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Abstract. A classic mixing time result, due to Bayer and Diaconis, is on how
many riffle shuffles are required to shuffle a deck of n cards - the required num-

ber is 3
2

log2(n). In this paper, we explore the mixing times of random walks

on various graphs using a combinatorial method called coupling. In particular,
we give upper bounds on the mixing times of certain kinds of random walks on

diagonal gluings of 2-regular graphs, repeated gluings of copies of the complete

graph of size three, certain families of 3-regular graphs, and conjecture some
possible generalizations.
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1. Introduction

When describing the mixing time of random walks, we are really discussing
what it means to be “sufficiently close to random” after a certain amount of time,
or rather how long would we need to run a Markov chain until it is within ε > 0 of
its stationary distribution. The prototypical example of this comes from shuffling
a deck. When shuffling a deck, we would like to guarantee that we have a fair deck,
or one in which all possible ordering of cards are possible. The mixing times of
various shuffles, such as the random transposition shuffle, the riffle shuffle, and top-
to-random shuffle, have all been studied and have tight bounds on their mixing times
[1]. Mixing times can, however, be studied in contexts other than card shufflings;
for example, one can ask how long it takes a random walker on a graph to be
“sufficiently random” among all possible states on the graph.

Throughout this paper, we are concerned with finding the mixing times of ran-
dom walks on some special classes of graphs. In Section 1.1 and 1.2, we outline
some of the necessary theory and notation from Markov chains and graph theory.
In Section 2, we will explore the mixing times of random walks on 2-regular graphs
glued diagonally (see Figures 3 and 4 respectively). In Section 3, we will explore
the mixing times of random walks on a graph formed by gluing copies of triangles
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(or the complete graph on three vertices) on each vertex of degree two repeated k
times (see Figure 10), as well as discuss a result on the mixing time of a random
walk on the complete graph glued repeatedly along a single vertex (see Figures 6
and 7). Finally, in Section 4, we will explore mixing times of a random walk on the
prism graph, Möbius ladder graph, and the generalized Petersen graph GP(n, k)
(see Figures 15, 16, and 19 respectively) as well as their triangulated versions (see
Figure 14), and finish by giving some possible directions for future research.

1.1. Markov Chain Theory. We first introduce some basic concepts on Markov
chains. We will be working with a discrete probability space throughout.

Definition 1.1. We call a sequence of random variables {Xi}∞i=0 on a common
state space Ω a Markov chain if it satisfies the Markov property; that is, for a
probability measure P on Ω, we have

P{Xn = y | X0 = x0, . . . , Xn−1 = xn−1} = P{Xn = y | Xn−1 = xn−1}.

Informally, this means that the probability of a future event happening depends
only on the information of the current event. Put into the context of a random
walker, if the {Xi}∞i=0 are random variables denoting the location of the random
walker, then the Markov property states that the probability of where the walker
will go in the next step depends only on where the walker is now, and not how the
walker got there.

Remark 1.2. Sometimes the indices will be dropped when referring to Markov
chains, e.g. we will write {Xi} instead of {Xi}∞i=0.

Definition 1.3. We define a transition matrix to be a matrix P such that

P (x, y) = P{Xn = y | Xn−1 = xn−1},

where Xi ∈ {Xi}∞i=0.

Proposition 1.4. We have that P t(x, y), t > 0, is the probability of going from
state x to state y in t steps.

Proof. We give a sketch of the proof here, proceeding by induction. Notice that it
holds for t = 1 by definition. We will show the case t = 2 for clarity. In this case,
we have the probability of going from a state x to a state y in two steps is the same
as going from a state x to any intermediate state z ∈ Ω in one step, and then from
state z to state y. Since it could be any intermediate state, we take a union over
these probabilities; that is,

{X2 = y | X0 = x} =
⋃
z∈Ω

{X1 = z | X0 = x} ∩ {X2 = y | X1 = z}.

Notice that {X1 = z | X0 = x} is independent of {X2 = y | X1 = z} under our
probability measure. We apply our probability measure to both sides to get

P{X2 = y | X0 = x} =
∑
z∈Ω

P{X1 = z | X0 = x}P{X2 = y | X1 = z}.

However, we can use our transition matrix notation; rewriting the right hand side,
we have

P{X2 = y | X0 = x} =
∑
z∈Ω

P (x, z)P (z, y) = P 2(x, y)

by matrix multiplication, as desired. Now, assume the statement holds for d > 0.
That is,

P{Xd = y | X0 = x} = P d(x, y).
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We want to then show the statement holds for d+ 1. However, this is analogous to
the arugment for t = 2, and so we end up with

P{Xd+1 = y | X0 = x} =
∑
z∈Ω

P{Xd+1 = y,Xd = z | X0 = x}

=
∑
z∈Ω

P d(x, z)P (z, y) = P d+1(x, y).

�

Remark 1.5. Since we have that P t(x, y) is the probability of going from x to y
in t steps, this shows that the transition matrix encodes all of the information of
the Markov chain.

Remark 1.6. Throughout, we take Ω to be the state space for our Markov chain
and P to be its transition matrix unless stated otherwise.

