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Remark. Unlike the Probability notes, these notes to just aim to be as concise as possible so that they
can be an effective reference on the test. I plan on including all of the definitions and theorems from
the book, as well as anything important from the class lectures and the homework solutions/questions.
If there’s time, I’ll include as many examples as I can. You probably should use these in tangent with
the class notes.
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Chapter 1

Reference Tables

Remark. If you plan on using the t-table, I’ve omitted some values. I don’t think this will be an issue,
but if this bugs you, you should find another table to use on the internet.

Name Density Domain Expected Value Variance Parameters When Used
Uniform 1/(θ) 0 ≤ x ≤ θ (θ)/2 (θ)2/12 θ Over intervals
Exponential(λ) λe−λx x ≥ 0 1/λ 1/λ2 λ is average number

of successes
Wait time until
1st event

Gamma(α, β) βαxα−1

Γ(α) e−βx x ≥ 0 α/β α/β2 β is average num-
ber of successes, α
is number of things

Wait time until
α-th event

Beta(α, β) Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1 0 ≤ x ≤ 1 α/(α+ β) αβ
(α+β)2(α+β+1) Usually given con-

straints
Bayesian statis-
tics

Normal e−(x−µ)2/(2σ2)
√

2πσ2
−∞ < x <∞ µ σ2 µ =expected val,

σ2 = variance
Central Limit
theorem and
applic.

χ2-distribution 1
2v/2Γ(v/2)

x
v
2−1e−

x
2 x > 0 v 2v v > 0 You use this

only really for
tricks in this
course

Pareto α(1 + x)−(α+1) α > 0 1
α−1

2
α2−3α+2 α > 0. It’s never been

stated what the
use is.

Table 1.1: Named Continuous Random Variables

Note: Γ(r) = (r − 1)!.

3



Name Mass Expected Value Variance When Used
Bernoulli pX(1) = p, pX(0) = q p pq If there is 1 success or failure.

Binomial
(
n
x

)
pxqn−x np npq If we’re measuring the amount of

successes in n trials.
Geometric qx−1p 1/p q/p2 Measuring the amount of trials

until the first success

Negative Binomial
(
x−1
r−1

)
qx−rpr r/p qr/p2 Measuring the amount of trials

until the r-th success.

Poisson e−λλx

x! λ λ Measuring the number of events
in a period.

Hypergeometric
(Mx )(N−M

n−x )
(Nn)

nMN nMN (1− M
N )N−nN−1 Measuring the number of good

things selected.

Discrete Uniform 1
N

N+1
2

N2−1
12 If everything is equally likely.

Table 1.2: Named Discrete Random Variables
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Table 1.3: Counting equations

Sampling with replacement Sampling without replacement

Order matters nr n!
(n−r)!

Order does not matter
(
n+r−1

r

) (
n
r

)

Table 1.4: Random Variable Facts

Discrete Continuous
Probability Function Mass (probability mass function;

PMF)
Density (probability density
function; PDF)

0 ≤ pX(x) ≤ 1 0 ≤ fX(x)∑
x pX(x) = 1

∫∞
−∞ fX(x)dx = 1

P (0 ≤ X ≤ 1) = P (X = 0) +
P (X = 1) if X is integer valued

P (0 ≤ X ≤ 1) =
∫ 1

0
fX(x)dx

P (X ≤ 3) 6= P (X < 3) when
P (X = 3) 6= 0

P (X ≤ 3) = P (X < 3)

cumulative distribution function
(CDF)

FX(a) = P (X ≤ a) =∑
x≤a P (X = a)

Fx(a) = P (X ≤ a) =∫ a
−∞ fX(x)dx

named distributions Bernoulli, Binomial, Geometric,
Negative, Binomial, Poisson, Hy-
pergeometric, Discrete Uniform

Continuous Uniform, Exponen-
tial, Gamma, Beta, Normal

expected value E(X) =
∑
x xpX(x), E(g(X)) =∑

x g(x)pX(x)
E(X) =

∫∞
−∞ xfX(x)dx,

E(g(X)) =
∫∞
−∞ g(x)fX(x)dx

variance Var(X) = E(X2)− (E(X))2 Var(X) = E(X2)− (E(X))2

covariance Cov(X,Y) = E(XY ) −
E(X)E(Y )

Cov(X,Y) = E(XY ) −
E(X)E(Y )

Table 1.5: Continuity Correction Table

Strictly less than Subtract 0.5
Less than or equal to Add 0.5
Greater than or equal to Subtract 0.5
Strictly greater than Add 0.5

Table 1.6: Type I and Type II error

Actual Truth
Conclusion True False
True Correct Type II error
False Type I error Correct
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Table 1.7: Z-table
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
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Table 1.8: t-table
df 60.0% 66.7% 75.0% 80.0% 87.5% 90.0% 95.0% 97.5% 99.0% 99.5% 99.9%
1 0.325 0.577 1.000 1.376 2.414 3.078 6.314 12.706 31.821 63.657 318.31
2 0.289 0.500 0.816 1.061 1.604 1.886 2.920 4.303 6.965 9.925 22.327
3 0.277 0.476 0.765 0.978 1.423 1.638 2.353 3.182 4.541 5.841 10.215
4 0.271 0.464 0.741 0.941 1.344 1.533 2.132 2.776 3.747 4.604 7.173
5 0.267 0.457 0.727 0.920 1.301 1.476 2.015 2.571 3.365 4.032 5.893
6 0.265 0.453 0.718 0.906 1.273 1.440 1.943 2.447 3.143 3.707 5.208
7 0.263 0.449 0.711 0.896 1.254 1.415 1.895 2.365 2.998 3.499 4.785
8 0.262 0.447 0.706 0.889 1.240 1.397 1.860 2.306 2.896 3.355 4.501
9 0.261 0.445 0.703 0.883 1.230 1.383 1.833 2.262 2.821 3.250 4.297

10 0.260 0.444 0.700 0.879 1.221 1.372 1.812 2.228 2.764 3.169 4.144
11 0.260 0.443 0.697 0.876 1.214 1.363 1.796 2.201 2.718 3.106 4.025
12 0.259 0.442 0.695 0.873 1.209 1.356 1.782 2.179 2.681 3.055 3.930
13 0.259 0.441 0.694 0.870 1.204 1.350 1.771 2.160 2.650 3.012 3.852
14 0.258 0.440 0.692 0.868 1.200 1.345 1.761 2.145 2.624 2.977 3.787
15 0.258 0.439 0.691 0.866 1.197 1.341 1.753 2.131 2.602 2.947 3.733
16 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686
17 0.257 0.438 0.689 0.863 1.191 1.333 1.740 2.110 2.567 2.898 3.646
18 0.257 0.438 0.688 0.862 1.189 1.330 1.734 2.101 2.552 2.878 3.610
19 0.257 0.438 0.688 0.861 1.187 1.328 1.729 2.093 2.539 2.861 3.579
20 0.257 0.437 0.687 0.860 1.185 1.325 1.725 2.086 2.528 2.845 3.552
21 0.257 0.437 0.686 0.859 1.183 1.323 1.721 2.080 2.518 2.831 3.527
22 0.256 0.437 0.686 0.858 1.182 1.321 1.717 2.074 2.508 2.819 3.505
23 0.256 0.436 0.685 0.858 1.180 1.319 1.714 2.069 2.500 2.807 3.485
24 0.256 0.436 0.685 0.857 1.179 1.318 1.711 2.064 2.492 2.797 3.467
25 0.256 0.436 0.684 0.856 1.178 1.316 1.708 2.060 2.485 2.787 3.450
26 0.256 0.436 0.684 0.856 1.177 1.315 1.706 2.056 2.479 2.779 3.435
27 0.256 0.435 0.684 0.855 1.176 1.314 1.703 2.052 2.473 2.771 3.421
28 0.256 0.435 0.683 0.855 1.175 1.313 1.701 2.048 2.467 2.763 3.408
29 0.256 0.435 0.683 0.854 1.174 1.311 1.699 2.045 2.462 2.756 3.396
30 0.256 0.435 0.683 0.854 1.173 1.310 1.697 2.042 2.457 2.750 3.385
35 0.255 0.434 0.682 0.852 1.170 1.306 1.690 2.030 2.438 2.724 3.340
40 0.255 0.434 0.681 0.851 1.167 1.303 1.684 2.021 2.423 2.704 3.307
45 0.255 0.434 0.680 0.850 1.165 1.301 1.679 2.014 2.412 2.690 3.281
50 0.255 0.433 0.679 0.849 1.164 1.299 1.676 2.009 2.403 2.678 3.261
55 0.255 0.433 0.679 0.848 1.163 1.297 1.673 2.004 2.396 2.668 3.245
60 0.254 0.433 0.679 0.848 1.162 1.296 1.671 2.000 2.390 2.660 3.232
∞ 0.253 0.431 0.674 0.842 1.150 1.282 1.645 1.960 2.326 2.576 3.090
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Table 1.9: Chi-Squared Percentage Points

ν 0.1% 0.5% 1.0% 2.5% 5.0% 10.0% 12.5% 20.0% 25.0% 33.3% 50.0%
1 0.000 0.000 0.000 0.001 0.004 0.016 0.025 0.064 0.102 0.186 0.455
2 0.002 0.010 0.020 0.051 0.103 0.211 0.267 0.446 0.575 0.811 1.386
3 0.024 0.072 0.115 0.216 0.352 0.584 0.692 1.005 1.213 1.568 2.366
4 0.091 0.207 0.297 0.484 0.711 1.064 1.219 1.649 1.923 2.378 3.357
5 0.210 0.412 0.554 0.831 1.145 1.610 1.808 2.343 2.675 3.216 4.351
6 0.381 0.676 0.872 1.237 1.635 2.204 2.441 3.070 3.455 4.074 5.348
7 0.598 0.989 1.239 1.690 2.167 2.833 3.106 3.822 4.255 4.945 6.346
8 0.857 1.344 1.646 2.180 2.733 3.490 3.797 4.594 5.071 5.826 7.344
9 1.152 1.735 2.088 2.700 3.325 4.168 4.507 5.380 5.899 6.716 8.343
10 1.479 2.156 2.558 3.247 3.940 4.865 5.234 6.179 6.737 7.612 9.342
11 1.834 2.603 3.053 3.816 4.575 5.578 5.975 6.989 7.584 8.514 10.341
12 2.214 3.074 3.571 4.404 5.226 6.304 6.729 7.807 8.438 9.420 11.340
13 2.617 3.565 4.107 5.009 5.892 7.042 7.493 8.634 9.299 10.331 12.340
14 3.041 4.075 4.660 5.629 6.571 7.790 8.266 9.467 10.165 11.245 13.339
15 3.483 4.601 5.229 6.262 7.261 8.547 9.048 10.307 11.037 12.163 14.339
16 3.942 5.142 5.812 6.908 7.962 9.312 9.837 11.152 11.912 13.083 15.338
17 4.416 5.697 6.408 7.564 8.672 10.085 10.633 12.002 12.792 14.006 16.338
18 4.905 6.265 7.015 8.231 9.390 10.865 11.435 12.857 13.675 14.931 17.338
19 5.407 6.844 7.633 8.907 10.117 11.651 12.242 13.716 14.562 15.859 18.338
20 5.921 7.434 8.260 9.591 10.851 12.443 13.055 14.578 15.452 16.788 19.337
21 6.447 8.034 8.897 10.283 11.591 13.240 13.873 15.445 16.344 17.720 20.337
22 6.983 8.643 9.542 10.982 12.338 14.041 14.695 16.314 17.240 18.653 21.337
23 7.529 9.260 10.196 11.689 13.091 14.848 15.521 17.187 18.137 19.587 22.337
24 8.085 9.886 10.856 12.401 13.848 15.659 16.351 18.062 19.037 20.523 23.337
25 8.649 10.520 11.524 13.120 14.611 16.473 17.184 18.940 19.939 21.461 24.337
26 9.222 11.160 12.198 13.844 15.379 17.292 18.021 19.820 20.843 22.399 25.336
27 9.803 11.808 12.879 14.573 16.151 18.114 18.861 20.703 21.749 23.339 26.336
28 10.391 12.461 13.565 15.308 16.928 18.939 19.704 21.588 22.657 24.280 27.336
29 10.986 13.121 14.256 16.047 17.708 19.768 20.550 22.475 23.567 25.222 28.336
30 11.588 13.787 14.953 16.791 18.493 20.599 21.399 23.364 24.478 26.165 29.336
35 14.688 17.192 18.509 20.569 22.465 24.797 25.678 27.836 29.054 30.894 34.336
40 17.916 20.707 22.164 24.433 26.509 29.051 30.008 32.345 33.660 35.643 39.335
45 21.251 24.311 25.901 28.366 30.612 33.350 34.379 36.884 38.291 40.407 44.335
50 24.674 27.991 29.707 32.357 34.764 37.689 38.785 41.449 42.942 45.184 49.335
55 28.173 31.735 33.570 36.398 38.958 42.060 43.220 46.036 47.610 49.972 54.335
60 31.738 35.534 37.485 40.482 43.188 46.459 47.680 50.641 52.294 54.770 59.335
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Table 1.10: Chi-Squared Percentage Points

