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1 Set up

Definition. We define a Markov Chain with state space Ω and transition matrix
P to be a sequence of random variables tXiuiě0 and a matrix P such that

for all x, y P Ω, all t ě 1, and all events Ht´1 “
Şt´1
s“0tXt “ xsu satisfying

P tHt´1XtXt “ xsuu ą 0, we have P tXt`1 “ y : Ht´1XtXt “ xuu “ P tXt`1 “

y : Xt “ xu “ P px, yq. This property is also often referred to as the Markov
Property.

Definition. A random mapping representation of a transition matrix P on a
state space Ω is a function f : Ω ˆ Λ Ñ Ω, along with a Λ-valued random
variable Z satisfying P tfpx, Zq “ yu “ P px, yq.

Why do we care about random mapping representations? It helps to con-
dense the transition probabilities from a large matrix to a much simpler function.
This is discussed in the riffle shuffeling REU paper, found here.

Proposition 1. Every transition matrix on a finite space has a random mapping
representation.

Proof. The proofs for this proposition all seem the same. Let Ω “ txiuiě1 and
take Λ “ r0, 1s; our ’auxiliary’ random variables – Z,Z1, Z2, . . . – will be chosen
uniformly on this interval. Define

fpxj , zq :“ xk when
k´1
ÿ

i“1

P pxj , xiq ď z ď
k
ÿ

i“1

P pxj , xiq.

We have

P tfpxj , Zq “ xku “ P

#

k´1
ÿ

i“1

P pxj , xiq ă Z ď
k
ÿ

i“1

P pxj , xiq

+

“ P pxj , xkq

per definition of uniform random variables. Q.E.D

Claim 1. If Z1, Z2, . . . is a sequence of independent random variables, each
having the same distribution as Z, and X0 has distribution µ, then the sequence
pX0, X1, . . .q defined by

Xn “ fpXn´1, Znq for n ě 1

is a Markov chain with transition matrix P and initial distribution µ.

Proof. We refer back to the first definition in this section. We need to thus
verify the Markov property. For simplicity, instead of using all of the notation,
we’ll just get down to the nitty gritty. We want to check

P tXn “ y : Xn´1 “ x,Xn´2 “ xn´2, . . . , X0 “ x0u.

We use the proper definition;

P tfpXn´1, Znq “ y : fpXn´2, Zn´1q “ x, fpXn´3, Zn´2q “ xn´2, . . . , X0 “ x0u.
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Since the Zi are independent, it follows then that this is equivalent to

P tfpXn´1, Znq “ y : fpXn´2, Zn´1q “ xu “ P px, yq.

For the reason of independence, see the prior proof and this (note the conditional
probability definition). Q.E.D

Definition. We say that a chain P is irreducible if, for any x, y P Ω, there
exists an integer t such that P tpx, yq ą 0. In other words, it is possible to get
from any location to any location in Ω in a finite number of steps.

Definition. Let T pxq :“ tt ě 1 : P tpx, xq ą 0u be the set of times when it is
possible for the chain to return to it’s starting position. The period of a state
x is defined to be gcdT pxq.

Irreducibility and aperiodicity will be important when we set up certain
convergence theorems.

Proposition 2. If P is irreducible, then gcdT pxq “ gcdT pyq for all x, y P Ω.

Proof. We want to establish that gcdpT pxqq “ a divides gcdpT pyqq “ b. Let
r, s ą 0 such that P rpx, yq ą 0 and P spy, xq ą 0; this is valid since the chain is
irreducible. Let m :“ r ` s, and let z P T pxq. We have

P z`mpy, yq ě P spy, xq ¨ P zpx, xq ¨ P rpx, yq ą 0.

Notice that this gives us that for all z P T pxq, z `m P T pyq. In other words,
b|z `m. However, b|m, so we get for free that b|z. Thus, for all z P T pxq, b|z.
However, a is the gcdT pxq, so this means that a|b; in othe words, a ď b. By a
symmetric argument, we get that b ď a, and so b “ a. Q.E.D

Remark. This proof is a variation of the proof found in this REU paper. Mine
is phrased much better.

Definition. We say that a Markov chain is aperiodic if all states have period
1. We say that a chain is periodic if it is not aperiodic.

Proposition 3. If P is aperiodic and irreducible, then there is an integer such
that P rpx, yq ą 0 for all x, y P Ω.

Proof. I will skip over this proof, since it requires some number theoretic results
I don’t want to go over. Q.E.D

Remark. If a chain is irreducible and has period two (e.g. SRW) on a cycle of
even length, then the state space Ω can be partitioned into two classes; these
classes are generally denoted by even and odd (a sort of parity property). Let P
have period two, and suppose x0 is an even state. The probability distribution
of the chain after 2t steps P 2tpx0, ¨q is supported on even states, while the
distribution of the chain after 2t` 1 steps is supported on odd states. It should
be clear then that there is no convergence as we let tÑ8.

We can repair this, though. Given an arbitrary transition matrix P , let
Q “ I`P

2 . Since Qpx, xq ą 0 for all x P Ω, the transition matrix Q is aperiodic.
We call Q the lazy version of P .
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Definition. Let π be a distribution on Ω satisfying

π “ πP.

We call a probability π satisfying this property a stationary distribution of the
Markov chain. Clearly, if π is a stationary distribution and µ0 “ π, then µt “ π
for all t ě 0. Note that we can write this elementwise;

πpyq “
ÿ

xPΩ

πpxqP px, yq for all y P Ω.

This sort of formulation is useful for studying Markov chains on graphs.

Definition. For x P Ω, we define a hitting time for x to be τx :“ mintt ě 0 :
Xt “ xu. We also define τ`x :“ mintt ě 1 : Xt “ xu. When X0 “ x, we call τ`x
to be the first return time.

Lemma. For any states x and y of an irreducible chain, Expτ`y q ă 8.

Proof. We first need to find Pxtτ
`
y ą kru. We use the following property of

irreducible chains: there exists an integer r ą 0 and a real 0 ă ε ă 1 with
the following property: for any states z, w P Ω, there exists a j ď r with
ε ă P jpz, wq ď p1´εq. So, the probability of a hitting state y at a time between
t and t` r is at least ε. Hence, for k ą 0, we have

Pxtτ
`
y ą kru ď p1´ εqPxtτ

`
y ą pk ´ 1qru.

By induction, we get
Pxtτ

`
y ą kru ď p1´ εqk.

We also have
EpY q “

ÿ

tě0

P tY ą tu.

Since Pxtτ
`
y ą tu is a decreasing function of t, we find

Expτ`y q “
ÿ

tě0

Pxtτ
`
y ą tu ď

ÿ

kě0

r ¨ Pxtτ
`
y ą kru ď r ¨

ÿ

kě0

p1´ εqk ă 8.

Q.E.D

Remark. I’m struggling a lot with the first step of this proof.

Proposition 4. Let P be the transition matrix of an irreducible Markov chain.
Then

(i) There exists a probabilty distribution π on Q such that π “ πP and
πpxq ą 0 for all x P Ω, and moreover;

(ii) πpxq “ 1
Expτ`x q

.

Proof. See the proof in the notes. Q.E.D
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Definition. A stopping time τ for pXtq is a t0, 1, . . .u Y t8u valued random
varaible such that, for each t, the event tτ “ tu is determined by X0, . . . , Xt.

Definition. The strong Markov property is defined by

Px0
tpXτ`1, Xτ`2, . . . , Xlq P A : τ “ k and pX1, . . . , Xkq

“ px1, . . . , xkqu “ PxktpX1, . . . , Xlq P Au

for any A Ă Ωl and τ a stopping time.

Definition. Suppose that tXiu is an irreducible and positive recurrent chain,
which is started at it’s unique invariant distribution π. Recall that this means
that π is the p.m.f. Now suppose that for every n, X0, X1, . . . , Xn have the
same joint p.m.f as their time-reversal Xn, Xn´1, . . . , X0. Then we call the chain
reversible – sometimes it is, equivalently, also said that it’s invariant distribution
π is reversible. A good heuristic is that the recorded simulation of a reversible
chain looks the same if the ’movie’ is run backwards.

Theorem. A Markov chain with invariant measure π is reversible if and only
if

πiPij “ πjPji

for all states i, j.

This leads to an interesting result:

Proposition 5. Reversibility implies invariance; in other words, if the proba-
bility mass function πi satisfies the condition in the previous theorem, then it
is invariant.

Remark. The above definition and condition were retrieved from here.

Here is an examples of reversibility in action.

Example 1. We will explore the random walk on weighted graphs. Assume
that every undirected edge between vertices i and j in a complete graph has a
weight wij “ wji; we think of edges with 0 weight as not present at all. When
in i, the walker goes to j with probability proportional to wij so that

Pij “
wij

ř

k wik
.

Let
s “

ÿ

i

ÿ

k

wik

and let

πi “

ř

k wik
s

.

Then we see

πiPij “

ř

k wik
s

wij
ř

k wik
“
wij
s
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“
wji
s
“

ř

k wjk
s

wji
ř

k wkj
“ πjPji

implying reversibility.

Definition. The detailed balance equations are defined as follows: Let π be a
probability on Ω. Then we say π satisfies the detailed balance equations if

πpxqP px, yq “ πpyqP py, xq

for all x, y P Ω. In other words, if it is reversible.

Proposition 6. Let P be the transition matrix of a Markov chain with state
space Ω. Any distribution π satisfying the detailed balance equations is station-
ary for P .

Proof. Assume π satisfies

πpxqP px, yq “ πpyqP py, xq

for all x, y P Ω. Then we get

ÿ

yPΩ

πpyqP py, xq “
ÿ

yPΩ

πpxqP px, yq “ πpxq,

since P is stochastic. Q.E.D

Why is reversibility/detailed balance equations important? It’s often the
easiest way to find the stationary distribution.

Proposition 7. Let pXtq be an irreducible Markov chain with transition matrix
P and stationary distribution π. Write pX̄tq for the time-reversed chain with
transition matrix P̄ . Then π is stationary for P̄ , and for any x0, . . . , xt P Ω we
have

PπtX0 “ x0, . . . , Xt “ xtu “ PπtX̄0 “ xt, . . . , X̄t “ x0u.

Proof. To check that π is stationary for P̄ , we simply compute

ÿ

yPΩ

πpyqP̄ py, xq “
ÿ

yPΩ

πpyq
πpxqP px, yq

πpyq
“ πpxq.

To show the probabilities of the two trajectories are equal, note that

PπtX0 “ x0, . . . , Xn “ xnu “ πpx0qP px0, x1qP px1, x2q ¨ P pxn´1, xnq

“ πpxnqP̄ pxn, xn´1q ¨ ¨ ¨ P̄ px2, x1qP̄ px1, x0q

“ PπtX̄0 “ xn, . . . , X̄n “ x0u,

since P pxi´1, xiq “ πpxiqP̄ pxi, xi´1q{πpxi´1q for each i. Q.E.D
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Definition. Given x, y P Ω, we say that y is accessible from x and write xÑ y
if there exxists an r ą 0 such that P rpx, yq ą 0. That is, xÑ y if it is possible
for the chain to move from x to y in a finite number of steps.

We first need to discuss the Chapman-Kolmogorov equation.

Proposition 8. (Chapman-Kolmogorov equation) We have

Pn`mij “
ÿ

lPΩ

PnilP
m
lj .

Proof. Proof omitted. Q.E.D

Claim 2. Accessibility is transitive; that is to say, if xÑ y, y Ñ z, then xÑ z.

Proof. We use the Kolmogorov-Chapman equation. If xÑ y, then we have, for
some r1 ą 0, then P r1px, yq ą 0. Since y Ñ z, we have for some r2 ą 0 that
P r2py, zq ą 0. Then r “ r1 ` r2, and so P rpx, zq “

ř

lPΩ P
r1px, lqP r2pl, zq ě

P r1px, yqP r2py, zq ą 0. Q.E.D

Definition. A state x P Ω is called essential if for all y such that x Ñ y it is
also true that y Ñ x. A state x P Ω is inessential if it is not essential.

Definition. We say that x communicates with y and write xØ y if and only if
x Ñ y and y Ñ x. The equivalence classes under Ø are called communicating
classes. For x P Ω, the communicating class of x is denoted by rxs.

Claim 3. Ø is an equivalence class.

Proof. Recall that the definition of equivalence class requires three things: re-
flexivity, symmetry, and transitivity. We go through each. For reflexivity, we
have clearly that x Ø x. For symmetry, it’s clear that x Ø y implies y Ø x.
The tricky one is transitivity, but by the prior claim it’s clear that if x Ø y,
y Ø z, then xØ z. Q.E.D

This leads us to the following proposition.

Proposition 9. If x is an essential state, and xÑ y, then y is essential.

Proof. If y Ñ z, then x Ñ z. Because x is essnetial, z Ñ x, and so using
transitivity z Ñ y. Hence, y Ø z. Q.E.D

It follows from the prior proposition that the states in a single communi-
cating class are either all essential or inessential. We can therefore classify the
communicating classes as either essential or inessential.

Remark. If rxs “ txu and x is inessential, then we see that once the chain
leaves x it never returns. Likewise, if rxs “ txu and x is essential, we see that
the chain never leaves x once it first visits x.

Definition. If rxs “ txu and x is essential, then x is absorbing.
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Proposition 10. Every finite chain has at least one essential class.

Proof. Proof omitted for now. Q.E.D

Proposition 11. If π is stationary for the finite transition matrix P , then
πpy0q “ 0 for all inessential states y0.

Proof. Let C be an essential communicating class. Then

πP pCq “
ÿ

zPC

pπP qpzq “
ÿ

zPC

„

ÿ

yPC

πpyqP py, zq `
ÿ

yRC

πpyqP py, zq



.

We can interchange the order of summation in the first sum, obtaining

πP pCq “
ÿ

y P Cπpyq
ÿ

zPC

P py, zq `
ÿ

zPC

ÿ

yRC

πpyqP py, zq.

For y P C, we have
ř

zPC P py, zq “ 1, so

πP pCq “ πpCq `
ÿ

zPC

ÿ

yRC

πpyqP py, zq.

Since π is invariant, πP pCq “ πpCq. In view of the prior equation, we must
have πpyqP py, zq “ 0 for all y R C and z P C.