Definition 1.7. We say that a Markov chain is irreducible if for all x, y ∈ Ω we
have some 0 ≤ r <∞ such that P r(x, y) <∞.

In other words, it is irreducible if it is possible for the Markov chain to reach every
state from every state in a finite number of steps.

Definition 1.8. We define the period of a state x ∈ Ω to be

T (x) := gcd{t ≥ 1 | P t(x, x) > 0}.

In other words, the period is the greatest common divisor of the set of times where
x has a non-trivial probability of returning to x.

Definition 1.9. We say that a chain is aperiodic if T (x) = 1 for all x ∈ Ω, and
we say the chain is periodic otherwise.

Definition 1.10. We say that a distribution, which will be a row vector, π on Ω
is a stationary distribution if it satisfies

πP = π.

Definition 1.11. We say π̂ is a limiting distribution if it is a distribution on Ω
and

lim
t→∞

P t(x, y) = π̂(y).

The reason we care about periodicity and irreducibility is due to the following
theorem.

Theorem 1.12. If a Markov chain is irreducible and aperiodic, then it has a unique
stationary distribution which is also its limiting distribution.

Proof. This follows from Corollary 1.17 and Theorem 4.9 in [3]. �

While the proof of the above theorem is involved, we give some intuition as to
why you need these conditions. If your Markov chain was not irreducible, then that
means there are two separate components. As a result, if there even is a stationary
distribution, it will not be unique in any sense as there will be a stationary dis-
tribution for each irreducible component. Aperiodicity is important as it ensures
that our stationary distribution is the limiting distribution. Imagine the Markov
chain on the cycle Z/4Z which moves left with probability 1/2 and right with prob-
ability 1/2. We see that there is no limiting distribution, as its distribution relies
on whether or not its on an even or odd number. Thus, we really do need both
conditions for this to hold.

Throughout, we will assume all of our Markov chains will be aperiodic and
irreducible so that they will have unique stationary distributions that also are their
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limiting distributions. The stationary distribution will really be how we measure
“sufficiently random.” Taking our Markov chain to be aperiodic and irreducible, we
have that in the long run it will be close to this stationary distribution. Referring
back to the shuffling example, our stationary distribution is the uniform distribution
on all possible configurations of the deck, and so being close to the stationary
distribution means being close to having a fair deck.

We now need to formalize the notion of distance between two distributions. We
define the total variation distance between probability distributions µ and ν on
Ω to be

||µ− ν||TV = max
A⊆Ω
|µ(A)− ν(A)|.

Remark 1.13. We can equivalently define total variation distance to be

||µ− ν||TV =
1

2

∑
x∈Ω

∣∣µ(x)− ν(x)
∣∣ =

∑
x∈Ω

µ(x)≥ν(x)

(
µ(x)− ν(x)

)
.

The proof of the equivalence follows from Proposition 4.2 in [3]. A good visualiza-
tion of total variation distance can be seen in Figure 4.1 in [3].

Remark 1.14. It can be shown that total variation distance is a metric, and so
really does satisfy the intuition of distance. With the above equivalence, we also
see that it is closely related to the L1 norm.

In particular, we would like to study the position of a random walker in com-
parison to its stationary distribution. As a result, we define

d(t) := max
x∈Ω
||P t(x, ·)− π||TV

to be the distance between P t(x, ·), the random walker which is starting at x whose
position is · at time t, and π. Referring back to the example of shuffling decks,
this tells us how close our deck, starting at configuration x, is to stationarity after
t shuffles. We would like to know roughly when P t is close to π; that is, when
their total variation distance is within ε > 0. This notion makes sense as d(t) is
decreasing as t increases.

Definition 1.15. We define the mixing time to be

tmix(ε) := min{t | d(t) ≤ ε}.

Understanding the mixing time of random walks is central to our project, and
as a result we would like to be able to get bounds on the mixing time. One method
for bounding the mixing time is coupling, which we use throughout.

Definition 1.16. We define a coupling of two probability distributions µ and ν
to be a pair of random variables (X,Y ) defined on a single probability space Ω such
that ∑

y∈Ω

P{X = x, Y = y} = P{X = x} = µ(x)

and ∑
x∈Ω

P{X = x, Y = y} = P{Y = y} = ν(y).

That is, a coupling of probability distributions instills a set of rules which determine
how the two probability distributions behave relative to one another. However, if
we viewed just one probability distribution without the other, we would see that it
still satisfies being a probability distribution.
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Definition 1.17. We define a coupling of Markov chains with transition matrix
P to be a process (Xt, Yt)

∞
t=0 with the property that both {Xt}∞t=0 and {Yt}∞t=0 are

Markov chains with transition matrix P .

For example, think of the random walker starting at location x, and the same
random walker except starting at location y. Then they share a transition matrix,
P , are both Markov chains, and we can define a set of rules that each walker must
adhere to relative to the other.

Definition 1.18. Given a Markov chain on Ω with transition matrix P , we define a
Markovian coupling of two P -chains to be a Markov chain {(Xt, Yt)}∞t=0 with
state sapce Ω× Ω which satisfies, for all x, y, x′, y′

P{Xt+1 = x′ | Xt = x, Yt, y} = P (x, x′)

P{Yt+1 = y′ | Xt = x, Yt = y} = P (y, y′).