ν 60.0% 66.7% 75.0% 80.0% 87.5% 90.0% 95.0% 97.5% 99.0% 99.5% 99.9%
1 0.708 0.936 1.323 1.642 2.354 2.706 3.841 5.024 6.635 7.879 10.828
2 1.833 2.197 2.773 3.219 4.159 4.605 5.991 7.378 9.210 10.597 13.816
3 2.946 3.405 4.108 4.642 5.739 6.251 7.815 9.348 11.345 12.838 16.266
4 4.045 4.579 5.385 5.989 7.214 7.779 9.488 11.143 13.277 14.860 18.467
5 5.132 5.730 6.626 7.289 8.625 9.236 11.070 12.833 15.086 16.750 20.515
6 6.211 6.867 7.841 8.558 9.992 10.645 12.592 14.449 16.812 18.548 22.458
7 7.283 7.992 9.037 9.803 11.326 12.017 14.067 16.013 18.475 20.278 24.322
8 8.351 9.107 10.219 11.030 12.636 13.362 15.507 17.535 20.090 21.955 26.125
9 9.414 10.215 11.389 12.242 13.926 14.684 16.919 19.023 21.666 23.589 27.877
10 10.473 11.317 12.549 13.442 15.198 15.987 18.307 20.483 23.209 25.188 29.588
11 11.530 12.414 13.701 14.631 16.457 17.275 19.675 21.920 24.725 26.757 31.264
12 12.584 13.506 14.845 15.812 17.703 18.549 21.026 23.337 26.217 28.300 32.910
13 13.636 14.595 15.984 16.985 18.939 19.812 22.362 24.736 27.688 29.819 34.528
14 14.685 15.680 17.117 18.151 20.166 21.064 23.685 26.119 29.141 31.319 36.123
15 15.733 16.761 18.245 19.311 21.384 22.307 24.996 27.488 30.578 32.801 37.697
16 16.780 17.840 19.369 20.465 22.595 23.542 26.296 28.845 32.000 34.267 39.252
17 17.824 18.917 20.489 21.615 23.799 24.769 27.587 30.191 33.409 35.718 40.790
18 18.868 19.991 21.605 22.760 24.997 25.989 28.869 31.526 34.805 37.156 42.312
19 19.910 21.063 22.718 23.900 26.189 27.204 30.144 32.852 36.191 38.582 43.820
20 20.951 22.133 23.828 25.038 27.376 28.412 31.410 34.170 37.566 39.997 45.315
21 21.991 23.201 24.935 26.171 28.559 29.615 32.671 35.479 38.932 41.401 46.797
22 23.031 24.268 26.039 27.301 29.737 30.813 33.924 36.781 40.289 42.796 48.268
23 24.069 25.333 27.141 28.429 30.911 32.007 35.172 38.076 41.638 44.181 49.728
24 25.106 26.397 28.241 29.553 32.081 33.196 36.415 39.364 42.980 45.559 51.179
25 26.143 27.459 29.339 30.675 33.247 34.382 37.652 40.646 44.314 46.928 52.620
26 27.179 28.520 30.435 31.795 34.410 35.563 38.885 41.923 45.642 48.290 54.052
27 28.214 29.580 31.528 32.912 35.570 36.741 40.113 43.195 46.963 49.645 55.476
28 29.249 30.639 32.620 34.027 36.727 37.916 41.337 44.461 48.278 50.993 56.892
29 30.283 31.697 33.711 35.139 37.881 39.087 42.557 45.722 49.588 52.336 58.301
30 31.316 32.754 34.800 36.250 39.033 40.256 43.773 46.979 50.892 53.672 59.703
35 36.475 38.024 40.223 41.778 44.753 46.059 49.802 53.203 57.342 60.275 66.619
40 41.622 43.275 45.616 47.269 50.424 51.805 55.758 59.342 63.691 66.766 73.402
45 46.761 48.510 50.985 52.729 56.052 57.505 61.656 65.410 69.957 73.166 80.077
50 51.892 53.733 56.334 58.164 61.647 63.167 67.505 71.420 76.154 79.490 86.661
55 57.016 58.945 61.665 63.577 67.211 68.796 73.311 77.380 82.292 85.749 93.168
60 62.135 64.147 66.981 68.972 72.751 74.397 79.082 83.298 88.379 91.952 99.607
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Chapter 2

Review

Variance, Covariance, and Correlation

Definition 2.0.1. (Variance) The variance of a random variable X is the quantity

σ2
x = Var(X) = E

(
(X − µX)2

)
,

where µX = E(X) is the mean of X. Alternatively, we have

E(X2)− E(X).

Theorem 1. Let X be any random variable with expected value µX = E(X) and variance V ar(X).
Then the following hold true:
(a) V ar(X) ≥ 0.
(b) If a and b are real numbers, V ar(aX + b) = a2V ar(X).
(c) V ar(X) ≤ E(X2).

Definition 2.0.2. (Covariance) The covariance of two random variables X and Y is given by

Cov(X,Y ) = E
(
(X − µX)(Y − µY )

)
,

where µX = E(X) and µY = E(Y ).

Theorem 2. Let X, Y , and Z be three random variables. Let a and b be real numbers. Then

Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y, Z).

Note there is also a symmetry; i.e.

Cov(Z, aX + bY ) = aCov(Z,X) + bCov(Z, Y ).

Theorem 3. Let X and Y be two random variables. Then

Cov(X,Y ) = E(XY )− E(X)E(Y ).

Corollary 3.1. If X and Y are independent, then Cov(X,Y ) = 0.

Theorem 4. (a) For any random variables X and Y ,

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y ).

(c) More generally, we have

V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X,Y ).

(b) Even more generally, for any random variables X1, . . . , Xn,

V ar

(∑
i

Xi

)
=
∑
i

V ar(Xi) + 2
∑
i<j

Cov(Xi, Xj).
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Corollary 4.1. (a) If X and Y are independent, then V ar(X + Y ) = V ar(X) + V ar(Y ).
(b) If X1, . . . , Xn are independent, then V ar(

∑n
i=1Xi) =

∑n
i=1 V ar(Xi).

Definition 2.0.3. The correlation of two random variables X and Y is given by

Corr(X,Y ) =
Cov(X,Y )√
V ar(X)V ar(Y )

Joint and Conditional Probability

Definition 2.0.4. (Joint Probability Function) Let X and Y be discrete random variables. Then
their joint probability function ρX,Y , is a function from R2 to R1, defined by

ρX,Y (x, y) = P (X = x, Y = y).

Theorem 5. Let X and Y be two discrete random variables, with joint probability function ρX,Y .
Then the probability function ρX of X can be computed as

ρX =
∑
y

ρX,Y (x, y).

Similarly, for the continuous case, we have

ρX =

∫
y

ρX,Y (x, y).

Definition 2.0.5. Suppose X and Y are two discrete random variables. Then the conditional proba-
bility function of Y , given X, is the function ρY |X defined by

ρY |X(y|x) =
ρX,Y (x, y)∑
z ρX,Y (x, z)

=
ρX,Y (x, y)

ρX(x)

defined for all y ∈ R and all x with ρX(x) > 0. Likewise, for the continuous case, we have

fY |X(y|x) =
fX,Y (x, y)

fX(x)
,

which is valied for all y ∈ R and for all x such that fX(x) > 0.

Convergence

While the notes say a lot, he said in lecture that we really only care about one kind of convergence.

Definition 2.0.6. (Convergence in Probability) Let {Xn} be a sequence of random variables defined
on a sample space, Ω. We say that {Xn} is convergent in probability to a random variable X defined
on Ω iff

lim
n→∞

P (|Xn −X| > ε) = 0.

for any ε > 0.

Intuitively, if our sequence of random variables converge in probability, then the probability that our
random variable is far away from the value it converges to should be 0. This does not mean that the
values are not ”far away” from our target value, but rather this should happen essentially never.
An easy way to prove convergence in probability is using Chebychev’s Inequality.

Theorem 6. (Chebychev’s Inequality) Let X be a random variable with finite expected value µ and
finite non-zero variance σ2. Then for any real number k > 0,

P (|X − µ| ≥ kσ) ≤ 1

k2
.

11



Remark. We equivalently have

P (|X − µ| ≤ kσ) ≥ 1− 1

k2

and

P (|X − µ| ≥ ε) ≤ σ2

ε2
.

What exactly does Chebychev’s inequality say? It guarantees that, for a wide class of probability
distributions, ”nearly all” values are close to the mean. In other words, a minimum of just 75% of
values must lie within two standard deviations and 89% within three standard deviations (in contrast
to the 68-95-99.7 rule).

12
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Chapter 3

Likelihood Inference

Remark. We have something which is called the Likelihood Principle. It says that if two model and
data combinations yield equivalent likelihood functions, then inferences about the unknown parameter
must be the same.

Definition 3.0.1. Sufficient Statistic A function T defined on the sample space S is called a sufficient
statistic for the model if, whenever T (s1) = T (s2), then

L(·|s1) = c(s1, s2)L(·|s2)

for some constant c(s1, s2) > 0.

In other words, it is a sufficient statistic if the likelihood functions are proportional by a constant.

Theorem 7. (Factorization Theorem) If the density (or probability function) for a model factors as
fθ(s) = h(s)gθ(T (s)), where gθ and h are nonnegative, then T is a sufficient statistic.

This has a lot of language behind it, but you should think of this less of something super rigorous and
more as just whether or not you can separate your data function from your parameter function.

Definition 3.0.2. (Minimal sufficient statistic) A sufficient statistic T for a model is a minimal
sufficient statistic, whenever the value T (s) can be calculated once we know the likelihood function
L(·|s).

Definition 3.0.3. (Maximum likelihood estimate) We call θ̂ : S → Ω satisfying L(θ̂(s)|s) ≥ L(θ|s)
for every θ ∈ Ω is a maximum likelihood estimator, and the value θ̂(s) is called a MLE (maximum
likelihood estimate).

Theorem 8. If θ̂(s) is an MLE for the original parameterization and, if Ψ is a 1-1 (injective) function

defined on Ω, then ψ̂(s) = Ψ(θ̂(s)) is an MLE in the new parameterization.

Definition 3.0.4. (Log-likelihood function) For likelihood function L(·|s), the log-likelihood (or log-
likelihood) function l(·|s) defined on Ω is given by l(·|s) = log(L(·|s)).

Theorem 9. (Per Dr. Zhang) We will always have that ∂
∂θ l(θ|s) is the MLE, provided it exists.

Remark. If you’re not in this class, then you should check to make sure that this is a maximum by
taking the second derivative.

Definition 3.0.5. (Mean-squared error) The mean-squared error (MSE for short) of the estimator T
of ψ(θ) ∈ R is given by MSEθ(T ) = Eθ

(
(T − ψ(θ))2

)
for each θ ∈ Ω.

Theorem 10. If ψ(θ) ∈ R and T is a real-valued function defined on S such that Eθ(T ) exists, then

MSEθ(T ) = V arθ(T ) +
(
Eθ(T )− ψ(θ)

)2
.

Definition 3.0.6. (Bias) The bias in the estimator T of ψ(θ) is given by Eθ(T )−ψ(θ) whenver Eθ(T )
exists. When the bias in an estimator T is 0 for every θ, we call T an unbiased estimator of ψ, i.e., T
is unbiased whenever Eθ(T ) = ψ(θ) for every θ ∈ Ω.
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Definition 3.0.7. (Consistent)A sequence of estimates T1, T2, . . . is said to be consistent (in proba-
bility) for ψ(θ) if Tn → ψ(θ) in probability as n→∞ for every θ ∈ Ω.

Here, we see the importance of convergence in probability.

Definition 3.0.8. (Confidence Interval) An interval C(s) = (l(s), u(s)) is a γ-confidence interval for
ψ(θ) is Pθ(ψ(θ) ∈ C(s)) = Pθ(l(s) ≤ ψ(θ) ≤ u(s)) ≥ γ for every θ ∈ Ω. We refer to γ as the confidence
level of the interval.

This is just a lot of language to describe the standard confidence interval that we’re used to. In essence,
you should focus on that if we know the variance then the confidence interval is[

x̄− z(1+γ)/2

√
σ2

n
, x̄+ z(1+γ)/2

√
σ2

n

]
where γ is our confidence level and

z(1+γ)/2 = Ψ−1
(1 + γ

2

)
,

with Ψ as the CDF of N(0, 1). See the table in the first chapter for actual numbers.

Remark. Note that we do not necessarily require our data to be normal to do this. For example, if
we had (x1, . . . , xn) as a sample from a Bernoulli(θ) distribution where θ ∈ [0, 1] is unknown and we
want a γ-confidence interval for θ, then we calculate it using the following formula[

x̄− z(1+γ)/2

√
x̄(1− x̄)

n
, x̄+ z(1+γ)/2

√
x̄(1− x̄)

n

]
since, by the CLT, we have that it converges to a normal distribution as we let n→∞.

If we don’t know our variance, then we preform a t-test. Here, the formula is[
x̄− t(1+γ)/2,n−1

√
s2

n
, x̄+ t(1+γ)/2,n−1

√
s2

n

]
where t(1+γ)/2,n−1 is the quantile values of the tn−1 distribution.

Definition 3.0.9. (Margin of Error) Note that in the equations we have that they are symmetric
about x̄. We define the margin of error to be the half-length; in other words,

z(1+γ)/2

√
σ2

0

n

is the margin of error if we know the variance. If we don’t know the variance,

t(1+γ)/2,n−1

√
s2

n
.

is the margin of error.

Remark. He doesn’t seem too concerned with us knowing P-values in relation to hypotheses testing,
but I’ll include it regardless.

Two-Sided Hypotheses Testing

If we know the variance, we have that the P-value is

P = 2

[
1− Φ

(∣∣∣∣ x̄− µ0√
σ2

0/n

∣∣∣∣)
]
.

If the P -value is small, then we have evidence that x̄ is a suprising value, since this tells us that x̄ is
out in a tail of our Normal distribution. Hence, we would have evidence to reject the null-hypothesis
if this P -value is small; otherwise, we do not have evidence to reject the null hypothesis (make sure to
use this wording).
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Remark. We can do this once again with a Bernoulli sample, using the same idea as before. The
formula is

P = 2

[
1− Φ

(∣∣∣∣ √n(x̄− θ0)√
θ0(1− θ0)

∣∣∣∣)
]
.

If we do not know the variance, we then have that the P -value is

P = 2

[
1−G

(∣∣∣∣ x̄− µ0√
s2/n

∣∣∣∣;n− 1

)]
,

where G(·;n− 1) denotes the distribution of the t(n− 1) distribution.

One-Sided Hypothesis Testing

We have two cases to consider: if H0 : ψ(θ) ≤ ψ0 or H0 : ψ(θ) ≥ ψ0.
If we know the variance and H0 : ψ(θ) ≤ ψ0, we then have that our P -value is

P = 1− Φ

(
x̄− µ0√
σ2

0/n

)
.

The one-sided confidence interval is then[
x̄+ zγ

√
σ2

0/n,∞
)
.

If we know the variance and H0 : ψ(θ) ≥ ψ0, we then have that our P -value is

P = Φ

(
x̄− µ0√
σ2

0/n

)
.

The one-sided confidence interval is then(
−∞, x̄− zγ

√
σ2

0/n

]
.

We never discussed the case where we do not know the variance, but presumably it follows very
similarly.

Type I error, Type II error, Significance Level, and Power

Remark. He’s mentioned in class that power isn’t that important.

Note that Type I error is simply when we conclude H1 when in fact H0 is true, and Type II error is
when we conclude H0 when actually H1 is true. This table shows their relationship.

Table 3.1: Type I and Type II error

Actual Truth
Conclusion True False
True Correct Type II error
False Type I error Correct

15



Two-Sided Hypotheses

Assume we have H0 : µ = µ0 and H1 : µ 6= µ0, where a is a value to be determined (i.e., it’s our
confidence level). Then we have the following formulae:
Rejection Region: C = {

∣∣ x̄−µ0√
σ2
0/n

∣∣ > a}.
Type I error: P(Conclude H1|H0) = 2Φ(−a).
Type II error: P(Conclude H0|H1) =

Φ
(
a+

√
n(µ0 − µ)

σ0

)
− Φ

(
a−
√
n(µ0 − µ)

σ0

)
.
Significance Level: 2Φ(−a).