Suppose that y0 is inessential. The proof of the prior proposition shows that
there is a sequence of states y0, y1, y2, . . . , yr satisfying P pyi´1, yiq ą 0, the states
y0, y1, . . . , yr´1 are inessential, and yr P C, where C is an essnetial communica-
tion class. Since P pyr´1, yrq ą 0 and we just proved πpyr´1qP pyr´1, yrq “ 0, it
follows that πpyr´1 “ 0. If πpykq “ 0, then

0 “ πpykq “
ÿ

yPΩ

πpyqP py, ykq.

This implies in particular that πpyqP py, ykq “ 0 for all y, and πpyk´1q “ 0. By
induction, we find that πpy0q “ 0. Q.E.D

Proposition 12. The stationary distribution π for a transition matrix P is
unique if and only if there is a unique essential communicating class.

Proof. Proof omitted. Q.E.D

Exercises

Exercise 1. Let G be a connected graph. Show that a random walk on G is
irreducible if and only if G is connected.

Proof. We prove the forward direction. Since G is irreducible, we have for some
r ą 0 that P rpx, yq ą 0 for all x, y P G. However, this means that we can
construct a series of edges such that x Ñ y. Since this applies for all x, y P G,
then we have that G is connected. We prove the converse direction. Since G
is connected, we have that there is a sequence of edges such that x Ñ y for
all x, y P G. Say that there are r edges on this path. Then we have that
P rpx, yq ą 0 clearly. Hence, the result follows. Q.E.D
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Exercise 2. Let P be an irreducible matrix of period b. Show that Ω can be
partitioned into b sets C1, C2, . . . , Cb in such a way that P px, yq ą 0 only if
x P Ci and y P Ci`1.

Proof. We partition our graph based on the fact that the period is b. So any
element which is b away from our current element, when arranged in a cyclic
graph, is placed in the same class C1. Go to the next element and repeat. We
then get the corresponding classes we need. Now, notice that since this is a
digraph (otherwise period properties are broken), we get that if x P Ci and
y R Ci`1, then we cannot have P px, yq ą 0; otherwise, we get that the period
will no longer be b. Q.E.D
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2 Examples of Markov Chains

2.1 Gambler’s ruin

The way the gambler’s ruin works is simple; say we have some coin with prob-
ability p for heads and 1 ´ p for tails (not necessarily fair). If the coin lands
heads, the person gets a dollar, and if it lands tails they lose a dollar. If the
person reaches a dollar amount, say n, then they will stop playing the game. If
they have no money, they must stop playing the game.

In essence, this is just a simple random walk on the integers modulo n ` 1
with some boundary conditions (you’re stuck once you hit 0 and once you hit
n).

Definition. We say that 0 and n in the prior example are absorbing states.

Claim 4. The above set up gives us a Markov chain.

Proof. The sketch of the proof is that the chain does not rely on any further
information beyond what just happened. Prior information does not influence
the future information. Q.E.D

This leads us to the following proposition. In this proposition, we assume
p “ 1

2 .

Proposition 13. Assume that a gambler making fair unit bets on coin flips
will abandon the game when they reach the absorbing states. Let Xt be the
gambler’s fortune at time t, and let τ be the time required to be absorbed at one
of 0 or n. Assume that X0 “ k (here, k denotes their starting dollar amount),
where 0 ď k ď n. Then

PktXτ “ nu “ k{n

and
Ekpτq “ kpn´ kq.

Proof. We set up a system of equations. Let tpiu0ďiďn be the probabilities such
that the gambler reaches a fortune of n before reaching a fortune of 0 when
starting at i. Then clearly p0 “ 0 and pn “ 1. For times inbetween those, we
have that (since there is a 1

2 chance of going either direction)

pk “
1

2
pk´1 `

1

2
pk`1.

We’ll try and see if there’s a pattern, now. We find

p1 “
1

2
p2.

Likewise,

p2 “
1

2
p3 `

1

2
p1 “

1

2
p3 `

1

4
p2.
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This is equivalent to
3

4
p2 “

1

2
p3

or

p2 “
2

3
p3.

Again, we have

p3 “
1

2
p2 `

1

2
p4.

Substituting this in gives us

p3 “
1

3
p3 `

1

2
p4 Ø

2

3
p3 “

1

2
p4 Ø p3 “

3

4
p4.

If you notice the pattern, we have that pk “
k
k`1pk`1. It is a simple induction

argument to show that this holds. Moreover, since we have that pn “ 1, we get

pn´1 “
n´ 1

n
.

Moving down the line, we get

pn´2 “

ˆ

n´ 2

n´ 1

˙ˆ

n´ 1

n

˙

“
n´ 2

n
.

Again, by another induction argument, we find that we have

pk “
k

n

for all 0 ď k ď n integer. This establishes the first claim.
For the second claim, we let fk denote the expected time to be absorbed

(this is either at 0 or n). It is self-evident that f0 “ fn “ 0, since the walk
doesn’t have to move in either direction to get absorbed (it is already absorbed).
For all states inbetween, we get

fk “
1

2
p1` fk`1q `

1

2
p1` fk´1q.

The reasoning is outlined in the book. We now need to solve our system. For
f1, we have

f1 “
1

2
p1` f2q `

1

2
“ 1`

f2

2
.

Moving down the line, we get

f2 “
1

2
p1` f1q `

1

2
p1` f3q “ 1`

f2

4
`

1

2
p1` f3q.

In other words,

f2 “ 2`
2

3
f3.
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Continuing down the line, we find

fk “ k `
k

k ` 1
fk`1

by a simple induction argument. At n´ 1, we recall fn “ 0, and so we have

fn´1 “ n´ 1

Moving down the line, we find

fn´2 “ n´ 2`
n´ 2

n´ 1
¨n´ 1 “ n´ 2`n´ 2 “ 2pn´ 2q “ pn´ 2q ¨ pn´pn´ 2qq.

For fun, we have

fn´3 “ n´3`
n´ 3

n´ 2
¨2pn´2q “ n´3`2pn´3q “ 3pn´3q “ pn´pn´3qq¨pn´3q.

By an induction argument again, we find

fk “ kpn´ kq

which is the result we desired. Q.E.D

Question 1. Can we do this with p ‰ 1
2 and still get a nice result?

2.2 Coupon Collecting

A company decides to issue n different type of coupons, and some collector de-
sires to have each type of coupon. We suppose that the probability of acquiring
each coupon is equally likely among the n types. How many coupons must they
collect in order to get the n types?

Let Xt denote the number of different types represented among the collec-
tor’s first t coupons. We clearly have that X0 “ 0. When we’ve reached k
different types, we’re missing n´ k types of coupons, and so we have

P tXt`1 “ k ` 1 : Xt “ ku “
n´ k

n
.

Likewise,

P tXt`1 “ k : Xt “ ku “ 1´ P tXt`1 “ k ` 1 : Xt “ ku “
k

n
.

Every trajectory is non-decreasing in this chain. The states n is an absorbing
state.

Claim 5. The set up above is a Markov chain.

Proof. Again, this is rather a pseudo-proof than a real proof. It is really self-
evident that the information about the next step only relies on the current step,
and not on any prior information (it does not matter the way in which we reach
the point). Hence, it is a Markov chain. Q.E.D
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This leads us to the following proposition.

Proposition 14. Consider a collector attempting to collect a complete set of
coupons. Assume that each new coupon is chosen uniformly and independently
from the set of n possible types, and let τ be the (random) number of coupons
collected when the set first contains every type (when we’ve completed our run).
Then

Epτq “ n
n
ÿ

k“1

1

k
.

Proof. The expectation above, Epτq, can be computed by writing τ as a sum of
geometric random variables. Let τk be the total number of coupons accumulated
when the collection first contains k distinct coupons. Then we get

τ “ τn “ τ1 ` pτ2 ´ τ1q ` ¨ ¨ ¨ ` pτn ´ τn´1q.

(The explanation for the difference; we want to figure out how long it took
from τi to τi`1, since we’ve already counted τi. To do so, we take the difference
between the two.) Furthermore, τk´τk´1 is an easy random variable to compute;
it is a geometric random variable with success probability

n´ k ` 1

n
;

after collecting τk´1 coupons, there are n´k`1 types missing from the collection.
Each subsequent coupons drawn has the same probability of being a type not
already collected, until a new type is finally drawn. Hence, we get (by the
linearity of expectation)

Epτq “
n
ÿ

k“1

Epτk ´ τk´1q “ n
n
ÿ

k“1

1

n´ k ` 1
“ n

n
ÿ

k“1

1

k
.

Q.E.D

We can further improve these bounds, but this is omitted for the time being.

2.3 The Hypercube and the Ehrenfest Urn Model

The n-dimensional hypercube is a graph whose vertices are the binary n tuples
t0, 1un. Two vertices are connected by an edge when they differ in exactly one
coordinate.

Example 2. One quick example would be to examine the 3-dimensional hy-
percube. We have t0, 1, 1u and t0, 1, 0u to be differing only by one coordinate –
the last – and so they would be connected by an edge. There is a visual of this
in the book.
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The simple random walk on the hypercube moves from a vertex px1, . . . , xnq
by choosing some coordinate j P t1, 2, . . . , nu uniformly at random and setting
the new state equal to px1, . . . , xj´1, 1 ´ xj , xj`1, . . . , xnq. That is, the bit at
the walk’s chosen coordinate is flipped.

Unfortunately, however, this is is periodic. To resolve this issue, we introduce
the lazy random walk (see pg. 3 for more information). The lazy random walk
has a probability of 0.5 of remaining at the same location. You can think of this
as selecting a coordinate uniformly at random and refreshing it.

We now consider the Ehrenfest Model. Suppose n balls are distributed
among two urns, denoted by A and B. At each move, a ball is selected uniformly
at random and transferred from its current urn to the other urn. If Xt is the
number of balls in urn A at time t, then the transition matrix for pXtq is

P pj, kq “

$

’

’

’

’

&

’

’

’

’

%

n´ j

n
, if k “ j ` 1,

j

n
, if k “ j ´ 1,

0, otherwise

Thus pXtq is a Markov chain with state space Ω “ t0, 1, 2, . . . , nu that moves
by ˘1 on each move and is biased towards the middle of the interval. The
stationary distribution for this chain is binomial with parameters n and 1

2 (ex-
ercise).

The Ehrenfest urn is a projection of the random walk on the n-dimensional
hypercube. This is unsuprising given the bijection between t0, 1un and subsets
of t1, . . . , nu, under which a set corresponds to the vector with 1’s in the po-
sitions of its elements. We can view the position of the random walk on the
hypercube as specifying the set of balls in the Ehrenfest urn A; then changing
a bit corresponds to moving a ball into or out of the urn.

Definition. Define the Hamming weight W pxq of a vector x :“ px1, . . . , xnq P
t0, 1un to be its number of coordinates with value 1:

W pxq “
n
ÿ

j“1

xj .

When Wt “ j, the weight increments by a unit amount when one of the n ´ j
coordinates with value 0 is selected. Likewise, when one of the j coordinates with
value 1 is selected, the weight decrements by one unit. From this description, it
is clear that pWtq is a Markov chain with transition probabilities given above.

This leads us to the concept of projections of chains. The Ehrenfest urn is
a projection, which we define in this section, of hte simple random walk on the
hypercube.

Assume that we are given a Markov chain pX0, X1, . . .q with state space Ω
and transition matrix P , and also some equivalence relation that partitions Ω
into equivalence classes. We denote the equivalence class of x P Ω by rxs. For
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example, in the Ehrenfest example, we find that two bitstrings are equivalent
when they contain the same number of 1’s.

Under what circumstances will prX0s, rX1s, . . .q also be a Markov chain? For
this to happen, knowledge of what equivalence class we are in at time t must
suffice to determine the distribution over equivalence classes at time t`1. If the
probability P px, rysq is always the same as P px1, rysq when x, x1 P rxs (i.e. they
are in the same equivalence class), that is clearly enough. We can summarize
this in the following lemma.

Lemma. Let Ω be the state space of a Markov chain pXtq with transition
matrix P . Let „ be an equivalence relation on Ω with equivalence classes
Ω˚ “ trxs : x P Ωu, and assume that P satisfies

P px, rysq “ P px1, rysq

whenever x „ x1. Then rXts is a Markov chain with state space Ω˚ and transi-
tion matrix P˚ defined by P˚prxs, rysq :“ P px, rysq.

Definition. The process of constructing a new chain by taking equivalence
classes for an equivalence relation compatible with the transition matrix is called
projection, or sometimes lumping.

As a final remark, we notice that the Ehrenfest urn is reversible.

Claim 6. The Ehrenfest urn is reversible.

Proof. The invariant measure puts each ball at random into one of the two urns,
as switching any ball between the two urns does not alter this assignment. Thus
π „ Binpn, 1

2 q (a more formal proof will be explored later). In other words,

πi “

ˆ

n

i

˙

1

2n
.

Checking for both j “ i ˘ 1 on Maple, we see the calculations come out as
desired (they are equal). Hence, the chain is reversible. Q.E.D

2.4 The Polya Urn Model

The Polya urn is an urn containing two balls, one black and one white. From
this point on, we choose a ball at random, take the ball out of the urn, and then
return the ball along with another of the same color. We can force this into a
Markov chain in the following way; if there are j black balls in the urn after k
balls have been added (so that there are k ` 2 balls total in the urn), then the
probability that another black ball is added is j

k`2 . The sequence of ordered
pairs listing the number of black and white balls is a Markov chain with state
space t1, 2, . . .u2.

Lemma. Let Bk be the number of black balls in Polya’s urn after the addition
of k balls. The distribution of Bk is uniform on t1, 2, . . . , k ` 1u.
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Proof. There are many subparts to this proof. Let tUiuiďn be i.i.d. random
variables, each uniform on the interval r0, 1s. Let

Lk :“ |tj P t0, 1, . . . , ku : Uj ď U0u|.

The event tLk “ j : Lk`1 “ j ` 1u occurs if and only if U0 is the pj ` 1-st
smallest and Uk`1 is the smallest among tU0, U1, . . . , Uk`1u.

Claim 7. There are jpk!q orderings of tU0, . . . , Uk`1u given tLk “ j, Lk`1 “

j ` 1u.