In general, we also require that if Xt = Yt for some t ≥ 0, then we have Xs = Ys
for all s ≥ t. That is, once they have coalesced, they stay coalesced.

Markovian couplings are nice in the sense that they are easy to describe. However,
Markovian couplings will not always give you the best upper bound. All couplings
in this paper will be Markovian.

We now need to connect having information on two random walkers, P t(x, ·)
and P t(y, ·), to information on the random walker compared to the stationary
distribution.

Proposition 1.19. If we define

d̄(t) := max
x,y∈Ω

||P t(x, ·)− P t(y, ·)||TV ,

then we have

d(t) ≤ d̄(t).

Proof. A proof is given in [3]. We will give a sketch here. Since π is a stationary
distribution, we have

πP = π

gives us ∑
x∈Ω

P (x, y)π(x) = π(y)

by matrix multiplication. Furthermore, we have∑
x∈Ω

P (x,A)π(x) = π(A)

for any subset A ⊆ Ω. Now, notice that

|P t(x,A)− π(A)| =

∣∣∣∣∣∣P t(x,A)−
∑
y∈Ω

P t(y,A)π(y)

∣∣∣∣∣∣ .
Since π is a probability distribution, we have∑

y∈Ω

π(y) = 1,

and so we get∣∣∣∣∣∣P t(x,A)−
∑
y∈Ω

P t(y,A)π(y)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
y∈Ω

π(y)
(
P t(x,A)− P t(y,A)

)∣∣∣∣∣∣ .
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By the triangle inequality, this is less than or equal to∑
y∈Ω

π(y)
∣∣P t(x,A)− P t(y,A)

∣∣.
This is a weighted average, and so in particular we have∑

y∈Ω

π(y)
∣∣P t(x,A)− P t(y,A)

∣∣ ≤ max
y∈Ω

∣∣P t(x,A)− P t(y,A)
∣∣.

This gives us
d(t) ≤ d̄(t).

�

We see that studying d̄(t) gives us information on d(t), which we can then use to
derive the mixing time. We can then use the following theorem to get information
on bounding d̄(t), and thus on bounding d(t).

Theorem 1.20. For any two Markov chains {Xi} and {Yi} over a common state
space Ω with X0 = x, Y0 = y, let τcouple be the time of the chains coalesce. That
is,

τcouple := min{t | Xs = Ys for all s ≥ t}.
Then

d(t) ≤ d̄(t) ≤ max
x,y∈Ω

P{τcouple > t | X0 = x, Y0 = y} ≤ max
x,y∈Ω

E(τ | X0 = x, Y0 = y)

t
.

Proof. This a consequence of Corollary 5.5 in [3] and Proposition 1.19, with the
last inequality coming from Markov’s inequality. �

We will often want to transform our complicated Markov chain to a much simpler
one. We formalize this in the definition below.

Definition 1.21. Let {Xt} be a Markov chain. Then the quotient Markov
chain {X ′t} is the corresponding Markov chain quotiented out by some equivalence
relation between states. That is, there’s a bijective function between {Xt} and
{X ′t} which preserves transition probabilities.

An example of this can be seen in the proof of Proposition 3.6. More examples
of Markov chains and couplings can be found in the Appendix (Section 5).

1.2. Graph Theory. We now introduce some concepts from graph theory.

Definition 1.22. We define a graph G = (V,E) to consist of a set of vertices V
and a set of edges E ⊆ V × V .

In other words, the vertices represent some collection of objects and the edges
represent some relation between those objects. We can visually represent graphs
by having the vertices be dots and the edges be lines between the dots.

Remark 1.23. We will be working with undirected graphs, or graphs where if
(x, y) ∈ E then (y, x) ∈ E as well. A directed graph is a graph such that (x, y) ∈
E does not imply (y, x) ∈ E. We will also, for the most part, be working with
simple graphs, or graphs that do not have any kind of self-loops. Notationally,
we have (x, x) /∈ E for all x ∈ V .

In general, undirected graphs are drawn with just lines as edges (see Figure 1), and
directed graphs are drawn with arrows for edges (see Figure 2).

Remark 1.24. Notice that a Markov chain is a weighted digraph, or a directed
graph whose edges have some sort of value, and so we graphically represent Markov
chains using directed graphs.
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0

1

2

Figure 1. The undirected graph with V = {0, 1, 2}, E =
{(0, 1), (1, 0), (1, 2), (2, 1), (0, 2), (2, 0)}.

0

1

2

Figure 2. The directed graph with V = {0, 1, 2}, E = {(0, 1), (1, 0), (0, 2)}.

Definition 1.25. If (x, y) ∈ E, we say that x and y are neighbors.

Definition 1.26. Let

N(x) := {y ∈ Ω : (x, y) ∈ E}
be the set of neighbors for some vertex x. Then we say that the degree of x is

deg(x) := |N(x)|,
or the number of neighbors it has.

