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1 Set up

Definition. We define a Markov Chain with state space €2 and transition matrix
P to be a sequence of random variables {X;};>0 and a matrix P such that
for all z,y € Q, all ¢ > 1, and all events H; 1 = ﬂi;h{Xt = x,} satisfying
P{H;_1n{X; = x4}} > 0,wehave P{X;y1 =y : Hi_1n{X; =2}} = P{Xp41 =
y: Xy =z} = P(z,y). This property is also often referred to as the Markov
Property.

Definition. A random mapping representation of a transition matrix P on a
state space ) is a function f : Q x A — €, along with a A-valued random
variable Z satisfying P{f(x,Z) = y} = P(x,y).

Why do we care about random mapping representations? It helps to con-
dense the transition probabilities from a large matrix to a much simpler function.
This is discussed in the riffle shuffeling REU paper, found here.

Proposition 1. Every transition matrix on a finite space has a random mapping
representation.

Proof. The proofs for this proposition all seem the same. Let Q = {x;};>1 and
take A = [0, 1]; our ’auxiliary’ random variables — Z, Z;, Zs, ... — will be chosen
uniformly on this interval. Define

k—1 k
f(xj,2) =z when Y P(zj,2;) < 2 < Y P(wj, ).
=1

=1

We have

k
P{f(mj,Z)=xk}=P{ Z:P(gcj7acz ZPQ’J],,TZ } = P(zj,x)

per definition of uniform random variables. Q.E.D

Claim 1. If Z1,Z,,... is a sequence of independent random variables, each
having the same distribution as Z, and X has distribution u, then the sequence
(Xo, Xl, .. ) defined by

X, = f(Xn-1,2,) forn>1
is a Markov chain with transition matrix P and initial distribution p.

Proof. We refer back to the first definition in this section. We need to thus
verify the Markov property. For simplicity, instead of using all of the notation,
we’ll just get down to the nitty gritty. We want to check

P{Xpn=y: Xpn1=2,X 2=2,2,...,X0 = z0}.
We use the proper definition;

P{f(Xn-1,Zn) =y : [(Xn-2,Zn-1) =, f(Xn-3,Zn—2) = Tn_2,...,X0 = To}.


http://math.uchicago.edu/~may/REU2012/REUPapers/Kuklisova.pdf

Since the Z; are independent, it follows then that this is equivalent to
P{f(Xn-1,Zn) =y : f(Xn-2,Zn1) =z} = P(z,y).

For the reason of independence, see the prior proof and |this (note the conditional
probability definition). Q.E.D

Definition. We say that a chain P is irreducible if, for any x,y € 2, there
exists an integer ¢ such that P!(x,y) > 0. In other words, it is possible to get
from any location to any location in ) in a finite number of steps.

Definition. Let T'(z) := {t > 1: P'(z,x) > 0} be the set of times when it is
possible for the chain to return to it’s starting position. The period of a state
x is defined to be ged T'(z).

Irreducibility and aperiodicity will be important when we set up certain
convergence theorems.

Proposition 2. If P is irreducible, then ged T'(z) = ged T'(y) for all z,y € Q.

Proof. We want to establish that ged(T(z)) = a divides ged(T(y)) = b. Let
r,s > 0 such that P"(x,y) > 0 and P*(y,x) > 0; this is valid since the chain is
irreducible. Let m :=r + s, and let z € T'(x). We have

P> (y,y) = P*(y,x) - P*(x,2) - P"(z,y) > 0.

Notice that this gives us that for all z € T(x), z + m € T(y). In other words,
blz + m. However, blm, so we get for free that b|z. Thus, for all z € T'(x), b|z.
However, a is the ged T(x), so this means that a|b; in othe words, a < b. By a
symmetric argument, we get that b < a, and so b = a. Q.E.D

Remark. This proof is a variation of the proof found in [this REU paper. Mine
is phrased much better.

Definition. We say that a Markov chain is aperiodic if all states have period
1. We say that a chain is periodic if it is not aperiodic.

Proposition 3. If P is aperiodic and irreducible, then there is an integer such
that P"(z,y) > 0 for all z,y € €.

Proof. T will skip over this proof, since it requires some number theoretic results
I don’t want to go over. Q.E.D

Remark. If a chain is irreducible and has period two (e.g. SRW) on a cycle of
even length, then the state space {2 can be partitioned into two classes; these
classes are generally denoted by even and odd (a sort of parity property). Let P
have period two, and suppose x( is an even state. The probability distribution
of the chain after 2t steps P?(zq,-) is supported on even states, while the
distribution of the chain after 2t + 1 steps is supported on odd states. It should
be clear then that there is no convergence as we let ¢ — c0.

We can repair this, though. Given an arbitrary transition matrix P, let
Q= #. Since Q(z,z) > 0 for all z € Q, the transition matrix @ is aperiodic.
We call @) the lazy version of P.
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Definition. Let 7 be a distribution on €2 satisfying
™ =T7P.

We call a probability 7w satisfying this property a stationary distribution of the
Markov chain. Clearly, if 7 is a stationary distribution and pg = 7, then y, = 7
for all £ > 0. Note that we can write this elementwise;

m(y) = 2 w(x)P(z,y) for all y € Q.

zeQ
This sort of formulation is useful for studying Markov chains on graphs.

Definition. For z € , we define a hitting time for = to be 7, := min{¢t > 0 :
X = x}. We also define 7.} := min{t > 1: X; = z}. When X, = z, we call 7;f
to be the first return time.

Lemma. For any states  and y of an irreducible chain, E,(7,") < .

Proof. We first need to find PI{T; > kr}. We use the following property of
irreducible chains: there exists an integer r > 0 and a real 0 < ¢ < 1 with
the following property: for any states z,w € 2, there exists a j < r with
€ < P/(z,w) < (1—¢). So, the probability of a hitting state y at a time between
t and t + r is at least e. Hence, for & > 0, we have

Pw{T; > kr} < (1-— E)PI{T; > (k—1)r}.
By induction, we get
Pt > kr} < (1- )k

We also have

E(Y) =) P{Y > t}.

t=0

Since P, {7, >t} is a decreasing function of ¢, we find

Eo(r,)) = Y Pufr) >t} < D v Po{rf > kr}<r- Y (1-o)F <0,
>0 k=0 k=0
Q.E.D
Remark. I'm struggling a lot with the first step of this proof.

Proposition 4. Let P be the transition matrix of an irreducible Markov chain.
Then

(i) There exists a probabilty distribution 7 on @ such that 7 = 7P and
m(x) > 0 for all x € Q, and moreover;

(ii) w(x) = ]Ew(lr;r)'

Proof. See the proof in the notes. Q.E.D



Definition. A stopping time 7 for (X;) is a {0,1,...} U {00} valued random
varaible such that, for each ¢, the event {r = t} is determined by Xq, ..., X;.

Definition. The strong Markov property is defined by
Poo{(Xri1, Xr42,..., X)) € A: 7=k and (Xq,...,X)
=(z1,...,2)} = Pp, {(X1,..., X)) € A}

for any A < Q! and 7 a stopping time.

Definition. Suppose that {X;} is an irreducible and positive recurrent chain,
which is started at it’s unique invariant distribution 7. Recall that this means
that 7 is the p.m.f. Now suppose that for every n, Xg, Xi,...,X, have the
same joint p.m.f as their time-reversal X,,, X,,_1,..., Xp. Then we call the chain
reversible — sometimes it is, equivalently, also said that it’s invariant distribution
7 is reversible. A good heuristic is that the recorded simulation of a reversible
chain looks the same if the 'movie’ is run backwards.

Theorem. A Markov chain with invariant measure 7 is reversible if and only
if

WiPij = 7'('ij‘
for all states i, j.

This leads to an interesting result:

Proposition 5. Reversibility implies invariance; in other words, if the proba-
bility mass function 7; satisfies the condition in the previous theorem, then it
is invariant.

Remark. The above definition and condition were retrieved from here.
Here is an examples of reversibility in action.

Example 1. We will explore the random walk on weighted graphs. Assume
that every undirected edge between vertices ¢ and j in a complete graph has a
weight w;; = wj;; we think of edges with 0 weight as not present at all. When
in 4, the walker goes to j with probability proportional to w;; so that

Wia
P = Y9
2k Wik
Let
5= 210, Wik
ik
and let >
Wik
T = ik .
s
Then we see 5
Wik Wi Wis
k Wi ij ij
™ Py = = =
5 D Wik s
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Wi Dp Wik Wi
S 5 Dok Wy

= 7Tj Pj i
implying reversibility.

Definition. The detailed balance equations are defined as follows: Let m be a
probability on €2. Then we say 7 satisfies the detailed balance equations if

m(x)P(x,y) = 7(y) Py, )
for all z,y € Q. In other words, if it is reversible.

Proposition 6. Let P be the transition matrix of a Markov chain with state
space 2. Any distribution 7 satisfying the detailed balance equations is station-
ary for P.

Proof. Assume 7 satisfies

m(2)P(z,y) = n(y) Py, z)

for all z,y € Q). Then we get

Y Py.x) = Y n(z)P(z,y) = m(x),

yeQd ye
since P is stochastic. Q.E.D

Why is reversibility /detailed balance equations important? It’s often the
easiest way to find the stationary distribution.

Proposition 7. Let (X;) be an irreducible Markov chain with transition matrix
P and stationary distribution 7. Write (X;) for the time-reversed chain with
transition matrix P. Then 7 is stationary for P, and for any g, ..., z; € Q we
have

Pﬂ—{Xo = Zg,.. .,Xt = .’Et} = Pﬂ—{Xo = (Et,...,Xt = .’Eo}.

Proof. To check that 7 is stationary for P, we simply compute

S ) Plya) = 3wy L@

yeQ ye) 7T(y)
To show the probabilities of the two trajectories are equal, note that

P{Xo =x0,...,Xn =z,} = w(xo)P(xo,21)P(1,22) - P(T1—1,20)

=7(zn)P(zpn, Tpn_1) - P(x2,21)P(x1, T0)
= P,T{XO =Tp, .. .,Xn = ZL’o},

since P(x;—1,x;) = 7(x;)P(x;, x;—1)/7(x;—1) for each 1. Q.E.D



Definition. Given x,y € 2, we say that y is accessible from z and write x — y
if there exxists an r > 0 such that P"(z,y) > 0. That is, z — y if it is possible
for the chain to move from z to y in a finite number of steps.

We first need to discuss the Chapman-Kolmogorov equation.

Proposition 8. (Chapman-Kolmogorov equation) We have

n+m __ n pm
Pt = Y PiF.
e

Proof. Proof omitted. Q.E.D
Claim 2. Accessibility is transitive; that is to say, if ¢ — y, y — 2z, then x — z.

Proof. We use the Kolmogorov-Chapman equation. If z — y, then we have, for
some r1 > 0, then P™(x,y) > 0. Since y — 2z, we have for some 7o > 0 that
P2 (y,z) > 0. Then r = 1 + 1o, and so P (x,2) = >,,.q P (x,1)P™2(l,2) =
Pr(x,y)Pm™(y,z) > 0. Q.E.D

Definition. A state x € 2 is called essential if for all y¥ such that x — y it is
also true that y — z. A state x €  is inessential if it is not essential.

Definition. We say that z communicates with y and write x < y if and only if
x — y and y — x. The equivalence classes under < are called communicating
classes. For z € ), the communicating class of z is denoted by [z].

Claim 3. < is an equivalence class.

Proof. Recall that the definition of equivalence class requires three things: re-
flexivity, symmetry, and transitivity. We go through each. For reflexivity, we
have clearly that x < x. For symmetry, it’s clear that x < y implies y < =z.
The tricky one is transitivity, but by the prior claim it’s clear that if x < y,
y < z, then x < z. Q.E.D

This leads us to the following proposition.
Proposition 9. If z is an essential state, and x — y, then y is essential.

Proof. If y — 2z, then x — 2. Because x is essnetial, z — z, and so using
transitivity z — y. Hence, y < z. Q.E.D

It follows from the prior proposition that the states in a single communi-
cating class are either all essential or inessential. We can therefore classify the
communicating classes as either essential or inessential.

Remark. If [z] = {z} and z is inessential, then we see that once the chain
leaves x it never returns. Likewise, if [x] = {z} and z is essential, we see that
the chain never leaves x once it first visits x.

Definition. If [z] = {z} and z is essential, then z is absorbing.



Proposition 10. Every finite chain has at least one essential class.

Proof. Proof omitted for now. Q.E.D

Proposition 11. If 7 is stationary for the finite transition matrix P, then
m(yo) = 0 for all inessential states yo.