Proof. First, we examine the first U0, . . . , Uk (ignore Uk`1 for now). Place U0

in the j ` 1 place, and then shuffle the remaining into the rest of the spaces;
this gives us k! ways of arranging the Ui. Now, we need to place Uk`1 in any
of the first j places, this gives us the j. Hence, we have jpk!q ways of arranging
this. Q.E.D

Since there are jpk!q orderings of tU0, . . . , Uk`1u making up this event, and
since all pk ` 2q! orderings are equally likely, we use some basic discrete proba-
bility do find

P tLk “ j, Lk`1 “ j ` 1u “
jpk!q

pk ` 2q!
“

j

pk ` 2qpk ` 1q
.

This leads us to our next claim.

Claim 8. We have P tLk “ ju “ 1
k`1 .

Proof. Going back to our first claim, we notice again that there are k! ways of
arranging things such that we get Lk “ j. We also note that there are pk ` 1q!
ways of arranging things without taking into consideration Lk “ j. Therefore,
using basic discrete probability, we again get

P tLk “ ju “
k!

pk ` 1q!
“

1

k ` 1
.

Q.E.D

Claim 9. Combining Claim 4 and Claim 5, we find

P tLk`1 “ j ` 1|Lk “ ju “
j

k ` 2
.

Claim 10. Using Claim 6, we have

P tLk`1 “ j|Lk “ ju “
k ` 2´ j

k ` 2
.

Proof. Now, notice that we have that, given Lk “ j, we must have Lk`1 “ j`1
or Lk`1 “ j. Recall that P tLk`1 “ ¨|Lk “ ju forms a probability measure, and
so using the prior fact we find

P tLk`1 “ j|Lk “ ju “ 1´ P tLk`1 “ j ` 1|Lk “ ju.

This gives the above formula. Q.E.D
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Claim 11. We have that tLiu
n
i“1 and tBiu

n
i“1 share the same distribution and

transition probabilities. In particular, Bk and Lk have the same distribution.

Proof. Claim 7 gives us the latter part of this claim. For the former, we need
to show that L1 and B1 have the same distribution. But this is clear. B1 is the
number of black balls after the addition of one ball, which is P tB1 “ 1u “ 1{3,
P tB1 “ 2u “ 2{3, and likewise P tL1 “ 1u “ 1{3, P tL2 “ 2u “ 2{3. Combining
the two facts gives us the final part of the claim. Q.E.D

Since the position of U0 is uniform among the k ` 1 possible positions, it
follows that Lk is uniform on t1, . . . , Lk`1u. Thus, we have the Bk is uniform
on t1, . . . , k ` 1u as desired. Q.E.D

Remark. The book claims that the prior lemma can be proven via showing
P tBk “ ju “ 1{pk ` 1q for all j “ 1, . . . , k ` 1 using induction on k. Maybe as
an exercise prove it this way.

2.5 Birth-and-Death Chains

Definition. A birth-and-death chain has state space Ω “ t0, 1, 2, . . . nu. In one
step, the state can either increase or decrease by at most 1. The current state
can be thought of as the size of some population; in a single step of the chain,
there can be at most one birth or death. The transition probabilities can be
specified by pk, rk, and qk where k P r0, . . . , ns and pk ` rk ` qk “ 1, where pk
is the probability of moving from k to k “ 1, qk is the probability of moving
from k to k ´ 1, and rk is the probability of remaining at k. We also have that
q0 “ pn “ 0.

Proposition 15. Every birth-and-death chain is reversible.

Proof. We have that a function w on Ω satisfies the detailed balance equations
if and only if

pk´1wk´1 “ qkwk

for 1 ď k ď n. For our birth-and-death chain, a solution is given by w0 “ 1 and

wk “
k
ź

i“1

pi´1

qi

for 1 ď k ď n. Normalizing so that the sum is unity yields

πk “
wk

řn
j“0 wj

for 0 ď k ď n. Q.E.D

Now, fix l P t0, 1, . . . , nu. Consider restricting the original chain to t0, 1, . . . , lu:
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� For any k P t0, 1, . . . , l´ 1u, the chain makes the transitions from k as be-
fore, moving down with probability qk, remaining in place with probability
rk, and moving up with probability pk.

� At l, the chain either moves down or remains in place, with probabilities
ql and rl ` pl, respectively.

We write Ē for expectations for this new chain. By the proof of reversibility
of this chain, the stationary probability π̄ of the truncated chain is given by

π̄ “
wk

řl
j“0 wj

for 0 ď k ď l. Since in the truncated chain the only possible moves from l are
to stay put or step down to l´ 1, the expected first return time Ēlpτ`l q satisfies

Ēlpτ`l q “ prl ` plq ¨ 1` ql
ˆ

Ēl´1pτlq ` 1

˙

“ 1` qlĒl´1pτlq.

By Proposition 4 part 2,

Ēlpτ`l q “
1

π̄plq
“

1

wl

l
ÿ

j“0

wj .

We have constructed the truncated chain so that Ēl´1pτlq “ El´1pτlq. Rear-
ranging the above equations gives

El´1pτlq “
1

ql

˜

l
ÿ

j“0

wj
wl
´ 1

¸

“
1

qlwl

i´1
ÿ

j“0

wj .

To find Eapτbq for a ă b, just sum:

Eapτbq “
b
ÿ

l“a`1

El´1pτlq.

There were some special cases the book considered, but I skipped over it.

2.6 Random Walks on Groups

Given a probability distribution µ on a group pG, ¨q, we define the random walk
G with increment distribution µ as follows: it is a Markov chain with state space
G and which moves by multiplying the current state on the left of a random
element of G selected according to µ. Equivalently, the transition matrix P of
this chain has entries

P pg, hgq “ µphq

for all g, h P G.
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Remark. We multiply the current state by the increment on the left because it
is generally more natural in non-commutative examples, such as the symmetric
group. For commutative examples, such as the two described below, it does not
matter which side we multiply it by.

Example 3. (The n-cycle) Let µ assign probability 1{2 to each of 1 and n´1 ”
´1 pmod nq in the additive cyclic group Zn “ t0, 1, . . . , n ´ 1u. The simple
random walk on the n-cycle, discussed in the set-up section, is the random walk
on Zn, with increment distribution µ. Similarly, let v assign weight 1{4 to both 1
and n´1 and weight 1{2 to 0. Then lazy random walk on the n-cycle, discussed
prior as well, is the random walk on Zn with increment distribution v.

Example 4. (The hypercube) The hypercube random walks defined earlier are
random walks on the group Zn2 , which is the direct product of n copies of the
two element group Z2. For the simple random walk the increment distribution is
uniform on the set tei : 1 ď i ď nu, where the vector ei has a 1 in the i-th place
and a 0 in all other entires. For the lazy version, the increment distribution
gives the vector 0 (with all zero entries) weight 1{2 and each ei weight 1{2n.

Proposition 16. Let P be the transition matrix of a random walk on a finite
group G and let U be the uniform probability distribution on G. Then U is a
stationary distribution for P .

Proof. Let µ be the increment distribution of the random walk. For any g P G

ÿ

hPG

UphqP ph, gq “
1

|G|

ÿ

kPG

P pk´1g, gq “
1

|G|

ÿ

kPG

µpkq “
1

|G|
“ Upgq.

The first equality comes from re-indexing k “ gh´1. Q.E.D

For a set H Ă G, let xHy be the smallest group containing all the elements
of H; recall that every element of xHyH can be written as a product of elements
in H and their inverses. A set H is said to generate G if xHy “ G.

Proposition 17. Let µ be a probability distribution on a finite group G. The
random walk on G with increment distribution µ is irreducible if and only if
S “ tg P G : µpgq ą 0u generates G.

Proof. Select an arbitrary a P G. If the random walk is irreducible, then there
exists an r ą 0 so that P rpe, aq ą 0, where e P G is the identity element. In
order for this to occur, there must be some sequence s1, . . . , sr P G such that
a “ srsr´1 ¨ ¨ ¨ s1 and si P S for i “ 1, . . . , r. Thus, a P xSy.

Now assume that S generates G, and consider a, b P G. We know that ba´1

can be written as a word in the elements of S and their inverses. Since every
element of G has finite order, any inverse appearing in the expression for ba´1

can be written as a positive power of the same group element. Let the resulting
expression be ba´1 “ srsr´1 ¨ ¨ ¨ s1 where si P S, for i “ 1, . . . , r. Then

Pmpa, bq ě P pa, s1aqP ps1a, s2s1aq ¨ ¨ ¨P psr´1sr´2 ¨ ¨ ¨ s1a, pba
´1qaq
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“ µps1qµps2q ¨ ¨ ¨µpsrq ą 0.

Q.E.D

When S is a set which generates a finite group G, the directed Cayley graph
associated to G and S is the directed graph with vertex set G in which pv, wq
is an edge if and only if v “ sw for some generator s P S.

We call the set S of generators of G symmetric if s P S implies s´1 P S.
When S is symmetric, all edges in the directed Cayley graph are bidirectional,
and it may be viewed as an ordinary graph. When G is finite and S is a
symmetric set that generates G, the simple random walk on the corresponding
Cayley graph is the same as the random walk on G with increment distribution
µ taken to be the uniform distribution on S.

In parallel fashion, we call a probability distribution µ on a group G sym-
metric if µpgq “ µpg´1q for every g P G.

Proposition 18. The random walk on a finite group G with increment distri-
bution µ is reversible if µ is symmetric.

Proof. Let U be the uniform probability distribution on G. For any g, h P G,
we have that

UpgqP pg, hq “
µphg´1q

|G|

and

UphqP ph, gq “
µpgh´1q

|G|

which are equal if and only if µphg´1 “ µpphg´1q´1q Q.E.D

Remark. The converse of the prior proposition is also true. It is an exercise
to do this.

Definition. A Markov chain is called transitive if for each pair px, yq P Ωˆ Ω
there is a bijection φ “ φpx,yq : Ω Ñ Ω such that

φpxq “ y

and
P pz, wq “ P pφpzq, φpwqq

for all z, w P Ω. Roughly, this means that the chain ’looks the same’ from any
point in the state space Ω. Clearly, any random walk on a group is transitive;
set φpx,yqpgq “ gx´1y. However, there are examples of transitive chains that are
not random walks on groups.

Many properties of random walks on groups generalize to the transitive case,
including Proposition 10.

Proposition 19. Let P be the transition matrix of a transitive Markov chain
on a finite state space Ω. Then the uniform probability distribution on Ω is
stationary for P .
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Proof. Fix x, y P Ω and let φpxq “ y. Let U be the uniform probability on Ω.
Then

ÿ

zPΩ

UpzqP pz, xq “
ÿ

zPΩ

UpφpzqqP pφpzq, yq “
ÿ

wPΩ

UpwqP pw, yq,

where we have re-indexed with w “ φpzq. We have shown that when the chain
is started in the uniform distribution and run one step, the total weight arriving
at each state is the same. Since

ř

x,zPΩ UpzqP pz, xq “ 1, we must have

ÿ

zPΩ

UpzqP pz, xq “
1

|Ω|
“ Upxq.

Q.E.D

2.7 Random Walks on Z and Reflection Principles

A nearest-neighbor random walk on Z moves right and left by at most one step
on each move, and each move is independent of the past. More precisely, if pδtq
is a sequence of independent and identically distributed t´1, 0, 1u-valued ran-
dom variables and Xt “

řt
s“1 δs, then the sequence pXtq is a nearest-neighbor

random walk with increments pδtq.
The sequence of random variables is a Markov chain with infinite state space

Z and transition matrix

P pk, k ` 1q “ 0, P pk, kq “ r, P pk, k ´ 1q “ q,

where p` r ` q “ 1. The special case p “ q “ 1{2, r “ 0 is the simple random
walk on Z as defined in the first section. In this case

P0tXt “ ku “

$

’

&

’

%

ˆ

t
t´k

2

˙

2´t, if t´ k is even,

0, otherwise

,

/

.

/

-

since there are
`

t
t´k
2

˘

possible paths of length t from 0 to k. When p “ q “ 1{4

and r “ 1{2, the chain is the lazy simple random walk on Z.

Theorem. Let pXtq be the simple random walk on Z, and recall that

τ0 “ mintt ě 0 : Xt “ 0u

is the first time the walk hits zero. Then

Pktτ0 ą ru ď
12k
?
r

for any integers k, r ą 0.

We prove this by a sequence of lemmas which are of interest independently.
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Lemma. (Reflection Principle) Let pXtq be either the simple random walk or
the lazy simple random walk on Z. For any positive integers j, k, and r,

Pktτ0 ă r,Xr “ ju “ PktX ´ r “ ´ju

and
Pktτ0 ă r,Xr ą 0u “ PktXr ă 0u.

Proof. We proceed using the Markov property. The walk starts anew from 0
when it hits 0, meaning that the walk viewed from the first time it hits zero is
independent of its past and has the same distribution as a walk which started
at 0. Hence, for any s ă r and j ą 0, we have

Pktτ0 “ s,Xr “ ju “ Pktτ0 “ suP0tXr´s “ ju.

The distribution of Xt is symmetric when started at 0, so the right-hand side is
equal to

Pktτ0 “ suP0tXr´s “ ju “ Pktτ0 “ s,Xr “ ´ju.

Summing over s ă r, we obtain

Pktτ0 ă r,Xr “ ju “ Pktτ0 ă r,Xr “ ´ju “ PktXr “ ´ju.

Summing over j ą 0 yields our result. Q.E.D

Remark. A simpler combinatorial interpretation is that there is a one-to-one
correspondence between walk paths which hit 0 before time r and are positive
at time r and walk paths which are negative at time r. To obtain the bijection,
reflect a path after the first time it hits 0.

Lemma. When pXtq is the simple random walk or lazy simple random walk on
Z, we have

Pktτ0 ą ru “ P0t´k ă Xr ď ku

for any k ą 0.

Proof. We have that

PktXr ą 0u “ PktXr ą 0, τ0 ď ru ` Pktτ0 ą ru.

By the Reflection Principle,

PktXr ą 0u “ PktXr ă 0u ` Pktτ0 ą ru.

By the symmetry of the walk, PktXr ă 0u “ PktXr ą 2ku, and so combining
this gives the desired result. Q.E.D

Lemma. For the simple random walk pXtq on Z,

P0tXt “ ku ď
3
?
t
.
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Proof. If X2r “ 2k, there are r ` k up moves and r ´ k down moves. The
probability of this is

ˆ

2r

r ` k

˙

2´2r.