Definition 1.27. Say we have a graph G. We define a simple random walk on
G to be the Markov chain with state space Ω = V and transition matrix

P (x, y) =

{
1

deg(x) if (x, y) ∈ E
0 otherwise.

In other words, a random walker will uniformly select a neighbor of the vertex
it is at and move accordingly. We note that the simple random walk on G is not
always irreducible or aperiodic. If our graph is connected, that is, there exists
some path of edges such that x can get to y for all x, y ∈ V , then the simple
random walk will be irreducible. To solve the issue of periodicity, we will make our
simple random walk lazy. To do so, we simply add a 1/2 chance to stay in place.

Definition 1.28. We have a lazy random walk if our transition matrix is then

P (x, y) =


1
2 if x = y

1
2deg(x) if (x, y) ∈ E
0 otherwise.

Definition 1.29. We say that a graph is s-regular if deg(x) = s for all x ∈ V .

Definition 1.30. We define the complete graph on n-vertices to be the graph
where every vertex is connected to every other vertex, and denote it by Kn.

Definition 1.31. If we have graphs G1 = (V1, E1) and G2 = (V2, E2), then gluing
G1 to G2 along vertices x ∈ V1 and x′ ∈ V2 involves identifying x and x′ together,
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0 1

2 3 4

5 6 7

8 9

Figure 3. Diagonal gluing with n = 4, k = 3.

and then attaching all of the edges which are connected to x and x′ to this new
vertex.

Definition 1.32. We define triangulating a graph to be replacing each vertex
with a copy of C(3) and appropriately attaching edges to corresponding vertices.
More can be seen in Section 4, as well as in Figure 14.

Definition 1.33. We define the graph metric ρ to be the function which takes
two vertices v1, v2 ∈ V and measures the distance between them; in other words,
the minimum number of edges one must take to get from one vertex to another.

2. Diagonal Gluings of 2-Regular Graphs

We first define a gluing process on 2-regular graphs. Start with a 2-regular graph
of size n, and identify two vertices v1, v2 such that ρ(v1, v2) = 2 to be the corners.
At step k = 2, glue a copy of the 2-regular graph along one of the corners, and
then identify a vertex v3 to be the vertex on the new graph such that ρ(v2, v3) = 2.
Iterate this process for each remaining k; that is, identify a vertex to be the corner
and glue along that. An example is given in Figure 3. We will use the standard
lazy random walk on this graph. In other words, we define the Markov chain on
this graph as follows:

P (x, y) =


1
4 if y ∈ N(x) and deg(x) = 2,
1
8 if y ∈ N(x) and deg(x) = 4,
1
2 if y = x,

0 otherwise.

Considering even n leads us to the following proposition.

Proposition 2.1. Fix n even and any k for the proposed structure. Let {Xi} and
{Yi} be two Markov chains with transition matrix P such that they are both lazy
random walks on the graph. We have a coupling such that if τ is the time until
they coalesce, then

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ (kn)2

2
.

In particular, we see

tmix(ε) ≤ (kn)2

2ε
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Proof. We do a sort of depth-first search approach to our coupling. Let 0 be the top
left most node (i.e. the vertex on the original graph which as at maximal distance
from the glued vertex) and define h : Ω→ {0, . . . , (kn)/2} to be the function

h(v) = ρ(v, 0).

In other words, h measures the relative ’height’ of a random walker. Let Xi and
Yi be our random walkers on this graph. We see that the maximum distance will
be (kn)/2, since the maximal distance on the 2-regular graph of size n is n/2 and
we are simply increasing this distance k times. We can divide up our vertices into
classes based on their height, and since the vertices in these corresponding height
classes will have the same transition probabilities between other height classes, we
can push this to a quotient Markov chain. Thus, we can now think of this as a
random walk on the chain {0, . . . , (kn)/2} with the transition probabilities

P (x, y) =


1
4 if y ∈ N(x) and x 6= 0 nor kn

2 ,
1
2 if y ∈ N(x) and x = 0 or kn

2 ,
1
2 if x = y,

0 otherwise.

Our coupling is now the following: since we can just use the Markov chain given
above to model where our walkers are, we couple so that they both move the same
direction. If they were to try to move in a direction that doesn’t exist at the end
points, we just have the walker wait in place. This will preserves the property that
h(Xs) ≤ h(Ys), assuming without loss of generality that Xs is closer to 0. To see
how long it takes for the walkers to coalesce, we just need to measure the maximum
expected amount of time it takes for a walker to reach 0. This follows since this is
the same as measuring how long it takes Ys to reach 0, and since h(Xs) ≤ h(Ys)
we get h(Xs) = h(Ys) = 0. Let τ ′ be the amount of time it takes a walker {Xt} to
reach 0. We set up a series of functions fj = E(τ ′ | X0 = j) such that f0 = 0,

fj =
1

4
(1 + fj−1) +

1

2
(1 + fj) +

1

4
(1 + fj+1)

for 0 < j < (kn)/2, and

f(kn)/2 =
1

2
(1 + f(kn)/2) +

1

2
(1 + f(kn)/2−1).

Claim 2.2. For 0 < j < (kn)/2,

fj = 2j +
j

j + 1
fj+1.