Proof. Let C be an essential communicating class. Then

P(C) = Y @P)(z) = Y [ S w )P ) + Y w(y)P(y,zo].

zeC zeC L yeC y¢C

We can interchange the order of summation in the first sum, obtaining

7P(C) =Y yeCn(y) Y, Ply,z) + >. > w(y)P(y,2).

zeC zeC y¢C

For y € C, we have ;. _ P(y,2) = 1, so
P(C) = () + 3 Y 7 ()P, 2).

2eC yg¢C

Since 7 is invariant, 7 P(C) = w(C). In view of the prior equation, we must
have 7(y)P(y,z) =0 for all y ¢ C and z € C.

Suppose that yg is inessential. The proof of the prior proposition shows that
there is a sequence of states yo, y1, Y2, - - - , Y satisfying P(y;—1,y;) > 0, the states
Yo, Y1, - - -, Yr—1 are inessential, and y, € C', where C' is an essnetial communica-
tion class. Since P(yr—1,y,) > 0 and we just proved 7(y,—1)P(yr—1,9-) = 0, it
follows that m(y,—1 = 0. If w(yx) = 0, then

0=m(yg) = Z m(y) P(y, yx)-
yeN

This implies in particular that 7(y)P(y,yx) = 0 for all y, and 7(yx—1) = 0. By
induction, we find that m(yo) = 0. Q.E.D

Proposition 12. The stationary distribution 7 for a transition matrix P is
unique if and only if there is a unique essential communicating class.

Proof. Proof omitted. Q.E.D

Exercises

Exercise 1. Let G be a connected graph. Show that a random walk on G is
irreducible if and only if G is connected.

Proof. We prove the forward direction. Since G is irreducible, we have for some
r > 0 that P"(z,y) > 0 for all x,y € G. However, this means that we can
construct a series of edges such that x — y. Since this applies for all z,y € G,
then we have that G is connected. We prove the converse direction. Since G
is connected, we have that there is a sequence of edges such that x — y for
all z,y € G. Say that there are r edges on this path. Then we have that
P"(z,y) > 0 clearly. Hence, the result follows. Q.E.D



Exercise 2. Let P be an irreducible matrix of period b. Show that 2 can be
partitioned into b sets C1,Cs,...,Ch in such a way that P(z,y) > 0 only if
zeC;and ye Ciyq.

Proof. We partition our graph based on the fact that the period is b. So any
element which is b away from our current element, when arranged in a cyclic
graph, is placed in the same class C;. Go to the next element and repeat. We
then get the corresponding classes we need. Now, notice that since this is a
digraph (otherwise period properties are broken), we get that if 2 € C; and
y ¢ Ciy1, then we cannot have P(x,y) > 0; otherwise, we get that the period
will no longer be b. Q.E.D



2 Examples of Markov Chains

2.1 Gambler’s ruin

The way the gambler’s ruin works is simple; say we have some coin with prob-
ability p for heads and 1 — p for tails (not necessarily fair). If the coin lands
heads, the person gets a dollar, and if it lands tails they lose a dollar. If the
person reaches a dollar amount, say n, then they will stop playing the game. If
they have no money, they must stop playing the game.

In essence, this is just a simple random walk on the integers modulo n + 1
with some boundary conditions (you're stuck once you hit 0 and once you hit

Definition. We say that 0 and n in the prior example are absorbing states.
Claim 4. The above set up gives us a Markov chain.

Proof. The sketch of the proof is that the chain does not rely on any further
information beyond what just happened. Prior information does not influence
the future information. Q.E.D

This leads us to the following proposition. In this proposition, we assume
1
p=3.

Proposition 13. Assume that a gambler making fair unit bets on coin flips
will abandon the game when they reach the absorbing states. Let X; be the
gambler’s fortune at time ¢, and let 7 be the time required to be absorbed at one
of 0 or n. Assume that X = k (here, k denotes their starting dollar amount),
where 0 < k£ < n. Then

P {X,=n}=k/n

and
Ei(1) = k(n — k).

Proof. We set up a system of equations. Let {p;}o<i<n be the probabilities such
that the gambler reaches a fortune of n before reaching a fortune of 0 when
starting at ¢. Then clearly pyp = 0 and p, = 1. For times inbetween those, we
have that (since there is a % chance of going either direction)

1 1

= —D_1+ — .
Pk 2pk1 2Pk+1

We'll try and see if there’s a pattern, now. We find

1
p1 = 5172-

Likewise,
1

_1 n _1 +1
p2—2p3 2p1—2p3 4172-

10



This is equivalent to

3 B 1
4}?2 = 2p3
or
2
b2 = §p3-

Again, we have
1 1
P3 = 5D2 + 5P

Substituting this in gives us

2 1 3

1 1
p3 = gps + 5?4 - gps = 5174 > p3 = Zm.

If you notice the pattern, we have that py = kiﬁpk+1. It is a simple induction
argument to show that this holds. Moreover, since we have that p, = 1, we get

n—1

Pn—1 =
n

Moving down the line, we get

(n—2)<n—l> n—2
Pn—2 = = .
n—1 n n

Again, by another induction argument, we find that we have

Pr = —
n

for all 0 < k < n integer. This establishes the first claim.

For the second claim, we let f; denote the expected time to be absorbed
(this is either at 0 or n). It is self-evident that fy = f, = 0, since the walk
doesn’t have to move in either direction to get absorbed (it is already absorbed).
For all states inbetween, we get

fio= 31+ fern) + 50+ fin)

The reasoning is outlined in the book. We now need to solve our system. For
f1, we have

1 1 I2
=—(1 —=1+=.
fi 2( +f2)+2 + B)
Moving down the line, we get
1 1 fo 1
= (1 (1 =1+=+=(1 .
fo= g+ fi)+ 5+ f) =147+ 51+ f3)

In other words,
2
fa=2+ gf?)

11



Continuing down the line, we find

k
fe=k+ mfkﬂ

by a simple induction argument. At n — 1, we recall f,, = 0, and so we have
faci=n—1
Moving down the line, we find

n_i-n—l =n—2+n—-2=2n—-2)=mn-2)-(n—(n—2)).

fa—a=n—2+
n—

For fun, we have
n—3
fn—z = n—3+72-2(n—2) =n—3+2(n-3) =3(n—3) = (n—(n—3))-(n—3).
n —
By an induction argument again, we find
fk = k(n — k)
which is the result we desired. Q.E.D

Question 1. Can we do this with p # % and still get a nice result?

2.2 Coupon Collecting

A company decides to issue n different type of coupons, and some collector de-
sires to have each type of coupon. We suppose that the probability of acquiring
each coupon is equally likely among the n types. How many coupons must they
collect in order to get the n types?

Let X; denote the number of different types represented among the collec-
tor’s first ¢ coupons. We clearly have that Xg = 0. When we’ve reached k
different types, we’re missing n — k types of coupons, and so we have

n—=k

P{Xt+1:k+1:Xt=k}: n

Likewise,

k
P{Xpp1 =k Xy =k} = 1= P{Xppa =k +1: X, =k} = .

Every trajectory is non-decreasing in this chain. The states n is an absorbing
state.
Claim 5. The set up above is a Markov chain.

Proof. Again, this is rather a pseudo-proof than a real proof. It is really self-
evident that the information about the next step only relies on the current step,
and not on any prior information (it does not matter the way in which we reach
the point). Hence, it is a Markov chain. Q.E.D

12



This leads us to the following proposition.

Proposition 14. Consider a collector attempting to collect a complete set of
coupons. Assume that each new coupon is chosen uniformly and independently
from the set of n possible types, and let 7 be the (random) number of coupons
collected when the set first contains every type (when we’ve completed our run).

Then .
PN

Proof. The expectation above, E(7), can be computed by writing 7 as a sum of
geometric random variables. Let 7, be the total number of coupons accumulated
when the collection first contains k distinct coupons. Then we get

?MH

T=Tp=T1+ (T2 —71)+  + (T — Tn-1)

(The explanation for the difference; we want to figure out how long it took
from 7; to 7,41, since we’ve already counted 7;. To do so, we take the difference
between the two.) Furthermore, 7, —7x_1 is an easy random variable to compute;
it is a geometric random variable with success probability

n—k+1

n

after collecting 7,1 coupons, there are n—k+1 types missing from the collection.
Each subsequent coupons drawn has the same probability of being a type not
already collected, until a new type is finally drawn. Hence, we get (by the
linearity of expectation)

n

)= $imn-na) -0 3 iy - 1

k=1
Q.E.D

We can further improve these bounds, but this is omitted for the time being.

2.3 The Hypercube and the Ehrenfest Urn Model

The n-dimensional hypercube is a graph whose vertices are the binary n tuples
{0,1}™. Two vertices are connected by an edge when they differ in exactly one
coordinate.

Example 2. One quick example would be to examine the 3-dimensional hy-
percube. We have {0,1,1} and {0, 1,0} to be differing only by one coordinate —
the last — and so they would be connected by an edge. There is a visual of this
in the book.

13



The simple random walk on the hypercube moves from a vertex (z1,...,z,)
by choosing some coordinate j € {1,2,...,n} uniformly at random and setting
the new state equal to (x1,...,2,-1,1 — x;,%;41,...,2Z,). That is, the bit at
the walk’s chosen coordinate is flipped.

Unfortunately, however, this is is periodic. To resolve this issue, we introduce
the lazy random walk (see pg. 3 for more information). The lazy random walk
has a probability of 0.5 of remaining at the same location. You can think of this
as selecting a coordinate uniformly at random and refreshing it.

We now consider the Ehrenfest Model. Suppose n balls are distributed
among two urns, denoted by A and B. At each move, a ball is selected uniformly
at random and transferred from its current urn to the other urn. If X, is the
number of balls in urn A at time ¢, then the transition matrix for (X;) is

AT A S
n
P(jk)=1J ifk=75-1
n’ )
0, otherwise

Thus (X¢) is a Markov chain with state space 2 = {0,1,2,...,n} that moves
by +1 on each move and is biased towards the middle of the interval. The
stationary distribution for this chain is binomial with parameters n and % (ex-
ercise).

The Ehrenfest urn is a projection of the random walk on the n-dimensional
hypercube. This is unsuprising given the bijection between {0, 1} and subsets
of {1,...,n}, under which a set corresponds to the vector with 1’s in the po-
sitions of its elements. We can view the position of the random walk on the
hypercube as specifying the set of balls in the Ehrenfest urn A; then changing
a bit corresponds to moving a ball into or out of the urn.

Definition. Define the Hamming weight W (z) of a vector x := (x1,...,2,) €
{0, 1}™ to be its number of coordinates with value 1:

W(z) = Z zj.

When W, = j, the weight increments by a unit amount when one of the n — j
coordinates with value 0 is selected. Likewise, when one of the j coordinates with
value 1 is selected, the weight decrements by one unit. From this description, it
is clear that (W) is a Markov chain with transition probabilities given above.

This leads us to the concept of projections of chains. The Ehrenfest urn is
a projection, which we define in this section, of hte simple random walk on the
hypercube.

Assume that we are given a Markov chain (Xo, X7, ...) with state space Q
and transition matrix P, and also some equivalence relation that partitions
into equivalence classes. We denote the equivalence class of z € Q by [z]. For

14



example, in the Ehrenfest example, we find that two bitstrings are equivalent
when they contain the same number of 1’s.

Under what circumstances will ([Xo], [X1],-..) also be a Markov chain? For
this to happen, knowledge of what equivalence class we are in at time ¢ must
suffice to determine the distribution over equivalence classes at time ¢+ 1. If the
probability P(z,[y]) is always the same as P(2/,[y]) when z, 2’ € [z] (i.e. they
are in the same equivalence class), that is clearly enough. We can summarize
this in the following lemma.

Lemma. Let Q be the state space of a Markov chain (X;) with transition
matrix P. Let ~ be an equivalence relation on 2 with equivalence classes
Q*F = {[z] : x € Q}, and assume that P satisfies

whenever z ~ 2. Then [X;] is a Markov chain with state space Q* and transi-
tion matrix P* defined by P*([z],[y]) := P(z, [y])-

Definition. The process of constructing a new chain by taking equivalence
classes for an equivalence relation compatible with the transition matrix is called
projection, or sometimes lumping.

As a final remark, we notice that the Ehrenfest urn is reversible.
Claim 6. The Ehrenfest urn is reversible.