We check that
`

2r
r`k

˘

is maximized at k “ 0 for k “ 0, 1, . . . , r. In other words,
after simplifying, we would like to show

1

pr ´ kq!pr ` kq!
ă

1

r!2
.

We need a few claims to proceed (both are clear from the definition of factorial).

Claim 12.
r!

pr ´ kq!
“ pr ´ pk ´ 1qq ¨ pr ´ pk ´ 2qq ¨ ¨ ¨ r

Claim 13.
r!

pr ` kq!
“

1

pr ` 1q ¨ pr ` 2q ¨ ¨ ¨ pr ` kq

It is clear that, after multiplying this together, we get the product is less
than 1. In other words, we have that it is maximized at k “ 0. So, using this
fact, we have

P0tX2r “ 2ku ď

ˆ

2r

r

˙

2´2r “
p2rq!

pr!q222r
.

Using Stirling’s formula, we obtain

P0tX2r “ 2ku ď

c

8

π

1
?

2r
.

We now condition on the first step of the walk and use the bound found above.
Use as well the simple bound

c

t

t´ 1
ď
?

2

to see

P0tX2r`1 “ 2k ` 1u ď
4
?
π

1
?

2r ` 1
.

Note that 4?
π
ď 3, and we get the bound. Q.E.D

Remark. The bijection described earlier has a very nice consequence. Define
an up-right path to be a path through the two-dimensional grid in which every
segment heads either up or to the right.

Theorem (The Ballot Theorem). Fix positive integers a and b with a ă b. An
up-right path from p0, 0q to pa, bq chosen uniformly at random has probability
b´a
a`b of lying strictly above the line x “ y (except for its initial point).
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Remark. There is a very nice interpretation of this in terms of votes, which
I’ll leave to the book.

Proof. The total number of up-right paths from p0, 0q to pa, bq is
`

a`b
b

˘

, since
there are exactly a` b steps total, of which exactly b steps go right.

How many paths never touch the line x “ y after the first step? Any such
path must have its first step up, and there are

`

a`b´1
b´1

˘

such paths. How many
of those paths touch the line x “ y?

Given a path whose first step is up and that touches the line x “ y, reflecting
the portion after the first touch of x “ y yields a path from p0, 0q whose first
step is up and which ends at pb, aq. Since every up-right path whose first step
is up and which ends at pb, aq must cross x “ y, we obtain every such path via
this reflection. Hence, there are

`

a`b´1
b

˘

’bad’ paths to subtract, and the desired
probability is

`

a`b´1
b´1

˘

´
`

a`b´1
b

˘

`

a`b
b

˘ “
b´ a

a` b
.

Q.E.D

Exercises

Problem 1. Show that the system of equations for 0 ă k ă n

fk “
1

2
p1` fk`1q `

1

2
p1` fk´1q,

together with the boundary conditions f0 “ fn “ 0 has a unique solution
fk “ kpn´ kq.

Solution. This was done above.

Problem 2. Consider a hesitant gambler: at each time, they flip a coin with
probability p of success. If it comes up heads, she places a fair one dollar bet.
If tails, she does nothing that round, and her fortune stays the same. If her
fortune ever reaches 0 or n, she tops playing. Assuming that her initial fortune
is k, find the expected number of rounds she will play, in terms of n, k, and p.

Solution. This is almost analogous to what we did before, except now we need
to modify a few factors. Again, we write fk for the expected time Ekpτq to be
absorbed, starting at position k. Clearly, f0 “ fn “ 0. In order to move up,
we need to get 2 heads; so there is a p

2 chance of moving up. To move down,
we need to get a heads and a tails, so there is a p

2 chance of moving down. To
remain, we need to get a tails on the first flip, so there is a p1 ´ pq chance of
this happening. Our system is now

fk “
p

2
p1` fk`1q `

p

2
p1` fk´1q ` p1´ pqp1` fkq.

We start with f1 to try to find some sort of inductive argument. Solving, we
find

f1 “
1

2p
ppf2 ` 2q.
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Likewise,

f2 “
2

3p
ppf3 ` 3q

which leads us to our claim.

Claim 14. We have

fk “
k

ppk ` 1q

`

pfk`1 ` pk ` 1q
˘

.

Proof. We’ve shown the base case above. Assume it holds for k. We must show
it holds for k ` 1. Using the system above, we have

fk`1 “
p

2
p1` fk`2q `

p

2
p1` fkq ` p1´ pqp1` fk`1q.

Simplifying this on Maple gives us the desired equality. Q.E.D

Now, we find fn´1; this gives us

fn´1 “
n´ 1

p
.

Moving backwards, we see

fn´2 “
2pn´ 2q

p

and

fn´3 “
3pn´ 3q

p

leading us to our next claim.

Claim 15. We have

fk “
kpn´ kq

p
.

Proof. Again, we use induction. We have done the base cases above. Assume it
holds for k. We must show it holds for k ´ 1. We have

fk´1 “
k ´ 1

pk
ppfk ` kq.

Using the inductive hypothesis and Maple, we have

pk ´ 1qpn´ pk ´ 1qq

p

which is what we desired. Q.E.D

Putting things together, we get

Ekpτq “
kpn´ kq

p
.
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Problem 3. Consider a random walk on the path t0, 1, . . . , nu in which the
walk moves left or right with equal probability except when at n and 0. At n,
it remains at n with probability 1{2 and moves to n ´ 1 with probability 1{2,
and once the walk hits 0 it remains there forever. Compute the expected time
of the walks’s absorption at state 0, given that it starts at state n.

Solution. We proceed like prior. Set f0 “ 0 and

fn “
1

2
p1` fnq `

1

2
p1` fn´1q, fk “

1

2
p1` fk`1q `

1

2
p1` fk´1q

for 0 ă k ă n. We then find that

fn “ 2` fn´1.

Solving

fn´1 “
1

2
p1` fnq `

1

2
p1` fn´2q

we find
fn´1 “ 4` fn´2.

This leads us to our claim.

Claim 16.
fk “ 2pn´ k ` 1q ` fk´1.

Proof. We go by induction. We have the base case above. Assume it holds for
k. We must show it holds for k ´ 1. Since it holds for k, we have

fk´1 “ 2` n´ k `
1

2
fk´1 `

1

2
fk´2.

Simplifying this, we get

fk´1 “ 2p2` n´ kq ` fk´2

as desired. Q.E.D

We find then that f1 “ 2n, f2 “ 4n´ 2, and f3 “ 6n´ 6. This leads us to
our next claim.

Claim 17. We have fk “ kp2n` 1´ kq.

Proof. It’s another induction argument. Q.E.D

Thus, we just need to substitute n in for k to find

Enpτq “ npn` 1q.

Problem 4. By comparing the integral of 1{x with its Riemann sums, show
that

logpnq ď
n
ÿ

k“1

k´1 ď logpnq ` 1.
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Solution. It’s clear that
ż n

1

1

x
dx ď

n
ÿ

k“1

k´1

by examining rectangles of height 1{k above the interval rk, k` 1s, and noticing
the union of rectangles is the upper Riemann sum. Thus, we get

logpnq ď
n
ÿ

k“1

k´1.

For the upper bound, we can fit all the terms but the first to get

n
ÿ

k“1

k´1 ď 1`

ż n

1

1

x
dx “ 1` logpnq.

Problem 5. Let P be the transition matrix for the Ehrenfest chain described
earlier. Show that the binomial distribution with parameters n and 1{2 is the
stationary distribution for this chain.

Solution. Recall we have

P pj, kq “

$

’

’

’

’

&

’

’

’

’

%

n´ j

n
, if k “ j ` 1,

j

n
, if k “ j ´ 1,

0, otherwise

So we just need to check
ÿ

xPΩ

πpxqP px, yq “ πpyq

for arbitrary y P Ω. Since there are only two things to consider, just above and
just below y, we have

ÿ

xPΩ

πpxqP px, yq “

ˆ

n

y ´ 1

˙

n´ py ´ 1q

n

1

2n
`
y ` 1

n

ˆ

n

y ` 1

˙

1

2n
“

1

2n

ˆ

n

y

˙

“ πpyq

as desired.

Problem 6. Give an example of a random walk on a finite abelian group which
is not reversible.

Solution. Consider the biased random walk on the n-cycle where p ‰ 1
2 . Then

we have
πpkqP pk, k ` 1q “

p

n
‰
q

n
“ πpk ` 1qP pk ` 1, kq.

Problem 7. Show that if a random walk on a group is reversible, then the
increment distribution is symmetric.
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Solution. We have µpkq “ P pg, kgq and µpk´1q “ P pkg, gq. Therefore, by the
detailed balance equations, since it’s reversible we have

πpgqP pg, kgq “ πpkgqP pkg, gq.

However, since π is the uniform distribution, we have πpgq “ πpkgq. This then
gives

P pg, kgq “ P pkg, gq Ñ µpkq “ µpk´1q.

3 Markov Chain Mixing

Definition. The total variation distance between two probability distribution
µ and ν on Ω is defined by

||µ´ ν||TV “ max
AĎΩ

|µpAq ´ νpAq|.

Remark. The definition is explicitly probabilistic. The distance between µ and
ν is the maximum difference between the probabilities assigned to a single event
by the two distributions.

Example 5. A certain frog lives in a pond with two lily pads, east and west.
He has two coins on each lily pad, and each day the frog decides whether two
jump by tossing the current lily pad’s coin. If the coin lands heads up, the frog
jumps to the other lily pad. If the coin lands tails up, he remains where he is.
Say he has probability p from jumping east to west and probability q of jumping
from west to east. His transition matrix is

ˆ

1´ p p
q 1´ q

˙

and his stationary distribution is

π “

ˆ

q

p` q
,

p

p` q

˙

.

Claim 18. The stationary distribution is as above.

Proof. Notice that we have

ÿ

xPΩ

πpxqP px, 1q “
qp1´ pq

p` q
`

pq

p` q
“

q

p` q
“ πp1q

and
ÿ

xPΩ

πpxqP px, 2q “
pq

p` q
`
pp1´ qq

p` q
“

p

p` q
“ πp2q.

Q.E.D
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Assume the frog starts at the east pad (µ0 “ p1, 0q) and define

4t “ µtpeq ´ πpeq.

Since there are only two states, there are only four possible events A Ď Ω.

Claim 19. We have

||µt ´ π||TV “ 4t “ P tpe, eq ´ πpeq “ πpwq ´ P tpe, wq.

Proof. This is very easy and intuitive. It just involves checking manually that
the calculation comes out fine. Q.E.D

Also notice that 4t “ p1 ´ p ´ qqt40. Hence, for this two-state chain, the
total variation distance decreases exponentially fast as t increases.

Remark. Note that p1´ p´ qq is an eigenvalue of P .

The definition of total variation distance is a maximum over all subsets of
Ω, so using this definition is extremely inconvenient. We follow this up with
three alternatives.

Proposition 20. Let µ and v be two probability distributions on Ω. Then

||µ´ ν||TV “
1

2

ÿ

xPΩ

|µpxq ´ νpxq|.

Proof. Let B “ tx : µpxq ě νpxqu and let A Ď Ω be any event. Then

µpAq ´ νpAq ď µpAXBq ´ νpAXBq ď µpBq ´ νpBq.

The first inequality is true because any x P AXBc satisfies µpxq´νpxq ă 0, so the
difference in probability cannot decrease when such elements are eliminated. For
the second inequality, note that including more elements of B cannot decrease
the difference probability.

By exactly parallel reasoning,

νpvq ´ µpAq ď νpBcq ´ µpBcq.

The upper bounds on the right-hand sides of the above equations are actually
the same. Furthermore, when we take A “ B (or Bc), then |µpAq ´ νpAq| is
equal to the upper bound. Thus

||µ´ ν||TV “
1

2
rµpBq ´ νpBq ` νpBcq ´ µpBcqs “

1

2

ÿ

xPΩ

|µpxq ´ νpxq|.

Q.E.D

Remark. The proof of the prior proposition also shows that

||µ´ ν||TV “
ÿ

xPΩ,µpxqěνpV q

|µpxq ´ νpxq|.
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Remark. From the prior proposition and the triangle inequality for real num-
bers, it is easy to see that total variation distance satisfies the triangle inequality:
for probability distributions µ, ν, and ζ,

||µ´ ν||TV ď ||µ´ ζ||TV ` ||ζ ´ ν||TV .

Proposition 21. Let µ and ν be two probability distributions on Ω. Then the
total variation distance between them satisfies

||µ´ν||TV “
1

2
sup

#

ÿ

xPΩ

fpxqµpxq´
ÿ

xPΩ

fpxqνpxq : f satisfying max
xPΩ

|fpxq| ď 1

+

.

Proof. When f satisfies maxxPΩ |fpxq| ď 1, we have

1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xPΩ

fpxqµpxq ´
ÿ

xPΩ

fpxqνpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

2

ÿ

xPΩ

|fpxq|rµpxq ´ νpxqs|

ď
1

2

ÿ

xPΩ

|µpxq ´ νpxq|

“ ||µ´ ν||TV

which shows that the right-hand side of the equation is not more than ||µ´
ν||TV . Define

f˚pxq “

#

1, if x satisfies µpxq ě νpxq,

´ 1, otherwise.

Then

1

2

„

ÿ

xPΩ

f˚pxqµpxq ´
ÿ

xPΩ

f˚pxqνpxq



“
1

2

ÿ

xPΩ

f˚pxqrµpxq ´ νpxqs

“
1

2

„

ÿ

xPΩ,µpxqěνpxq

rµpxq ´ νpxqs `
ÿ

xPΩ,νpxqąµpxq

rνpxq ´ µpxqs



.

Using the prior proposition shows that the right-hand side above equals ||µ ´
ν||TV . Hence, the right-hand side of the proposition is at least ||µ ´ ν||TV .

Q.E.D

Definition. A coupling of two probability distributions µ and ν is a pair of
random variables pX,Y q defined on a single probability space such that the
marginal distribution of X is µ and the marginal distribution of Y is ν. That
is, a coupling pX,Y q satisfies P tX “ xu “ µpxq and P tY “ yu “ νpyq.

Example 6. Let µ and ν both be the ’fair coin’ measure giving 1{2 to the
elements of t0, 1u.
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(i) One way to couple µ and ν is to define pX,Y q to be a pair of independent
coins, so that P tX “ x, Y “ yu “ 1{4 for all x, y P t0, 1u.