Proof. We proceed by induction. By substitution, we have

f1 = 2 +
1

2
f2,

and so the base case holds. Now assume Claim 2.2 holds for some 1 < k < n/2− 2.
We want to then show the induction hypothesis holds for k + 1. By the above
relations, we get

fk+1 =
1

4
(1 + fk) +

1

2
(1 + fk+1) +

1

4
(1 + fk+2).

Rearranging this, we have

fk+1 =
(3 k + 2) fk+1 + 2 (k + 1) (k + (1/2) fk+2 + 2)

4 k + 4
.

Solving this for fk+1 gives

fk+1 = 2(k + 1) +
k + 1

k + 2
fk+2
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7 8

910

11 12

Figure 4. Diagonal gluing with n = 5, k = 3.

as desired. �

Claim 2.3. With this construction, we have fi < fi+1 for all 0 ≤ i ≤ (kn)/2, and
so f(kn)/2 is the maximum over the set of fi.

Proof. It is a result of Claim 2.2 and the construction. �

With these claims, we get

f(kn)/2−1 = kn− 2 +
kn− 2

kn
f(kn)/2.

Substituting this into

f(kn)/2 =
1

2

(
1 + f(kn)/2

)
+

1

2
(1 + f(kn)/2−1

and solving gives

f(kn)/2 =
(kn)2

2
,

which gives us that

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ (kn)2

2
.

�

For odd n, the process is not as easy. The even case really allowed us to exploit
the fact that both paths leading out of the glued or corner vertex to the next glued
or corner vertex were equidistant. With odd n, we have that one of the paths
is longer than the other one. In order to remediate this, we take a much more
constructed approach. We will focus on the case of n = 5, although this procedure
can be modified for all odd n. For a visual example of the gluing procedure, see
Figure 4.

Instead of using the same transition probabilities as before, we use a modified
lazy random walk on the Markov chain.

Definition 2.4. The modified lazy random walk is the lazy random walk with
transition probabilities modified so that the stationary distribution is uniform.
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For the diagonally glued graph, the modified lazy random walk will have transi-
tion probabilities

P (x, y) =


1
8 if y ∈ N(x),
1
8

(
4− |N(x)|

)
+ 1

2 if y = x,

0 otherwise.

Proposition 2.5. We now consider n = 5. We have a coupling so that if τ is the
amount of time it takes two walkers to coalesce, then

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 24k2 − 528

25
k +

25

4
.

Furthermore,

tmix(ε) ≤ 24k2

ε
− 528

25ε
k +

25

4ε
.

Proof. We first define the coupling procedure. Take two random walkers, denoted
by {Xt} and {Yt}, and let them move randomly until they are coupled at the same
relative position on the pentagon. To be precise on same relative position, we
will need to outline a labeling procedure. For k ≥ 2, label each corner vertex by
multiples of 4 increasing. Arbitrarily choose some vertex distance 2 away from the
first corner vertex (the corner vertex we labeled as 4) to be 0. Label the vertex
adjacent to both 0 and 4 as 1. Along the other path to 4, label the vertex closest
to 0 as 1 and the vertex closest to 4 which has not been labeled as 3. Follow the
same procedure for the remaining pentagons; that is, for vertices between 4t and
4(t + 1), label the vertex distance one from both 4t and 4(t + 1) as 4t + 1, label
the vertex closest to 4t thats not labeled as 4t+ 2, and the remaining vertex on the
pentagon as 4t+ 3. Then two random walkers are on the same relative position if
the labels of the vertices they are on are in the same class modulo 4.

We will define h as in Proposition 2.1. That is,

h(v) = ρ(v, 0).

We assume again that h(Xt) ≤ h(Yt) without loss of generality. Notice, however,
we cannot do the same quotient Markov chain argument as before. This is because
vertices which are within the same height class will not necessarily have the same
transition probabilities to other vertices in other height classes. As a result, we have
to preform a different sort of procedure. Instead, we will have that the walkers will
then move in the same directions until we have h(Xt) = 0 or until h(Yt) = 4k.

From there, we shift our coupling to a different kind of coupling. This coupling
will have a few different cases: if the walkers are in the same position, they coalesce
and from then on they move the same direction; if the walkers are in the same
position relative to the pentagon (i.e., they are in the same class determined by
their distances away from both glued points), then they move together relative to
their respective pentagons; if they are in different classes, we have that they move
according to the table in Figure 5 (for simplicity, if there are not enough rows
for the corresponding paths then this means just repeat staying at the respective
vertex). For vertices beyond 7, using the labeling procedure outlined in the first
paragraph, take your vertices labels modulo 4 and proceed according to the table
(if your vertex is congruent to 0 modulo 4 and is a glued vertex, then treat it like
4).