Power Function: P(Conclude H1) = 1−
(

Φ
(
a+

√
n(µ0−µ)
σ0

)
− Φ

(
a−

√
n(µ0−µ)
σ0

))
One-Sided Hypotheses

First, let’s assume we have H0 : µ ≤ µ0 and H1 : µ > µ0, where a is a value to be determined. Then
we have the following formulae:
Rejection Region: C = {x̄ ≥ a}.
Type I error: P(Conclude H1|H0) = 1− Φ

(
a−µ√
σ2
0/n

)
.

Type II error: P(Conclude H0|H1) = Φ
(

a−µ√
σ2
0/n

)
.

Power Function: P(Conclude H1) = 1− Φ
(

a−µ√
σ2
0/n

)
.

Next, let’s assume we have H0 : µ ≥ µ0 and H1 : µ < µ0, where a is a value to be determined. Then
we have the following formulae:
Rejection Region: C = {x̄ ≤ a}.
Type I error: P(Conclude H1|H0) = Φ

(
a−µ√
σ2
0/n

)
.

Type II error: P(Conclude H0|H1) = 1− Φ
(

a−µ√
σ2
0/n

)
.

Power Function: P(Conclude H1) = Φ
(

a−µ√
σ2
0/n

)
.

Inferences for the Variance

The formula for the confidence interval for variance is as follows:[
(n− 1)s2

χ2
(1+γ)/2,n−1

,
(n− 1)s2

χ2
(1−γ)/2,n−1

]
where s is our sample variance, n is our sample size, and γ is our confidence level.

Length of interval

If we want to decrease the size of our interval for our confidence interval, we can increase the population
size. In a hypothetical situation, let’s say you want a target size of 2δ. Then, in order to determine
the number of samples you would need, you would use the equation

n ≥ σ2
0

(
z(1+γ)/2

δ

)2

.

If your sample is binomial, you would then use the equation

n ≥ 1

4

(
z(1+γ)/2

δ

)2

.
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Finding the more powerful way

Recall that the power function is one minus the Type II error. If we test H0 : µ = µ0 against
H1 : µ 6= µ0 at α significance level, then we have that the power function is

β(µ) = Φ

(
− µ0 − µ√

σ2
0/n
− z(1−α)/2

)
+ Φ

(
µ0 − µ√
σ2

0/n
− z(1−α)/2

)
.

Note that if we have a preselected β0 then we can derive the formula

n ≥ σ2
0

(
z1−β0 + z(1−α)/2

µ0 − µ

)2

which guarantees that β(µ) ≤ β0 at µ.
Consider the case where x1, . . . , xn ∼ N(µ, σ2

0) with a known σ2
0 . Consider the test for

H0 : µ ≤ µ0 ↔ H1 : µ > µ0.

We can then derive the formula

n ≥ σ2
0

(
z1−β0

+ z1−α

µ− µ0

)2

.

Using this, we are able to determine how many samples we need in order to have at most a certain
power.

Moment Estimator

Definition 3.0.10. (Theoretical moment)We say that E(Xk) is the k-th theoretical moment about
the origin, and we say E

(
(X − µ)k

)
is the k-th theoretical moment about the mean.

Definition 3.0.11. (Sample moment) We say that Mk = 1
n

∑n
i=1Xi is the k-th sample moment about

the origin, and we say M∗k = 1
n

∑n
i=1(Xi − x̄)k is the k-th sample moment about the mean.

The general idea for the method is that we equate the first sample moment m1 = x̄ to the theoretical
moment E(X), and we set the second sample moment m2 = 1

n

∑n
i=1X

2
i to the second theoretical

moment E(X2), and we continue doing this until we have a series of equations for which we can solve.

Fisher Information

Definition 3.0.12. (Fischer information) The observed Fisher information is given by

Î(s) = −∂
2l(θ|s)
∂θ2

∣∣∣∣
θ=θ̂(s)

where θ̂(s) is the MLE.

Theorem 11. If certain nice qualities are satisfied (which are just regularity conditions that presumably
will always be satisfied) then you have

I(θ) = V ar(S(θ|X)) = Eθ

(
− ∂2l(θ|X)

∂θ2

)
.

Remark. Note the X in the function l(θ|X). This means you only have to find the loglikelihood
function for a single value x rather than a sampling of i.i.d x1, . . . , xn. This can simplify a lot of
calculation.

Corollary 11.1. Under i.i.d sampling from a model with Fisher information I(θ), the Fisher infor-
mation for a sample of size n is given by nI(θ).

Remark. Using the Theorem and the Corollary, we can find the Fisher information for one point
and simply multiply the result by n, rather than having to do the calculation for an i.i.d sampling of
x1, . . . , xn.
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Theorem 12. Let x1, . . . , xn be i.i.d fθ(x). Let

I(θ) = Eθ

[(
∂log(fθ(x))

∂θ

)2
]

= −Eθ

[
∂2log(fθ(x))

∂θ2

]

be the Fisher information (the variance of the MLE). Then the MLE θ̂ satisfies

√
n(θ̂ − θ0)

D−→ N(0, I−1(θ0)).

Theorem 13. (Delta Theorem) Let g be a smooth function (it has continuous derivatives). If θ is
univariate, then √

n[g(θ̂)− g(θ)]
D−→ N(0, I−1(θ)[g′(θ)]2).

If θ is multivariate, we have

√
n[g(θ̂)− g(θ)]

D−→ N(0,OT g(θ)I−1(θ)Og(θ)).

18



Chapter 4

Bayesian Inference

Remark. It is important to remember that the probabilities prescribed by the prior represent beliefs.
They do not in general correspond to long-run frequencies, although they could in certain circum-
stances. These models generally come from Statisticians investigations, and in Chapter 9 one would
generally explore model checking. We assume for this chapter that all the ingredients make sense, but
in application one should take care to ensure that these must be checked if the inferences taken are to
be meaningful.

Definition 4.0.1. (Prior Predictive Distribution) If the data is continuous, we define the prior pre-
dictive distribution to be

m(s) =

∫
Ω

π(θ)fθ(s)dθ.

If the data is discrete, we replace the integral by a sum to get

m(s) =
∑
Ω

π(θ)fθ(s).

Definition 4.0.2. (Prior Density) Since θ is a random variable, we provide a prior density for θ ∈ Θ,
say π(θ). If ∫

Θ

π(θ)dθ = 1,

then the prior is proper. If ∫
Θ

π(θ)dθ =∞,

then the prior is improper.

Definition 4.0.3. (Posterior Distribution) The posterior distribution of θ is the conditional distribu-
tion of θ, given s. The posterior density, or posterior probability function (whichever is relevant) is
given by

π(θ|s) =
π(θ)fθ(s)

m(s)
.

Definition 4.0.4. (MSE) Let θ̂ = δ(x) be an estimator of θ. The Bayesian method evaluates the
mean square error (MSE) based on L(δ, θ) = (δ − θ)2. The exact definition of Bayesian MSE is

E[L(δ, θ)] = E[(δ − θ)2].

Theorem 14. The best Bayesian estimator δ(x), which minimizes the Bayesian MSE, is δ(x) =
E(θ|x), which is the posterior mean.
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Credible Intervals

Assuming there is one maximum of q(θ|x). The (1− α) Bayesian credible interval [l, u] for θ satisfies∫ u

l

q(θ|x) = 1− α

and
{θ ∈ [l, u]} = {q(θ|x) ≥ c}

for some c > 0.

Hypothesis Testing and Bayes Factors

To test
ψ(θ) = ψ0,

one can study the posterior probability

Q(ψ(θ) = ψ0|x).

For example, one can test
H0 : θ ≤ θ0 ↔ H1 : θ > θ0

by looking at ∫ θ0

−∞
q(θ|x)dθ.

Definition 4.0.5. (Bayes Factors) The Bayesian factor BFH0
in favor of the hypothesis H0 : φ(θ) = φ0

is defined to be the ratio of the posterior odds in favor of H0,

BFH0
=

(
Q(ψ(θ) = ψ0|x)

1−Q(ψ(θ) = ψ0|x)

)/(
Π(ψ(θ) = ψ0)

1−Π(ψ(θ) = ψ0)

)
.

Remark. I believe he said Credible Intervals and Hypothesis Testing and Bayes Factors would not be
on the final.
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Chapter 5

Homework Exercises and Solutions

Review

Homework 1

Question. (2.6.1) LetX ∼ Uniform[L,R]. Let Y = cX+d, where c > 0. Prove that Y ∼ Uniform[cL+
d, cR+ d].

Solution. Note that the PDF of X is

f(x) =
1

R− L
, where L < x < R

and the CDF of X is

F (X) =
x− L
R− L

, where L < x < R.

Therefore, the CDF of Y is

FY (y) = P (Y ≤ y) = P (cX + d ≤ y) = P
(
X ≤ y − d

c

)
=

y − (cL+ d)

(cR+ d)− (cL+ d)
.

Thus, we have that Y ∼ Uniform[cL+ d, cR+ d].

Question. (2.6.3) Let X ∼ N(µ, σ2). Let Y = cX + d, where c > 0. Prove that Y ∼ N(cµ+ d, c2σ2).

Solution. The CDF of X is

F (X) =

∫ x

−∞

1√
2πσ2

e
−(t−µ)2

2σ2 dt.

The CDF of Y is

FY (y) = P (cX + d ≤ y) = P (X ≤ y − d
c

)

=

∫ (y−d)/c

−∞

1√
2πσ2

e
−(t−µ)2

2σ2 dt

=

∫ y

−∞

1√
2πσ2c

e
−[t−(cµ+d)]2

2c2σ2 dt,

where s = (t− d)/c. Therefore, Y ∼ N(cµ+ d, c2σ2).

Question. (2.6.4) LetX ∼ Exponential(λ). Let Y = cX, where c > 0. Prove that Y ∼ Exponential(λ/c).

Solution. Note that the CDF of X is

F (x) = e−λx, where x > 0.

The CDF of Y = cX for a positive c is

FY (y) = P (cX ≤ y) = P (X ≤ y/c) = e−λy/c = e−(λ/c)y, where y > 0.

Therefore, Y ∼ Exponential(λ/c).

21



Question. (2.7.9) Let X and Y have joint density fX,Y (x, y) = (x2+y)/4 for 0 < x < y < 2, otherwise
fX,Y (x, y) = 0. Compute each of the following.
(a) The marginal density fX(x) for all x ∈ R.
(b) The marginal density fY (y) for all y ∈ R.
(c) P (Y < 1).

Solution. (a) We must integrate over all values of y. Hence, we have

1

4

∫ 2

x

(x2 + y)dy =
1

4

(
x2y +

y2

2

)∣∣∣∣2
x

= −x
3

4
+

3x2

8
+

1

2
= fX(x).

(b) Analogously, we integrate over all values of x. Hence, we have

1

4

∫ y

0

(x2 + y)dx =
1

4

(
x3

3
+ xy

)∣∣∣∣y
0

=
y3

12
+
y2

4
.

(c) Since the function is continuous, we have P (Y < 1) = P (Y ≤ 1). Using part (b), we integrate from
0 to 1. Hence, ∫ 1

0

(
y3

12
+
y2

4

)
dy =

5

48
.

Question. (2.8.8) Let X and Y be jointly absolutely continuous random variables. Suppose X ∼
Exponential(2) and that P (Y > 5|X = x) = e−3x. Compute P (Y > 5).

Solution. We have P (Y > 5|X = x) = e−3x, then note that PX(x) = 2e−2x, and so P (Y > 5|X =

x) =
PX,Y (x,y>5)

2e−2x = e−3x → 2e−5x = P (X,Y > 5) and so we have P (Y > 5) =
∫∞

0
P (X,Y > 5) = 2/5.

Remark. Note that his notes ask for P (Y = 5), which seems to be a typo. He does not have the same
answer as me. He wrote

P (Y = 5) =

∫ ∞
0

P (Y = 5|X = x)2e−2xdx = 0.4.

Question. (2.8.12) Suppose that X ∼ Bernoulli(1/3) and Y ∼ Poisson(λ), with X and Y independent
and with λ > 0. Compute P (X = 1|Y = 5).

Solution. Note that we have X and Y independent, and so P (X = 1|Y = 5) = P (X = 1) = 1/3.
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Homework 2

Question. (3.1.4) Let X ∼ Bernoulli(θ1) and Y ∼ Binomial(n, θ2). Compute E(4X − 3Y ).

Solution. By linearity, we have E(4X − 3Y ) = 4E(X) − 3E(Y ). Using the properties of the distri-
butions, we have E(X) = θ1 and E(Y ) = θ2, and so E(4X − 3Y ) = 4θ1 − 3θ2.

Remark. This is the answer off of his notes. Since Y ∼ Binomial(n, θ2), then by the table one sees
that E(Y ) = nθ2. Hence, we have E(4X − 3Y ) = 4θ1 − 3nθ2.

Question. (3.1.6) Let Y ∼ Binomial(100, 0.3) and Z ∼ Poisson(7). Compute E(Y + Z).

Solution. Note E(X) = 100∗0.3 = 30 and E(Z) = 7. Using the linearity again, we have E(X+Z) =
E(X) + E(Z) = 30 + 7 = 37.

Question. (3.2.5) Let X ∼ Uniform[3, 7] and Y ∼ Exponential(9). Compute E(−5X − 6Y ).

Solution. Note E(X) = 5 and E(Y ) = 1/9, and so by the linearity of expectation we have E(−5X −
6Y ) = −5E(X)− 6E(Y ) = −77/3.

Question. (3.2.7) Let Y ∼ Exponential(9) and Z ∼ Exponential(8). Compute E(Y + Z).

Solution. Note that E(Y ) = 1/9 and E(Z) = 1/8, and so by linearity of expectation we have
E(Y + Z) = E(Y ) + E(Z) = 1/9 + 1/8 = 17/72.

Question. (3.3.3) Let X and Y have joint density

fX,Y (x, y) = 4x2y + 2y5 when 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Compute Corr(X,Y).

Solution. Alright, here comes a bunch of integrals. I’m not going to show much work here.

E(X) =

∫ 1

0

∫ 1

0

x(4x2y + 2y5)dxdy = 2/3

E(X2) =

∫ 1

0

∫ 1

0

x2(4x2y + 2y5)dxdy = 23/45

E(Y ) =

∫ 1

0

∫ 1

0

y(4x2y + 2y5)dxdy = 46/63

E(Y 2) =

∫ 1

0

∫ 1

0

y2(4x2y + 2y5)dxdy = 7/12

E(XY ) =

∫ 1

0

∫ 1

0

xy(4x2y + 2y5)dxdy = 10/21.