(ii) Another way to couple µ and ν is to let X be a fair coin toss and define
Y “ X. In this case, P tX “ Y “ 0u “ 1{2 “ P tX “ Y “ 1u and
P tX ‰ Y u “ 0.

Given a coupling pX,Y q of µ and ν, if q is the joint distribution of pX,Y q
on Ωˆ Ω, meaning that qpx, yq “ P tX “ x, Y “ yu, then q satisfies

ÿ

yPΩ

qpx, yq “
ÿ

yPΩ

P tX “ x, Y “ yu “ P tX “ xu “ µpxq

and
ÿ

xPΩ

“
ÿ

xPΩ

P tX “ x, Y “ yu “ P tY “ yu “ νpyq.

Conversely, given a probability distribution q on the product space ΩˆΩ which
satisfies

ÿ

yPΩ

qpx, yq “ µpxq and
ÿ

xPΩ

qpx, yq “ νpyq,

there is a pair of random variables pX,Y q having q as their joint distribution
– and consequently this pair pX,Y q is a coupling of µ and ν. In summary, a
coupling can go either way; it can be specified either by a pair of random varibles
pX,Y q defined on a common probability space or by a distribution q on ΩˆΩ.

Any two distributions µ and ν have an independent coupling. However,
when µ and ν are not identical, it wil not be possible for X and Y to always
have the same value. How close can a coupling get to having X and Y identical?
Total variation distance gives the answer.

Proposition 22. Let µ and ν be two probability distributions on Ω. Then

||µ´ ν||TV “ inftP tX ‰ Y u : pX,Y q is a coupling of µ and νu.

Remark. We will in fact show that there is a coupling pX,Y q which attains
the infimum. We will call such a coupling optimal.

Proof. First, we note that for any coupling pX,Y q of µ and ν and any event
A Ď Ω,

µpAq ´ νpAq “ P tX P Au ´ P tY P Au

ď P tX P A, Y R Au ď P tX ‰ Y u.

It immediately follows that

||µ´ ν||TV ď inftP tX ‰ Y u : pX, yq is a coupling of µ and νu.

It will suffice to construct a coupling for which P tX ‰ Y u is exactly equal
to ||µ ´ ν||TV . We will do so by forcing X and Y to be equal as often as
they possible can. There is a good outline in the book that I will not replicate
here. Q.E.D
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The survey paper (which can be found here) talks a little about total varia-
tion distance. To keep things together, I’ll outline some of it here as well.

Definition. The paper defines total variation distance (which is really equiva-
lent) between two probability measures µ and ν on Ω as

dTV px, yq “ ||µ´ ν||TV “ sup
AĎΩ

tµpAq ´ νpAqu.

Definition. The maximal distance is defined to be

dptq :“ max
xPΩ

||P tpx, ¨q ´ π||.

If we have two places that we’re looking at, we’ll use an alternative function.
To help, we make the definition

d̄ptq :“ max
x,yPΩ

||P tpx, ¨q ´ P tpy, ¨q||TV .

Remark. Be careful on the notation here; though it uses d, it is not the same
as the prior definition.

Definition. We set the maximal distance (in terms of the paper) as

dπ,ppµ, νq “ ||f ´ g||p “

ˆ

ÿ

xPΩ

|fpxq ´ gpxq|pπpxq

˙1{p

and we customarily set

dπ,8pµ, νq “ maxt|f ´ g|u.

Remark. Setting µpfq “
ř

fµ and p “ 1, we have

dπ,ppµ, νq “ ||f ´ g|| “
ÿ

xPΩ

|fpxq ´ gpxq|πpxq ď
ÿ

xPΩ

|fpxq ´ gpxq|

“ 2

ˆ

1

2

ÿ

xPΩ

|fpxq´ gpxq|

˙

“ 2dTV pµ, νq “ 2||µ´ ν||TV “ max
||f ||8“1

t|µpfq´ νpfq|u.

For p “ 2, notice we have

dπ,2pµ, νq “

ˆ

ÿ

xPΩ

ˇ

ˇ

ˇ

ˇ

µpxq

πpxq
´
νpxq

πpxq

ˇ

ˇ

ˇ

ˇ

2

πpxq

˙1{2

Remark. Notice that we can use Jensen’s inequality to establish the mapping
d ÞÑ dπ,p is a non-decreasing function, which means

dπ,1pµ, νq “ 2dTV pµ, νq ď dπ,2pµ, νq ď dπ,8pµ, νq.

We now want to talk about Markov chains converging to their stationary
distributions.
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Theorem. Suppose that P is irreducible and aperiodic, with stationary distri-
bution π. Then there exists constants α P p0, 1q and C ą 0 such that

max
xPΩ

||P tpx, ¨q ´ π||TV ď Cαt.

Remark. This can be improved/expanded upon, as we see in the paper. In
the language of the paper, let K be a Markov kernel with invariant probability
distribution π. Then for any fixed 1 ď p ď 8, n ÞÑ supxPΩ dπ,ppKnpx, ¨q, πq is
non-decreasing subadditive function. Moreover, if we have

sup
xPΩ

dπ,ppKmpx, ¨q ď β

for some fixed integer n, then we have @m P N,

sup
xPΩ

dπ,ppKmpx, ¨q, πq ď βm{n.

Remark. Sub-remark – I forgot if this relies on the Markov chain being over a
group or not.

Proof. To save some time, I’ll skip over the proof for now (we did it in Peterson’s
class). It is rather intuitive (as noticed by Graham’s talk). Q.E.D

Remark. Because of Theorem 4.9, the distribution π is also called the equilib-
rium distribution.

We can make some relationships between d and d̄.

Lemma. If dptq and d̄ptq are as defined above, then

dptq ď d̄ptq ď 2dptq.

Proof. It is very easy to show the upper bound. We have

d̄ptq “ max
x,yPΩ

||P tpx, ¨q ´ P tpy, ¨q||TV

“ ||pP tpx, ¨q ´ πq ´ pP tpy, ¨q ´ πq||TV ď 2||P tpx, ¨q ´ π|| “ 2dptq

by the triangle inequality.
The lower bound is more interesting. To show that dptq ď d̄ptq, note that

first, since π is stationary, we have πpAq “
ř

yPΩ πpyqP
tpy,Aq for any set A.

Using this shows that

||P tpx, ¨q ´ π||TV “ max
AĂΩ

|P tpx,Aq ´ πpAq|

“ max
AĂΩ

ˇ

ˇ

ˇ

ˇ

ÿ

yPΩ

πpyqrP tpx,Aq ´ P tpy,Aqs

ˇ

ˇ

ˇ

ˇ

.
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Now, use the triangle inequality and the fact that the maximum of the sum is
not larger than the sum over a maximum to move things around and get

max
AĂΩ

ÿ

yPΩ

|P tpx,Aq ´ P tpy,Aq| ď
ÿ

yPΩ

πpyqmax
AĂΩ

|P tpx,Aq ´ P tpy,Aq|

“
ÿ

yPΩ

πpyq||P tpx, ¨q ´ P tpy, ¨q||TV ď max
yPΩ

||P tpx, ¨q ´ P tpy, ¨q||TV

which is the desired result. Q.E.D

Lemma. We have equivalently, for P a collection of all probability distributions
on Ω,

dptq :“ sup
µPP

||µP t ´ π||TV ,

d̄ptq “ sup
µ,νPP

||µP t ´ νP t||TV .

Proof. We will show the first part (which consequently will give us the second
pretty easily). For the first, notice that one direction is easy; We have that

max
xPΩ

||P tpx, ¨q ´ π|| ď sup
µPP

||P tpx, ¨q ´ π||

since we can choose µ to be the vector which choose our maximal point x. For
the other direction, notice that we have that the weighted average will be less
than the maximum, and that µ will simply weight our average. We can also get
an alternative proof from one of the remarks above. Q.E.D

Lemma. The function d̄ is submultiplicative. That is to say, d̄ps`tq ď d̄psqd̄ptq.

Proof. Fix x, y P Ω, and let pXs, Ysq be the optimal coupling of P spx, ¨q and
P spy, ¨q whose existence is guaranteed by the optimal coupling proposition.
Hence,

||P spx, ¨q ´ P spy, ¨q||TV “ P tXs ‰ Ysu.

As P s`t is the matrix product of P t and P s and the distribution of Xs is P s,
we have

P s`tpx,wq “
ÿ

z

P spx, zqP tpz, wq “
ÿ

z

P tXs “ zuP tpz, wq “ E
`

P tpXs, wq
˘

.

Combining this with the symmetric identity, P s`tpy, wq “ E
`

P tpYs, wq
˘

allows
us to write

P s`tpx,wq ´ P s`tpy, wq “ E
`

P tpXs, wq ´ P
tpYs, wq

˘

.

(Here, we implicitly used the linearity of expectation.) Combining expectations
is possible since Xs and Ys are defined together on the same probability space.
Summing this over w P Ω and applying an earlier proposition gives us

||P s`tpx, ¨q ´ P s`tpy, ¨q||TV “
1

2

ÿ

w

|E
`

P tpXs, wq ´ P
tpYs, wq

˘

|.

34



The right hand side is less than or equal to

E
ˆ

1

2

ÿ

w

|P tpXs, wq ´ P
tpYs, wq|

˙

.

Applying the same proposition to before, we have that the quantity inside the
expectation is exactly

||P tpXs, ¨q ´ P
tpYs, ¨q||TV ,

which is zero whenever Xs “ Ys. Moreover, this distance is always bounded by
d̄ptq. So, this shows that

||P s`tpx, ¨q ´ P s`tpy, ¨q||TV ď d̄ptqEp1tXs‰Ysu “ d̄ptqPtXs ‰ Ysu.

Finally, since pXs, Ysq is an optimal coupling, the probability on the right-hand
side is equal to

||P spx, ¨q ´ P spy, ¨q||TV .

Maximizing this over x and y completes the proof. Q.E.D

Using the exercise below, we have that d̄ptq is non-increasing in t. From this
and an above lemma, it follows that when c is any non-negative integer and t is
any non-negative integer, we have

dpctq ď d̄pctq ď d̄ptqc.

Definition. A useful parameter to study is the mixing time, which we define
by

tmixpεq :“ mintt : dptq ď εu

and
tmix :“ tmixp1{4q.

Corollary. The prior lemma gives us that, for l P Zě0,

dpltmixpεqq ď d̄pltmixpεqq ď d̄ptmixpεqq
l ď p2εql.

In particular, taking ε “ 1{4, we have

dpltmixp1{4qq ď 2´l.

This then gives us
tmixpεq ď rlog2 ε

´1stmix.

Definition. For a distribution µ on a group G, the inverse distribution µ̂ is
defined by µ̂ :“ µpg´1q for all g P G.

Definition. Let P be the transition matrix of the random walk with increment
distribution µ. Then the random walk with increment distribution µ̂ is exactly
the time reversal P̂ of P .
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Lemma. Let P be the transition matrix of a random walk on a group G with
increment distribution µ, and let P̂ be that of the walk on G with increment
distribution µ̂. Let π be the uniform distribution on G. Then for any t ě 0,

||P tpid, ¨q ´ π||TV “ ||P̂
tpid, ¨q ´ π||TV .

Proof. Let pXtq “ pid, X1, X2, . . .q be a Markov chain with transition matrix P
and initial state id. We can write Xk “ g1g2 ¨ ¨ ¨ gk, where gi P G are independent
choices from the distribution µ. Similarly, let pYtq be a chain with transition
matrix P̂ , with increments h1, h2, . . . P G chosen independently from µ̂. For any
fixed elements a1, . . . , at P G,

P tg1 “ a1, . . . , gt “ atu “ P th1 “ a´1
t , . . . , ht “ a´1

1 u,

by definition of P̂ . Summing over all strings such that a1a2 ¨ ¨ ¨ at “ a yields

P tpid, aq “ P̂ tpid, a´1q.

Hence,

ÿ

aPG

ˇ

ˇP tpid, aq ´ |G|´1
ˇ

ˇ “
ÿ

aPG

ˇ

ˇP̂ tpid, a´1q ´ |G|´1
ˇ

ˇ “
ÿ

aPG

ˇ

ˇP̂ tpid, aq ´ |G|´1
ˇ

ˇ

and using the fact that

||µ´ ν||TV “
1

2

ÿ

xPΩ

|µpxq ´ νpxq|

we have the result. Q.E.D

Corollary. If tmix is the mixing time of a random walk on a group and t̂mix is
the mixing time of the inverse walk, then we have tmix “ t̂mix.

We finish by talking about the ergodic theorem. The philosophy of the
ergodic theorem is ”time averages equals space averages”.

Definition. Let f be a real valued function on Ω and µ be any probability
distribution on Ω. We define

Eµpfq “
ÿ

xPΩ

fpxqµpxq.

Theorem (Ergodic Theorem). Let f be a real value function defined on Ω. If
pXtq is an irreducible Markov chain (notice we don’t need aperiodic), then for
any starting distribution µ we have

Pµ

#

lim
tÑ8

1

t

t´1
ÿ

s“0

fpXsq “ Eπpfq

+

“ 1.
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Proof. Suppose that the chain starts at x. Define τ`x,0 :“ 0 and

τ`x,k :“ mintt ą τ`x,pk´1q : Xt “ xu.

Since the chain starts anew every time it visits x, the blocksXτ`x,k
, Xτ`x,k`1, . . . , Xτ`

x,pk`1q
´1

are independent of one another. If we set

Yk :“

τ`x,k´1
ÿ

s“τ`
x,pk´1q

fpXsq,

then we have pYkq is i.i.d. If St “
řt´1
s“0 fpXsq, then Sτ`x,n “

řn
k“1 Yk, and by

the Strong Law of Large Numbers,

Px

#

lim
nÑ8

Sτ`x,n
n

“ ExpY1q

+

“ 1

By the Strong Law of Large Numbers again, since τ`x,n “
řn
k“1pτ

`
x,k ´ τ

`

x,pk´1qq,

writing simply τ`x for τ`x,1,

Px

#

lim
nÑ8

τ`x,n
n
“ Expτ`x q

+

“ 1.

Thus,

Px

#

lim
nÑ8

Sτ`x,n
τ`x,n

“
ExpY1q

Expτ`x

+

“ 1.

We can then show that ExpY1q “ EπpfqExpτ`x q. Thus, we get

Px

#

lim
nÑ8

Sτ`x,n
τ`x,n

“ Eπpfq

+

“ 1.