Proof. The invariant measure puts each ball at random into one of the two urns,
as switching any ball between the two urns does not alter this assignment. Thus
7 ~ Bin(n, ) (a more formal proof will be explored later). In other words,

(M L
™ = i)

Checking for both j = i +£ 1 on Maple, we see the calculations come out as
desired (they are equal). Hence, the chain is reversible. Q.E.D

2.4 The Polya Urn Model

The Polya urn is an urn containing two balls, one black and one white. From
this point on, we choose a ball at random, take the ball out of the urn, and then
return the ball along with another of the same color. We can force this into a
Markov chain in the following way; if there are j black balls in the urn after k
balls have been added (so that there are k + 2 balls total in the urn), then the
probability that another black ball is added is %4-2 The sequence of ordered
pairs listing the number of black and white balls is a Markov chain with state
space {1,2,...}2

Lemma. Let By be the number of black balls in Polya’s urn after the addition
of k balls. The distribution of By is uniform on {1,2,...,k + 1}.
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Proof. There are many subparts to this proof. Let {U;};<, be i.i.d. random
variables, each uniform on the interval [0,1]. Let

L= {je{0,1,....k} : U; < Up}l.

The event {Ly = j : Lg+1 = j + 1} occurs if and only if Up is the (§ + 1-st
smallest and Uy 1 is the smallest among {Up, Uy, ..., Ugt1}-

Claim 7. There are j(k!) orderings of {Uy,...,Uk+1} given {Ly = j,Lp11 =
J+1}

Proof. First, we examine the first Uy, ..., Uy (ignore Uky1 for now). Place Uy
in the j + 1 place, and then shuffle the remaining into the rest of the spaces;
this gives us k! ways of arranging the U;. Now, we need to place Uiy in any
of the first j places, this gives us the j. Hence, we have j(k!) ways of arranging
this. Q.E.D

Since there are j(k!) orderings of {Uy,...,Uk+1} making up this event, and
since all (k + 2)! orderings are equally likely, we use some basic discrete proba-
bility do find

J(K!) j

P{Lk =4, Li1 :j+1}: (k+2)! = (k+2)(k+1).

This leads us to our next claim.

Claim 8. We have P{Lj = j} = %ﬂ

Proof. Going back to our first claim, we notice again that there are k! ways of
arranging things such that we get Ly = j. We also note that there are (k + 1)!
ways of arranging things without taking into consideration L = j. Therefore,
using basic discrete probability, we again get

k! 1

Plly=jl=+—c=—"—.
e = 7} k+1)!  k+1
Q.E.D
Claim 9. Combining Claim 4 and Claim 5, we find
. . J
P{Liy1 = 1Ly =5} = ——.
{Lir1 =7+ 1Ly = j} L+ 9
Claim 10. Using Claim 6, we have
‘ N k+2-—3
P{Lxy1 = j|L =j} = ————.
{Lik+1 = jlLi = j} 12

Proof. Now, notice that we have that, given Ly = j, we must have Ly11 = j+1
or Lgy1 = j. Recall that P{Ly; = -|Ly = j} forms a probability measure, and
so using the prior fact we find

P{Lis1 = jlL = j} =1 — P{Lgy1 = j + 1|Ly = j}.
This gives the above formula. Q.E.D
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Claim 11. We have that {L;}!" , and {B;}?_, share the same distribution and
transition probabilities. In particular, By and Ly have the same distribution.

Proof. Claim 7 gives us the latter part of this claim. For the former, we need
to show that L; and B; have the same distribution. But this is clear. Bj is the
number of black balls after the addition of one ball, which is P{B; = 1} = 1/3,
P{B; =2} = 2/3, and likewise P{L; = 1} = 1/3, P{L, = 2} = 2/3. Combining
the two facts gives us the final part of the claim. Q.E.D

Since the position of Uy is uniform among the k + 1 possible positions, it
follows that Ly is uniform on {1,..., Lgy1}. Thus, we have the By is uniform
on {1,...,k+ 1} as desired. Q.E.D

Remark. The book claims that the prior lemma can be proven via showing
P{B;,=j}=1/(k+1) forall j =1,...,k+ 1 using induction on k. Maybe as
an exercise prove it this way.

2.5 Birth-and-Death Chains

Definition. A birth-and-death chain has state space 2 = {0,1,2,...n}. In one
step, the state can either increase or decrease by at most 1. The current state
can be thought of as the size of some population; in a single step of the chain,
there can be at most one birth or death. The transition probabilities can be
specified by pg, 7k, and g where k € [0,...,n] and pg + r¢ + g = 1, where py,
is the probability of moving from k to k& = 1, g is the probability of moving
from k to k — 1, and r is the probability of remaining at k. We also have that

qo = Pn = 0.
Proposition 15. Every birth-and-death chain is reversible.

Proof. We have that a function w on 2 satisfies the detailed balance equations
if and only if
Pk-1Wk—1 = qxWg

for 1 < k < n. For our birth-and-death chain, a solution is given by wg = 1 and

k
[1"
WE =
i=1

i—1
qi

for 1 < k < n. Normalizing so that the sum is unity yields
W
Z;‘L:O Wy

for 0 < k <n. Q.E.D

T =

Now, fixl € {0,1,...,n}. Consider restricting the original chain to {0, 1, ...,1}:
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e For any k € {0,1,...,1— 1}, the chain makes the transitions from k as be-
fore, moving down with probability g, remaining in place with probability
7, and moving up with probability py.

e At [, the chain either moves down or remains in place, with probabilities
q; and 7 + py, respectively.

We write E for expectations for this new chain. By the proof of reversibility
of this chain, the stationary probability 7 of the truncated chain is given by

wy,
]
ijo wj

for 0 < k < [. Since in the truncated chain the only possible moves from [ are
to stay put or step down to [ — 1, the expected first return time El(TlJr) satisfies

T =

E(r")=(r+mpm)-1+q (Ell(Tl) + 1) =1+ qEia(n).

By Proposition 4 part 2,

:]

I
_ 1
Ef(n") = == *;Z wj-

We have constructed the truncated chain so that E; (7)) = E;_i(7;). Rear-
ranging the above equations gives

l .
Ell(Tl):l(Zfi_ ) mzwa

qi

To find E, (1) for a < b, just sum:

b
Z El—l(Tl)-

l=a+1

There were some special cases the book considered, but I skipped over it.

2.6 Random Walks on Groups

Given a probability distribution p on a group (G, -), we define the random walk
G with increment distribution p as follows: it is a Markov chain with state space
G and which moves by multiplying the current state on the left of a random
element of G selected according to u. Equivalently, the transition matrix P of
this chain has entries

P(g,hg) = p(h)
for all g,h € G.
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Remark. We multiply the current state by the increment on the left because it
is generally more natural in non-commutative examples, such as the symmetric
group. For commutative examples, such as the two described below, it does not
matter which side we multiply it by.

Example 3. (The n-cycle) Let p assign probability 1/2 to each of 1 and n—1 =
—1 (mod n) in the additive cyclic group Z, = {0,1,...,n — 1}. The simple
random walk on the n-cycle, discussed in the set-up section, is the random walk
on Z,, with increment distribution u. Similarly, let v assign weight 1/4 to both 1
and n—1 and weight 1/2 to 0. Then lazy random walk on the n-cycle, discussed
prior as well, is the random walk on Z,, with increment distribution v.

Example 4. (The hypercube) The hypercube random walks defined earlier are
random walks on the group Z%, which is the direct product of n copies of the
two element group Zs. For the simple random walk the increment distribution is
uniform on the set {e; : 1 <1 < n}, where the vector e; has a 1 in the i-th place
and a 0 in all other entires. For the lazy version, the increment distribution
gives the vector 0 (with all zero entries) weight 1/2 and each e; weight 1/2n.

Proposition 16. Let P be the transition matrix of a random walk on a finite
group G and let U be the uniform probability distribution on G. Then U is a
stationary distribution for P.

Proof. Let pu be the increment distribution of the random walk. For any g € G

> U(h)P(h,g) |G|Z (k~'g.9) |G|Z =U(g).

heG keG keG
The first equality comes from re-indexing k = gh~". Q.E.D

For a set H < G, let (H) be the smallest group containing all the elements
of H; recall that every element of (H)H can be written as a product of elements
in H and their inverses. A set H is said to generate G if (H) = G.

Proposition 17. Let u be a probability distribution on a finite group G. The
random walk on G with increment distribution pu is irreducible if and only if
={ge G:pu(g) > 0} generates G.

Proof. Select an arbitrary a € G. If the random walk is irreducible, then there
exists an r > 0 so that P"(e,a) > 0, where e € G is the identity element. In
order for this to occur, there must be some sequence si,...,s, € G such that
a=8.8-1---51 and s; € S for i =1,...,r. Thus, a € {(S).

Now assume that S generates G, and consider a,b e G. We know that ba ™"
can be written as a word in the elements of S and their inverses. Since every
element of G has finite order, any inverse appearing in the expression for ba~!
can be written as a positive power of the same group element. Let the resulting
expression be ba™! = s,.5,_1---5; where s; € S, fori =1,...,r. Then

™ (a,b) = P(a,s1a)P(s1a, s9510) - P($yp_15,_2 -~ s1a, (ba™)a)
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= p(s1)p(s2) - p(sr) > 0.
Q.E.D

When S is a set which generates a finite group G, the directed Cayley graph
associated to G and S is the directed graph with vertex set G in which (v,w)
is an edge if and only if v = sw for some generator s € S.

We call the set S of generators of G symmetric if s € S implies s~! € S.
When S is symmetric, all edges in the directed Cayley graph are bidirectional,
and it may be viewed as an ordinary graph. When G is finite and S is a
symmetric set that generates G, the simple random walk on the corresponding
Cayley graph is the same as the random walk on G with increment distribution
1 taken to be the uniform distribution on S.

In parallel fashion, we call a probability distribution p on a group G sym-
metric if u(g) = u(g~?) for every g € G.

Proposition 18. The random walk on a finite group G with increment distri-
bution u is reversible if p is symmetric.

Proof. Let U be the uniform probability distribution on G. For any g,h € G,
we have that

h -1
U(g) (g ) = 00
G|
and (gh=1)
pulgh™
U(h)P(h, g)
()P l
which are equal if and only if u(hg=t = u((hg=1)~1) Q.E.D

Remark. The converse of the prior proposition is also true. It is an exercise
to do this.

Definition. A Markov chain is called transitive if for each pair (z,y) € Q x Q
there is a bijection ¢ = ¢, ,) : 2 — {1 such that

() =y

and

P(z,w) = P(¢(z), p(w))
for all z,w € Q. Roughly, this means that the chain ’looks the same’ from any
point in the state space 2. Clearly, any random walk on a group is transitive;

set @iz (9) = gx~y. However, there are examples of transitive chains that are
not random walks on groups.

Many properties of random walks on groups generalize to the transitive case,
including Proposition 10.

Proposition 19. Let P be the transition matrix of a transitive Markov chain
on a finite state space 2. Then the uniform probability distribution on € is
stationary for P.
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Proof. Fix x,y € Q and let ¢(z) = y. Let U be the uniform probability on Q.
Then

D UEP(a) = Y UG()P($(2),y) = Y, Ulw)P(w,y),

z€Q) zeQ) we

where we have re-indexed with w = ¢(z). We have shown that when the chain
is started in the uniform distribution and run one step, the total weight arriving

at each state is the same. Since )} ., U(2)P(z,x) = 1, we must have

D U(2)P(z,2) = e Ulx).

zeQ

Q.E.D

2.7 Random Walks on Z and Reflection Principles

A nearest-neighbor random walk on Z moves right and left by at most one step
on each move, and each move is independent of the past. More precisely, if (0;)
is a sequence of independent and identically distributed {—1, 0, 1}-valued ran-
dom variables and X, = 22:1 Js, then the sequence (X;) is a nearest-neighbor
random walk with increments (d;).

The sequence of random variables is a Markov chain with infinite state space
Z and transition matrix

P(k,k+1)=0,P(k,k)=r,Pk,k—1) =q,
where p + r + ¢ = 1. The special case p = ¢ = 1/2,7 = 0 is the simple random
walk on Z as defined in the first section. In this case

t
Po{X; =k} = (t_zk
0, otherwise

)2_t, if t — k is even,

since there are (t—tk) possible paths of length ¢ from 0 to k. When p = ¢ = 1/4
2
and r = 1/2, the chain is the lazy simple random walk on Z.

Theorem. Let (X;) be the simple random walk on Z, and recall that
To = min{t > 0: X; = 0}

is the first time the walk hits zero. Then

12k
P{ro>r} < —

AT
for any integers k,r > 0.

We prove this by a sequence of lemmas which are of interest independently.
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Lemma. (Reflection Principle) Let (X;) be either the simple random walk or
the lazy simple random walk on Z. For any positive integers j, k, and r,

Pe{ro <r, X, = j} = P{X —r = —j}

and
Pi{ro <7 X, >0} = P.{X, <0}.