Therefore, we can note that V (X) = 23/45− (2/3)2 = 0.0667, V (Y ) = 7/12− (46/63)2 = 0.0575, and
Cov(X,Y ) = 10/21− (2/3)(46/63) = −0.01058, and so

Corr(X,Y ) =
−0.01058√

(0.0667)(0.0575)
= −0.1708.

Question. (3.3.6) Let X, Y , and Z be three random variables, and suppose that X and Z are
independent. Prove that Cov(X + Y, Z) = Cov(Y,Z).

Solution. By a theorem, we have Cov(X+Y, Z) = Cov(X,Z) + Cov(Y, Z). Note that Cov(X,Z) = 0
since they are independent. Hence, Cov(X + Y,Z) = Cov(Y,Z).

Question. (3.3.7) Let X ∼ Exponential(3) and Y ∼ Poission(5). Assume that X and Y are indepen-
dent, and let Z = X + Y .
(a) Compute Cov(X,Z).
(b) Compute Corr(X,Z).
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Solution. (a) Note that E(X) = 1/3, V (X) = 1/9, E(Y ) = V (Y ) = 5. Then since V (X) = E(X2)−
E(X)2, we have E(X2) = V (X)+E(X)2 = 2/9, and likewise E(Y 2) = V (Y )+E(Y )2 = 30. Therefore,
E(Z) = 16/3 by linearity of expectance. Note that E(XZ) = E(X(X +Y )) = E(X2) +E(X)E(Y ) =
17/9. Therefore, Cov(X,Z) = 17/9− (16/3)(1/3) = 1/9.
(b) E(Z2) = E(X + Y )2E(X2 + 2XY + Y 2) = 2/9 + 2(1/3)(5) + 30 = 302/9. Substituting this into
the formula grants us

Corr(X,Z) =
1/9√

(1/9)(302/9)
= 0.0575.
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Chapter 6

Homework 3

Question. (6.1.3) Suppose that the lifelengths (in thousands of hours) of light bulbs are distributed
Exponential(θ), where θ > 0 is unknown. If we observe x̄ = 5.2 for a sample of 20 light bulbs, record
a representative likelihood function. Why is it that we only need to observe the sample average to
obtain a representative likelihood?

Solution. Note that, since we have Exponential(θ), then the function is fθ(x) = θe−θx. Therefore,
the likelihood function is

n∏
i=1

θe−θxi = θne−θ
∑n
i=1 xi = θne−(nθ)x̄,

and therefore x̄ is a sufficient statistic by the factorization theorem.

Question. (6.1.6) Suppose that (x1, . . . , xn) is a sample from a Bernoulli(θ) distribution, where θ ∈
[0, 1] is unknown. Determine the likelihood function and a minimal sufficient statistic for this model.

Solution. Using the same reasoning as prior, one can find that the likelihood function is

L(θ|s) =

n∏
i=1

θxi(1− θ)1−xi = θ
∑n
i=1 xi(1− θ)n−

∑n
i=1 xi .

Since the dimension of
∑n
i=1 xi is one, we have that it is a minimal sufficient statistic by a theorem

from the class notes. One can also use the fact that x̄ =
∑n
i=1 xi/n to show that x̄ is a minimal

sufficient statistic as well.

Remark. I flip between using the notation of L(θ|s) and L(θ). I’m pretty sure it’s safe to assume
that these functions are equivalent throughout the rest of the notes.

Question. (6.1.7) Suppose (x1, . . . , xn) is a sample from a Poisson(θ) distribution, where θ > 0 is
unknown. Determine the likelihood function and a minimal sufficient statistic for this model.

Solution. Using the same reasoning as prior, one finds that

L(θ|s) =

n∏
i=1

θxi

xi!
e−θ =

e−nθ∏n
i=1 xi!

θ
∑n
i=1 xi .

Also by the same reasoning as prior, we have
∑n
i=1 xi is a sufficient statistic, as well as x̄.

Question. (6.1.11) Suppose that we have a statistical model {fθ : θ ∈ [0, 1]}, and we observe x0. Is

it true that
∫ 1

0
L(θ|x0)dθ = 1? Explain why or why not.

Solution. Simply remark that fθ(x) is a PDF of x but not of θ.

Question. (6.1.12) Suppose that (x1, . . . , xn) is a sample from a Geometric(θ) distribution, where
θ ∈ [0, 1] is unkown. Determine the likelihood function and a minimal sufficient statistic for this
model.

Solution. Recall that the PMF for a Geometric distribution is pX(x) = θx(1 − θ). Therefore, the
likelihood function is

L(θ|s) =

n∏
i=1

θxi(1− θ) = (1− θ)nθ
∑n
i=1 xi .

Hence, x̄ and
∑n
i=1 xi are sufficient statistics.

Question. (6.1.14) Suppose that one statistician records a likelihood function as θ2 for θ ∈ [0, 1] while
another statistician records a likelihood function as 100θ2 for θ ∈ [0, 1]. Explain why these likelihood
functions are effectively the same.

Solution. Note that they only differ by a constant, and so by a theorem we have that they are
essentially equivalent.
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Question. (6.1.22) For the location-scale normal model, establish that the point where the likelihood
is maximized is given by (x̄, σ̂2) as defined in Example 6.1.8.

Solution. It is sufficient to show that the first-order derivative is zero and the second-order derivative
is negative. We have then that

L(µ, σ2|s) =

n∏
i=1

1√
2πσ2

e−
1

2σ2

∑n
i=1(xi−µ)2

(There are a few steps in between of algebra.)

=

(
1

2π

)n/2(
1

σ2

)n/2
e−

n
2σ2

(σ̂2+(x̄−µ)2)2 .

Note then that the loglikelihood function is

l(µ, σ2|s) = −n
2

log(2π)− n

2
log(σ2)− n

2σ2
(σ̂2 + (x̄− µ)2).

The first-order partial derivatives are

∂l(µ, σ2|s)
∂µ

=
n

σ2
(x̄− µ)

and
∂l(µ, σ2|s)
∂(σ2)

= − n

2σ2
+

nσ̂2

2(σ2)2
.

Then we obtain

l(µ, σ2|s) = logL(µ, σ2|s)
∣∣∣∣
µ=x̄

= 0

and
∂l(µ, σ2|s)
∂(σ2)

∣∣∣∣
σ2=σ̂2

= 0.

Taking the second-order partial derivative follows similarly and we see that these values are maximum
(note we could also use Dr. Zhang’s theorem from class to force this fact). Therefore, (x̄, σ̂2) is a
maximizer.
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Homework 4

Question. (6.2.3) If (x1, . . . , xn) is a sample from a Bernoulli(θ) distribution, where θ ∈ [0, 1] is
unknown, then determine the MLE of θ2.

Solution. One could derive this fact, or just note that since MLE of θ is x̄, then the MLE of θ2 is x̄2.

Question. (6.2.4) If (x1, . . . , xn) is a sample from Poission(θ) distribution, where θ ∈ (0,∞) is un-
known, then determine the MLE of θ.

Solution. Note that the loglikelihood function

l(θ) = log

( n∏
i=1

θxi

xi!
e−θ
)

= log

(
1∏n

i=1 xi!θ
∑n
i=1 xie−nθ

)

= −
n∑
i=1

log(xi!)− nx̄log(θ) + nθ.

Then,

l′(θ) = −nx̄
θ

+ n→ θ̂ = x̄.

Question. (6.2.5) If (x1, . . . , xn) is a sample from a Gamma(α0, θ) distribution, where α0 > 0 and
θ ∈ (0,∞) is unknown, then determine the MLE of θ.

Solution. Note that the PDF is

fθ(x) =
θα0xα0−1

Γ(α0)
e−θx,

where α0 is known. The loglikelihood function is then

l(θ) = log

( n∏
i=1

θα0xα0−1
i

Γ(α0)
e−θxi

)

= nα0log(θ)− nlog(Γ(α0)) + (α0 − 1)

n∑
i=1

log(xi)− nθx̄.

Note then that
l′(θ) =

nα0

θ
− nx̄→ θ̂ =

α0

x̄
.

Question. (6.2.6) Suppose that (x1, . . . , xn) is the result of independent tosses of a coinwhere we toss
until the first head occurs and where the probability of a head on a single toss is θ ∈ [0, 1). Determine
the MLE of θ.

Solution. Notice that we have a geometric distribution, and so the PMF is fθ(x) = (1− θ)x−1θ. The
loglikelihood function is then

l(θ) = log

( n∏
i=1

(1− θ)xi−1θ

)
= n(x̄− 1)log(1− θ) + nlog(θ).

We then take the derivative and get

l′(θ) = −n(x̄− 1)

1− θ
+
n

θ
→ θ̂ =

1

x̄
.

Question. (6.2.9) If (x1, . . . , xn) is a sample from a Pareto(α) distribution, where α > 0 is unkown,
then determine the MLE of α.
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Solution. Recall that the PDF is fα(x) = α(1 + x)−α−1. The loglikelihood function is then

l(α) = log

( n∏
i=1

[α(1 + xi)]
−α−1

)
= nlog(α)− (α+ 1)

n∑
i=1

log(1 + xi).

Then taking the derivative and setting it equal to 0, we have

l′(α) =
n

α
−

n∑
i=1

log(1 + xi)→ α̂ =
n∑n

i=1 log(1 + xi)
.

Question. (6.2.10) If (x1, . . . , xn) is a sample from a log-normal(τ) distribution, where τ > 0 is
unknown, then determine the MLE of τ .

Solution. Note that the PDF is

fτ (x) =
1√

2πτ2
exp

(
− log2(x)

2τ2

)
1

x
.

The loglikelihood function is then

l(τ) = log

( n∏
i=1

[
1√
2πτ

exp

(
− log2(xi)

2τ2

)
1

xi

])

= −n
2

log(2π)−
n∑
i=1

log(xi)− nlog(τ)− 1

2τ2

n∑
i=1

log2(xi).

Taking the derivative and setting it equal to 0 grants us

l′(τ) = −n
τ

+
1

τ3

n∑
i=1

log2(xi)→ τ̂ =

(
1

n

n∑
i=1

log2(xi)

)1/2

.
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Homework 5

Question. (6.2.12) If (x1, . . . , xn) is a sample from an N(µ0, σ
2) distribution, where σ2 > 0 is unkown

and µ0 is known, then determine the MLE of σ2 How does this MLE differ from the plug-in MLE of
σ2 computed using the location-scale normal model?

Solution. The loglikelihood function is

l(σ2) = −n
2

log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(xi − µ0)2.

Then

l′(σ2) = − n

2σ2
− 1

2σ4

n∑
i=1

(xi − µ0)2 → σ̂2(µ0) =
1

n

n∑
i=1

(xi − µ0)2.

Comparing it with

σ̂2 =
1

n

n∑
i=1

(xi − x̄)2,

we see that they are clearly not identical.

Question. (6.2.13) Explain why it is not possible that the function θ3exp(−(θ− 5.3)2) for θ ∈ R is a
likelihood function.

Solution. Note that it’s values can be negative for θ < 0, and so we have that it cannot be a likelihood
function.

Question. (6.2.21) If (x1, . . . , xn) is a sample from an N(µ, 1) distribution where µ ≥ 0 is unknown,
determine the MLE of µ.

Solution. The loglikelihood function is

l(µ) = −n
2

log(2π)− 1

2
[n(x̄− µ)2 +

n∑
i=1

(xi − x̄)2].

Hence, we see it is maximized at µ = x̄ if x̄ > 0 and 0 if x̄ = 0. So we have that the MLE is max(0, x̄).

Question. (6.2.22) Prove that, if θ̂(s) is the MLE for a mdoel for response s and if T is a sufficient

statistic for the model, then θ̂(s) is also the MLE for the model T (s).

Solution. For the model x = (x1, . . . , xn), the likelihood function is

L(θ|x) = h(x)gθ(T ).

If the model for T is used such that T (x1) = T (x2), then L(θ|x1) = h(x1)gθ(T ) and L(θ|x2) =

h(x2)gθ(T ), indicating they have the same maximum. Therefore, θ̂ is also the MLE for the model T .

Question. (6.2.24) If (x1, . . . , xn) is a sample from a Uniform[θ1, θ2] distribution with

Ω = {(θ1, θ2) ∈ R2 : θ1 < θ2},

determine the MLE of (θ1, θ2).

Solution. Note that the PDF is

fθ(x) =
1

θ2 − θ1
I(θ1 ≤ x ≤ θ2).

The likelihood function is

l(θ) =
1

θ2 − θ1
I(θ1 ≤ mini≤n(xi) ≤ maxi≤n(xi) ≤ θ2).

To make l(θ) large, we need to increase θ1 and decrease θ2. Hence, we have θ1 = mini≤n and θ2 =
maxi≤n.
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Homework 6

Question. (6.3.2) Suppose measurements (in centimeters) are taken using an instrument. There is
error in the measuring process, and a measurement is assumed to be distributed N(µ, σ2

0), where µ is
the exact measurement and σ2

0 > 0 is unknown. If the (n=10) measurements 4.7, 5.5, 4.4, 3.3, 4.6,
5.3, 5.2, 4.8, 5.7, 5.3 were obtained, assess the hypothesis H0 : µ = 5 and compute a 0.95-confidence
interval for µ.

Solution. We obtain x̄ = 4.88 and s2 = 0.484. Thus, the test statistic is

t =

∣∣∣∣ x̄− 5√
s2/n

∣∣∣∣ =

∣∣∣∣ 4.88− 5√
0.484/10

∣∣∣∣ = 0.5455

which is less than t0.975,9 = 2.262. Therefore, we fail to reject H0 and conclude µ = 5. The 0.95-
confidence interval for µ is

x̄± t0.975,9
s√
10

= 4.88± 2.262

√
0.484

10
= [4.38, 5.38].

Question. (6.3.3) Marks on an exam in a statistics course are assumed to be normally distributed
with unknown mean but with variance equal to 5. A sample of four students is selected, and their
marks are 52, 63, 64, 84. Assess the hypothesis H0 : µ = 60 by computing the relevant P -value and
compute a 0.95-confidence interval for the unknown µ.

Solution. We obtain x̄ = 65.75. Note that we have σ2
0 = 5, and so

z =

∣∣∣∣ x̄− 60√
σ2

0/n

∣∣∣∣ =

∣∣∣∣65.75− 60√
5/4

∣∣∣∣ = 5.14.

The P -value is 2Φ(−5.14) = 0. Thus, we reject H0. The 0.95-confidence interval for µ is

x̄± 1.96

√
5

4
= [63.56, 67.94].

Question. (6.3.4) Suppose that in Exercise 6.3.3 we drop the assumption that the population variance
is 5. Assess the hypothesis H0 : µ = 60 by computing the relevant P -value and compute a 0.95-
confidence interval for the unknown µ.

