the collection of all nonempty compact convex subsets that are
F-invariant. Note that G is nonempty, since C ∈ G. This set is partially ordered by
inclusion, and if {Kα} ⊂ G is a desecending chain then

⋂
Kα ∈ G is a lower bound. By

Zorn’s Lemma, we get a minimal C0 ⊂ C in G. �

Step 2: Next, we claim there is a smallest nonempty compact subset of C0 that is F-invariant. To
prove this, we again use Zorn’s Lemma.

Proof of Step 2. Let G0 be the collection of all nonempty compact subsets of C0. Note
C0 ∈ G0, so it is nonempty. Again, this has a partial ordering given by inclusion, and again
if we have a descending chain {Kα} ⊂ G0, then

⋂
Kα ∈ G0 is a lower bound. So we have a

minimal X ⊂ C0. �

Step 3: We now claim that X has one point.

Proof of Step 3. We proceed by contradiction. Assume x, y ∈ X are such that x 6= y. Since
C0 is convex, we get (x+ y)/2 ∈ C0. Since C0 is F-invariant,

A =

{
T

(
x+ y

2

)
: T ∈ F

}
⊂ C0.

Note three things about A:
(a) If we take the closure of A, we have A ⊂ C0.
(b) We have that A is F-invariant.
(c) Since each T is affine, we have

co(A) ⊂ C0

is also compact.
Since C0 is minimal, we get that co(A) = C0.

Let z ∈ E(C0) be an extreme point. Since A is compact, the extended Krein-Milman
theorem says that z ∈ A. So we can find a net Tα((x+ y)/2)→ z. We have Tαx and Tαy
are both in the compact set X, so assume Tαx→ u and Tαy → v, both in X. Then

z = lim
Tαx+ Tαy

2
=
u+ v

2
.

Since z is an extreme point, u = v = z. Let {Vα} be an open cover of X, and let β be such
that u ∈ Vβ. Then almost every Tαx, Tαy ∈ Vβ, contradicting the fact that F is distal on
X. This tells us that X must only have one point. �

Step 4: Since X = {x0} has one point and X is F-invariant, we see that T (x0) = x0 for all T ∈ F .
This forces x0 to be a fixed point for F .

�

Corollary 1 (Theorem 9.4 [2]). Let C be a compact convex subset of a locally convex space E,
and let F be a semigroup of continuous affine self-maps of C. If F is distal on C, then F has a
fixed point.

Proof. Let X ⊂ C be a closed subset. Then we have that X is compact. We claim that F being
distal on C implies F is distal on X. We use Lemma 1 to see this. Let x, y ∈ X ⊂ C be distinct
points, {Tβ} ⊂ F a net, and suppose Tβx → u and Tβy → v. Since x, y ∈ C, we have that u 6= v.
Since this applies for each net and every pair of distinct points in X, we get that F is distal on X.

Since F is a self-map of C, any minimal closed F-invariant set will be contained in C, and so F
must be distal on each minimal closed F-invariant set by the above observation. Using Theorem
2, we get that F has a fixed point. �
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1.3. The Theorem. We can now present the Ryll-Nardzewski theorem as a generalization of
Theorem 1.

Theorem 3 (Theorem 9.6 [2]). Let C be a nonempty weakly compact convex set in a locally
convex space E. Let F be a semigroup of weakly continuous affine self-maps of C. If F is strongly
noncontracting on C, then F has a fixed point.

Proof. Let Fix(T ) = {x ∈ E : T (x) = x} be the collection of fixed points for a map T . Then the
collection of fixed points for the family F can be expressed as

A :=
⋂
{Fix(T ) : T ∈ F}.

The goal is to show that A 6= ∅. Like before, we break this into a few steps.

Step 1: We note that Fix(T ) is weakly closed, hence weakly compact. By the finite intersection
property, it suffices to show that finite intersections of Fix(T ) are nonempty. Doing so, we
can deduce A is nonempty. Let T1, . . . , Tn ∈ F and let G = 〈T1, . . . , Tn〉 the semigroup
generated by the Tj . Note that G is countable. If we show G has a fixed point, then⋂n
j=1 Fix(Tj) 6= ∅ and we are done.

Step 2: Pick c0 ∈ C and consider

Q = co{T (c0) : T ∈ G}.

Because G is countable, Q is strongly separable. Because each T is affine, Q is G-invariant,
and since Q is a closed convex subset of C, it is weakly closed and hence weakly compact.
So it is enough to prove it for Q and G. Relabeling, we may assume C is Q and G is F .
We get the additional assumption that C is strongly separable.