Proof. We proceed using the Markov property. The walk starts anew from 0
when it hits 0, meaning that the walk viewed from the first time it hits zero is
independent of its past and has the same distribution as a walk which started
at 0. Hence, for any s < r and j > 0, we have

Pk{TO = S,Xr = ]} = Pk{TO = S}Po{XT,S = _]}

The distribution of X; is symmetric when started at 0, so the right-hand side is
equal to
Pi{ro = s} Po{ X —s = j} = Pr{ro = 5, X, = —j}.

Summing over s < r, we obtain
Pk{TO <r X, :j} = Pk{TO <rX,= _.7} = Pk{Xr = _.7}
Summing over j > 0 yields our result. Q.E.D

Remark. A simpler combinatorial interpretation is that there is a one-to-one
correspondence between walk paths which hit 0 before time r and are positive
at time r and walk paths which are negative at time r. To obtain the bijection,
reflect a path after the first time it hits 0.

Lemma. When (X;) is the simple random walk or lazy simple random walk on
7, we have
Pk{T0>’I"} :Po{—ki<XT<k'}

for any k > 0.
Proof. We have that
P X, >0} = P{X, > 0,79 <7} + Px{ro > 1}
By the Reflection Principle,
P{X, >0} = P{X, <0} + Py{ro > r}.

By the symmetry of the walk, Py{X, < 0} = P{X, > 2k}, and so combining
this gives the desired result. Q.E.D

Lemma. For the simple random walk (X;) on Z,

3

PO{Xt :k} < W
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Proof. If Xo, = 2k, there are r + k up moves and r — k down moves. The

probability of this is
2r
277,
(T + k‘>

We check that (f:k) is maximized at k = 0 for k = 0,1,...,r. In other words,

after simplifying, we would like to show

1 1

— < —5.
(r—kN(r+k)! r?2
We need a few claims to proceed (both are clear from the definition of factorial).

Claim 12.

= k=) (- 2)

Claim 13.
r! 1
(r+k) (r+1)-(r+2)---(r+k)
It is clear that, after multiplying this together, we get the product is less
than 1. In other words, we have that it is maximized at k = 0. So, using this
fact, we have

Fer =2k < <2:)22T B (r(!§2;!27~

Using Stirling’s formula, we obtain
8 1
TA/2r

We now condition on the first step of the walk and use the bound found above.
Use as well the simple bound

Po{Xay = 2k} <

t
— < V2
t—1 V2
to see
Po{Xopss =2k +1) < =L
0 2r+1 — X \/E \/m
Note that % < 3, and we get the bound. Q.E.D

Remark. The bijection described earlier has a very nice consequence. Define
an up-right path to be a path through the two-dimensional grid in which every
segment heads either up or to the right.

Theorem (The Ballot Theorem). Fix positive integers a and b with @ < b. An

up-right path from (0,0) to (a,b) chosen uniformly at random has probability
Z;Jr‘;) of lying strictly above the line = y (except for its initial point).
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Remark. There is a very nice interpretation of this in terms of votes, which
I'll leave to the book.

Proof. The total number of up-right paths from (0,0) to (a,b) is (azb), since
there are exactly a + b steps total, of which exactly b steps go right.

How many paths never touch the line x = y after the first step? Any such
path must have its first step up, and there are (“ﬁ;l) such paths. How many
of those paths touch the line z = y?

Given a path whose first step is up and that touches the line z = y, reflecting
the portion after the first touch of x = y yields a path from (0,0) whose first
step is up and which ends at (b,a). Since every up-right path whose first step
is up and which ends at (b, a) must cross x = y, we obtain every such path via
this reflection. Hence, there are (“Hg_l) 'bad’ paths to subtract, and the desired

probability is
Y - ) b

a+b - :
( Z ) a+b
Q.E.D
Exercises
Problem 1. Show that the system of equations for 0 < k <n
1 1
Jr = 5(1 + fry1) + 5(1 + fr-1),

together with the boundary conditions fy = f, = 0 has a unique solution

fk = k(n - k)
Solution. This was done above.

Problem 2. Consider a hesitant gambler: at each time, they flip a coin with
probability p of success. If it comes up heads, she places a fair one dollar bet.
If tails, she does nothing that round, and her fortune stays the same. If her
fortune ever reaches 0 or n, she tops playing. Assuming that her initial fortune
is k, find the expected number of rounds she will play, in terms of n, k, and p.

Solution. This is almost analogous to what we did before, except now we need
to modify a few factors. Again, we write fi for the expected time Eg(7) to be
absorbed, starting at position k. Clearly, fo = f, = 0. In order to move up,
we need to get 2 heads; so there is a & chance of moving up. To move down,
we need to get a heads and a tails, so there is a £ chance of moving down. To
remain, we need to get a tails on the first flip, so there is a (1 — p) chance of

this happening. Our system is now

Jo= 5 fi) + 50+ fio) + (L= D)L+ fi).

We start with f; to try to find some sort of inductive argument. Solving, we
find

fi= %(ph +2).
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Likewise,
2

fo=5

(pfs +3)
which leads us to our claim.

Claim 14. We have

k

Ji = p(k+1)

(Dfrrr + (k+1)).

Proof. We’ve shown the base case above. Assume it holds for k. We must show
it holds for k£ + 1. Using the system above, we have

fir = 5+ fi2) + 51+ fi) + (1 =)L+ fi).

Simplifying this on Maple gives us the desired equality. Q.E.D

Now, we find f,,_1; this gives us

n—1
fn—l = .
p
Moving backwards, we see
2(n — 2
g = 2022
and 3( 3)
n—
fn—3 =
p
leading us to our next claim.
Claim 15. We have
k(n —k)
fr =
p

Proof. Again, we use induction. We have done the base cases above. Assume it
holds for k. We must show it holds for £k — 1. We have

fo—1 = %(pfk + k).

Using the inductive hypothesis and Maple, we have
(k= )(n — (k= 1)
p
which is what we desired. Q.E.D

Putting things together, we get
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Problem 3. Consider a random walk on the path {0,1,...,n} in which the
walk moves left or right with equal probability except when at n and 0. At n,
it remains at n with probability 1/2 and moves to n — 1 with probability 1/2,
and once the walk hits 0 it remains there forever. Compute the expected time
of the walks’s absorption at state 0, given that it starts at state n.

Solution. We proceed like prior. Set fy = 0 and

fom S04 Fa) 4 54 aa) = 314 firn) + 5 (14 i)
for 0 < k < mn. We then find that
fon =24 fo-1.
Solving
fno1= %(1 + fn) + %(1 + fn-2)
we find

fnfl =4+ fn72-

This leads us to our claim.

Claim 16.
fe=2(n—k+1)+ fr_1.

Proof. We go by induction. We have the base case above. Assume it holds for
k. We must show it holds for k£ — 1. Since it holds for k, we have

fre1r=24+n—-k+ %fk—l + %fk—Q-
Simplifying this, we get
fe-1=22+n—Fk) + fi—2
as desired. Q.E.D
We find then that f; = 2n, fo = 4n — 2, and f3 = 6n — 6. This leads us to

our next claim.
Claim 17. We have f, = k(2n + 1 — k).
Proof. Tt’s another induction argument. Q.E.D
Thus, we just need to substitute n in for £ to find
E.(7) =n(n+1).

Problem 4. By comparing the integral of 1/x with its Riemann sums, show
that

log(n) < Z k7t <log(n) + 1.
k=1
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Solution. It’s clear that

1

’I’Ll n .
f —de < )k
k=1

by examining rectangles of height 1/k above the interval [k, k + 1], and noticing
the union of rectangles is the upper Riemann sum. Thus, we get

log(n) < Z k=L
k=1

For the upper bound, we can fit all the terms but the first to get

n n 1
dkTi<1 +J —dz =1+ log(n).
k=1 I

Problem 5. Let P be the transition matrix for the Ehrenfest chain described
earlier. Show that the binomial distribution with parameters n and 1/2 is the
stationary distribution for this chain.

Solution. Recall we have

, ifk=74+1,
n
P(jk)=1J ifk=j-1
n? )
0, otherwise

So we just need to check

>, (@) P(z,y) = w(y)

zeQ

for arbitrary y € ). Since there are only two things to consider, just above and
just below y, we have

S = (")) =L g ()= () = e

zeQ

as desired.

Problem 6. Give an example of a random walk on a finite abelian group which
is not reversible.

Solution. Consider the biased random walk on the n-cycle where p # % Then

we have
(k)P k+1) =2 2L — n(k + 1)P(k + 1, k).
n n

Problem 7. Show that if a random walk on a group is reversible, then the
increment distribution is symmetric.
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Solution. We have u(k) = P(g,kg) and pu(k—1) = P(kg,g). Therefore, by the
detailed balance equations, since it’s reversible we have

m(g)P (g, kg) = m(kg)P(kg, g).

However, since 7 is the uniform distribution, we have 7(g) = w(kg). This then
gives
P(g,kg) = P(kg,g) — pu(k) = p(k™").

3 Markov Chain Mixing

Definition. The total variation distance between two probability distribution
w1 and v on £ is defined by

| —vl||rv = max ln(A) — v(A)].

Remark. The definition is explicitly probabilistic. The distance between p and
v is the maximum difference between the probabilities assigned to a single event
by the two distributions.

Example 5. A certain frog lives in a pond with two lily pads, east and west.
He has two coins on each lily pad, and each day the frog decides whether two
jump by tossing the current lily pad’s coin. If the coin lands heads up, the frog
jumps to the other lily pad. If the coin lands tails up, he remains where he is.
Say he has probability p from jumping east to west and probability ¢ of jumping
from west to east. His transition matrix is

(a7 %)
¢ 1—gq
and his stationary distribution is
_ < g p )
T=|—— —.
p+tq p+gq

Claim 18. The stationary distribution is as above.

Proof. Notice that we have

Zw(m)P(m,l):q(l_p)—k PE_ 9 _qa)

p+q pt+q p+q

e

and

1—
2 m(z)P(z,2) = Py l-a) _ _p__ 7(2).
= p+q  p+qa  ptg

Q.E.D
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Assume the frog starts at the east pad (uo = (1,0)) and define
Ay = pi(e) — (e).
Since there are only two states, there are only four possible events A < Q.

Claim 19. We have
e = 7llrv = A = P'(e,e) — m(e) = m(w) — P(e, w).

Proof. This is very easy and intuitive. It just involves checking manually that
the calculation comes out fine. Q.E.D

Also notice that A; = (1 — p — q)!/\g. Hence, for this two-state chain, the
total variation distance decreases exponentially fast as ¢ increases.

Remark. Note that (1 —p — ¢) is an eigenvalue of P.

The definition of total variation distance is a maximum over all subsets of
), so using this definition is extremely inconvenient. We follow this up with
three alternatives.

Proposition 20. Let x4 and v be two probability distributions on 2. Then

= vllrv = 5 3 lu(e) — vl

zeQ
Proof. Let B = {x: u(z) = v(z)} and let A <  be any event. Then
W(A) — v(A) < p(Ar B) — v(A  B) < u(B) — u(B).

The first inequality is true because any x € An B¢ satisfies u(x)—v(z) < 0, so the
difference in probability cannot decrease when such elements are eliminated. For
the second inequality, note that including more elements of B cannot decrease
the difference probability.

By exactly parallel reasoning,

v(v) = u(A) < v(B°) — u(B°).

The upper bounds on the right-hand sides of the above equations are actually
the same. Furthermore, when we take A = B (or B¢), then |u(A) — v(A)| is
equal to the upper bound. Thus

1 . . 1
I = vllrv = S[u(B) = v(B) + v(B®) — n(B%)] = 5 D (@) = v(@)].
zeQ

Q.E.D

Remark. The proof of the prior proposition also shows that

lp=vllev = X |u(e) —v(2)]

zeQ,u(x)=v(V)
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Remark. From the prior proposition and the triangle inequality for real num-
bers, it is easy to see that total variation distance satisfies the triangle inequality:
for probability distributions u, v, and (,

= vlrv < |lp=llrv + I¢ = v|rv.

Proposition 21. Let ;4 and v be two probability distributions on 2. Then the
total variation distance between them satisfies

la—vllrv = 5 sup { X 1(@hn(o)= 3 flalvla) s f satislying el (0)] < 1}.

Proof. When f satisfies maxgeq |f(2)] < 1, we have

< 5 D @ute) — v

zeQ

D f@nlz) = Y fla)v(z)

1
2 zeQ e

<3 3 lute) — v()

xeQ
= ||l —vllrv

which shows that the right-hand side of the equation is not more than ||x —
V||rv. Define

1, if x satisfies p(x) = v(z),
fH(z) = .
— 1, otherwise.