The reason for defining the coupling procedure this way is to preserve the prop-
erty that h(Xs) ≤ h(Ys). This allows us to focus on one walker, which is simpler
than trying to focus on both. This leads us to the following proposition.
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(0,1) (0,2) (0,3) (0,4) (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

(1,1) (0,0) (1,4) (0,1) (0,0) (0,2) (0,1) (3,3) (0,1) (2,1)
(0,0) (2,2) (2,2) (0,3) (4,3) (1,3) (4,4) (2,2) (3,3) (4,4)
(2,4) (1,3) (0,3) (0,4) (1,2) (4,4) (1,3) (0,4) (2,4) (3,3)
(0,1) (0,2) - (1,5) - - (1,5) (2,3) (2,5) (3,5)

- - - (2,6) - - (1,6) - (2,6) (3,6)

(4,5) (4,6) (4,7)

(1,4) (5,7) (5,8)
(6,8) (6,6) (6,6)
(5,5) (1,6) (3,7)
(4,5) (3,4) (1,7)

- - (4,7)

Figure 5. Locations and destinations of (Xt, Yt) on the pentagon.

Claim 2.6. For the coupling described above, once Xs = 0 and Yt = 4j for
0 < j < k − 1, we get h(Xs) ≤ h(Ys) for all s ≥ t. In particular, we get Xs = Ys
once h(Ys) = 0.

Proof. We show a similar statement; that is, if h(Xk) ≤ h(Yk) for all k ≤ t, then
h(Xt+1) ≤ h(Yt+1) for all possible choices of Xt+1, Yt+1. We proceed by induction.
The base case of Xt = 0 and Yt = 4j for 0 < j < K is true. Assume that s is the
first instance where this does not hold; that is, h(Xt) ≤ h(Yt) for all t ≤ s, but
h(Xs+1) may be larger than h(Ys+1). While one would normally need to consider
many different cases, using Figure 5 and the coupling procedure outline above, we
see that the only position where h(Xt) ≤ h(Yt) but h(Xs+1) may be larger on the
first pentagon is at (4, 3) (read Xs = 4, Ys = 3). The strategy will be to work
backwards and show that it is actually impossible to reach this position from the
starting configuration.

Working backwards, we see that Xs−1 = 1 or 3 and Ys−1 = 2 or 4. If Xs−1 = 1,
then we have (1, 2) or (1, 4) as options. If the walkers are at (1, 2), we see that
they either coalesce or they go to (4, 3), and so this is a possibility. We see that
at (1, 4) they cannot reach (4, 3), and so this is fine. We see that (3, 2) results in a
contradiction, and so we ignore this case. This leaves (3, 4) as an option, but as we
can see from the table this does not result in (4, 3) and so we exclude it.

In order for Xs−1 = 1, we need Xs−2 = 0 or Xs−2 = 4, and likewise for Ys−1 =
2 we need Ys−2 = 0 or Ys−2 = 3. At (0, 0), the walkers are coalesced and so
it’s impossible to reach (1, 3). At (0, 3), we see that according to the table it is
impossible for us to move to (1, 2), and so we omit it. The case (4, 2) again results
in a contradiction. (4, 3) also results in a contradiction, since this implies that they
were at this place before s. Thus, we see that at the start pentagon it is impossible
to reach the case (4, 3).

We now consider a pentagon between two glued points. We see that we run into
the same issue. Using Figure 4, we have that Xs−1 = 8 and Ys−1 = 7 leads to a
possibility of h(Xs) > h(Ys). However, for this to happen, we would need Xs−2 = 7
or Xs−2 = 5. If Xs−2 = 7, this means that Ys−2 = 6 or Ys−2 = 8 in order to have
it at 7 at time s − 1. The case of Ys−2 = 6 immediately gives us a contradiction,
since this implies h(Ys−2) < h(Xs−2). If Ys−2 = 8 and Xs−2 = 7, then we see that
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the walkers are at (7, 8), which we treat as (3, 4). In such a case, it is impossible to
get (8, 7) on the next step.

In the other direction, if Xs−2 = 5, then we have either Ys−2 = 6 or Ys−2 = 8.
Thus, we are at either (5, 6) or (5, 8). If we’re at (5, 6), we treat it as (1, 2), and so
we see that it is possible to reach (8, 7) according to the table. If the walkers are at
(5, 8), we see that it is impossible; treating this as (1, 4), we have that they must
coalesce or we’re at (5, 7) at s− 1, which prevents this case.

We then see that in order to get Xs−2 = 5 and Ys−2 = 6, we must have either
Xs−3 = 4 or Xs−3 = 8 and Ys−3 = 7 or Ys−3 = 4. We notice that by the table, it is
impossible to reach (5, 6) from (4, 7), and so we are fine. If Xs−3 = Ys−3 = 4, then
it is also impossible, and so we’re fine in such a case. If Xs−3 = 8 and Ys−3 = 4, we
run into a contradiction and so we stop. Thus, we have to consider the case (8, 7).
But this is itself a contradiction, since we assume that it was impossible to have
reached this state prior.

Since we have that it holds for the first pentagon, and for all the glued pentagons,
the only other case to consider is at the opposite end. However, for the opposite
end, we notice that by flipping the coupling we get that Ys will always be closer to
the opposite end, giving us the same result. Thus, it holds for both end pentagons
and all other glued pentagons, and so we see that we get h(Xs) ≤ h(Ys) for all
t ≥ s. As a result, once we get h(Ys) = 0 = h(Xs), we get that they have coalesced.