Step 3: The goal is to show F is weakly distal on each weakly closed minimal F-invariant set
X ⊂ C. Let X be such a set, and suppose x 6= y are distinct in X. By assumption, F is
strongly noncontracting, so there exists a strongly open neighborhood of the origin V so
that

V ∩ {Tx− Ty : T ∈ F} = ∅.

Choose W convex so that W−W ⊂ V . Then W is a strongly closed convex body, and since
C is strongly separable, a countable number of translates W i = W+xi cover X. Each W i is
strongly closed and convex, so they are also weakly closed. Hence {X ∩W i} is a countable
weakly closed cover of the weakly compact set X. By Baire’s theorem, at least one of these
sets contains a weakly open set (must have nonempty interior). Let U ⊂ X ∩ (W + x0) be
the weakly open nonempty set.

Step 4: If we show that the family {T−1(U) : T ∈ F} satisfies the distal property for F , we win by
applying Theorem 2 to find our fixed point. Notice that these sets must cover X, since
otherwise

X \
⋃
{T−1(U) : T ∈ F}

would be a weakly compact F-invariant proper subset of X, contradicting the minimality
of X. Next, we note that for no S ∈ F do we have Sx and Sy belonging to a common
T−1(U). Otherwise we have TSx and TSy would belong to UX ∩ (W + x0) so that
TSx − TSy ∈ W −W ⊂ V , and since TS ∈ F and F strongly noncontracting this would
contradict our choice of V . Thus, it is indeed distal, showing F is weakly distal on X.

�
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2. Applications

2.1. Weakly almost periodic functions. This section will heavily follow Burckel [1].
Let G be a locally compact abelian topological group G. Denote by C(G) the space of bounded

complex-valued continuous functions x(t) on G under the norm

‖x‖ = suppt∈G|x(t)|.

Definition. We call a function f ∈ C(G) weakly almost periodic (denoted f ∈W (G)) if its orbit

O(f) = {Lxf : x ∈ G}
is relatively compact with respect to the weak topology in C(G), where

Lx(f)(y) = f(xy).

The goal here is to show that W (G) admits a left-invariant mean. We give a few more definitions
before jumping into the main result.

Definition (Stationary). Let CO(f) := co(O(f)) = co(O(F )) be the (weak) closure of the convex
hull of the orbit of f . G is said to be W (G)-stationary if for each f ∈W (G), co(O(F )) contains a
constant function.

Definition (Invariant Mean). For G a locally compact abelian topological group, A a norm closed
subspace of C(G), an invariant mean on A is any linear functional M on A satisfying

(1) M 6= 0 and M(1) = 1 if 1 ∈ A.
(2) f ∈ A, f ≥ 0 implies M(f) ≥ 0.
(3) M(Lxf) = M(f) for all x ∈ G, f ∈ A.

Definition (Amenable). For G a locally compact abelian topological group, A a norm closed
subspace of C(G), we say that A is amenable if there is an invariant mean.

We assume the results of the following theorems.

Theorem 4 (Theorem A.21 [1]). If X is a Banach space, K ⊂ X is weak compact, then co(K)
is also weak compact.

Theorem 5 (Theorem 1.25 [1]). For G a locally compact abelian topological group, the following
two statements are equivalent.

(1) G is W (G)-stationary.
(2) W (G) is amenable.

Assuming this, we can use Ryll-Nardzewski (Theorem 3) to say the following.

Theorem 6 (Corollary 1.26 [1]). If G is a locally compact abelian topological group, then W (G)
has an invariant mean. In other words, W (G) is amenable.

Proof. Let f ∈ W (G). We claim that CO(f) is weakly compact. Note that by definition O(f)

is compact, so co(O(f)) = CO(F ) is compact by Theorem 4. Since G is a group, each Rx is a
linear isometry on C(G). Hence {Rx : x ∈ G} acts noncontractively and weakly continuously on
the weak compact convex set CO(f). Applying Theorem 3, there exists an h ∈ CO(f) which is
invariant under all Rx. So h(e) = Rxh(e) = h(x) for all x ∈ G. So h is constant, and therefore
CO(f) ∩ C 6= ∅. This tells us that G is W (G)-stationary, and applying the Theorem 5 tells us
that W (G) has an invariant mean M . �

Remark. This shows that for every locally compact abelian topological group, the space of weakly
almost periodic functions is amenable.
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2.2. Construction of a Haar measure. This section will heavily follow Kiesenhofer [3].
G now denotes a compact topological Hausdorff group. We write ·′ to denote the topological

dual versus the algebraic dual ·∗.

Definition (Haar measure). A Haar measure on G is a measure µ on the Borel sets of G which
satisfies the following:

(1) We have that µ is a Radon measure (inner regular and finite on compact sets).
(2) We have that µ is invariant under translation:

µ(Ag) = µ(A) = µ(gA)

for all Borel sets A ⊂ G and elements g ∈ G.