Then

;[ IROTOEDY f*<x>u<x>] = 2 S @lie) ~ v(@)]

ze) e ze)
= ; [ Z [u(z) —v(z)] + Z [v(z) — p(z)] |-

zeQ,u(z)=v(z) zeQ,v(z)>p(z)

Using the prior proposition shows that the right-hand side above equals ||x —
v||rv. Hence, the right-hand side of the proposition is at least ||u — v||rv.
Q.E.D

Definition. A coupling of two probability distributions p and v is a pair of
random variables (X,Y’) defined on a single probability space such that the
marginal distribution of X is u and the marginal distribution of Y is v. That
is, a coupling (X,Y) satisfies P{X = x} = p(z) and P{Y = y} = v(y).

Example 6. Let u and v both be the ’fair coin’ measure giving 1/2 to the
elements of {0, 1}.
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(i) One way to couple p and v is to define (X,Y) to be a pair of independent
coins, so that P{X =x,Y =y} = 1/4 for all z,y € {0, 1}.

(ii) Another way to couple p and v is to let X be a fair coin toss and define
Y = X. In this case, P{X =Y =0} =1/2 = P{X =Y = 1} and
P{X#Y}=0.

Given a coupling (X,Y") of p and v, if ¢ is the joint distribution of (X,Y)
on Q x Q, meaning that ¢(x,y) = P{X = z,Y = y}, then ¢ satisfies

Male,y) = Y P{X =2,V =y} = P(X = o} = p(a)
ye yeQd

and

N = Y PX =0, Y =y} = P{Y =y} = v(y).

zef e

Conversely, given a probability distribution ¢ on the product space Q x € which

satisfies
dialzy) =p(x) and Y q(z,y) = vly),
yeQ e

there is a pair of random variables (X,Y’) having ¢ as their joint distribution
— and consequently this pair (X,Y) is a coupling of ¢ and v. In summary, a
coupling can go either way; it can be specified either by a pair of random varibles
(X,Y) defined on a common probability space or by a distribution ¢ on 2 x Q.

Any two distributions p and v have an independent coupling. However,
when p and v are not identical, it wil not be possible for X and Y to always
have the same value. How close can a coupling get to having X and Y identical?
Total variation distance gives the answer.

Proposition 22. Let y and v be two probability distributions on 2. Then
[l — v||ry = inf{P{X # Y} : (X,Y) is a coupling of y and v}.

Remark. We will in fact show that there is a coupling (X,Y) which attains
the infimum. We will call such a coupling optimal.

Proof. First, we note that for any coupling (X,Y) of ¢ and v and any event
AcQ,
w(A) —v(A) = P{X € A} — P{Y € A}

S P{XeAY¢A <P{X#Y}
It immediately follows that
[l — v]lry < inf{P{X # Y} :(X,y) is a coupling of x and v}.

It will suffice to construct a coupling for which P{X # Y} is exactly equal
to ||u — v||7v. We will do so by forcing X and Y to be equal as often as
they possible can. There is a good outline in the book that I will not replicate
here. Q.E.D
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The survey paper (which can be found here) talks a little about total varia-
tion distance. To keep things together, I’ll outline some of it here as well.

Definition. The paper defines total variation distance (which is really equiva-
lent) between two probability measures p and v on 2 as

dry(z,y) = ||p — v||rv = sup {u(A) — v(A)}.
AcCQ

Definition. The maximal distance is defined to be
d(t) := max ||P'(z,-) — 7|l
e

If we have two places that we’re looking at, we’ll use an alternative function.
To help, we make the definition

d(t) := max [|P(x,) = P'(y,)|v.
z,ye)

Remark. Be careful on the notation here; though it uses d, it is not the same
as the prior definition.

Definition. We set the maximal distance (in terms of the paper) as

1/p
A1) = IIf = gl = ( S () - g<x>|pw<x>)

e
and we customarily set
d‘n’,@(,u7 V) = maX{‘f - g|}
Remark. Setting u(f) = > fu and p = 1, we have

dep(u,v) = 1 = gll = D] If (@) = g(@)lm(2) < 3] | f(2) — g(2)]

zeQ) e

—2(5 D@~ 9o ) = 2drv(u) = 2a—vllrv = max (ln(H =D

o 1 Flleo=1

For p = 2, notice we have

dr 2 (p, V) = (Z

Remark. Notice that we can use Jensen’s inequality to establish the mapping
d — dr, is a non-decreasing function, which means

dr1(p,v) = 2dpy (1, v) < dra(p,v) < de oo (i, v).

We now want to talk about Markov chains converging to their stationary
distributions.
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Theorem. Suppose that P is irreducible and aperiodic, with stationary distri-
bution 7. Then there exists constants o € (0,1) and C > 0 such that

max || P! (x, ) — 7||rv < Cal.
zel)

Remark. This can be improved/expanded upon, as we see in the paper. In
the language of the paper, let K be a Markov kernel with invariant probability
distribution 7. Then for any fixed 1 < p < 00, n — sup,eq dr p(Kn(x,-), 7) is
non-decreasing subadditive function. Moreover, if we have

sup dTr,p(Km(xa ) < B

zeQ)

for some fixed integer n, then we have Ym € N,

sup dn (K (2, ), m) < Bm/".

zeQ)

Remark. Sub-remark — I forgot if this relies on the Markov chain being over a
group or not.

Proof. To save some time, I'll skip over the proof for now (we did it in Peterson’s
class). It is rather intuitive (as noticed by Graham’s talk). Q.E.D

Remark. Because of Theorem 4.9, the distribution 7 is also called the equilib-
rium distribution.

We can make some relationships between d and d.

Lemma. If d(t) and d(t) are as defined above, then

d(t) < d(t) < 2d(t).
Proof. 1t is very easy to show the upper bound. We have

d(t) = max [P (z.) = P'(3. )l

= [(P"(z,) = m) = (P'(y,) = Mllrv < 2/|P"(z,) — || = 2d(t)

by the triangle inequality.

The lower bound is more interesting. To show that d(t < d(t), note that
first, since 7 is stationary, we have m(A) = >, o 7(y)P t(y, A) for any set A.
Using this shows that

1P (2, ) = wllrv = max [Pz, A) — m(A)]
Q2

= max
AcQ

D, mW)[P(z, A) — Py, A)]|.

ye

33



Now, use the triangle inequality and the fact that the maximum of the sum is
not larger than the sum over a maximum to move things around and get

max Z |P!(z, A) — P'(y, A)| < Z 7(y) Ijlcag|Pt(x,A) — P(y, A)|

yeN
= > 7@)|[P(x,) = Py, )llrv < maXHPt( )= Py, )llrv
ye
which is the desired result. Q.E.D

Lemma. We have equivalently, for 8 a collection of all probability distributions
on €,

d(t) —SUPHMP —7llrv,
neP

J(t) = sup ||[uP! — vP||ry.
w,vER

Proof. We will show the first part (which consequently will give us the second
pretty easily). For the first, notice that one direction is easy; We have that

max||P*(z,) — 7| < Su1.o||Pt( ) =l
e

since we can choose i to be the vector which choose our maximal point z. For
the other direction, notice that we have that the weighted average will be less
than the maximum, and that g will simply weight our average. We can also get
an alternative proof from one of the remarks above. Q.E.D

Lemma. The function d is submultiplicative. That is to say, d(s+t) < d(s)d(t).

Proof. Fix z,y € Q, and let (X, Ys) be the optimal coupling of P*(z,-) and
P#(y,-) whose existence is guaranteed by the optimal coupling proposition.
Hence,

|1P*(z,) = P*(y,)llrv = P{X,s # Ys}.
As P**! is the matrix product of P! and P* and the distribution of X, is P?,
we have

P (a,w) = Y P (2, 2) Pl (z,w) = Y. P{X, = 2} P'(2,w) = E(P"(X,, w)).

Combining this with the symmetric identity, P***(y,w) = E(P*(Y;,w)) allows
us to write

Pst(z,w) — P (y,w) = E(Pt(Xs,w) — Pt(Ys,w)).

(Here, we implicitly used the linearity of expectation.) Combining expectations
is possible since X and Y, are defined together on the same probability space.
Summing this over w € Q and applying an earlier proposition gives us

HPSH(Z',') _ Ps+t(y7')||TV _ %Z |]E(Pt(Xs,’w) — Pt(ys,w))|
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The right hand side is less than or equal to
1 t t
E(Z; |PY(Xs,w) — P (Ys,w)>.

Applying the same proposition to before, we have that the quantity inside the
expectation is exactly

1P (X5, ) = P'(Ys, Iz,
which is zero whenever X = Y;. Moreover, this distance is always bounded by
d(t). So, this shows that

1P (@, ) = P (y, )llrv < dOEWK (x, 2y, = d(t)P{X, # Vi),

Finally, since (X, Y) is an optimal coupling, the probability on the right-hand
side is equal to
|P*(z,) = P*(y,)llrv-

Maximizing this over x and y completes the proof. Q.E.D

Using the exercise below, we have that d(t) is non-increasing in ¢. From this
and an above lemma, it follows that when c¢ is any non-negative integer and ¢ is
any non-negative integer, we have

d(ct) < d(ct) < d(t)°.

Definition. A useful parameter to study is the mixing time, which we define
by
tmix(€) 1= min{t : d(t) < €}

and
tmix = tmlx(1/4)

Corollary. The prior lemma gives us that, for [ € Z~,
d(ltmix(€)) < d(ltmix(€)) < d(tmix(€))' < (2€)".
In particular, taking € = 1/4, we have
d(Itmix(1/4)) < 270

This then gives us
tmix(e) < [1Og2 6_1]tmix~
Definition. For a distribution g on a group G, the inverse distribution [ is

defined by ji := u(g~?t) for all g € G.

Definition. Let P be the transition matrix of the random walk with increment
distribution g. Then the random walk with increment distribution /i is exactly
the time reversal P of P.
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Lemma. Let P be the transition matrix of a random walk on a group G with
increment distribution p, and let P be that of the walk on G with increment
distribution fi. Let 7w be the uniform distribution on G. Then for any ¢ > 0,

|Pt(id, ) = 7|7y = ||P*(id, ) — 7|7

Proof. Let (X;) = (id, X1, Xo,...) be a Markov chain with transition matrix P
and initial state id. We can write X} = g1g2 - - - gk, where g; € G are independent
choices from the distribution p. Similarly, let (Y;) be a chain with transition
matrix P, with increments hi, ho, ... € G chosen independently from . For any
fixed elements aq,...,a; € G,

P{gl =a1,.--,0¢ :at} =P{h1 za;la"'7ht =af1},
by definition of P. Summing over all strings such that ajas - - - a; = a yields

P'(id,a) = P*(id,a™").

Hence,
S|P a) — |67 = 3 [PtGd,a ) — 61 = Y [PYGd,a) — |G
aeG aeG aeG

and using the fact that
1
lu=vllrv =5 O () = v(@)]
zeQ

we have the result. Q.E.D

Corollary. If ¢, is the mixing time of a random walk on a group and fmixe 18
the mixing time of the inverse walk, then we have tynix = tmix-

We finish by talking about the ergodic theorem. The philosophy of the
ergodic theorem is "time averages equals space averages”.

Definition. Let f be a real valued function on €2 and u be any probability
distribution on 2. We define

E.(f) = Y fla)u().

e

Theorem (Ergodic Theorem). Let f be a real value function defined on . If
(X}) is an irreducible Markov chain (notice we don’t need aperiodic), then for
any starting distribution p we have

1t—1
Pﬂ{th_)n;)t;)f(Xs) _Eﬂ'(f)} =1
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Proof. Suppose that the chain starts at x. Define T;O := 0 and

T;k := min{t > T;(kil) : X = x}

Since the chain starts anew every time it visits x, the blocks XTJr)c , X 1

+ +
Tk tl P T (k1)

are independent of one another. If we set

T

:k_l
Yk = Z f(XS)7

S=To, (k—1)

then we have (Y}) is i.i.d. If Sy = Zi;t f(Xs), then Spx. = >, Y, and by
the Strong Law of Large Numbers,

S_+
P{ lim —* =E, (Y1), =1
n—ow N

By the Strong Law of Large Numbers again, since 7,5, = >0 (7.7, — T;(kil)),

writing simply 7,7 for 7.,

+
z,

T, n
PI{ lim = EI(T;)} =1
n—oo n

Thus,

S
Pz{ lim E””(Yl)} -1

n=0 Trn E, (Tw

We can then show that E, (Y1) = E.(f)E; (7). Thus, we get

x

n—0o0 Tw,n

N
Pp{ lim —= =E.(f)p = 1.