Solution. Note that s2 = 177.58, and so we have

t =

∣∣∣∣ x̄− 60√
s2/n

∣∣∣∣ =

∣∣∣∣ 65.75− 60√
177.58/4

∣∣∣∣ = 0.8630.

We have then that the P -value is 2T3(−0.863) = 0.4516. Thus, we accept H0 and conclude µ = 60.
The 0.95-confidence interval is

x̄± 3.182

√
177.58

4
= [44.55, 86.95].

Question. (6.3.6) Assume that the speed of light data in the following table is a sample from an
N(µ, σ2) distribution for some unknown values of µ and σ2. Determine a 0.99-confidence interval for
µ. Assess the null hypothesis H0 : µ = 24.

28 26 33 24 34 -44 27 16 40 -2 29
22 24 21 25 30 23 29 31 19 24 20
36 32 36 28 25 21 28 29 37 25 28
26 30 32 36 26 30 22 36 23 27 27
28 27 31 27 26 33 26 32 32 24 39
28 24 25 32 25 29 27 28 29 16 23
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Solution. We obtain x̄ = 26.21 and s2 = 115.46. The 0.99-confidence interval is

x̄± t0.995,65

√
s2

66
= 26.21± 2.654

√
115.46

66
= [22.7, 29.72].

Since the 0.99-confidence interval contains 24 at the 0.01 significance level, we fail to reject the null
hypothesis.

Question. (6.3.8) A polling firm conducts a poll to determine what proportion θ of voters in a given
population will vote in an upcoming election. A random sample of n = 250 was taken from the
population, and the proportion answering yes was 0.62. Assess the hypothesis H0 : 0.65 and construct
an approximate 0.90-confidence interval for θ.

Solution. The MLE is θ̂ = 0.62. The test statistic is

z =

∣∣∣∣ 0.62− 0.65√
0.65(1− 0.65)/250

∣∣∣∣ = 0.9945.

Then, we accept H0 : p = 0.65. In addition, we may use

z =

∣∣∣∣ 0.62− 0.65√
0.62(1− 0.62)/250

∣∣∣∣ = 0.9772.

The conclusion is consistent with the previous one. You only need to do one of these. The 0.90-
confidence interval for θ is

0.62± 1.645

√
0.62(1− 0.62)

250
= [0.5695, 0.6705].

Question. (6.3.9) A coin was tossed n = 1000 times, and the proportion of heads observed was 0.51.
Do we have evidence to conclude the coin is unfair?

Solution. Assume X ∼ Bin(1000, θ). The MLE is θ̂ = X/n = 0.51. We test H0 : θ = 0.5 against
H1 : θ 6= 0.5. The test statistic is

t =

∣∣∣∣ 0.51− 0.5

0.5(1− 0.5)/1000

∣∣∣∣ = 0.6324 < 1.96.

Thus, we accept H0 : θ = 0.5 at the 0.05 significance level. One could also instead use

t =

∣∣∣∣ 0.51− 0.5

0.51(1− 0.51)/1000

∣∣∣∣ = 0.6326 < 1.96.

Question. (6.3.10) How many times must we toss a coin to ensure that 0.95-confidence interval for
the probability of heads on a single toss has length less than 0.1, 0.05, and 0.01, respectively?

Solution. We use the formula

n ≥
(

1.96

2δ

)2

where the length of the interval is 2δ. We have then δ = 0.05, 0.025, 0.005 and obtain n = 385, n = 1537,
and n = 38416, respectively.
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Homework 7

Question. (6.3.12) Suppose a measurement on a population is assumed to be distributed N(µ, 2)
where µ ∈ R is unknown and that the size of the population is very large. A researcher wants to
determine a 0.95-confidence interval for µ that is no longer than 1. What is the minimum sample size
that will guarantee this?

Solution. The length of the 0.95-confidence interval is 2(1.96)σ0/
√
n = 5.544/

√
n. If we need

5.544/
√
n ≤ 1, then n ≥ (5.544/1)2 = 30.7. Thus, we choose n = 31.

Question. (6.3.13) Suppose (x1, . . . , xn) is a sample from Bernoulli(θ), with θ ∈ [0, 1] unknown.
(a) Show that

∑n
i=1(xi − x̄)2 = nx̄(1− x̄).

(b)If X ∼ Bernoulli(θ), then σ2 = V ar(X) = θ(1 − θ). Record the relationship between the plug-in
estimate of σ2 and that given by s2.
(c) Since s2 is an unbiased estimator of σ2, use the results in part (b) to determine the bias in the
plug-in estimate. What happens to this bias as n→∞?

Solution. (a) This is just a series of manipulations. We have

n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2
i − nx̄2 =

n∑
i=1

xi − nx̄2 = nx̄− nx̄2 = nx̄(1− x̄).

(b) The plug-in estimate of σ2 is σ̂2 = x̄(1− x̄). The estimator of σ2 based s2 is

σ̂2 =
1

n− 1

n∑
i=1

(xi − x̄)2 =
nθ̂(1− θ̂)
n− 1

=
nσ̂2

n− 1
.

(c) We have

E(σ̂2) =
n− 1

n
E(σ̂2) =

n− 1

n
σ2 =

(n− 1)θ(1− θ)
n

.

Thus,

Bias(σ̂2) =
(n− 1)θ(1− θ)

n
− θ(1− θ) =

θ(1− θ)
n

.

Question. (6.3.14) Suppose you are told that, based on some data, a 0.95-confidence interval for a
characteristic ψ(θ) is given by (1.23, 2.45). You are then asked if there is any evidence against the
hypothesis H0 : ψ(θ) = 2. State your conclusin and justify your reasoning.

Solution. Since the 95% confidence interval contains 2, we conclude H0 : ψ(θ) = 2 at 0.05 significance
level.

Question. (6.3.15) Suppose that x1 is a value from Bernoulli(θ) with θ ∈ [0, 1] unknown.
(a) Is x1 an unbiased estimator of θ
(b) Is x2

1 an unbiased estimator of θ2?

Solution. (a) E(x1) = θ and V ar(x1) = θ(1− θ). Thus, x1 is an unbiased estimator of θ.
(b) E(x2

1) = V ar(x1) + E(x1)2 = θ(1− θ) + θ62 = θ. Thus, it is not an unbiased estimator of θ2.

Question. (6.3.24) Suppose we have two unbiased estimators T1 and T2 of ψ(θ) ∈ R.
(a) Show that αT1 + (1− α)T2 is also an unbiased estimator of ψ(θ) whenever α ∈ [0, 1].
(b) If T1 and T2 are also independent, then calculate V arθ(αT1 + (1−α)T2) in terms of V arθ(T1) and
V arθ(T2).
(c) For the situation in part (b), determine the best choice of α in the sense that for this choice
V arθ(αT1 + (1− α)T2) is smallest. What is the effect on this combined estimator of T1 having a very
large variance relative to T2?
(d) Repeat parts (b) and (c) but now do not assume T1 and T2 are independent, so V arθ(αT1+(1−α)T2)
will also involve Covθ(T1, T2).
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Solution. (a) E(αT1 + (1 − α)T2) = αE(T1) + (1 − α)E(T2) = ψ(θ). Thus, αT1 + (1 − α)T2 is an
unbiased estimator for any α ∈ [0, 1].
(b) If T1 and T2 are independent, then

V ar(αT1 + (1− α)T2) = α2V ar(T1) + (1− α)2V ar(T2).

(c) Differentiating with respect to α, we obtain

∂

∂α
V ar(αT1 + (1− α)T2) = 2αV ar(T1)− 2(1− α)V ar(t2).

Let
2αV ar(T1)− 2(1− α)V ar(T2) = 0.

We obtain

αBest =
V ar(T2)

V ar(T1) + V ar(T2)
.

If V ar(T1) is much larger than V ar(T2), then α is small indiciating that we should put more weight
on T2.
(d) If T1 and T2 are not independent, then

V ar(αT1 + (1− α)T2) = α2V ar(T1) + (1− α)2V ar(T2) + 2α(1− α)Cov(T1, T2).

Differentiating α, we obtain

∂

∂α
V ar(αT1 + (1− α)T2) = 2αV ar(T1)− 2(1− α)V ar(T2) + (2− 4α)Cov(T1, T2),

implying that

αbest =
V ar(T2)− Cov(T1, T2)

V ar(T1) + V ar(T2)− 2Cov(T1, T2)
.

Question. (6.3.25) Suppose that (x1, . . . , xn) is a sample from an N(µ, σ2) distribution, where µ ∈ R
is unknown and σ2 is known. Suppose we want to make inferences about the interval ψ(µ) = (−∞, µ).
Consider the problem of finding an interval C(x1, . . . , xn) = (−∞, u(x1, . . . , xn)) that ocovers the
interval (−∞, µ) with probability at least γ. So we want u such that for every µ,

Pµ(µ ≤ u(x1, . . . , xn)) ≥ γ.

Note that (−∞, µ) ⊂ (−∞, u(x1, . . . , xn)) if and only if µ ≤ u(x1, . . . , xn), so C(x1, . . . , xn) is called
a left-sided γ-confidence interval for µ. Obtain an exact left-sided γ-confidence interval for µ using
u(x1, . . . , xn) = x̄+ k(σ0/

√
n), i.e., find the k that gives this property.

Solution. We just have a series of equations. Hence

P (µ ≤ x̄+ k(σ/
√
n)) = P (x̄ ≥ µ− k(σ/

√
n)

= 1− Φ

(
µ− (µ− kσ/

√
n)

σ/
√
n

)
= 1− Φ(k).

Thus, k = z1−γ (classical notation) or k = zγ (textbook notation).

Question. (6.3.26) Suppose that (x1, . . . , xn) is a sample from a N(µ, σ2) distribution, where µ is
unknown and σ2 is known. Suppose we want to assess the hypothesis H0 : µ ≤ µ0. Under these
circumstances, we say that the observed value x̄ is suprising if x̄ occurs in a region of low probability
for every distribution in H0. Therefore, a sensible P -value for this problem is maxµ∈H0Pµ(X̄ > x̄).
Show that this leads to the P -value 1− Φ((x̄− µ0)/(σ/

√
n)).

Solution. Since X̄ ∼ N(µ, σ2/n),

maxµ∈H0Pµ(X̄ ≥ x̄) = maxµ≤µ0(1− Φ

(
x̄− µ√
σ2/n

)
) = 1− Φ

(
x̄− µ0√
σ2/n

)
,

where the last equation holds since 1− Φ((x̄− µ)/(
√
σ2/n)) is increasing in µ.
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Homework 8

Question. (6.4.2) Determine the method of moments estimator of the population variance. Is this
estimator unbiased for the population variance? Justify your answer.

Solution. Based on the first-order moment estimation equation, we obtain µ̂ME = x̄. Based on the
second-order moment estimation equation, we obtain

µ̂2 + σ̂2 =
1

n

n∑
i=1

x2
i → σ̂2

ME =
1

n

n∑
i=1

(xi − x̄)2.

Since

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

is an unbiased estimator of σ2, σ̂2
ME is a biased estimator of σ2. Its bias

E(σ̂2
ME − σ2) =

n− 1

n
E(s2)− σ2 =

(n− 1)σ2

n
− σ2 =

σ2

n
.

Question. (6.4.3) The coefficient of variation for a population measurement with nonzero mean is
given by σ/µ, where µ is the population mean and σ is the population standard deviaton. What is
the method of moments estimate of the coefficient of variation? Prove tha the coefficient of variation
is invariant under rescalings of the distribution, i.e., under transformations of the form T (x) = cx for
some constant c > 0. It is this invariance that leads to the coefficient of variation being an appropriate
measure of sampling variability in certain problems, as it is independent of the units we are for the
measurement.

Solution. Based on the first-order moment estimation equation, we obtain µME = x̄. Based on
the second-order moment estimation equation, we obtaim σ̂2

ME =
∑n
i=1(xi − x̄)2/n. Therefore, the

moment estimator of ψ = σ/µ is ψ̂ME = (
∑n
i=1(xi − x̄)2/n)1/2/x̄. Let yi = cxi be the value derived

under rescalings of the data. Then ȳ = cx̄ and
√∑n

i=1(yi − ȳ)2 = c
√∑n

i=1(xi − x̄)2, implying that

ψ̂ME based on y1, . . . , yn is still the same as the value based on x1, . . . , xn.

Question. (6.4.5) Verify that the third moment of an N(µ, σ2) distribution is given by µ3 = µ3+3µσ2.
Because the normal distribution is specified by its first two moments, any characteristic of the normal
distribution can be estimated by simply plugging in the MLE estimates of µ and σ2. Compare the
method of moments estimator of µ3 with this plug-in MLE estimator, i.e., determine whether they are
the same or not.

Solution. Using the fact that E[(X − µ)3) = 0, we obtain

0 = E[(X − µ)3] = E(X3 − 3X2µ+ 3Xµ2 − µ3)

= E(X3) + 3µE(X2) + 3µ2E(X)− µ3

= E(X3)− 3µ(µ2 + σ2) + 3µ3 − µ3

= E(X3)− 3µσ2 − µ3.

Thus,
µ3 = E(X3) = 3µσ2 + µ3.

Therefore,

µ̂3 = 3X̄

(
1

n

n∑
i=1

(Xi − x̄)2

)
+ x̄3 = µ3 + 3µσ2.

Since the moment estimators of µ and σ2 are identical to the maximum likelihood estimators of µ and
σ2, the ME and the MLE of µ3 are identical.
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Homework 9

Question. (6.5.1) If (x1, . . . , xn) is a sample from an N(µ, σ2) distribution, where µ0 is known and
σ2 ∈ (0,∞) is unknown, determine the Fisher information.

Solution. Let θ = σ2 for notational simplicity. Then the pdf is

fθ(x) =
1√
2πθ

exp

(
− (x− µ0)2

2θ

)
.

Its logarithm is

log(fθ(x)) = −1

2
log(2π)− 1

2
log(θ)− (x− µ0)2

θ3
.

The second-order partial derivative is

∂2log(fθ(x)

∂θ2
=

1

2θ2
− (x− µ0)2

θ3
.

It follows then that the Fisher information is

I(θ) = −E
(

1

2θ2
− (x− µ0)2

θ3

)
=

1

2θ2
.

Recall that θ = σ2, and so by substitution we have

1

2θ2
=

1

2σ4
.

Recall by the theorem from the notes that we have then

nI(θ) =
n

2σ4
.

Question. (6.5.2) If (x1, . . . , xn) is a sample from a Gamma(α0, θ) distribution, where α0 is known
and θ ∈ (0,∞) is unknown, determine the Fisher information.

Solution. The PDF is

fθ(x) =
θα0xα0−1

Γ(α0)
e−θ0x.