By the second problem, we have that the theorem holds when µ “ δx, the
probability distribution with unit mass at x. Averaging over the starting state
completes the proof. Q.E.D

Exercises

Problem 8. Let P be the transition matrix of a Markov chain with state space
Ω and let µ and ν be any two distributions on Ω. Prove that

||µP ´ νP ||TV ď ||µ´ ν||TV .

Solution. We can simplify this to

||µP ´ νP ||TV “ ||pµ´ νqP ||TV .

Rewriting this, we have

“ max
AĂΩ

|pµ´ νqP pAq| ď max
AĂΩ

|pµ´ νqpAq| “ ||µ´ ν||TV
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Problem 9. Let panq be a bounded sequence. If, for a sequence of integers
pnkq satisfying limkÑ8 nk{nk`1 “ 1, we have

lim
kÑ8

a1 ` ¨ ¨ ¨ ` ank
nk

“ a,

then

lim
nÑ8

a1 ` ¨ ¨ ¨ ` an
n

“ a.

Solution. I don’t recall this from Analysis, but it seems to be a reasonable
assumption.

Let yn “
1
n

řn
i“1 ai. Then we have that ynk Ñ 1 as k Ñ8, with limkÑ8 nk{nk`1 “

1. Since these are asymptotically equivalent, we can deduce monotonicity on a
domain extending to infinity. Notice that limkÑ8 ynk{ynk`1 “ 1, thus giving us
monotonicity in the sums of the ai on some infinite domain. We have monotone
and bounded, so we get convergence, and they must converge to the same limit.

38



4 Coupling

We’ll start by recalling the definition

Definition. A coupling of two probability distributions µ and ν is a pair of
random variables pX,Y q defined on the same probability space such that the
marginal distribution of X is µ and Y is ν.

Remark. We have Px,y will be the probability on the sapce where Xt and Yt
are defined.

Theorem. Let tpXt, Ytqu be a coupling of two Markov Chain’s satisfying X0 “

x and Y0 “ y. Let τcouple be defined by

τcouple :“ mintt : Xt “ Ytu.

Then
||P tpx, ¨q ´ P tpy, ¨q||TV ď Px,ytτcouple ą tu.

Proof. Notice P tpx, zq “ Px,ytXt “ zu, P tpy, zq “ Px,ytYt “ zu. Then by a
prior proposition, we can write this as

||P tpx, ¨q ´ P tpy, ¨q||TV ď Px,ytXt ‰ Ytu

and we can notice that this last part is obviously Px,ytτcouple ă tu. Q.E.D

Corollary. We have

dptq ď max
x,yPΩ

Px,ytτcouple ą tu.

Definition. A Markovian coupling of P is a Markov Chain with state space
Ωˆ Ω whose transition matrix Q satisfies

(a) @x, y, x1 we have
ř

y1 Qppx, yq, px
1, y1qq “ P px, x1q.

(b) @x, y, y1 we have
ř

x1 Qppx, yq, px
1, y1qq “ P py, y1q.

Remark. In order to proceed moving forward, we’ll need Markov’s inequality.
Markov’s inequality is as follows; if X is a nonnegative random variable a ą 0,
then we have

P pX ě aq ď
EpXq
a

.

Example 7 (Random Walk on Zn). We have that pXt, Ytq moves as follows
– flip a coin. If it’s heads, Xt moves, and if it’s tails then Yt moves. In each
case, we have that they move by flipping another coin. Once they connect,
they move together. Let Dt be the distance between them – in other words,
Dt P t0, 1, . . . , nu, and it gets absorbed at either 0 or n. Recall Ex,ypτq “ kpn´kq
from a prior exercise. Then using Corollary 5.3, the Markov Inequality, and
noticing that Ex,ypτq is maximized at k “ n{2, we have

dptq ď max
x,yPZn

Px,ytτ ą tu ď
maxx,yPΩ Ex,ypτq

t
ď
n2

4t
.
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For the next example, we’ll need Wald’s identity.

Remark. Let pXnq be a collection of random variables which are i.i.d. and let
N be a nonnegative integer-valued random variable that is independent of the
Xi. If the Xi and N have finite expectation, then we have

E
ˆ N
ÿ

i“1

Xi

˙

“ EpNqEpX1q.

Theorem. For the lazy random walk on the d-dimensional taurus Zdn, we have

τmixpεq ď cpdqn2 log2pε
´1q,

where cpdq is a constant depending on the dimension.

Proof. Couple a random walk p ~Xtq startng at ~x and p~Ytq starting at ~y. Ran-

domly choose a coordinate d uniformly. If p ~Xtq, p~Ytq agree on the chosen co-
ordinate, then move them bot `1, ´1, or 0 with probability 1{4, 1{4, and 1{2
respectively. If they disagree, choose on of the chains at random and fix the
other. Move `1 or ´1 in the coordinate with probability 1{2. Let

~Xt “ pX
t
t , . . . , X

d
t q

and
~Yt “ pT

1
t , . . . , Y

d
t q

and let
τi :“ mintt ě 0 : Xi

t “ Y it u.

Using Wald’s identity and the fact that there is a geometric waiting time be-

tween each coordinate with mean d, we have Ex,ypτiq “ dn2

4 . Now τcouple “

max1ďiďd τi and bounding it above by a sum gets us

Ex,ypτcoupleq ď
d2n2

4
.

So Px,ytτcouple ą tu ď d2n2

4t . Using Proposition 4.36, we get τmixpεq ď d2n2rlog2pε
´1qs.

Q.E.D

For the next example, we’ll need some basic graph theory definitions, which
we’ll review.

Definition. A tree is a connected graph with no cycles.

Definition. A rooted tree has a distinguished vertex, called the root.

Definition. The depth of a vertex v is its graph distance to the root.

Definition. A level of the tree consists of all the vertices at the same depth.

Definition. The children of v are the neighbors of v with depth larger than v.
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Definition. A leaf is a vertex of degree one.

Definition. A rooted finite b-ary tree of depth k, denoted by Tb,k, is a tree
with a distinguished vertex v0, the root, such that

(a) v0 has degree b.

(b) Every vertex with distance j from the root, where 1 ď j ď k´1, has degree
b` 1.

(c) The vertex at distance k are leafs.

Remark. There are n “ bk`1
´1

b´1 vertices in Tb,k.

Example 8. In this example, we consider the random walk on the finite bi-
nary tree, T2,k. The walk remains at its current position with probability 1{2.
Consider the following coupling pXt, Ytq of two lazy random walks, started from
states x0 and y0 on the tree. Assume without loss of generality that x0 is at
least as close to the root as y0 (can do this arbitrarily). At each move, toss
a fair coin to decide which of the two chains moves; if heads, Yt`1 “ Yt while
Xt`1 is chosen from the neighbors of Xt uniformly at random. If the coin toss is
tails, then Xt`1 “ Xt and Yt`1 is chosen from the neighbors of Yt uniformly at
random. Run the two chains according to this rule until the first time they are
at the same level of the tree. Once the two chains are at the same level, change
the coupling to the following update rule: let Xt evolve as a lazy random walk,
and couple Yt to Xt so that Yt moves closer to (further from) the root if and
only if Xt moves closer to (further from) the root, respectively. Let B be the
set of leaves. Observe that if pXtq has first visited B and then visited the root,
it must have coupled at this time. The expected value of this time is less than
the commute time τ from the root to B, the time it takes starting from the root
to first visit the set B and then return to the root. It will be shown later that
Epτq ď 4n. Thus, if τcouple is the time when the two particles meet, we have
Px,ytτcouple ą tu ď 4n

t . We conclude that tmix ď 16n.

Proposition 23. Let Q be an irreducible transition matrix and consider the
lazy chain with transition matrix P “ pQ`Iq{2. The distribution at time t and
t` 1 satisfy

||P tpx, ¨q ´ P t`1px, ¨q||TV ď
12
?
t
.

Proof. The proof involves clever coupling and Proposition 2.17. Q.E.D

Definition (Grand Coupling). Construct a collection of random variables tXx
t :

x P Ω, t “ 0, 1, 2, . . .u such that for each x P Ω, the sequence pXx
t q
8
t“0 is a Markov

chain with transition matrix P which started from x. We can use the random
mapping construction to make grand couplings. Let f : ΩˆΛ Ñ R be a function
and Z and Λ-valued random variable such that P px, yq “ P tfpx, Zq “ yu.
Proposition 1.5 guarantees such a pf, Zq pair exists. Let tZiuiě0 be an i.i.d.
sequence with the same distribution as Z, and define inductively Xx

0 “ x,
Xx
t “ fpXx

t´1, Zq for T ě 1. This yields a grand coupling.
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Exercises

Problem 10. (a) Show that when pXt, Ytq is a coupling satisfying the normal
properties for which X0 „ µ and Y0 „ ν, then

||µP t ´ νP t||TV ď P tτcouple ą tu.

(b) If pXtq and pYtq are independent, then they surely coalesce. That is,
P tτcouple ă 8u “ 1.

Solution. (a) This is just an application of two different results. Proposition
4.7 says ||µ ´ ν||TV ď P tτcouple ą tu. From Exercise 4.3, we know ||µP ´
νP ||TV ď ||µ´ ν||TV , and so as a consequence we have ||µP t ´ νP t||TV ď
||µ´ ν||TV . This then gives us the desired result.

(b) This is a clever trick. We have P pXt ‰ Yt|X0, Y0q ď 1 ´ ε by ergodicity.
Now, we have P pX2t ‰ Y2t|Xt ‰ Ytq ď 1 ´ ε by the Markov property. We
then have P pX2t ‰ Y2tXXt ‰ Yt|X0, Y0q “ P pX2t ‰ Y2t|X0, Y0q ď p1´ εq

2.
Continue to see that eventually they must coalesce.

5 Strong Stationary Times

Consider the top-to-random shuffle. Let τtop be the time one move after the
first occasion when the original bottom card has moved to the top of the deck.

Proposition 24. Let pXtq be the random walk on Sn corresponding to the top-
to-random shuffle on n cards. Given at time t that there are k cards under the
original bottom card, each of the k! possible orderings of these cards are equally
likely. Therefore, if τtop is one shuffle after the first time that the original bottom
and moves to the top of the deck, then the distribution of Xτtop is uniform over
Sn, and the time τtop is independent of Xτtop .

Proof. It’s a simple induction proof. For k “ 0, 1 this is clear, and so we have
base cases established. Assume it holds for k. Then when we take the top card
and place it randomly in the deck, it is either below the original bottom card or
above it. If it is above it, nothing changes and we continue. If it is below it, then
we have that it is placed with uniform probability in any of the k` 1 remaining
places, and thus we have that the k ` 1 cards beneath the original bottom
card are all uniformly random. Once the bottom card is now on the top of the
deck, we have that all the cards below it are uniformly random, and we place it
uniformly at random in any of the deck, completing the procedure. Q.E.D

Definition. Given a sequence pXtq
8
t“0 of Ω-valued random variables, a t0, 1, 2, . . . ,8u-

value random variable τ is a stopping time for pXtq if, for each t P t0, 1, . . .u,
there is a set Bt Ď Ωt`1 such that tτ “ tu “ tpX0, X1, . . . , Xtq P Btu.

Remark. The random mapping representation of the random walk on the hy-
percube is given by t1, 2, . . . , nu ˆ t0, 1u where you are selecting an element
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pj, Bq, where the coordinate J of the current state is updated with B. Define
τrefresh :“ mintt ě 0 : tj1, . . . , jtu “ t1, 2, . . . , nuu. We have then Xtrefresh

is exactly the sample from the stationary distribution π. Notice τrefresh is
a stopping time for pZtq. Recall we defined pXtq

8
t“0 inductively as follows:

X0 “ x,Xt “ fpXt´1, Ztq.

Definition. A randomized stopping time for the Markov chain pXtq is a stop-
ping time τ for the sequence pZtq.

Definition. Let pXtq be an irreducible Markov chain with stationary distribu-
tion π. A stationary time τ for pXtq is a randomized stopping time such that
the distribution of Xτ is π: PxtXτ “ yu “ πpyq.

Definition. A strong stationary time for a Markov chain pXtq with stationary
distribution π is a randomized stopping time τ , possibly depending on a starting
position x, such that Pxtτ “ t,Xt “ yu “ Pxtτ “ tuπpyq.

Example 9. The top-to-random shuffle forms a strong stationary time, s we
outlined in the proposition.

Lemma. Let pXtq be an irreducible Markov chain with stationary distribution
π. It τ is a strong stationary time for pXtq, then for all t ě 0,

Pxtτ ď t,Xt “ yu “ P tτ ď tuπpyq.

Proof. Let Z1, Z2, . . . be the i.i.d. sequence used in the random mapping repre-
sentation of pXtq. For any s ď t,

Pxtτ “ S,Xt “ yu “
ÿ

zPΩ

PxtXt “ y|τ “ s,Xs “ zuPxtτ “ s,Xs “ zu.

Since τ is a stopping time for pZtq, the event tτ “ su equals tpZ1, Z2, . . . , Zsq P
Bu for some set B Ă Ωs. Also, for integers r, s ě 0, there exists a function
f̄r : Ωr`1 Ñ Ω such that Xs`r “ f̄rpXs, Zs`1, . . . , Zs`rq. Since pZ1, . . . , Zs and
pZs`1, . . . , Ztq are independent,

PxtX1 “ y|τ “ s,Xs “ zu “ Pxtf̄t´spz, Zs`1, . . . , Ztq “ y|pX1, . . . , Xsq P B,Xs “ Zu

“ P t´spz, yq.

Summing over the s ď t gives P tτ ď tuπpyq. Q.E.D

We want to eventually show that dptq ď maxxPΩ Pxtτ ą tu. In order to do
so, we will need some definitions and lemmas.

Definition. Define the separation distance by

sxptq :“ max
yPΩ

„

1´
P tpx, yq

πpyq



and
sptq :“ max

xPΩ
sxptq.
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Lemma. If τ is a strong stationary time, then sxptq ď Pxtτ ą tu.

Proof. Fix x P Ω. For all y P Ω, notice that we have

1´
P tpx, yq

πpyq
“ 1´

PxtXt “ yu

πpyq
ď 1´

PxtXt “ y, τ ď tu

πpyq
.