By the second problem, we have that the theorem holds when y = d,, the
probability distribution with unit mass at x. Averaging over the starting state
completes the proof. Q.E.D

Exercises

Problem 8. Let P be the transition matrix of a Markov chain with state space
Q and let ;1 and v be any two distributions on 2. Prove that

luP —vPllry < |lp—v|lrv.
Solution. We can simplify this to
luP = vPllry = [[(n = v)P[zv.
Rewriting this, we have

= max |(u —v)P(A)| < max |(p —v)(A)] = [[u = v][rv
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Problem 9. Let (a,) be a bounded sequence. If, for a sequence of integers
(ny) satisfying limg_,o ng/ng1 = 1, we have

. a1+t ap,
lim — =aq,
k—0 ng
then
. a1+ -+ an
lm ——— =q.
n—aoo n

Solution. I don’t recall this from Analysis, but it seems to be a reasonable

assumption.

Let y,, = %22;1 a;. Then we have that y,, — 1 ask — oo, with limg_, o ng/Ng+1 =
1. Since these are asymptotically equivalent, we can deduce monotonicity on a
domain extending to infinity. Notice that limg_ ¥n, /Yn,+1 = 1, thus giving us
monotonicity in the sums of the a; on some infinite domain. We have monotone

and bounded, so we get convergence, and they must converge to the same limit.
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4 Coupling
We'll start by recalling the definition

Definition. A coupling of two probability distributions p and v is a pair of
random variables (X,Y’) defined on the same probability space such that the
marginal distribution of X is p and Y is v.

Remark. We have P, , will be the probability on the sapce where X; and Y;
are defined.

Theorem. Let {(X},Y;)} be a coupling of two Markov Chain’s satisfying Xy =
z and Yy = y. Let Toouple be defined by

Teouple := min{t : X; = Y3},

Then
[P (x,-) = Py, )lrv < Pry{Teouple > t}-

Proof. Notice P'(x,z) = P {X; = z}, P'(y,2) = Py {Y; = z}. Then by a
prior proposition, we can write this as

HPt(ajv ) - Pt(ya ')HTV < Pm,y{Xt # Yt}
and we can notice that this last part is obviously Py y{Tcouple < t}. Q.E.D
Corollary. We have

d(t) < max Px,y{Tcouple > t}.
z,ye)

Definition. A Markovian coupling of P is a Markov Chain with state space
Q x Q whose transition matrix () satisfies

(a) Va,y,2" we have 3, Q((z,y), (2',y")) = P(z,z").
(b) Va,y,y" we have 3., Q((z,y), (', 4)) = P(y,y").

Remark. In order to proceed moving forward, we’ll need Markov’s inequality.
Markov’s inequality is as follows; if X is a nonnegative random variable a > 0,
then we have

Example 7 (Random Walk on Z,). We have that (X;,Y;) moves as follows
— flip a coin. If it’s heads, X; moves, and if it’s tails then Y; moves. In each
case, we have that they move by flipping another coin. Once they connect,
they move together. Let D; be the distance between them — in other words,
D €{0,1,...,n}, and it gets absorbed at either 0 or n. Recall E, ,(7) = k(n—k)
from a prior exercise. Then using Corollary 5.3, the Markov Inequality, and
noticing that E, ,(7) is maximized at k = n/2, we have

max, yeq Bz (1) n?

d(t) < P, {r >t < < —.
(t) Jnax ey AT >t} , m
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For the next example, we’ll need Wald’s identity.

Remark. Let (X,,) be a collection of random variables which are i.i.d. and let
N be a nonnegative integer-valued random variable that is independent of the
X;. If the X; and N have finite expectation, then we have

E( ﬁ X) = E(N)E(X)).

d

¢, we have

Theorem. For the lazy random walk on the d-dimensional taurus Z
Tmix(€) < ¢(d)n” logy(e7),
where ¢(d) is a constant depending on the dimension.

Proof. Couple a random walk (Xt) startng at & and (ﬁ) starting at ¢. Ran-
domly choose a coordinate d uniformly. If (X;), (Y;) agree on the chosen co-
ordinate, then move them bot +1, —1, or 0 with probability 1/4, 1/4, and 1/2
respectively. If they disagree, choose on of the chains at random and fix the
other. Move +1 or —1 in the coordinate with probability 1/2. Let

X, = (Xt XD
and
Y, = (Ttlw"vy;&d)
and let ' 4
7 :=min{t > 0: X; =Y/}
Using Wald’s identity and the fact that there is a geometric waiting time be-

. . "2
tween each coordinate with mean d, we have E, ,(7;) = 2.
maxj<i<qd 7; and bounding it above by a sum gets us

Now Tcouple =

d>n?

Eaj,y(Tcouple) < T

S0 Py y{Tcoupte > t} < %. Using Proposition 4.36, we get Tmix(€) < d?n’[log,(e71)].
Q.E.D

For the next example, we’ll need some basic graph theory definitions, which
we’ll review.

Definition. A tree is a connected graph with no cycles.

Definition. A rooted tree has a distinguished vertex, called the root.
Definition. The depth of a vertex v is its graph distance to the root.
Definition. A level of the tree consists of all the vertices at the same depth.

Definition. The children of v are the neighbors of v with depth larger than v.
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Definition. A leaf is a vertex of degree one.

Definition. A rooted finite b-ary tree of depth k, denoted by Ty, is a tree
with a distinguished vertex vg, the root, such that

(a) wvo has degree b.

(b) Every vertex with distance j from the root, where 1 < j < k—1, has degree
b+ 1.

(¢) The vertex at distance k are leafs.

pretl_q
b—1

Remark. There are n = vertices in Ty .

Example 8. In this example, we consider the random walk on the finite bi-
nary tree, Ts ;. The walk remains at its current position with probability 1/2.
Consider the following coupling (X, ¥;) of two lazy random walks, started from
states g and yo on the tree. Assume without loss of generality that x( is at
least as close to the root as yo (can do this arbitrarily). At each move, toss
a fair coin to decide which of the two chains moves; if heads, Y;11 = Y; while
X1 is chosen from the neighbors of X; uniformly at random. If the coin toss is
tails, then X;;17 = X; and Yz, is chosen from the neighbors of Y; uniformly at
random. Run the two chains according to this rule until the first time they are
at the same level of the tree. Once the two chains are at the same level, change
the coupling to the following update rule: let X; evolve as a lazy random walk,
and couple Y; to X; so that Y; moves closer to (further from) the root if and
only if X; moves closer to (further from) the root, respectively. Let B be the
set of leaves. Observe that if (X;) has first visited B and then visited the root,
it must have coupled at this time. The expected value of this time is less than
the commute time 7 from the root to B, the time it takes starting from the root
to first visit the set B and then return to the root. It will be shown later that
E(7r) < 4n. Thus, if Teouple is the time when the two particles meet, we have
Py y{Tcouple > t} < 47". We conclude that ¢, < 16n.

Proposition 23. Let @ be an irreducible transition matrix and consider the
lazy chain with transition matrix P = (Q + I)/2. The distribution at time ¢ and

t + 1 satisfy

12
||Pt(x7) _Pt+1(x7')”TV < —.

Vit

Proof. The proof involves clever coupling and Proposition 2.17. Q.E.D

Definition (Grand Coupling). Construct a collection of random variables { X7 :
xeQ,t=0,1,2,...} such that for each x € 2, the sequence (X}), is a Markov
chain with transition matrix P which started from z. We can use the random
mapping construction to make grand couplings. Let f : @ x A — R be a function
and Z and A-valued random variable such that P(z,y) = P{f(z,Z2) = y}.
Proposition 1.5 guarantees such a (f,Z) pair exists. Let {Z;};>o be an i.i.d.
sequence with the same distribution as Z, and define inductively X§ = =,
XP = f(X{F,,Z) for T = 1. This yields a grand coupling.
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Exercises

Problem 10. (a) Show that when (X;,Y;) is a coupling satisfying the normal
properties for which Xy ~ p and Yy ~ v, then

||uPt — yPt||TV < P{Tcouple > t}.

(b) If (X;) and (Y;) are independent, then they surely coalesce. That is,
P{Tcouple < 0} = 1.

Solution. (a) This is just an application of two different results. Proposition
4.7 says || — v||rv < P{Teouple > t}. From Exercise 4.3, we know ||uP —
vP||rv < || — v||Tv, and so as a consequence we have ||uP! — vPt||ry <
||t — v||7v. This then gives us the desired result.

(b) This is a clever trick. We have P(X; # Y;|Xo,Yp) < 1 — € by ergodicity.
Now, we have P(Xa; # Yoi|X; # Y;) < 1 — € by the Markov property. We
then have P(th #* Ygt ﬁXt # YHX(),YO) = P(th # }/Qt‘Xo,YO) < (1 76)2.
Continue to see that eventually they must coalesce.

5 Strong Stationary Times

Consider the top-to-random shuffle. Let 7., be the time one move after the
first occasion when the original bottom card has moved to the top of the deck.

Proposition 24. Let (X;) be the random walk on S,, corresponding to the top-
to-random shuffle on n cards. Given at time t that there are k cards under the
original bottom card, each of the k! possible orderings of these cards are equally
likely. Therefore, if T¢op, is one shuflle after the first time that the original bottom
and moves to the top of the deck, then the distribution of X, is uniform over
Sp, and the time 7, is independent of X

Ttop

Ttop *

Proof. It’s a simple induction proof. For k = 0,1 this is clear, and so we have
base cases established. Assume it holds for k. Then when we take the top card
and place it randomly in the deck, it is either below the original bottom card or
above it. If it is above it, nothing changes and we continue. If it is below it, then
we have that it is placed with uniform probability in any of the k + 1 remaining
places, and thus we have that the k + 1 cards beneath the original bottom
card are all uniformly random. Once the bottom card is now on the top of the
deck, we have that all the cards below it are uniformly random, and we place it
uniformly at random in any of the deck, completing the procedure. Q.E.D

Definition. Given a sequence (X;)?°, of Q-valued random variables, a {0, 1,2, ...

value random variable 7 is a stopping time for (X3) if, for each t € {0,1,...},
there is a set B; < Q'*! such that {r =t} = {(Xo, X1,...,X;) € B;}.

Remark. The random mapping representation of the random walk on the hy-
percube is given by {1,2,...,n} x {0,1} where you are selecting an element
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(j, B), where the coordinate J of the current state is updated with B. Define
Trefresh = min{t = 0 : {j1,...,7:} = {1,2,...,n}}. We have then X;_, .
is exactly the sample from the stationary distribution 7. Notice Tyefresn 1S
a stopping time for (Z;). Recall we defined (X;)2, inductively as follows:
Xo=z,X; = f(Xt—th)-

Definition. A randomized stopping time for the Markov chain (X3) is a stop-
ping time 7 for the sequence (Z;).

Definition. Let (X;) be an irreducible Markov chain with stationary distribu-
tion 7. A stationary time 7 for (X;) is a randomized stopping time such that
the distribution of X, is m: P.{X, =y} = 7 (y).

Definition. A strong stationary time for a Markov chain (X;) with stationary
distribution 7 is a randomized stopping time 7, possibly depending on a starting
position x, such that P, {7 =t, X; = y} = P, {r = t}n(y).

Example 9. The top-to-random shuffle forms a strong stationary time, s we
outlined in the proposition.

Lemma. Let (X;) be an irreducible Markov chain with stationary distribution
m. It 7 is a strong stationary time for (X;), then for all ¢ > 0,

Pofr <t, Xy =y} = P{7 < t}m(y).

Proof. Let Zy, Zs, ... be the i.i.d. sequence used in the random mapping repre-
sentation of (X;). For any s < ¢,

Pir=8,X =y} = D PAX; = y|7 = 5, X, = 2}Po{7 = 5, X, = 2}.
zeQ)

Since T is a stopping time for (Z;), the event {7 = s} equals {(Z1, Z2,...,Zs) €
B} for some set B < Q°. Also, for integers r,s > 0, there exists a function
fr Q! — Q such that X,y = f(Xs, Zsi1,..., Zsyr). Since (Z1,...,Z, and
(Zs41,- .., 2Z;) are independent,

Pa:{Xl = y|T = SaXS = Z} = P${ft75(z, Zs+17 = '7Zt) = yl(Xla s 7XS) € BaXS
=P (z,y).
Summing over the s < t gives P{T < t}m(y). Q.E.D

We want to eventually show that d(t) < maxgeq Pr{T > t}. In order to do
so, we will need some definitions and lemmas.