Its logarithm is
logfθ(x) = −log(Γ(α0)) + α0log(θ) + (α0 − 1)log(x)− θx.

The second-order partial derivative is

∂2logfθ(x)

∂θ2
= −α0

θ2
.

Thus, the Fisher information is

I(θ) = −E
(
∂2log(fθ(x)

∂θ2

)
=
α0

θ2
.

Question. (6.5.3) If (x1, . . . , xn) is a sample from a Pareto(α) distribution where α > 0 is unknown,
determine the Fisher information

Solution. The logarithm of it’s PDF is

log(fα(x)) = log(α(1 + x)−(α+1)) = log(α)− (α+ 1)log(1 + x)

for 0 < x <∞. Its second-order partial derivative is

∂2log(fα(x)

∂α2
= − 1

α2
.

Thus, the Fisher information is

I(α) =
1

α2

and by the theorem from the notes we have

nI(α) =
n

α2
.
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Question. (6.5.4) Suppose the number of calls arriving at an answering service during a given hour
of hte day is Poisson(λ), where λ ∈ (0,∞) is unknown. The number of calls actually recieved during
this hour was recorded for 20 days, and the following data was obtained.

9 10 7 12 11 12 5 13 9 9
7 5 16 13 9 5 13 8 9 10

Construct an approximate 0.95-confidence interval for λ. Assess the hypothesis that this is a sample
from a Poisson(11) distribution. If you are going to decide the hypothesis is false when the P -value is
less than 0.05, then compute an approximate power for this procedure when λ = 10.

Solution. The logarithm of the PMF is

log(fλ(x) = −log(x!) + xlog(λ)− λ.

Its second-order partial derivative is

∂log(fλ(x))

∂λ2
= − x

λ2
.

The Fisher information is

E

(
∂log(fλ(x))

∂λ2

)
=
E(X)

λ2
=

1

λ
.

Using θ̂ = x̄ for the MLE, we have √
n(x̄− λ) ∼ N(0, λ).

Based on the data, we have n = 20 and x̄ = 9.65. Thus, the 95% confidence interval for λ is

9.65± 1.96

√
9.65√
20

= [8.2885, 11.0115].

To test H0 : λ = 11 against H1 : λ 6= 11, we conclude H0 since the 95% confidence interval contains
11. For power, we write the rejection region

C = {x̄ < 11− 1.96
√

11/n or x̄ > 11 + 1.96
√

11/n}

= {x̄ < 9.546 or x̄ > 12.454}.

If λ = 10, then
√
n(x̄− 10) ∼ N(0, 10) and the power is

P (x̄ ≤ C|λ = 10) = P (x̄ < 9.546) + P (x̄ > 12.454)

≈ Φ

(
9.546− 10√

10/20

)
+

(
1− Φ

(
12.454− 10√

10/20

))
= Φ(−0.64) + [1− Φ(3.47)]

= 0.2613.

Question. (6.5.5) Suppose the lifelengths in hours of lightbulbs from a manufacturing process are
known to be distributed Gamma(2, θ), where θ ∈ (0,∞) is unknown. A random sample of 27 bulbs
was taken and their lifelengths measured with the following data obtained.

336.87 2750.71 2199.44 292.99 1835.55 1385.36 2690.52
710.64 2162.01 1856.47 2225.68 3524.23 2618.51 361.68
979.54 2159.18 1908.94 1397.96 914.41 1548.48 1801.84
1016.16 1666.71 1196.42 1225.68 2422.53 753.24

Determine an approximate 0.90-confidence interval for θ.
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Solution. The logarithm of the PDF is

log(fθ(x) = log(θ2xe−θx) = 2log(θ) + log(x)− θx.

Its second-order partial derivative is

∂2log(fθ(x))

∂θ2
= − 2

θ2
→ I(θ) =

2

θ2
.

Using the MLE of θ as θ̂ = 2/x̄, we obtain

√
n(θ̂ − θ) =

√
n

(
2

x̄
− θ
)
∼ N(0, θ2/2).

Based on the data, we obtain x̄ = 1627.47 and θ̂ = 0.001229. Thus the 90% confidence interval is

θ̂ ± 1.645

√
θ̂2

2n
= 0.001229± 1.645

√
0.0012292

54
= [0.0009539, 0.001504].

Question. (6.5.7) Suppose that the incomes (measured in thousands of dollars) above $20K can be
assumed to be Pareto(α), where α > 0 is unknown for a particular population. A sample of 20 is taken
from the population and the following data obtained.

21.265 20.857 21.090 20.047 20.019 32.509 21.622 20.093
20.109 23.182 21.199 20.035 20.084 20.038 22.054 20.190
20.488 20.456 20.066 20.302

Solution. The PDF is
f(x) = α(1 + x)−(α+1).

Then,

E(X) =

∫ ∞
0

αx(1 + x)−(α+1)dx

=
1

α− 1
.

The loglikelihood function is

l(α) = nlog(α)− (α+ 1)

n∑
i=1

log(1 + xi)→ l′(α) =
n

α
−

n∑
i=1

log(1 + xi).

Thus, the MLE is

α̂ =
n∑n

i=1 log(1 + xi)
.

Based on the data, we choose xi as the values of income minus 20. We obtain n = 20 and α̂ = 1.786.
Thus, the estimate of the Fisher information is I(α̂) = 1

α̂2 . The 95% confidence interval for α is

α̂± 1.96

√
1

nI(α̂))
= 1.786± 1.96

(
1.786√

20

)
= [1.0033, 2.5687].

Using µ = E(X) = 1
α−1 , we obtain α = 1.2 if x + 25 − 20 = 5. Since 1.2 is inside the confidence

interval, we accept H0 : µ = 5.

Remark. It’s also valid if you use the original data. It should prove the 95% confdience interval as
[0.1823, 0.4666]. If mean is 25, then α = 1.04, indicating that H0 is rejected.

Question. (6.5.8) Suppose that (x1, . . . , xn) is a sample from an Exponential(θ) distribution. Con-
struct an approximate left-sided γ-confidence interval for θ.
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Solution. The loglikelihood function is

l(θ) =

n∑
i=1

log(θ)e−θxi = nlog(θ)− nx̄θ.

We obtain

l′(θ) =
n

θ
− nx̄→ θ̂ =

1

x̄
.

Then

log(fθ(x)) = log(θ)− xθ → ∂2log(fθ(x))

∂θ2
= − 1

θ2
− x→ I(θ) =

1

θ2
.

Thus, √
n(θ̂ − θ) ∼ N(0, θ2),

implying that an approximate left-sided γ confiene interval for θ is

(−∞, θ̂ + zγ θ̂/
√
n].
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Chapter 7

Homework 10

Question. (7.1.1) Suppose that S = {1, 2}, Ω = {1, 2, 3}, and the class of probability distribution for
the response s is given by the following table

s=1 s=2
f1(s) 1/2 1/2
f2(s) 1/3 2/3
f3(s) 3/4 1/4

If we use the prior π(θ) given by the table

θ=1 θ=2 θ = 3
π(θ) 1/5 2/5 2/5

then determine the posterior distribution of θ for each possible sample of size 2.

Solution. The conditional PMF is

fθ(x) = θI(x=1)(1− θ)I(x=2).

The joint PMF is
fθ(x) = θI(x1=1)+I(x2=1)(1− θ)I(x1=2)+I(x2=2)π(θj),

where π(θj) is given by π(1) = 0.2, π(2) = 0.4, and π(3) = 0.4. The marginal PMF is

m(s) =

3∑
j=1

fθ(x)π(θj).

The posterior PMF of θ is

q(θ|x) =
fθ(x)π(θ)

m(s)
.

We obtain the following table.

θ=1 θ=2 θ = 3
π(θ|s = 1) 3/16 1/4 9/16
π(θ|s = 2) 3/14 4/7 3/14

Question. (7.1.2) Suppose that we observe a sample (x1, . . . , xn) from the Bernoulli(θ) distribution
with θ ∈ [0, 1] unknown. For the prior, we take π to be equal to a Beta(α, β) density. Find the mean
and the variance of the posterior distribution.

Solution. To be explicit, note that

fθ(x) =

n∏
i=1

θxi(1− θ)1−xi = θnx̄(1− θ)n(1−x̄)

and

π(θ) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, x ∈ (0, 1).

To find the posterior distribution, we need to find
∫

Ω
fθ(x)π(θ)dθ. Hence, we have

Γ(α+ β)

Γ(α)Γ(β)

∫ ∞
0

θnx̄+α−1(1− θ)n+β−nx̄−1.

We can multiply the inside of the integral by Γ(α+n+β)
Γ(nx̄+α)Γ(n+β−nx̄) and the outside of the integral by it’s

inverse (since multiplied together this just gives one). Then we can note that the inside of the integral
is Beta(nx̄+α, n(1− x̄) +β) and so the integral over it’s domain will give us with one, leaving us with

m(s) =
Γ(nx̄+ α)Γ(n(1− x̄) + β)

Γ(α+ n+ β)

Γ(α+ β)

Γ(α)Γ(β)
.
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Hence, we have

π(θ|s) =
fθ(x)π(θ)

m(s)
,

and noting that we have a lot of cancellations, we get

Γ(α+ n+ β)

Γ(nx̄+ α)Γ(n+ β − nx̄)
θnx̄+α−1(1− θ)n−nx̄+β−1,

which is a Beta(nx̄+ α, n(1− x̄) + β) distribution.
To find the mean and variance, we simply use the formulas from the tables from Chapter 1. Hence,
we have

E(θ|x) =
nx̄+ α

n+ α+ β

and

V ar(θ|x) =
(nx̄+ α)[n(1− x̄) + β]

(n+ α+ β)2(n+ α+ β + 1)
.

Question. (7.1.4) Suppose that (x1, . . . , xn) is a sample from a Poisson(λ) distribution with λ ≥ 0
unknown. If we use the prior distribution for λ given by the Gamma(α, β) distribution, then determine
the posterior distribution of λ.

Solution. For notational simplicity, we’re going to assume λ = θ throughout. Then we have

fθ(x) =
θnx̄∏n
i=1 xi!

e−nθ.

The prior PDF is

π(θ) =
βα

Γ(α)
θα−1e−βθ.

Using a similar strategy to the last problem, we have

m(s) =
βα

Γ(α)
∏n
i=1 xi!

Γ(nx̄+ α)

(n+ β)nx̄+α

Combining this, we have that the posterior is

π(θ|s) =
(n+ β)nx̄+α

Γ(nx̄+ α)
θnx̄+α−1e−(n+β)θ,

which is the PDF of Γ(nx̄+ α, n+ β).

Question. (7.1.5) Suppose that (x1, . . . , xn) is a sample from a Uniform[0, θ] distribution with θ > 0
unknown. If the prior distribution of θ is given by Gamma(α, β), then determine the posterior density
of θ.

Solution. The PDF of X = (x1, . . . , xn) is

fθ(x) =
1

θn
I(0 ≤ x(1) ≤ x(n))I(x(1) ≤ x(n) ≤ θ),

where x(1) = mini≤n(xi) and x(n) = maxi≤n(xi). The prior PDF of θ is

π(θ) =
βα

Γ(α)
θα−1e−βθ.

Then we find that

m(s) =

∫ ∞
0

fθ(x)π(θ)dθ =
βα

Γ(α)

∫ ∞
x(n)

θα−1−ne−βθdθ.

It follows then that the posterior PDF of θ is

π(θ|s) =
θα−1−ne−βθ∫∞

x(n)
θα−1−ne−βθdθ

for θ ≥ x(n).
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Question. (7.1.9) Suppose you toss a coin and put a Uniform[0.4, 0.6] prior on θ, the probability of
getting a head on a single toss.
(a) If you toss the coin n times and obtain n heads, then determine the posterior density of θ.
(b) Suppose the true value of θ is, in fact, 0.99. Will the posterior distribution of θ ever put any
probability mass around θ = 0.99 for any sample of n?
(c) What do you conclude from part (b) about how you should choose a prior?

Solution. (a) Using T =
∑n
i=1 ∼ Bin(n, θ), the PMF of T given θ is

fθ(T ) =

(
n

T

)
θT (1− θ)n−T , 0.4 ≤ θ ≤ 0.6.

The prior PDF for θ is
π(θ) = 5, 0.4 ≤ θ ≤ 0.6.

The joint PMF-PDF of (T, θ) is

fθ(T )π(θ) =
5(n!)

T !(n− T )!
θT (1− θ)n−T .

The posterior PDF of θ is

π(θ|T ) =
θT (1− θ)n−T∫ 0.6

0.4
θT (1− θ)n−T dθ

, 0.4 ≤ θ ≤ 0.6.

(b) Since the true value is outside [0.4, 0.6], the posterior density of θ does not put any probability
mass around 0.99.
(c) The prior density must be positive in the neighborhood of the true value of θ.

Question. (7.2.10) Suppose that (x1, . . . , xn) is a sample from the Exponential(λ) distribution, where
λ > 0 is unknown and λ ∼ Gamma(α0, β0). Determine the mode of posterior distribution of λ. Also
determine the posterior expectation and posterior variance of λ.

Solution. We have
fθ(x) = θne−nx̄θ.

The prior for θ is

π(θ) =
βα0

0

Γ(α0)
θα0−1e−β0θ.

We have that the joint PDF is

fθ(x)π(θ) =
βα0

0

Γ(α0)
θn+α0−1e−θ(nx̄+β).

It follows then that

π(θ|x) =
(nx̄+ β)n+α0

Γ(n+ α0)
θn+α0−1e−θ(nx̄+β),

which one can see is the PDF of a Gamma(n+ α0, nx̄+ β). Then

E(θ|x) =
n+ α0

nx̄+ β

and

V ar(θ|x) =
n+ α0

(nx̄+ β)2
.

To compute the mode, we consider

log(π(θ|s)) = log

(
(nx̄+ β)n+α0

Γ(n+ α0)

)
+ (n+ α0 − 1)log(θ)− (nx̄+ β)θ.

Let its first-order derivative be zero. We have

n+ α0 − 1

θ
− (nx̄+ β) = 0→ θmode =

n+ α0 − 1

nx̄+ β
.

41



Practice Midterm

Question. (a) Let X1, . . . , Xn ∼ N(µ, 16) be a random sample. If n = 100 and x̄ = 3.1, then the
0,95-confidence interval for µ is (), the 0.99-confidence interval for µ is (). If we want the length of the
0.95-confidence interval to be less than or equal to 0.5, then we need n to be at least ().
(b) Suppose X1, . . . , X100 ∼ N(µ, σ2) be a random sample, with x̄ = 4 and s2 = 9. Then, then 95%
large sample confidence interval for µ is (), then 99% large sample confidence interval is (). If we want
to test

H0 : µ = 2↔ H1 : µ 6= 2,

then H0 is rejected if () at significance level α = 0.05.
(c) Let X ∼ Bin(100, p). Suppose we observed x = 32. Then the 95% confidence interval for p is ()
and the 99% confidence interval for p is (). To make the 95% confidence interval less than or equal to
0.01, we need the sample size n at least ().