By the prior lemma, we have

1´
PxtXt “ y, τ ď tu

πpyq
ď 1´

Pxtτ ď tuπpyq

πpyq
“ Pxtτ ą tu

as we desired. Q.E.D

Definition. Given a starting state x a state y is a halting time for a stopping
time τ if Xt “ y implies τ ď t.

Remark. The inequality in the prior lemma is an equality if and only if y is a
halting state for the starting state x, for some y.

Lemma. The seperation distance sxptq satisfies

||P tpx, ¨q ´ π||TV ď sxptq

thus giving us dptq ď sptq.

Proof. We have

dptq :“ max
xPΩ

||P tpx, ¨q ´ π|| “
ÿ

yPΩ
P tpx,yqăπpyq

rπpyq ´ P tpx, yqs

“
ÿ

yPΩ
P tpx,yqăπpyq

πpyq

«

1´
P tpx, yq

πpyq

ff

ď max
yPΩ

«

1´
P tpx, yq

πpyq

ff

“ sxptq ď sptq.

Q.E.D

Combining the two above lemmas gives us the following corollary.

Corollary. If τ is a strong stationary time, then

dptq “ max
xPΩ

||P tpx, ¨q ´ π||TV ď max
xPΩ

Pxtτ ą tu.

Example 10. Take two complete graphs on n-vertices and ”glue” them together
at one vertex. Add n loops to all other vertices, and one lop to the glued
vertex. This makes the graph regular of degree 2n´1 (here, the loops contribute
one degree). Let τ be the time one step after v˚ (the glued vertex) has been
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visited for the first time. Then τ is a strong stationary time. We have that
the probability of going to v˚ is 1

2n´1 , and this is geometric. Hence, we get
Epτq “ 2n. By Markov’s inequality, we find

Pxtτ ě tu ď
Epτq
t

“
2n

t
.

Taking t “ 8n gives us

Pxtτ ě tu ď
2n

8n
“

1

4
.

So, we have dptq ď 1
4 if t “ 8n, and so tmix ď 8n by definition.

Example 11. Consider the top-to-random shuffle. The probability that a card
moves below the original bottom card is k

n if there are k-cards beneath it. We
see this is the coupon collector again. Proposition 2.4 gives us

Pxtτ ą rn logpnq ` cnsu ď e´c,

and Proposition 6.10 gives

dpn logpnq ` cnq ď e´c Ñ tmixpεq ď n logpnq ` logpε´1qn.

Example 12. Imagine a line of books, and after randomly selecting a book you
move it to the front. This is the time reversal Markov chain of the top-to-random
shuffle, and so using Lemma 4.13 we can bound

tmix ď n logpnq ` n logpε´1q.

Consider a finite chian pXtq with transition matrix P and stationary dis-
tribution π on Ω. Given t ě 1, suppose that we chose uniformly a time
σ P t0, 1, . . . , t ´ 1u and run the given Markov chain for σ-steps. Then the
state Xσ has distribution

vtx :“
1

t

t´1
ÿ

s“0

P spx, ¨q.

Definition. The Cesaro mixing time t˚mixpεq is defined as teh first t such that
@x P Ω, ||vtx ´ π||TV ď ε.

Theorem. Consider a finite chain with transition matrix P and stationary dis-
tribution π on Ω. If τ is a stationary distribution for the chain, then t˚mixp1{4q ď
4 maxxPΩ Expτq ` 1.

Proof. Proof omitted for now. Q.E.D

Remark. The converse was proven by Lovasz and Winkler.
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Exercises

Problem 11. Show that if τ and τ 1 are stopping times for the sequence pXtq,
then τ ` τ 1 is a stopping time for pXtq.

Solution. Simply note that for n P t0, 1, . . .u we have

tτ ` τ 1 “ nu “
n
ď

i“0

`

tτ “ iu X tτ “ n´ iu
˘

.

Problem 12. Consider the top-to-random shuffle. Show that the time until the
card initially one card from the bottom rises to the top, plus one more move, is
a strong stationary time, and find it’s expectation.

Solution. The argument is essentially the same as the bottom card argument.
The mean is still the coupon collector mean, except we skip the last (first?) one.
So it will be Epτq “ n{2` n{3` ¨ ¨ ¨ ` 1.

Problem 13. Let sptq be the seperation distance. Show that there is a stochas-
tic matrix Q so that P tpx, ¨q “ r1´ sptqsπ ` sptqQtpx, ¨q and π “ πQ.

Solution. Showing that it is stochastic is simple. We have
ÿ

yPΩ

P tpx, yq “ 1 “
ÿ

yPΩ

r1´ sptqsπpyq `
ÿ

yPΩ

sptqQtpx, yq.

Rewrite this as
1 “ r1´ sptqs ` sptqQtpx, yq.

Solving for Qtpx, yq, we find 1. More importantly, taking t “ 1, we get that the
matrix Q is stochastic. Next, instead of x, use the stationary distribution π.
We have then

πP “ π “ r1´ sptqsπ ` sptqπQ.

Solving this gives
π “ πQ.

Problem 14. Show that if

max
xPΩ

Pxtτ ą t0u ď ε

then
dptq ď εtt{t0u.

Solution. We use the submultiplicativity of sptq; that is, spt ` uq ď sptqspuq.
We also use the fact that dptq ď sptq. We’ll just show it for the case of t “ 2t0
(all other cases are essentially the same argument). For t “ 2t0, we have

dp2t0q ď spt0 ` t0q ď spt0q
2 ď max

xPΩ
P 2
x tτ ą t0u ď ε2 “ ε2t0{t0 .
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6 Lower Bounds on Mixing Times

The idea of this is simple; if the possible locations of a chain after t steps do
not form a significant function of the state space, then the distribution of the
chain at time t cannot be close to uniform

Definition. Let pXtq be a Markov chain with irreducible and aperiodic transi-
tion matrix P on the state space Ω, and suppose that the stationary distribution
π is uniform over Ω. Define dout :“ |ty : P px, yq ą 0u| to be the number of states
accessible in one step from x, and let ∆ :“ maxxPΩ doutpxq.

Denote by Ωxt the set of states accessible from x in t steps, and observe that
|Ωxt | ď ∆t. If ∆t ď p1´ εq|Ω|, then we get

||P tpx, ¨q ´ π||TV ě Ptpx,Ω
x
t q ´ πpΩ

x
t q ě 1´

∆t

|Ω|
ą ε.

We just need an upper bound on this t. Solving for t, we get

∆t

|Ω|
ď 1´ εÑ t ď

logp|Ω|p1´ εqq

logp∆q

giving us

tmixpεq ě
logp|Ω|p1´ εqq

logp∆q
.

Definition. Given a transition matrix P on Ω, construct a graph with vertex
set Ω which includes the edge tx, yu for all x and y with P px, yq ` P py, xq ą 0.
Define the diameter of a Markov chain to be the diameter of this graph; that is,
the maximal distance between distinct vertices.

We can find something called the diameter bound. Let P be an irreducible
and aperiodict transition matrix on Ω with diameter L, and suppose that x0

and y0 are states at maximal graph distance L. Then P tpL´1q{2upx0, ¨q and
P tpL´1q{2upy0, ¨q are positive on disjoint vertex sets. Hence, it’s clear that d̄ptpL´
1q{2uq “ 1, and for any ε ă 1{2, tmixpεq ě

1
2 .

Definition. The edge measure Q is defined by

Qpx, yq :“ πpxqP px, yq,

and
QpA,Bq :“

ÿ

xPA,yPB

Qpx, yq.

Here, we have QpA,Bq is the probability of moving from A to B in one step
starting from the stationary distribution.

Definition. The bottleneck ratio of the whole chain is defined to be

ΦpSq :“
QpS, Scq

πpSq
,
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and the bottleneck ratio of the whole chain is

Φ‹ :“ min
πpSqď 1

2

ΦpSq.

Example 13. For a simple random walk with vertices Ω and edge set E,

Qpx, yq “

#

degpxq
2|E| ¨

1
degpxq “

1
2|E| if tx, yu P E

0 otherwise.

In this case, 2|E|QpS, Scq is the size of the boundary BS of S, the collection of
edges having one vertex in S and one vertex in Sc. In this case, we get

ΦpSq “
BS

ř

xPS degpxq
.

Theorem. If Φ‹ is the bottleneck ratio, then tmix ě
1

4Φ‹
.

Proof. Proof omitted for now. Q.E.D

Example 14. Consider the lazy random walk on the rooted binary tree of
depth k. We have n “ 2k`1´ 1 is the number of vertices. The number of edges
is n´ 1. Let v0 be the root, and denote vl, vr as its descendants. Let S consist
of the right hand side of the tree; that is, the descendants of vr. By Example
1.12, we have

πpvq “

$

’

&

’

%

2
2n´2 for v “ v0

3
2n´2 for 0 ă |v| ă k

1
2n´2 for |v| “ k.

Notice that in S, we have 2k´1 ´ 1 vertices with πpvq “ 3
2n´2 and 2k´1 vertices

with πpvq “ 1
2n´2 . Multiplying and adding, we get 2k`1

´3
2n´2 “ n´2

2n´2 “ πpSq. Since
there is only one edge connecting S and Sc, we get QpS, Scq “ πpvrqP pvr, v0q “

1
2pn´1q . Therefore, ΦpSq “ 1

n´2 . Using the prior theorem, we get

tmix ě
n´ 2

4
.

Definition. Let f be a statistic, or a real-valued function on Ω. Let µ be a
probability distribution on Ω. Then

Eµpfq :“
ÿ

xPΩ

fpxqµpxq.

Likewise, Varµpfq indicates variance computed with respect to the probability
distribution µ.

Proposition 25. For f : Ω Ñ R, define σ2
‹ :“ maxtVarµpfq,Varνpfqu. If

|Eνpfq ´ Eµpfq| ě rσ‹
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then

||µ´ ν||TV ě 1´
8

r2
.

In particular, if for a Markov chain pXtq with transition matrix P the function
f satisfies

|ExrfpXtqs ´ Eπpfq| ě rσ‹,

then

||P tpx, ¨q ´ π||TV ě 1´
8

r2
.

We’ll need a lemma to prove this. When µ is a probability distribution on
Ω and f : Ω Ñ Λ, write µf´1 for the probability distribution defined by

pµf´1qpAq :“ µpf´1pAqq

for A Ď Λ. When X is an Ω-valued random variable with distributin µ, then
fpXq has distribution µf´1 on Λ.

Lemma. Let µ and ν be probability distributions on Ω, and let f : Ω Ñ Λ be
a function on Ω, where Λ is a finite set. Then

||µ´ ν||TV ě ||µf
´1 ´ νf´1||TV .

Proof. Since

|µf´1pBq ´ νf´1pBq| “ |µpf´1pBqq ´ νpf´1pBqq|,

then
max
BĂΛ

|µf´1pBq ´ νf´1pBq| ď max
AĂΩ

|µpAq ´ νpAq|.

Q.E.D

We now can prove the proposition.

Proof. Suppose arbitrarily that Eµpfq ď Eνpfq. If A “ pEµpfq ` rσ‹{2,8q,
then Chebyshev’s inequality yields that

µf´1pAq ď
4

r2
and vf´1pAq ě 1´

4

r2
,

whence

||µf´1 ´ νf´1||TV ě 1´
8

r2
.

The prior lemma now finishes the proof. Q.E.D

We can get a better constant for the lower bound with the following propo-
sition.
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Proposition 26. Let µ and ν be two probability distributions on Ω, and let f
be a real-valued function on Ω. If

|Eµpfq ´ Eνpfq| ě rσ,

where σ2 “ rVarµpfq `Varνpfqs{2, then

||µ´ ν||TV ě 1´
4

4` r2
.

Proof. Proof omitted for now. Q.E.D

Example 15. We’ll use the proposition to bound below the mixing time for
the random walk on the hypercube. We’ll first prove a lemma.

Lemma. Consider the coupon collector problem with n distinct coupon types,
and let Ijptq be the indicator of the event that the j-th coupon has not been
collected by time t. Let Rt “

řn
j“1 Ijptq be the number of coupon types not

collected by time t. The random variables Ijptq are negatively correlated, and
letting p “ p1´ 1{nqt, we have for t ě 0

EpRtq “ np,

VarpRtq ď npp1´ pq ď
n

4
.

Proof. Since we have that Ijptq is a Bernoulli random variable, we have that
EpIjptqq “ p. Likewise, we get VarpIjptqq “ pp1´ pq. For j ‰ k, we get

EpIjptqIkptqq “
ˆ

1´
2

n

˙t

,

whence

CovpIjptq, Ikptqq “

ˆ

1´
2

n

˙t

´

ˆ

1´
1

n

˙2t

ď 0.

The result follows. Q.E.D

Exercises

Problem 15. Let ~Xt “ pX
1
t , . . . , X

n
t q be the position of the lazy random walker

on the hypercube t0, 1un, started at ~X0 “ ~1 “ p1, . . . , 1q. Show that the covari-

ance between Xi
t and Xj

t is negative. Conclude that if W p ~Xtq “
řn
i“1X

i
t , then

VarpW p ~Xtqq ď n{4.

Solution. Let Y it “ 2Xi
t´1. Then we have that Y it “ t´1, 1u. We want to then

condition on the probabilities. We have that, if the component i is chosen, then
it switches between ´1 and 1. We construct four events then; event A denotes
if i and j are both chosen by a point, Bi denotes only i is chosen, Bj denotes
only j is chosen, and C denotes neither were chosen. We get that EpXi

t |Aq “ 0
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since it is uniform between t´1, 1u, EpXi
t |Biq “ 0, and the rest are 1. So we

find EpXi
tq “ P pBjq ` P pCq. It is a similar situation for Xj

t . For Xi
tX

j
t , we

have that EpXi
tX

j
t |Aq “ 0, EpXi

tX
j
t |Biq “ 0, EpXi

tX
j
t |Bjq “ 0, and finally

EpXi
tX

j
t |Cq “ 1. So we get that EpXi

tX
j
t q “ P pCq. So our covariance is P pCq´

pP pBjq`P pCqq
2. Now, we calculate explicitly P pBjq. Notice that this event is

simply P pBjq “ P pBiq ´P pCq. Since Bj , Bi are identical, we get that it comes
out to P pCq ´ P pBjq

2. So we have that it is negatively correlated. The result

then follows, since VarpW p ~Xtqq “
řn
i“1 VarpXi

tq`
ř

i‰j CovarpXi
t , X

j
t q. Since it

is negatively correlated, this is the same thing as VarpW p ~Xtqq ď
řn
i“1 VarpXi

tq.
Notice that VarpXi

tq “ p1{4q and the result follows.