Definition. Define the separation distance by

so(t) = max [1 - P:r((xy)y)]

and

s(t) = max s, (t).
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Lemma. If 7 is a strong stationary time, then s,(¢) < Py{T > t}.
Proof. Fix x € . For all y € Q, notice that we have

t _ —
[ Pley) | PdXe=yb | PdXi=yr<i)

7(y) m(y) h m(y)

By the prior lemma, we have

7P1{Xt:ya7-<t}<17P:6{T<t}7r(y)
m(y) N m(y)

as we desired. Q.E.D

1

= P {1 >t}

Definition. Given a starting state x a state y is a halting time for a stopping
time 7 if X; = y implies 7 < t.

Remark. The inequality in the prior lemma is an equality if and only if y is a
halting state for the starting state x, for some y.

Lemma. The seperation distance s, (t) satisfies
1P (z,) = 7l|rv < sa(t)

thus giving us d(t) < s(t).

Proof. We have

d(t) = max||P'(z,-) =7l = > [a(y) = P'(z,y)]
ye

P'(z,y)<m(y)

- X w(y)lpt(‘”’y)]

b (y)
P (z,y)<m(y)
Pt
<max [1— Plz,y) = s, (t) < s(t).
yeQ m(y)

Q.E.D
Combining the two above lemmas gives us the following corollary.
Corollary. If 7 is a strong stationary time, then

d(t) = max || P(z,-) — 7||ry < max P, {7 > t}.
ze) e}

Example 10. Take two complete graphs on n-vertices and ” glue” them together
at one vertex. Add n loops to all other vertices, and one lop to the glued
vertex. This makes the graph regular of degree 2n—1 (here, the loops contribute
one degree). Let 7 be the time one step after v* (the glued vertex) has been
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visited for the first time. Then 7 is a strong stationary time. We have that

the probability of going to v* is 2n171, and this is geometric. Hence, we get

E(7) = 2n. By Markov’s inequality, we find

E 2
Pirsty< B0 _ 2
t t
Taking ¢t = 8n gives us
2n 1
Pir=tl<=—=".
{r=t 8n 4

So, we have d(t) < i if t = 8n, and so tyix < 8n by definition.

Example 11. Consider the top-to-random shuffle. The probability that a card
moves below the original bottom card is % if there are k-cards beneath it. We
see this is the coupon collector again. Proposition 2.4 gives us

P.{r > [nlog(n) + cn]} < e ¢,
and Proposition 6.10 gives
d(nlog(n) + cn) < ¢ — tmix(€) < nlog(n) + log(e”H)n.

Example 12. Imagine a line of books, and after randomly selecting a book you
move it to the front. This is the time reversal Markov chain of the top-to-random
shuffle, and so using Lemma 4.13 we can bound

tmix < nlog(n) +nlog(e ).

Consider a finite chian (X;) with transition matrix P and stationary dis-
tribution 7 on 2. Given ¢t > 1, suppose that we chose uniformly a time
o € {0,1,...,t — 1} and run the given Markov chain for o-steps. Then the
state X, has distribution

o~ | =

t._
Uy 1=

t—1
> P (a,).

s=0

Definition. The Cesaro mixing time t¥. (€) is defined as teh first ¢ such that
Vz e Q, ||vl — 7||l7rv <e.

Theorem. Consider a finite chain with transition matrix P and stationary dis-
tribution 7 on Q. If 7 is a stationary distribution for the chain, then ¢¥. (1/4) <
dmaxgeq Ex (1) + 1.

Proof. Proof omitted for now. Q.E.D

Remark. The converse was proven by Lovasz and Winkler.
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Exercises

Problem 11. Show that if 7 and 7/ are stopping times for the sequence (X;),
then 7 + 7/ is a stopping time for (X).

Solution. Simply note that for n € {0,1,...} we have

n

{T+T/:n}:U({T:i}m{Tznfi}).

1=0

Problem 12. Consider the top-to-random shuffle. Show that the time until the
card initially one card from the bottom rises to the top, plus one more move, is
a strong stationary time, and find it’s expectation.

Solution. The argument is essentially the same as the bottom card argument.
The mean is still the coupon collector mean, except we skip the last (first?) one.
So it will be E(7) =n/2+n/3+--- + 1.

Problem 13. Let s(t) be the seperation distance. Show that there is a stochas-
tic matrix @ so that P'(x, ) = [1 — s(t)]7 + s(t)Q'(x,-) and 7 = 7Q.

Solution. Showing that it is stochastic is simple. We have
D Py =1= Y [1—sO]r(y) + ) s()Q"(x,y).

yeN yeQ yeQ

Rewrite this as
L=[1-s)]+s()Q" (x,y).

Solving for Q*(z,y), we find 1. More importantly, taking ¢ = 1, we get that the
matrix () is stochastic. Next, instead of x, use the stationary distribution .
We have then

7P =m=[1-s(t)]r+s(t)rQ.

Solving this gives

T =mQ.
Problem 14. Show that if

max P.{T > to} < e
el

then
d(t) < elt/tol,

Solution. We use the submultiplicativity of s(t); that is, s(t + u) < s(t)s(u).
We also use the fact that d(t) < s(t). We'll just show it for the case of t = 2t
(all other cases are essentially the same argument). For ¢ = 2tg, we have

d(2to) < s(to + to) < s(tp)? < maécPf{T > to} < €2 = olto,
xe
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6 Lower Bounds on Mixing Times

The idea of this is simple; if the possible locations of a chain after t steps do
not form a significant function of the state space, then the distribution of the
chain at time ¢ cannot be close to uniform

Definition. Let (X;) be a Markov chain with irreducible and aperiodic transi-
tion matrix P on the state space €2, and suppose that the stationary distribution
7 is uniform over Q. Define doyt := |{y : P(z,y) > 0}| to be the number of states
accessible in one step from z, and let A := max,eq dout (2).

Denote by €2f the set of states accessible from z in t steps, and observe that
7] < At TIf A < (1 — €)|Q], then we get
t
[P (z,) = 7llrv = Py(2,QF) — m(QF) =1 - T

We just need an upper bound on this ¢. Solving for ¢, we get

t _
A <l—-e—>t< M
it log(A)

giving us

log(|2|(1 —
b > 08210 —9).

log(A)

Definition. Given a transition matrix P on €, construct a graph with vertex
set © which includes the edge {x,y} for all x and y with P(z,y) + P(y,x) > 0.
Define the diameter of a Markov chain to be the diameter of this graph; that is,
the maximal distance between distinct vertices.

We can find something called the diameter bound. Let P be an irreducible
and aperiodict transition matrix on € with diameter L, and suppose that zg
and 1y, are states at maximal graph distance L. Then PLE—1)/2] (20,-) and
PUL=D/2l(y4 ) are positive on disjoint vertex sets. Hence, it’s clear that d(|(L—
1)/2]) =1, and for any € < 1/2, tmix(€e) > 3.

Definition. The edge measure @ is defined by

Q(z,y) :=m(z)P(z,y),

and

Q(A’B) = Z Q(a:?y)

zeA,yeB
Here, we have Q(A, B) is the probability of moving from A to B in one step
starting from the stationary distribution.
Definition. The bottleneck ratio of the whole chain is defined to be

Q(5,5%)

O(9) := S
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and the bottleneck ratio of the whole chain is

O, := min P(9).
7(S)<3

Example 13. For a simple random walk with vertices 2 and edge set F,

deg(z .

0 otherwise.

In this case, 2|E|Q(S, S¢) is the size of the boundary 05 of S, the collection of
edges having one vertex in S and one vertex in S¢. In this case, we get

oS
P(S)==——"——.
ZIGS deg(x)
Theorem. If ®, is the bottleneck ratio, then i = ﬁ.
Proof. Proof omitted for now. Q.E.D

Example 14. Consider the lazy random walk on the rooted binary tree of
depth k. We have n = 2¥*! — 1 is the number of vertices. The number of edges
is n — 1. Let vy be the root, and denote v;, v, as its descendants. Let S consist
of the right hand side of the tree; that is, the descendants of v,.. By Example
1.12, we have

ij for v = vg
m(v) =4 525 for0<|v| <k
5 for |v] = k.
Notice that in S’ we have 2F~1 — 1 vertices with 7 (v ) = 52 and 27! vertices
with (v) = 5. Multiplying and adding, we get 2 23 = =2 = 7(S5). Since

there is only one edge connectmg S and S¢, we get Q(S S¢) = 7(v.)P(vy,vg) =

2(n 7y Therefore, ®(S) = 5. Using the prior theorem, we get

n—2
tmix = T

Definition. Let f be a statistic, or a real-valued function on €. Let u be a
probability distribution on 2. Then

=, f@)ulz)

zeQ

Likewise, Var,(f) indicates variance computed with respect to the probability
distribution p.

Proposition 25. For f:Q — R, define 02 := max{Var,(f), Var,(f)}. If

|Ey(f) = Eu(f)] = ro
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then
8
I =vllrv > 1- 3.

In particular, if for a Markov chain (X;) with transition matrix P the function
f satisfies
|E.[f(X)] — Ex(f)| = 70w,

then
8

||Pt(m7) _7T||TV =>1- 7"72

We'll need a lemma to prove this. When p is a probability distribution on
Qand f:Q — A, write uf ! for the probability distribution defined by

(uf~(A) = u(f~H(A))

for A < A. When X is an Q-valued random variable with distributin p, then
f(X) has distribution uf~! on A.

Lemma. Let p and v be probability distributions on 2, and let f : 2 — A be
a function on €2, where A is a finite set. Then

= vllev = [luf" = vf v

Proof. Since

luf=H(B) = v (B) = |u(f~1(B)) —v(fH(B))],

then
max |puf "1 (B) — vf~H(B)| < max u(A) — v(A)]

Q.E.D
We now can prove the proposition.

Proof. Suppose arbitrarily that E,(f) < E,(f). If A = (EL(f) + ro./2,0),
then Chebyshev’s inequality yields that

_ 4 _ 4
pfHA) < 5 and of THA) > 1- 3,
whence 3
pf = =vf v 21— .
r
The prior lemma now finishes the proof. Q.E.D

We can get a better constant for the lower bound with the following propo-
sition.
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Proposition 26. Let x4 and v be two probability distributions on €2, and let f
be a real-valued function on . If

|Eu(f) = Eu(f)] = 1o,
where 0% = [Var,(f) + Var,(f)]/2, then

4

— >1—- ——-.
[ —vl|rv 152

Proof. Proof omitted for now. Q.E.D

Example 15. We’ll use the proposition to bound below the mixing time for
the random walk on the hypercube. We'll first prove a lemma.

Lemma. Consider the coupon collector problem with n distinct coupon types,
and let I;(t) be the indicator of the event that the j-th coupon has not been
collected by time t. Let R; = Z?=1 I;(t) be the number of coupon types not
collected by time ¢. The random variables I;(t) are negatively correlated, and
letting p = (1 — 1/n)?, we have for ¢t > 0

E(Rt) = np,

Var(R;) < np(1 —p) < %

Proof. Since we have that I;(t) is a Bernoulli random variable, we have that
E(Z;(t)) = p. Likewise, we get Var(I;(t)) = p(1 — p). For j # k, we get

B0 = (1- 2)t,

n
whence
2 t 1 2t
Cov(Li(), L) =[(1-2) = (1-2) <o.
o050 = (1-2) = (1-1)
The result follows. Q.E.D
Exercises

Problem 15. Let X; = (X}, ..., X[) be the position of the lazy random walker
on the hypercube {0,1}", started at Xo = I = (1,...,1). Show that the covari-
ance between X; and X is negative. Conclude that if W(X;) = 7 | X¢, then
Var(W (X)) < n/4.

Solution. Let Y’ = 2X;—1. Then we have that Y;' = {—1,1}. We want to then
condition on the probabilities. We have that, if the component i is chosen, then
it switches between —1 and 1. We construct four events then; event A denotes
if 4 and j are both chosen by a point, B; denotes only ¢ is chosen, B; denotes
only j is chosen, and C' denotes neither were chosen. We get that E(X}|A) =0
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since it is uniform between {—1,1}, E(X/|B;) = 0, and the rest are 1. So we
find E(X}) = P(B;) + P(C). It is a similar situation for X7. For X;X], we
have that E(X;X7|A) = 0, E(X/X/|B;) = 0, E(X/X/|B;) = 0, and finally
E(X/X]|C) = 1. So we get that E(X;X]) = P(C). So our covariance is P(C) —
(P(Bj)+ P(C))?. Now, we calculate explicitly P(B;). Notice that this event is
simply P(B;) = P(B;) — P(C). Since B;, B; are identical, we get that it comes
out to P(C) — P(B;)?. So we have that it is negatively correlated. The result
then follows, since Var(W (X;)) = 37, Var(X}) + 2, Covar(X7, X7). Since it
is negatively correlated, this is the same thing as Var(W (X)) < >, Var(X}).
Notice that Var(X}) = (1/4) and the result follows.