Solution. (a) Note that z(1+0.95)/2 = 1.96, and so we have 3.1 ± 1.96
√

16
100 = [2.316, 3.884]. Note

z(1+0.99)/2 ≈ 2.58 (remember that we round up) and so we have 3.1 ± 2.58
√

16
100 = [2.068, 4.132].

Finally, we have 2δ = 0.5, and so using the formula n ≥ σ2

(
1.96
δ

)2

≈ 984 (remember again to round

up).
(b) Since we’re using the ”large sample” confidence interval, then we still use the z-value instead

of the t-value (since a large enough n for t is simply the z-value), and so we have 4 ± 1.96
√

9
100 =

[3.412, 4.588]. As a bonus, if we do not assume the large sample confidence interval, then we have

4± 1.984
√

9
100 = [3.4048, 4.5952]. Next, we have 4± 2.58

√
9

100 = [3.226, 4.772]. Finally, note that we

reject the null hypothesis if

∣∣∣∣ x̄−µ√
s2/100

∣∣∣∣ > 100. Plugging in the proper values, we get

∣∣∣∣ x̄−2√
s2/100

∣∣∣∣ > 1.96.

(c) Note that p̂ = 32/100 = 0.32, and σ̂2 = p̂(1 − p̂) = 0.32(1 − 0.32) = 0.2176. So, we have

0.32 ± 1.96
√

0.2176
100 = [0.2286, 0.4114]. Next, we have 0.32 ± 2.58

√
0.2176

100 = [0.19976, 0.4404]. Finally,

we have 2δ = 0.01, and so using the formula we have 1
4

(
1.96
0.005

)2

= 38416.

Question. Assume X1 ∼ N(2, 4), X2 ∼ N(3, 6) and X3 ∼ N(−3, 9).
(a) Compute P (2X1 +X2 −X3 < 16).
(b) Compute P (|2X1 −X2 −X3| < 7).
(c) Compute the density function of 2X1 +X3.

Solution. (a) Let Z ∼ 2X1 + X2 −X3. Then we have E(Z) = 2E(X1) + E(X2) − E(X3) = 10 and
V (Z) = 22V (X1) + V (X2) + V (X3) = 31. Hence, we have

P (Z < 16) = Φ

(
16− 10√

31

)
= 0.8594.

(b) Let Z2 ∼ 2X1 − X2 − X3. Then this is equivalent to asking for P (−7 < Z2 < 7). Note that
E(Z2) = 2E(X1)− E(X2)− E(X3) = 4 and V (Z) = 22V (X1) + V (X2) + V (X3) = 31. Thus we have

P (−7 < Z < 7) = P (Z < 7)− P (Z < −7) = Φ

(
7− 4√

31

)
− Φ

(
−7− 4√

31

)
= 0.6809.

Remark. This is Dr. Zhang’s answer. I seem to not be getting the same thing using the same process.
My answer is ≈ 0.7275. We had the same answer on (a), so it appears to be a typo.

(c) Let Z3 ∼ 2X1 +X3. We have E(Z3) = 2E(X1)+E(X3) = 1, and V (Z3) = 22V (X1)+V (X3) = 25.
Thus, µ = 1 and σ2 = 25, and so the density is

f(x) =
1√
2π5

exp

(
− (x− 1)2

50

)
.
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Question. Suppose X1, . . . , Xn are iid with common PDF f(x) = 2x/θ2 for 0 ≤ x ≤ θ, with some
θ > 0. Let X(n) = max(X1, . . . , Xn) be the sample maximum. Let X(1) = min(X1, . . . , Xn) be the
sample minimum.
(a) Compute the CDF and the PDF of X(n) and X(1).
(b) Compute E(X(n)) and V (X(n)).
(c) Compute P (X(n) > θ− a) for some a ∈ (0, θ) and guess the behavior of the probability for large n.

Solution. (a) Here, we have to use a trick. Let Fn and F1 be the CDF of X(n) and X(1) respectively,
and likewise fn and f1 be the PDF of X(n) and X(1). Then we have

Fn(x) = Fn(x) =

(
x2

θ2

)n
=
x2n

θ2n

and

F1(x) = 1− [1− F (x)]n = 1−
(

1− x2

θ2

)n
.

Moreover, we have

fn(x) = f ′n(x) =
2nx2n−1

θ2n

and

f1(x) = f ′1(x) = n

(
1− x2

θ2

)n−1(
− 2x

θ2

)
.

(b) By definition, we have

E(X(n)) =

∫ θ

0

x
2nx2n−1

θ2n
dx =

2n

2n+ 1
θ

and

E(X2
(n)) =

∫ θ

0

x2 2nx2n−1

θ2n
dx =

2n

2n+ 2
θ2.

Therefore, we have

V (X2
(n)) =

(
2n

2n+ 2
− (2n)2

(2n+ 1)2

)
θ2 =

2nθ2

(2n+ 2)(2n+ 1)2
.

(c) We have

P (X(n) > θ − a) = 1− Fn(θ − a) = 1− (θ − a)2n

θ2n
.

The limit of the probability goes to 1 when n→∞.

Question. Let X̄ =
∑n
i=1Xi/n.

(a) Suppose X1, . . . , Xn are iid exponential distribution of mean θ, i.e., the density is f(x) = ex/θ/θ
for x > 0, where θ > 0 is a positive parameter. By the CLT, approximately compute P (|X̄−θ| < 0.01θ
when n is 100, 10,000 and 1,000,000 respectively.
(b) Suppose Xi follows Poisson(2) distribution. Let µ and σ2 be the common mean and variance of
Xi. Then we have µ = σ2 = 2. By the CLT, approximately compute P (X̄ < 2.2) when n = 25, 31.
(Hint: use the continuity correction (0.5 shift)).

Solution. (a) First, we begin by rewriting the formula so that we have

P (|X̄ − θ| < 0.01θ) = P (−0.01θ < X̄ − θ < 0.01θ).

Dividing both sides by
√
θ2/n, we have

Φ

(
0.01θ√
θ2/n

)
− Φ

(
−0.01θ√
θ2/n

)
.

When n = 100, we have 0.0797; when n = 10, 000, the value is 0.6827; and when n = 1, 000, 000, the
value is 1.
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(b) Using the definition for n = 25, we have

P (X̄ ≤ 2.2) = P

( 25∑
i=1

Xi ≤ 55

)
= P

( 25∑
i=1

Xi ≤ 55.5

)

= P (X̄ ≤ 2.22) ≈ Φ

(
2.22− 2√

2/25

)
= 0.7816.

Likewise, for n = 31, we have

P (X̄ ≤ 2.2) = P

( 31∑
i=1

Xi ≤ 68.2

)
= P

( 31∑
i=1

Xi ≤ 68.5

)

= P (X̄ ≤ 2.2097) ≈ Φ

(
2.2097− 2√

2/31

)
= 0.7954.

Question. Suppose X1, . . . , Xn are iid Gamma(α, 1). Let µ and σ2 be the common mean and variance.
(a) Give the formulae of µ and σ2 in terms of α.
(b) Show that X̄ is an unbiased estimator of α.
(c) Give the MSE of X̄ and show that it goes to 0 as n→∞.
(d) If the data is 1.39, 1.07, 0.72, 0.91, 2.56, 2.54, 0.91, 1.13, 4.72, 2.29, compute the estimate value of α.

Solution. (a) This just follows by the tables. We have µ = α and σ2 = α.
(b) Since E(X̄) = α, we have that it is an unbiased estimator of α.
(c) Since V (X̄) = (1/n2)V (

∑n
i=1Xi) = nα/n2 = α/n, we have

MSE(X̄) = V (X̄) = α/n→ 0

as n→∞.
(d) Since µ = α = E(X), we have then that it is 1.824.

Question. Suppose X1, . . . , Xn are iid Uniform[0, θ], i.e., the common density is f(x) = 1/θ if 0 ≤
x ≤ θ. Let X(n) = max(X1, . . . , Xn).
(a) Show that X(n) is a biased estimator of θ and compute the bias and the MSE.
(b) If one wants to modify a new estimator of θ based on X(n) by multiplying a constant c so that it
is unbiased, what value of c do you suggest and find the MSE of the new estimator.
(c) Which estimator is better?

Solution. (a) The density of X(n) is fn(x) = nxn−1/θn. It induces that E(X(n)) = nθ/(n + 1) and
V (X(n)) = nθ2/[(n+ 2)(n+ 1)2]. The MSE is

MSE(X(n)) =

(
nθ

(n+ 1)
− θ
)2

+ V (X(n)) =
2θ2

(n+ 1)(n+ 2)
.

(b) It’s clear that we select c = (n+ 1)/n. In this case

MSE(cX(n)) = c2V (X(n)) =
θ2

n(n+ 2)
.

(c) Since the MSE of cX(n) is smaller, then
(
n+1
n

)
X(n) is better.

44



Midterm

Question. (a) Suppose E(X1) = 1, E(X2) = 2, V (X1) = 1.44, V (X2) = 2.56, and Cov(X1, X2) =
0.768. Let Y = 1.5X1−1.2X2. Then E(Y ) = (), V (Y ) = (), Corr(X1, X2) = (), and Cov(X1, Y ) = ().
(b) Let (X,Y ) be a bivariate random variable with joint PDF f(x, y) = 3xy2 + 2xy, 0 < x, y < 1.
Then P (X ≤ 0.8, Y ≤ 0.8) = (), E(X) = (), V (X) = (), and Cov(X,Y ) = ().
(c) Let X1, . . . , X20 be iid N(µ, 16). Assume x̄ = 4.32. Then, the 95% confidence interval for µ is ()
and the 99% confidence interval for µ is (). If we want the 99% confidence interval to be shorter than
0.5, we need the sample size n to be at least ().
(d) Let X ∼ Bin(378, p). Suppose we observed x = 249. Then the 95% confidence interval for p is ()
and the 99% confidence interval for p is (). If we want to test H0 : p = 0.5 against H1 : p 6= 0.5 at 0.05
significance level, then we () the null hypothesis.
(e) Let X1, . . . , Xn be iid with common mean µ = 1 and common variance σ2 = 0.36. Let a = P (X̄ ≤
1.02). Using the CLT, if n = 103, then a ≈ (); if n = 104, then a ≈ (); and if n = 105, then a ≈ ().

Solution. (a) By the linearity of expectance, we have E(Y ) = 1.5E(X1)−1.2E(X2) = −0.9. Since X1

and X2 are not independent, we have V (Y ) = 1.52V (X1) + 1.22V (X2) + (2)(1.5)(−1.2)Cov(X1, X2) =
4.1616. By the formula, we have Corr(X1, X2) = 0.768√

1.44∗2.56
= 0.4. Finally, Cov(X1, Y ) = Cov(X1, 1.5X1−

1.2X2) = (1.5)Cov(X1, X1)− (1.2)Cov(X1, X2) = (1.5)V (X1)− 1.2Cov(X1, X2) = 1.2384.
(b) Note that since 0 < x, y < 1, we can assume x and y are independent. Then we have P (X ≤
0.8, Y ≤ 0.8) =

∫ 0.8

0

∫ 0.8

0
3xy2+2xydxdy = 0.36864. We can then find the function fX(x) by integrating

over all values of y; hence, we have fX(x) =
∫ 1

0
3xy2 + 2xydy = 2x. Hence, we have E(X) =∫ 1

0
2x2dx = 2/3. To find V (X), we use the formula V (X) = E(X2) − E(X)2. Hence, we have

E(X2) =
∫ 1

0
2x3dx = 1/2, and so V (X) = 1/2 − (2/3)2 = 1/18. One can quickly note that x and y

are independent, and so Cov(X,Y ) = 0.
(c) Note we have n = 20 and σ2 = 16. Then by the formula we have that the 95% confidence interval

is 4.32± 1.96
√

16
20 = [2.567, 6.073]. Likewise, we have the 99% confidence interval as 4.32± 2.58

√
16
20 =

[2.012, 6.628]. Here, we have 2δ = 0.5, and so using the formula we have 16

(
2.58
0.25

)2

= 1705.

(d) Since x = 249 and n = 378, we have p̂ = 249
378 = 0.65873 . . .. Then the 95% confidence interval

for p is 0.6587 ± 1.96
√

(0.6587)(1−0.6587)
378 = [0.6109, 0.7065]. Likewise, the 99% confidence interval

for p is 0.6587 ± 2.58
√

(0.6587)(1−0.6587)
378 = [0.596, 0.722]. If we want to test H0 : p = 0.5, we have∣∣∣∣ 0.6587−0.5√

(0.6587)(1−0.6587)
378

∣∣∣∣ = 0.00387, and so we reject the null hypothesis. We could also just note that 0.5 is

not in our 95% confidence interval.

(e) Let Z = X̄−µ√
σ2/n

. Then we have P
(
Z ≤ 1.02−1√

0.36/n

)
= Φ

(
1.02−1√

0.36/n

)
. For n = 103, we have ≈ 0.8531,

for n = 104, we have ≈ 0.9996, and finaly for n = 105 we have ≈ 1.

Question. Derive the maximum likelihood estimator (MLE) in the following problems. You need to
display your entire approach (i.e., the maximum likelihood estimation).
(a) Let X1, . . . , Xn be iid distributed of Poission(θ2), θ > 0. Derive the MLE of θ.
(b) Let X1, . . . , Xn be iid distributed with N(0, θ), θ > 0. Derive the MLE of θ.
(c) Let X1, . . . , Xn be iid distributed with a common PDF fθ(x) = θ2xe−θx, x, θ > 0. Derive the MLE
of θ.
(d) Let X1, . . . , Xn be iid distributed with a common PDF fθ(x) = (θ − 1)xθ, x ∈ (0, 1) and θ > −1.
Derive the MLE of θ.

Solution. (a) We have the PDF as

fθ(xi) =
e−θ

2

θ2xi

xi!
.

It follows then that the likelihood function is

L(θ|s) =

n∏
i=1

e−θ
2

θ2xi

xi!
=
e−nθ

2

θ2
∑n
i=1 xi∏n

i=1 xi!
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and the loglikelihood function is

l(θ|s) = −nθ2 + 2

n∑
i=1

xilog(θ) + log

( n∏
i=1

xi!

)
.

Taking the derivative, we have

l′(θ|s) = −2nθ +
2
∑n
i=1 xi
θ

and setting it equal to 0 gives us
θ̂ =
√
x̄.

(b) First, let’s note that the PDF is

fθ(xi) =
1√
2π

1

θ
e−

x2i
2θ .