�

With τ being the amount of time it takes until they coalesce, we set τ = τ1 + τ2,
where τ1 is the amount of time it takes for them to couple in their respective
pentagons and τ2 is the amount of time it takes for h(Ys) = 0. Using Gambler’s ruin
(Proposition 5.1) to bound τ1 above, we have that this is bounded by a constant,

max
x,y∈Ω

E(τ1 | X0 = x, Y0 = y) ≤ 25

4
.

The bound for τ2 is a little more difficult. Using the same labeling strategy as
outlined in Figure 4 and the prior proof, we find equations for E(τ2 | Y0 = j) where
j ≡ 1 (mod 4) and j ≡ 3 (mod 4). Let fi = E(τ2 | Y0 = i}.

Claim 2.7. Let gi for 0 < i < k + 1 be the equations for E(τ2 | Y0 = j}, j ≡ 1
(mod 4), where i here represents which pentagon we’re looking at, with the origin
corresponding to i = 1 and the final corresponding to i = k. Then we have

gi =
68 + 48(i− 2)

5
+

2i− 1

2i
f4i

for 1 < i < k and

g1 = 4 +
1

2
f4.

Likewise, let hi for 0 < i < k + 1 be the formula for E(τ2 | Y0 = j}, j ≡ 3
(mod 4), where i here represents which pentagon we’re looking at, with the origin
corresponding to i = 1 and the final corresponding to i = k. Then we have

hi =
72 + (32)(i− 2)

5
+

3i− 1

3i
f4i

for 1 < i < k and

h1 = 8 +
2

3
f4.

Proof. We see that this holds for i = 1, 2 respectively by just plugging these equa-
tions in. We preform again an inductive argument. Assuming Claim 2.7 holds for
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Figure 6. Gluing of two complete graphs along a single vertex,
with n = 4.

i again, we show that the inductive hypothesis holds for i+ 1. Notice that by the
recursive assignment we get

f4i =
1

8
(1 + gi) +

1

8
(1 + hi) +

1

8
(1 + f4i+2) +

1

8
(1 + gi+1) +

1

2
(1 + f4i),

gi+1 =
1

8
(1 + f4i) +

1

8
(1 + f4(i+1)) +

3

4
(1 + gi+1),

f4i+2 =
1

8
(1 + f4i) +

1

8
(1 + hi+1) +

3

4
(1 + f4i+2),

hi+1 =
1

8
(1 + f4i+2) +

1

8
(1 + f4(i+1)) +

3

4
(1 + hi+1).

Solving these equations then gives us the desired result, showing that Claim 2.7
indeed holds. �

Using this, we can solve for when our walker is in the opposite corner, which will
give us the maximum expected value. Doing so gives us

max
x,y∈Ω

E(τ2 | X0 = x, Y0 = y) ≤ 24k2 − 528

25
k.

Summing results together gives us

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) = max
x,y∈Ω

E(τ1+τ2 | X0 = x, Y0 = y) ≤ 24k2− 528

25
k+

25

4
.

�

Remark 2.8. The method we used to find the mixing time of the diagonally glued
pentagons is not necessarily unique to the pentagon. However, it is not clear how
to sufficiently generalize these results so we can find a mixing time for all n > 5
without manually going through and preforming the calculation. Further work
could explore this, as well as just exploring the case where we use the standard lazy
random walk. One might also want to see if there is a completely general coupling
on both n even and n odd, giving us a good way to asymptotically measure the
mixing time.

3. Gluings of Complete Graphs

Suppose we took two complete graphs of size n and glued them along a single
vertex. An example of this can be seen in Figure 6. The mixing time of this graph
is explored using strong stationary times in [3] in Example 6.5.1. We do a similar
analysis here using coupling.

Proposition 3.1. The mixing time of the lazy random walk on the graph obtained
from gluing two complete graphs along a single vertex is bounded above by

tmix(ε) ≤ 4n

ε
.

Furthermore, we see that this is actually the same if we glue k ≥ 2 complete graphs
along the same vertex.
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Figure 7. Gluing complete graphs along a single vertex, with
n = 4, k = 3.

Proof. First, couple our walkers in their respective complete graphs as we did with
the pentagon example. That is, we want them to be in the same position on their
respective graphs. Flip a fair coin and move the walkers {Xn} and {Yn} according
to the coin flip. Then the probability distribution of the walkers being on the same
spot is geometric, with probability 1/(2n) of success. Let τ1 be the amount of time
it takes for the walkers to coalesce in this setting. Then since it’s geometric, we
have

max
x,y∈Ω

E(τ1 | X0 = x, Y0 = y) ≤ 2n.

Now, we shift our coupling so that the walkers always move to the same location
on their respective graphs. We have that they coalesce when they both hit the
center node; that is, the node which all the complete graphs are glued along. The
distribution is again geometric, and again we have probability 1/(2n) of success.
Let τ2 be the amount of time it takes for the walkers to coalesce here. We get now

max
x,y∈Ω

E(τ2 | X0 = x, Y0 = y) ≤ 2n.