The goal is to establish the existence of a Haar measure for such a G. That is, to prove the
following theorem.

Theorem 7. If G is a compact topological Hausdorff group, then G admits a Haar measure.

Note that since µ is a Radon measure, meaning finite on compact sets, we can normalize µ so
that µ(G) = 1. So without loss of generality we can assume µ is a probability measure. Examine
the space

Q := {µ : µ is a Radon measure and µ(G) = 1}.
If our Haar measure µ exists, we have that µ ∈ Q. Furthermore, µ must be fixed under the
mappings

F = {Rg : g ∈ G} ∪ {Lg : g ∈ G}
where

Rg(µ)(A) = µ(Ag),

Lg(µ)(A) = µ(gA).

Denote by C(G) the set of continuous complex valued functions on G. We recall the Riesz-
Representation theorem.

Theorem 8 (Theorem 3.1 [3]). Let G be a locally compact Hausdorff space. The mapping

µ 7→ Iµ :=

∫
G
·dµ

is a bijection from the set of Radon measures on G to the set of positive linear functionals on Cc(G).

View Q̂ := Φ(Q) ⊂ Cc(G)∗. Since G is compact, all functions have compact support, so Cc(G) =
C(G). Since every Radon measure µ on G is finite, we have that the corresponding functional Iµ
is continuous on C(G) with respect to the supremum norm. So Q̂ ⊂ C(G)′ (the topological dual).
So we can write

Q̂ = {I ∈ C(G)′ : I is positive and I(1) = 1}.
Let Eval(f) : C(G)′ → C denote

Eval(f)(I) = I(f).

This is a linear funcitonal, and we see that we can express Q̂ as

Q̂ = B(C(G)′) ∩ Eval−11 (1) ∩
⋂
f≥0

Eval−1f (R+
0 ),

where B := B(C(G)′) is the unit ball in C(G)′. By definition of the weak* topology and Banach-

Alaoglu, we get that Q̂ is weakly compact and convex.
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We now need to translate the problem in terms of the topological dual of C(G) now. We had
before that a measure µ ∈ Q is a fixed point for the family F iff it is a Haar measure. Now if µ is
a Haar measure, we have that Iµ needs to be a fixed point of the map

F̂ = {R̂x : x ∈ G} ∪ {L̂x : x ∈ G},

where

R̂x(Iµ)(f) =

∫
G
f(xz)dµ(z)

for f ∈ C(G). Let S = 〈F̂ 〉 be the semigroup generated by F̂ .
Finally, we observe a nice lemma.

Lemma 2 (Lemma 3.2 [3]). Let G be a compact group, I ∈ Q̂ ⊂ C(G)′. Then

ρ : G×G→ C(G)′ : (g, h) 7→ R̂gL̂h(I)

is continuous.

We now have all of the tools to prove our theorem.

Proof of Theorem 7. To use Theorem 3, we need to show that the elements in S are weakly
continuous affine self-maps of Q which are (strongly) noncontracting on C. First, let’s show that

the elements in S are affine. Take R̂x ∈ S (the argument will be analogous for L̂x). Consider

(ti)
n
i=1 ⊂ [0, 1] with

∑
ti = 1, Ii ∈ Q̂. Then

R̂x

(
n∑
i=1

tiIi

)
(f) = ti

n∑
i=1

∫
f(xz)dµi(z) = ti

n∑
i=1

R̂x(Ii).

Thus the elements are affine, since compositions will preserve this property.

Next, observe that every S ∈ S is continuous. Again, it suffices to check this on R̂x (the argument

for L̂x will be the same). It suffices to check that it is continuous at 0, and to do that we just check

via nets. Let (Ii) ⊂ Q̂ be a net. Then Ii → 0 implies

Evalf (Ii) = Ii(f)→ 0 for all f ∈ C(G)

implies

Ii(f(x·)) = RxIi(f)→ 0 for all f ∈ C(G)

implies RxIk → 0. So the map is continuous.

We now show noncontracting. Let M := {S(I)− S(J) : S ∈ S}, I 6= J arbitrary elements in Q̂.
The elements of S are injective, so 0 /∈M . If we can show M is closed, we are done. We can write

M = {R̂xL̂y(I)− R̂xL̂y(J) : x, y ∈ G}

using the definition of S. Thus we see ρ(G×G) = M , where ρ as in Lemma 2. This implies M is

closed, and we get that the family is noncontracting on Q̂. We now apply Theorem 3 to get that
there is a Haar measure. �

Remark.

• One can also see that the Haar measure is unique with a nice trick involving Fubini-Tonelli
(see [3]).
• As noted in [3], this heavily depends on compactness. We can weaken to locally compact

abelian groups using the Markov-Kakutani theorem.
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