The likelihood function is then

L(θ|s) =

n∏
i=1

(
1

2π

)1/2(
1

θ

)1/2

e−
x2i
2θ

= (2π)−n/2(θ)−n/2e−
1
2θ

∑n
i=1 x

2
i .

Hence, the loglikelihood function is then

l(θ|s) = −n
2
log(2π)− n

2
log(θ)− 1

2θ

n∑
i=1

x2
i

and, taking the derivative and setting it equal to zero, we get

l′(θ|s) = − n

2θ
+

∑n
i=1 x

2
i

2θ2
→ θ̂ =

1

n

n∑
i=1

x2
i .

(c) We first find the likelihood function. We have

L(θ|s) =

n∏
i=1

θ2xie
−θxi = θ2ne−θ

∑n
i=1 xi

n∏
i=1

xi.

It follows then that the loglikelihood function is

l(θ|s) =

n∑
i=1

xi + 2nlog(θ)− θ
n∑
i=1

xi.

Taking it’s derivative and setting it equal to zero then gives us

l′(θ|s) =
2n

θ
−

n∑
i=1

xi → θ̂ =
2

x̄
.

So, the MLE is θ̂ = 2/x̄.
(d) We find the likelihood function to be

L(θ|s) =

n∏
i=1

(θ − 1)xθi = (θ − 1)n
n∏
i=1

xθi .

The loglikelihood is then

l(θ|s) = nlog(θ − 1) + θ

n∑
i=1

log(xi).

Taking the derivative and setting it equal to zero gives us

l′(θ|s) =
n

θ − 1
+

n∑
i=1

log(xi)→ θ̂ = 1− n∑n
i=1 log(xi)

.
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Remark. The PDF was originally fθ(x) = (θ+1)xθ; he changed it on the exam to be fθ(x) = (θ−1)xθ.

Question. The following problems are related to the concepts of bias and mean square error (MSE).

(a) Let X1, . . . , Xn be iid distributed of N(θ, 10). Compute the bias and the MSE of θ̂ = X̂.

(b) Let X ∼ Bin(n, θ). Compute the bias and the MSE of θ̂ = X/n.
(c) Let X1, . . . , Xn be iid distributed with a common PDF 3x2/θ3, 0 ≤ x ≤ θ for some θ > 0. Compute

the bias and the MSE of θ̂ = maxi≤n(Xi).

Solution. (a) We have E(X̄) = θ, and V (θ̂) = V (
∑n
i=1Xi/n) = 1/n2V (

∑n
i=1Xi) = n(10)/n2 = 10/n.

Therefore,
Bias(θ̂) = E(θ̂)− θ = 0

and
MSE(θ̂) = V (θ̂) + Bias2(θ̂) = V (θ̂) = 10/n.

(b) We have E(X) = nθ and V (X) = nθ(1− θ), E(θ̂) = θ and V (θ̂) = θ(1− θ)/n. Thus,

Bias(θ̂) = E(θ̂)− θ = 0

and

MSE(θ̂) = V (θ̂) + Bias2(θ̂) = V (θ̂) =
θ(1− θ)

n
.

(c) First, note that the CDF is x3/θ3 for some θ > 0. Then we have

F (x) = P (θ̂ ≤ x) =

n∏
i=1

P (Xi ≤ x) =

(
x3

θ3

)n
=
x3n

θ3n
.

The PDF of θ̂ is

f(x) = F ′(x) =
3nx3n−1

θ3n
.

Then,

E(θ̂) =

∫ θ

0

xf(x)dx =
3n

θ3n

∫ θ

0

x3ndx =
3nθ

3n+ 1

and

E(θ̂2) =

∫ θ

0

x2f(x)dx =
3n

θ3n

∫ θ

0

x3n+1dx =
3nθ2

(3n+ 2)(3n+ 1)2.

Thus,

V (θ̂) = E(θ̂2)− E2(θ̂) =
3nθ2

3n+ 2
−
(

3nθ

3n+ 1

)2

=
3nθ2

(3n+ 2)(3n+ 1)2
.

Thus,

Bias(θ̂) = E(θ̂)− θ =
θ

3n+ 1

and

MSE(θ̂) = V (θ̂) + Bias2(θ̂) =
2θ2

(3n+ 2)(3n+ 1)
.

Question. Let X1, . . . , X25 ∼ N(µ, 16). Consider a hypothesis testing problem for

H0 : µ ≥ 5↔ H1 : µ < 5.

Assume the rejection region is C = {X̄ ≤ 3.5}.
(a) Compute the Type I error probability at µ = 6.
(b) Compute the Type II error probability at µ = 3.
(c) Compute the significance level of the test.

47



Solution. (a) Note that X̄ ∼ N(µ, 16/25) = N(µ, 0.64). The Type I error probability at µ = 6 is

P (X̄ ≤ 3.5|µ = 6) = Φ

(
3.5− 6√

0.64

)
= Φ(−3.125) = 0.0006.

(b) The type II error probability at µ = 3 is

P (X̄ > 3.5|µ = 3) = 1− Φ

(
3.5− 3√

0.64

)
= 1− Φ(0.625) = 0.2660.

(c) The significance level of the test is

P (X̄ ≥ 3.5|µ = 5) = Φ

(
3.5− 5√

0.64

)
= Φ(−1.875) = 0.0304.
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Practice Final

Question. Fill in the blanks.
(a) Let X1 and X2 be random variables with E(X1) = E(X2) = 3, V (X1) = V (X2) = 5, and
Corr(X1, X2) = 0.3. Let Y = 2X1 + X2. Then Cov(X1, X2) = (), E(Y ) = (), V (Y ) = (), and
Cov(X2, Y ) = ().
(b) Let X ∼ Bin(n, p). If n = 100 and p̂ = X/n = 0.8, then the 95% confidence interval for p is (). If
we want the length of the 95% confidence interval for p to be less than or equal to 0.03, we need n at
least ().
(c) Let X1, . . . , Xn be iid N(µ, σ2). Then, the maximum likelihood estimator of µ is (), the maximum
likelihood estimator of σ2 is (), and the maximum likelihood estimator of µ/σ is ().
(d) Let X1, . . . , Xn be iid Uniform(θ). Then the maximum likelihood estimator of θ is (), the moment
estimator of θ is (), and the mean square error (MSE) of the moment estimator is ().

(e) Let X1, . . . , Xn be iid with common PDF fθ(x) = 1
2θ

3x2e−θx. Then, the MLE of θ is θ̂ = () and

the Fisher information is (). If n is large, the asymptotic distribution of
√
n(θ̂ − θ) is ().

Solution. (a) Recall that Corr(X1, X2) = Cov(X1,X2)√
V1V2

. Hence, Cov(X1, X2) =
√
V1V2Corr(X1, X2).

So, we have 5(0.3) = 1.5 = Cov(X1, X2). By linearity, we have E(Y ) = 2E(X1) + E(X2) = 9. Since
X1 and X2 are not independent, we have V (Y ) = 4V (X1) + V (X2) + (4)Cov(X1, X2) = 31. Finally,
we have Cov(X2, Y ) = Cov(X2, 2X1 +X2) = 2Cov(X2, X1) + V (X2) = 8.

(b) Since p̂ = 0.8, we have the 95% confidence interval is 0.8 ± 1.96
√

0.8(1−0.8)
100 = [0.7216, 0.8704].

Using the formula, we have n ≥ 1
4

(
1.96

(0.03/2)

)2 → n = 4269.

(c) We derived this in the notes. We have that the MLE of µ is X̄. The MLE of σ2 is then 1
n (
∑n
i=1(Xi−

X̄)2. Finally, we just combine these together to get x̄
((1/n)(

∑n
i=1(Xi−X̄)2))1/2

(d) This also comes from a homework problem. We have that the MLE of θ is maxi≤n(Xi). Note
that we have m1 = E(X), and E(X) = θ/2, and so we have the moment estimator is θ = 2m1 = 2X̄.
Note that the bias is Bias = E(θ) − θ = E(2X̄) − 2X̄ = 0, and so we have it is unbiased. Finally,
V (θ) = V (2X̄) = 4/n2V (

∑n
i=1Xi) = 4nθ2/12n2 = θ2/(3n).

(e) Note that the likelihood function is

L(θ|s) =

n∏
i=1

1

2
θ3x2

i e
−θxi =

θ3n

2n
e−θ

∑n
i=1 xi

n∏
i=1

x2
i .

Then we have that the loglikelihood function is

l(θ|s) = 3nlog(θ)− nlog(2)− θ
n∑
i=1

xi + log

( n∏
i=1

x2
i

)
.

The derivative of the loglikelihood function is then

l′(θ|s) =
3n

θ
−

n∑
i=1

xi → θ̂ = 3/x̄.

Now, we need to find the Fisher information. We take the second derivative to get

l′′(θ|s) = −3n

θ2
.

Thus, by definition, we have that the Fisher information is

E(−l′′(θ|x)) =
3

θ2
.

(Note that we omit the n, since what we actually derived was nI(θ).) Finally, recall that we have that

√
n(θ̂ − θ)→ N(0, I−1(θ))

and so √
n(θ̂ − θ)→ N(0, θ2/3).
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Question. Compute the following estimators of θ.
(a) Suppose Y1, . . . , Yn are iid with common density f(y) = θ2ye−θy for 0 ≤ y < ∞ and f(y) = 0 for
y < 0. Compute the maximum likelihood estimator of θ.
(b) Compute the moment estimator in (a).
(c) Suppose Y1, . . . , Yn are iid with common density f(y) = (θ + 1)yθ for 0 < y < 1 and θ > −1. Find
the moment estimator of θ.
(d) Compute the maximum likelihood estimator of θ for the problem given in (c).

Solution. (a) The likelihood function is

L(θ|s) =

n∏
i=1

θ2ye−θy = θ2ne−θ
∑n
i=1 yi

n∏
i=1

yi.

It follows then that the loglikelihood function is

l(θ|s) = 2nlog(θ)− θ
n∑
i=1

yi + log(

n∏
i=1

yi).

The derivative is then

l′(θ|s) =
2n

θ
−

n∑
i=1

yi.

Thus, setting it equal to 0, we have

θ̂ =
2

ȳ
.

(b) Note that

µ =

∫ ∞
0

yf(y)dy =

∫ ∞
0

θ2y2e−θydy =
2

θ
.

The moment estimator is obtained then as followed

ȳ = µ̂ =
2

θ̂
→ θ̂ =

2

ȳ
.

(c) Note that

µ =

∫ 1

0

yf(y)dy =

∫ 1

0

(θ + 1)yθ+1dy =
θ + 1

θ + 2
.

The moment estimator is then

ȳ = µ̂ =
θ̂ + 1

θ̂ + 2
→ θ̂ =

2ȳ − 1

1− ȳ
.

(d) The likelihood function is

L(θ|s) =

n∏
i=1

(θ + 1)yθi = (θ + 1)n
n∏
i=1

yθi .

The loglikelihood function is

l(θ|s) = nlog(θ + 1) + θ

n∑
i=1

log(yi).

The derivative is

l′(θ|s) =
n

θ + 1
+

n∑
i=1

log(yi)→ θ̂ = − n∑n
i=1 log(yi)

− 1.

Question. A medical researcher wishes to determine if a pill has the undesirable side effect of reducing
the blood pressure of the user. The study involves recording the initial blood pressures of 40 college-age
women. Suppose the data are normally distributed. After they use the pill regularly for six months,
their blood pressure are again recorder. The difference of the two measurement for each person was
recorded. The sample mean ȳ = 8.82 and the sample variance s2 = 300.92.
(a) Can you use the large-sample test for this problem? Why?
(b) Does the data indicate a significant reduction of blood pressure using a two-tailed test at level
α = 0.01.
(c) What is the p-value the test of part (a)?
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Solution. (a) This is unimportant according to Dr. Zhang. However, the answer is that since
n = 40 > 30, the sample size is large enough, and so we can use the large sample test.
(b) The test H0 : µ = 0 against H1 : µ 6= 0. The statistic is

Z =
8.82√

300.92/40
= 3.216.

Since |Z| = 3.216 > 2.58, the null hypothesis is rejected and we conclude the reduction is significant.
(c) The p-value is

2[1− Φ(3.216)] = 0.0013.

Question. A market manager wishes to determine if lemon-scneted and almond-scented dishwashing
liquids are equally likely by consumers. Out of a survey with 250 consumers interviewed, 145 prefer
the lemon-scented and 105 prefer the almond-scented.
(a) Test whether the two liquids are equally likely at level 0.01.
(b) Compute the p-value of the test in (a).
(c) Based on the p-value in (a), which conclusion can you draw if α = 0.05 and why?

Solution. (a) We need to test H0 : p = 0.5 versus H1 : p 6= 0.5. Since∣∣∣∣ p̂− 0.5√
(0.5)(1− 0.5)/250

∣∣∣∣ =
0.08

0.0316
= 2.54 < z0.005 = 2.58,

we accept H0 and say there is not significant preference between those two liquids.
(b) The p-value is 2[1− Φ(2.54)] = 0.011.
(c) Since 0.011 < 0.05 the null hypothesis is rejected if α = 0.05. In this case, we conclude they are
significantly different.

Question. Let X1, . . . , Xn ∼ Poisson(θ). The prior density of θ is

π(θ) =
βα

Γ(α)
θα−1e−βx, β > 0.

(a) Derive the marginal PMF of X1, . . . , Xn.
(b) Derive the posterior PDF of θ given X1, . . . , Xn.
(c) Under the square error loss L(δ, θ) = (δ − θ)2, derive the Bayes estimator of θ.

Solution. (a) The conditional PMF of X1, . . . , Xn given θ is

fθ(X1, . . . Xn) =
θnX̄e−nθ∏n
i=1Xi!

.

The joint PMF-PDF of X1, . . . , Xn and θ is

fθ(X1, . . . , Xn)π(θ) =
βα

Γ(α)
∏n
i=1Xi!

θnX̄+α−1e−(n+β)θ.

Integrating θ out, we obtain the marginal PDF of X1, . . . , Xn as

m(s) =
βα

Γ(α)
∏n
i=1Xi!

Γ(nX̄ + α)

(n+ β)nX̄+α
.

(b) The posterior PDF of θ is

π(θ|s) =
fθ(X1, . . . , Xn)π(θ)

m(s)
=

(n+ β)nX̄+α

Γ(nX̄ + α)
θnX̄+α−1e−(n+β)θ,

which is the PDF of Γ(nX̄ + α, n+ β).
(c) The Bayesian estimator is

θ̂Bayes =

∫ ∞
0

θπ(θ|X1, . . . , Xn)dθ =
nX̄ + α

n+ β
.

This is also the mean of Γ(nX̄ + α, n+ β).
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