Problem 16. Let Ω “ GLnpF2q, the set of invertible n ˆ n matrices over F2.
Consider the chain which selects uniformly an ordered pair pi, jq of rows pi ‰ jq
and adds row i to row j, the addition being mod 2.

(a) Show that there is a constant γ ą 0 so that |Ω|{2n
2

Ñ γ as nÑ8.

(b) Show that tmix ą cn2{ logpnq for a positive constant c.

Solution. I did this on the white board. For the first part, use the exercise
from Dummit and Foote to get the limit (show that it’s bounded between 0 and
1, which is relatively easy, then show that it’s monotonically increasing). For
the second part, I noticed that this chain is combinatorially isomorphic to the
random walk on Z|GlnpF2q|. I then did some analysis by making the walk lazy
and getting a lower bound which is similar to the one given in the exercise.

7 The Symmetric Group and Shuffling Cards.

Definition. The set of all bijections from t1, . . . , nu to itself forms the group
Sn, also known as the symmetric group on n letters.

Definition. We often use cycle notation. If a1, . . . , am are elements in our set,
then pa1a2 ¨ ¨ ¨ amq denotes the permutation σ which sends σpiq ÞÑ ai`1 pmod mq.
A transposition is a 2-cycle.

Remark. There is an algorithm for generating an exactly uniform random per-
mutation. Let σ0 be the identity permutation. For k “ 1, . . . , n´ 1, inductively
construct σk from σk´1 by swapping the cards (or elements) at locations k
and Jk, where Jk is an integer picked uniformly in tk, . . . , nu, independently of
tJ1, . . . , Jk´1u. It is rather simple to see that this uniformly creates a random
permutation. Let η P Sn. Then using this algorithm, we’d like to show that
P tσn´1 “ ηu “ 1

n! . Notice that P tσn´1 “ ηu “ P tJ1 “ ηp1qX¨ ¨ ¨XJn “ ηpnqu.
Since the Ji were all independently chosen, this is equivalent to asking P tJ1 “

ηp1qu ¨ ¨ ¨P tJn´1 “ ηpn ´ 1qu. Since the Ji are chosen uniformly, we have that
the probability that these are equal to the ηpiq is exactly 1

n´i . Therefore, we

get that this product turns out to be 1
n! .
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It also turns out that this algorithm is optimal. Consider the identity permu-
tation and σ “ p1 ¨ ¨ ¨nq on the Cayley graph generated by Sn by permutations.
Then it’s clear that these are the elements furthest away from eachother, and we
also see that it takes n´ 1 edges to go from one another. Hence, the diameter
of the graph is n ´ 1, and so in order to reach any permutation we must take
n´ 1 steps.

Definition. We define the parity of a permutation σ P Sn to be

Mpσq :“
ź

1ďiăjďn

`

σpjq ´ σpiq
˘

.

Remark. It is an easy exercise to see that

Mpσ ˝ pabqq “ ´Mpσq.

Definition. We call a permutation σ P Sn even if Mpσq ą 0 and odd if Mpσq ď
0. This is because if we can write σ as a product of even permutations, then we
get that all the negatives cancel and so Mpσq ą 0.

Definition. In order to avoid periodicity, the random shuffle transposition is
defined as follows: at time t, choose two cards, labeled Lt and Rt, independently
and uniformly at random. If Lt and Rt are different, transpose them. Otherwise,
do nothing. The resulting distribution µ is then

µpσq “

$

’

&

’

%

1
n if σ “ id
2
n2 if σ “ pijq

0 otherwise.

Notice that this walk is irreducible; we have that, for all h P Sn, P tpg, hq ą 0
since transpositions generate the group. Aperiodicity follows since µpidq ą 0,
so gcdtt : P tpg, gq ą 0u “ 1.

Proposition 27. Let 0 ă ε ă 1. For the random transposition chain on an
n-card deck,

tmixpεq ě
n´ 1

2
log

ˆ

1´ ε

6
n

˙

Proof. First, we notice that the expected number of fixed points of a permuta-
tion σ P Sn is 1. To realize this, let Xi be the indicator random variable for the
i-th element in t1, . . . , nu. We have Xi “ 1 if σpiq “ i and 0 otherwise. Then
X “

řn
i“1 is the random variable which measures the number of fixed points.

We have EpXiq “
1
n , and so EpXq “

řn
i“1

1
n “ 1.

Let F pσq denote the number of fixed points of the permutation σ. If σ
is obtained from the identity by applying t random transpositions, then F pσq
is at least as large as the number of cards that were touched by none of the
transpositions (there could be more, as you could have a transposition and it’s
inverse).
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Our shuffle chain determines transpositions by choosing pairs of cards in-
dependently and uniformly at random. Hence, after t shuffles, the number of
untouched cards has the same distribution as the number R2t of uncollected
coupon types after 2t steps of the collector chain. By Lemma 7.13 from the
book,

µ :“ EpR2tq “ n

ˆ

1´
1

n

˙2t

,

and VarpR2tq ď µ. Let A “ tσ : F pσq ą µ{2u; that is, the number of permuta-
tions with fixed points greater than µ{2. We will compare the probabilities of
A under the uniform distribution π and P tpid, ¨q. First,

πpAq ď
2

µ
,

by Markov’s inequality. By Chebyshev’s inequality,

P tpid, Acq ď P tR2t ď µ{2u ď
µ

pµ{2q2
“

4

µ
.

By total variation distance, we get

||P tpid, ¨q ´ π||TV ě 1´
6

µ
.

We then want to find how small t must be so that 1´ 6{µ ą ε, or, equivalently,

n

ˆ

1´
1

n

˙2t

“ µ ă
6

1´ ε
.

Solving this and using logp1` xq ă x gets us

t ď
n´ 1

2
log

ˆ

np1´ εq

6

˙

so that

tmixpεq ě
n´ 1

2
log

ˆ

np1´ εq

6

˙

.

Q.E.D

We now go through the coupling of the random transposition shuffle. At
each time t, the shuffler chooses a card with label Xt P rxs, and, independently,
a position Yt P rns; they then transposes the card labeled Xt with the card in
position Yt. If the card in position Yt already has the label Xt, the deck is left
unchanged. To couple two decks, use the same choices pXtq and pYtq to shuffle
both. Let pσtq and pσ1tq be the two trajectories. We will see what happens
in one step. Let at be the number of cards that occupy the same position in
both σt and σ1t. If the card labeled Xt is in the same position in both decks,
then at`1 “ at. If Xt is in different positions in the two decks, but position
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Yt is occupied by the same card, then the specified transposition breaks one
alignment bu also forms a new one. We have at`1 “ at. If Xt is in different
positions in the two decks and if the cards at position Yt in the two decks do
not match, then at least one new alignment is made, and possibly as many as
three. This leads us to our proposition.

Proposition 28. Let τ be the time required for the two decks to coincide.

Then, no matter the initial configuration of the deck, Epτq ă π2

6 n
2.

Proof. Let τi denote the time between the first time that at ě i´ 1 and at ě i.
When t satisfies at “ i, there are n ´ i unaligned cards, and the probability
of increasing the number of alignments is pn ´ iq2{n2 (they’re independent, so
multiply). In this situation, τi`1 is a random variable with success probability
given by pn´ iq2{n2. We may conclude that under these circumstances,

Epτi`1|at “ iq “ n2{pn´ iq2.

Now, we see that if at ‰ i for any t, then τi`1 “ 0. Hence,

Epτq ă
ÿ

Epτiq ă n2
8
ÿ

i“1

i´2

thus giving the result. Q.E.D

We can then combine this with Corollary 5.5 from the book to find tmix ď

Opn2q.
We can also go through this using strong stationary times.

Proposition 29. In the random transposition shuffle, let Rt and Lt be the
cards chosen by the right and left hands, respectively, at time t. Assume that
when t “ 0, no cards have been marked. At time t, mark card Rt if either Rt
is unmarked or either Lt is a marked card or Lt “ Rt. Let τ be the time when
every card has been marked. Then τ is a strong stationary time for this chain.

Proof. Proof omitted for now. Q.E.D

Lemma. The stopping time τ defined in the prior proposition satisfies

Epτq “ 2nplogpnq `Op1qq

and
Varpτq “ Opn2q.

Proof. We can decompose this into

τ “
n´1
ÿ

i“0

τi

where τi is the number of steps after the k-th card is marked, up to and including
when the pk` 1q-st card is marked. Based on the rules in the prior proposition,
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we can see that this is a geometric random variable, with probability of success
being ppk ` 1qpn´ kqq{n2. Hence, we get

Epτq “
n´1
ÿ

k“0

n2

pk ` 1qpn´ kq
.

Using a partial fraction decomposition gives

1

pk ` 1qpn´ kq
“

1

n` 1

ˆ

1

k ` 1
`

1

n´ k

˙

.

Substituting this in gives

n2

n` 1

n´1
ÿ

k“0

ˆ

1

k ` 1
`

1

n´ k

˙

„ 2nplogpnq `Op1qq.

For the variance, we just use properties of the geometric random variable and
bound above. Q.E.D

Corollary. For the random transposition chain on an n-card deck,

tmix ď p2` op1qqn logpnq.

The final proposition is on the riffle shuffle.

Proposition 30. Fix 0 ă ε, δ ă 1. Consider the riffle shuffling on an n-card
deck. For sufficiently large n,

tmixpεq ě p1´ δq log2pnq.

Proof. There are at most 2n possible states accessible in one step of the time-
reversed chain (which, as we saw earlier, gives us equivalent bounds to the
normal shuffle). Thus, log2p∆q, where ∆ is the maximum out-degree defined in
(7.1). The state space has size n!, and Stirling’s formula shows that log2 n! “
p1` op1qqn log2pnq. Using these estimates in (7.2) shows that for all δ ą 0, if n
is sufficiently large, then the above holds. Q.E.D

Exercises

I talked to Graham about most of these exercises, or I did them by hand on the
whiteboard.
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8 Hitting Times

A preliminary before moving forward.

Definition. A function h : Ω Ñ R is harmonic for P at a vertex x if

hpxq “
ÿ

yPΩ

P px, yqhpyq.

Definition. Given a Markov chain pXtq with state space Ω, it is natural to
define the hitting time τA of a subset A Ă Ω by

τa :“ mintt ě 0 : Xt P Au.

Remark. We will write τw for τtwu.

Definition. We define the first return time as

τ`x “ mintt ě 1 : Xt “ xu.

Definition. For a Markov chain with stationary distribution π, let

tad “
ÿ

xPΩ

Eapτxqπpxq.

Lemma (Random Target Lemma). For an irreducible Markov chain on the
state space Ω with stationary distribution π, the target time tad does not depend
on a P Ω.

Remark. Due to the prior lemma, we will use td for all tad, a P Ω.

Proof. Set hxpaq :“ Eapτxq. Observe that for all x ‰ a,

hxpaq “
ÿ

yPΩ

Eapτx|X1 “ yqP pa, yq “
ÿ

yPΩ

p1` hapyqqP pa, yq

“
ÿ

yPΩ

P px, yq `
ÿ

yPΩ

hapyqP pa, yq “ 1`
ÿ

yPΩ

hapyqP pa, yq

“ 1` pPhaqpaq.

Now, since Eapτ`a q “ πpaq´1 (by (1.28))

pPhaqpaq “
1

πpaq
´ 1.

Now, letting hpaq :“
ř

xPΩ hxpaqπpxq, combining the results above we have

pPhqpaq “
ÿ

xPΩ

pPhxqpaqπpxq “
ÿ

x‰a

phxpaq ´ 1qπpxq ` πpaq

ˆ

1

πpaq
´ 1

˙

.

Simplifying the right-hand side and using that hapaq “ 0 yields

pPhqpaq “ hpaq.

That is, h is harmonic. Applying Lemma 1.16 shows that h is a constant
function. Q.E.D
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Since td does not depend on a, we get

td “ Eπpτπq.

Lemma. For an irreducible Markov chain with state space Ω and stationary
distribution π,

thit ď 2 max
w

Eπpτwq.

Proof. For any a, y P Ω we have

Eapτyq ď Eapτπq ` Eπpτyq.

This is a sort of triangle inequality argument. By Lemma 10.1,

Eapτπq “ Eπpτπq ď max
w

Eπpτwq.

It is now clear that the first inequality gives us the desired result. Q.E.D

Corollary. For an irreducible transitive Markov chain,

thit ď 2td.

Definition. The commute time between nodes a and b in a network is the
expected time to move from a to b and then back to a. We denote by τa,b the
random amount of time to transit from a to b and then back to a. That is,

τa,b “ mintt ě τb : Xt “ au,

where X ´ 0 “ a. The commute time is then

tØ :“ Eapτa,bq.

Note that the maximal commute time is

tcomm “ max
a,bPΩ

taØb.

Lemma. Let pXtq be a Markov chain with transition matrix P . Suppose that
for two probability distributions µ and ν on Ω, there is a stopping time on τ
with Pµtτ ă 8u “ 1 and such that PµtXτ “ ¨u “ ν. If ρ is the row vector

ρpxq :“ Eµ
ˆ τ´1

ÿ

t“0

1tXt“xu
˙

,

then ρP “ ρ´ µ` ν. In particular, if µ “ ν, then ρP “ ρ. Thus, if µ “ ν and
Eµpτq ă 8, then ρ

Eµpτq is a stationary distribution π for P .

Proof. Proof is left as an exercise. Q.E.D

In order to continue, we will need to go back a bit and talk about networks.
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Definition. A network is a finite undirected connected graph G with vertex
set V and edge set E, endowed additionally with non-negative numbers tcpequ,
called conductances, that are associated to the edges of G. We often write
cpx, yq for cptx, yuq. Notice that this is symmetric as well – cpx, yq “ cpy, xq.
The reciprocal rpeq “ 1{cpeq is called the resistance of the edge e.

Definition. A function W which is harmonic on V zta, zu will be called a volt-
age. It can be shown that a voltage is completely determined by its boundary
values W paq and W pzq.

Definition. Define the effective resistance between vertices a and z by

RpaØ zq :“
W paq ´W pzq

||I||
.
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