Problem 16. Let Q = GL,,(F2), the set of invertible n x n matrices over Fs.
Consider the chain which selects uniformly an ordered pair (i, j) of rows (i # j)
and adds row ¢ to row j, the addition being mod 2.

(a) Show that there is a constant v > 0 so that |©|/2"" —  as n — .
(b) Show that t,ix > cn?/log(n) for a positive constant c.

Solution. I did this on the white board. For the first part, use the exercise
from Dummit and Foote to get the limit (show that it’s bounded between 0 and
1, which is relatively easy, then show that it’s monotonically increasing). For
the second part, I noticed that this chain is combinatorially isomorphic to the
random walk on Zqy, (r,)|- I then did some analysis by making the walk lazy
and getting a lower bound which is similar to the one given in the exercise.

7 The Symmetric Group and Shuffling Cards.

Definition. The set of all bijections from {1,...,n} to itself forms the group
Sy, also known as the symmetric group on n letters.

Definition. We often use cycle notation. If aq,...,a,, are elements in our set,
then (ajas - - - an) denotes the permutation o which sends o (i) = @;41 (mod m)-
A transposition is a 2-cycle.

Remark. There is an algorithm for generating an exactly uniform random per-
mutation. Let og be the identity permutation. For k = 1,...,n — 1, inductively
construct oy from o_1 by swapping the cards (or elements) at locations k
and Jy, where Jj, is an integer picked uniformly in {k,...,n}, independently of
{J1,...,Jk—1}. Tt is rather simple to see that this uniformly creates a random
permutation. Let 1 € S,,. Then using this algorithm, we’d like to show that
P{on—1 = n} = &. Notice that P{o,—1 = n} = P{J1 =n(1)n---nJ, =n(n)}.
Since the J; were all independently chosen, this is equivalent to asking P{J; =
n(1)}--- P{Jp—1 = n(n — 1)}. Since the J; are chosen uniformly, we have that
the probability that these are equal to the n(i) is exactly ﬁ Therefore, we

get that this product turns out to be .
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It also turns out that this algorithm is optimal. Consider the identity permu-
tation and o = (1---n) on the Cayley graph generated by S,, by permutations.
Then it’s clear that these are the elements furthest away from eachother, and we
also see that it takes n — 1 edges to go from one another. Hence, the diameter
of the graph is n — 1, and so in order to reach any permutation we must take
n — 1 steps.

Definition. We define the parity of a permutation o € S;, to be

M(o):= [] (e()—0().

1<i<j<n
Remark. It is an easy exercise to see that
M (o o (ab)) = —M (o).

Definition. We call a permutation o € S,, even if M (o) > 0 and odd if M (o) <
0. This is because if we can write o as a product of even permutations, then we
get that all the negatives cancel and so M (o) > 0.

Definition. In order to avoid periodicity, the random shuffle transposition is
defined as follows: at time ¢, choose two cards, labeled L; and R;, independently
and uniformly at random. If L; and R; are different, transpose them. Otherwise,
do nothing. The resulting distribution p is then

0 otherwise.

Notice that this walk is irreducible; we have that, for all h € S,,, Pt(g,h) > 0
since transpositions generate the group. Aperiodicity follows since p(id) > 0,
so ged{t : P'(g,g) >0} = 1.

Proposition 27. Let 0 < € < 1. For the random transposition chain on an
n-card deck,

Proof. First, we notice that the expected number of fixed points of a permuta-
tion o € S, is 1. To realize this, let X; be the indicator random variable for the
i-th element in {1,...,n}. We have X; = 1 if (i) = ¢ and 0 otherwise. Then
X =" | is the random variable which measures the number of fixed points.
We have E(X;) = L, and so E(X) =Y, + = 1.

Let F (o) denote the number of fixed points of the permutation o. If o
is obtained from the identity by applying ¢ random transpositions, then F'(o)
is at least as large as the number of cards that were touched by none of the
transpositions (there could be more, as you could have a transposition and it’s

inverse).
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Our shuffle chain determines transpositions by choosing pairs of cards in-
dependently and uniformly at random. Hence, after ¢ shuffles, the number of
untouched cards has the same distribution as the number Rs5; of uncollected
coupon types after 2t steps of the collector chain. By Lemma 7.13 from the

book,
1\ 2
w=E(Ry) = n(l - ) ,
n

and Var(Rgt) < p. Let A = {0 : F(0) > u/2}; that is, the number of permuta-
tions with fixed points greater than p/2. We will compare the probabilities of
A under the uniform distribution = and P*(id, -). First,

by Markov’s inequality. By Chebyshev’s inequality,

P(id, A°) < P{Ra; < 11/2} < (u72)2 _

By total variation distance, we get

[|P(id, ) — 7||7y =1 — g.

We then want to find how small ¢ must be so that 1 —6/u > €, or, equivalently,

( 1>2t 6
n{l—— =pu< .
n 1—c¢

Solving this and using log(1 + ) < = gets us

n—1 n(l —e)
< 1
t 5 og( 5 )

tmix(€) = n; L log (n(16— 6)>

so that

Q.E.D

We now go through the coupling of the random transposition shuffle. At
each time ¢, the shuffler chooses a card with label X; € [z], and, independently,
a position Y; € [n]; they then transposes the card labeled X; with the card in
position Y;. If the card in position Y; already has the label X;, the deck is left
unchanged. To couple two decks, use the same choices (X;) and (Y;) to shuffle
both. Let (oy) and (o}) be the two trajectories. We will see what happens
in one step. Let a; be the number of cards that occupy the same position in
both oy and o}. If the card labeled X; is in the same position in both decks,
then a;11 = a¢. If Xy is in different positions in the two decks, but position
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Y; is occupied by the same card, then the specified transposition breaks one
alignment bu also forms a new one. We have a;y1 = a;. If X; is in different
positions in the two decks and if the cards at position Y; in the two decks do
not match, then at least one new alignment is made, and possibly as many as
three. This leads us to our proposition.

Proposition 28. Let 7 be the time required for the two decks to coincide.

Then, no matter the initial configuration of the deck, E(7) < %2n2.

Proof. Let 7; denote the time between the first time that a; > ¢ — 1 and a; > 1.
When ¢ satisfies a; = 4, there are n — i unaligned cards, and the probability
of increasing the number of alignments is (n — i)2/n? (they’re independent, so
multiply). In this situation, 7,41 is a random variable with success probability
given by (n —i)?/n?. We may conclude that under these circumstances,

E(tit1]a; = i) = n?/(n —i)%.

Now, we see that if a; # i for any ¢, then 7,1 = 0. Hence,

[ee]

E(r) < Y E(r) <n® ) i72

i=1
thus giving the result. Q.E.D

We can then combine this with Corollary 5.5 from the book to find tyix <
O(n?).

We can also go through this using strong stationary times.

Proposition 29. In the random transposition shuffle, let R; and L; be the
cards chosen by the right and left hands, respectively, at time ¢. Assume that
when ¢t = 0, no cards have been marked. At time ¢, mark card Ry if either R,
is unmarked or either L; is a marked card or L; = R;. Let 7 be the time when
every card has been marked. Then 7 is a strong stationary time for this chain.

Proof. Proof omitted for now. Q.E.D

Lemma. The stopping time 7 defined in the prior proposition satisfies
E(7) = 2n(log(n) + O(1))

and
Var(7) = O(n?).
Proof. We can decompose this into

n—1

T=ZT¢

=0

where 7; is the number of steps after the k-th card is marked, up to and including
when the (k + 1)-st card is marked. Based on the rules in the prior proposition,
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we can see that this is a geometric random variable, with probability of success
being ((k + 1)(n — k))/n®. Hence, we get

E(r) = _1—712 .
(7) I;O(k—i-l)(n—k)

Using a partial fraction decomposition gives

1 1 L1
(k+1)(n—k) n+1\k+1 n—-k)

Substituting this in gives

n? "S1 1
+ ~ 2n(l +0(1)).
For the variance, we just use properties of the geometric random variable and
bound above. Q.E.D

Corollary. For the random transposition chain on an n-card deck,
tmix < (2 + o(1))nlog(n).
The final proposition is on the riffle shuffle.

Proposition 30. Fix 0 < ¢,0 < 1. Consider the riffle shuffling on an n-card
deck. For sufficiently large n,

tmix(€) = (1 — &) logy(n).

Proof. There are at most 2" possible states accessible in one step of the time-
reversed chain (which, as we saw earlier, gives us equivalent bounds to the
normal shuffle). Thus, log,(A), where A is the maximum out-degree defined in
(7.1). The state space has size n!, and Stirling’s formula shows that log, n! =
(14 o(1))nlogy(n). Using these estimates in (7.2) shows that for all 6 > 0, if n
is sufficiently large, then the above holds. Q.E.D

Exercises

I talked to Graham about most of these exercises, or I did them by hand on the
whiteboard.
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8 Hitting Times

A preliminary before moving forward.
Definition. A function A : Q — R is harmonic for P at a vertex x if
h(z) = Y. P(z,y)h(y).
ye

Definition. Given a Markov chain (X;) with state space , it is natural to
define the hitting time 74 of a subset A < 2 by

Te :=min{t > 0: X; € A}.
Remark. We will write 7, for 7(,,.
Definition. We define the first return time as

rF =min{t > 1: X; = z}.

Definition. For a Markov chain with stationary distribution 7, let
te = ) Ba(ra)m(x).
zeQ

Lemma (Random Target Lemma). For an irreducible Markov chain on the
state space () with stationary distribution 7, the target time ¢& does not depend
on a € (.

Remark. Due to the prior lemma, we will use tg for all t&, a € 2.
Proof. Set hy(a) := E,(7,). Observe that for all x # a,
ha(a) = Y. Ba(ra|X1 = y)P(a,y) = Y (1 + ha(y)) Pla,y)

ye yeQ

= > P(x,y) + Y, ha(y)Pla,y) = 1+ D ha(y)Pla,y)

yeQd ye yed
=1+ (Phg)(a).
Now, since E,(7;5) = 7(a)~! (by (1.28))
1
(Phq)(a) = @)~ L

Now, letting h(a) := >, . ha(a)m(x), combining the results above we have

(Ph)(a) = Y (Pha)(a)m(z) = Y (ha(a) — (@) + ﬂ@(ﬁ(la) _ 1)_

xeQ) rx#a
Simplifying the right-hand side and using that h,(a) = 0 yields
(Ph)(a) = h(a).

That is, h is harmonic. Applying Lemma 1.16 shows that h is a constant
function. Q.E.D
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Since t does not depend on a, we get
tQ = Eﬂ- (Tﬂ-).

Lemma. For an irreducible Markov chain with state space {2 and stationary
distribution 7,
thit < 2maxE (7).
w

Proof. For any a,y € 2 we have
Ea(ry) < Ea(7r) + Er (7).
This is a sort of triangle inequality argument. By Lemma 10.1,
Eo(mr) = Ex(7r) < mSXE,T(Tw).
It is now clear that the first inequality gives us the desired result. Q.E.D
Corollary. For an irreducible transitive Markov chain,
this < 2t@.

Definition. The commute time between nodes a and b in a network is the
expected time to move from a to b and then back to a. We denote by 7,4 the
random amount of time to transit from a to b and then back to a. That is,

Tap = min{t = 7, : Xy = a},
where X — 0 = a. The commute time is then
te, = Eo(Tap)-
Note that the maximal commute time is

teomm = Max tqp-
a,be

Lemma. Let (X;) be a Markov chain with transition matrix P. Suppose that
for two probability distributions g and v on €2, there is a stopping time on 7
with P,{r < w0} =1 and such that P,{X, = -} = v. If p is the row vector

T—1
p(z) = E( Y ué{xt_x}),
t=0

then pP = p — p + v. In particular, if yp = v, then pP = p. Thus, if 4 = v and
E, (1) < o0, then g ‘ET) is a stationary distribution 7 for P.
m

Proof. Proof is left as an exercise. Q.E.D

In order to continue, we will need to go back a bit and talk about networks.
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Definition. A network is a finite undirected connected graph G with vertex
set V and edge set E, endowed additionally with non-negative numbers {c(e)},
called conductances, that are associated to the edges of G. We often write
c(z,y) for c({z,y}). Notice that this is symmetric as well — ¢(x,y) = c(y, x).
The reciprocal r(e) = 1/c(e) is called the resistance of the edge e.

Definition. A function W which is harmonic on V\{a, z} will be called a volt-
age. It can be shown that a voltage is completely determined by its boundary
values W(a) and W(z).

Definition. Define the effective resistance between vertices a and z by

W(a) — W(z)

Rlae2)==
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