Now, let τ = τ1 + τ2 be the amount of time it takes for the walkers to coalesce
entirely. Using the above results, we get

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) = max
x,y∈Ω

E(τ1 + τ2 | X0 = x, Y0 = y) ≤ 4n,

giving us

tmix(ε) ≤ 4n

ε
.

Notice that this same argument works for when we have k ≥ 2 complete graphs
glued along the same vertex (see Figure 7). We have then that the total mixing
time is

tmix(ε) ≤ 4n

ε
.

�

We diverge slightly to discuss a coupling on a specific version of a tree. Consider
the tree with depth k and three possible paths leading out of its root node v∗, and
each of the non-vertex non-boundary vertices have degree 2. An example of this
can be seen in Figure 8. We would like to understand the mixing time on this.

Proposition 3.2. For the above scenario, we have

tmix ≤
3k(k + 1)

ε
.
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Figure 8. Tree with three paths of length k = 2.

Proof. First, we couple based on height. Here, height will be defined in the standard
way; that is, h(v) = ρ(v, v∗). We’ll set our transition probabilities to be

P (x, y) =



1
2 if x = y = v∗,
2
3 if x = y 6= v∗ and h(x) 6= k,
5
6 if x = y, h(x) = k,
1
6 if y ∈ N(x),

0 otherwise.

We’ll then only focus on the heights of our walkers. Again, we can push to a
quotient Markov chain, using the fact that representatives in each height class have
the same probability of moving to a representative in a different heigh class. We
can then focus on the chain {0, 1, . . . , k} with transition probabilities nearly the
same as above, except the probability of moving down from 0 is 1/2. We set the
coupling so that the walkers will move in the same direction with respect to height,
that is they either move up, down, or stay together, with the caveat that at the
root node the walker may sometimes move down while the other walker stays in
place. We notice that once the walkers coalesce, they stay coalesced.

Claim 3.3. If h(X0) ≤ h(Y0), then we have h(Xt) ≤ h(Yt) for all t ≥ 0.

Proof. Notice that based on the coupling, if h(Yt) = h(Yt−1)±1 or h(Yt) = h(Yt−1),
then h(Xt) = h(Xt−1) = ±1 or h(Xt) = h(Xt−1) as well, with the exception at
h(Xt−1) = 0. Here, we sometimes get h(Xt) = h(Xt−1)+1 while h(Yt) = h(Yt−1)±1
or h(Yt) = h(Yt−1). We will couple so that if h(Yt) increases by 1 then h(Xt) will
stay at 0, if h(Yt) stays the same then h(Xt) will decrease by 1, and otherwise
h(Xt) will stay at 0. In such a case, we have coupled the walkers so that they
either coalesce or h(Yt) > h(Xt). Therefore, we get Claim 3.3 holds, since once they
coalesce they stay coalesced and otherwise we follow the same procedure again. �

As a result of the prior claim, it’s sufficient to find out when h(Ys) = 0 to
determine when they coalesce. We then repeat the recursive argument. Let fi =
E(τ | X0 = i}. Then f0 = 0,

fj =
1

6
(1 + fj−1) +

1

6
(1 + fj+1) +

2

3
(1 + fj)

for 0 < j < k, and

fk =
1

6
(1 + fk−1) +

5

6
(1 + fk).

Claim 3.4. We have

fj = 3j +
j

j + 1
fj+1.
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Figure 9. Binary tree of depth k = 2.

Proof. Again, we see that the base case holds. Assume it holds for 0 < j < k − 1.
Then we have

fj+1 =
1

6
(1 + fj) +

1

6
(1 + fj+2) +

2

3
(1 + fj+1).

Substituting in appropriate values and solving this gives us

fj+1 = 2(j + 1) +
j + 1

j + 2
fj+2

as desired. �

Claim 3.5. We have fi < fi+1 for all 0 ≤ i < k.

Proof. It is a result of Claim 3.4 and the construction. �

We see that after substituting in the appropriate values from the above claim,
we have fk = 3k(k + 1). Combining our claims grants us

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 3k(k + 1),

resulting in

tmix(ε) ≤ 3k(k + 1)

ε
.

�

We now explore the binary tree with depth k. The binary tree is generated by
attaching two vertices to every vertex of degree one; an example can be seen in
Figure 9. We then explore the mixing time of this.

Proposition 3.6. For the lazy random walk on the binary tree of depth n, we
have

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 6 · 2n.

Proof. The result can be found in Example 5.3.4 in [3]. We give the outline of
the proof here. Let h again be the distance of a node from the root node; that
is, h(v) = ρ(v, v∗). Again, we can push to the quotient Markov chain using the
height equivalence class, since transition probabilities between representatives are
coherent. Thus, we can instead just consider the Markov chain on this sequence of
numbers instead of the actual chain, with transition probabilities derived from the
lazy random walk. Then we couple based on the distance from the root; that is, if
one walker goes down, then the other walker goes down, and likewise for moving
up. Doing so gives us the upper bound of

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 6 · 2n.

This matches our intuition, since this should be much larger than the result we
found in Proposition 3.2. �
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0 1

2

5

6

3

4

7 8

Figure 10. Expansion gluing n = 3, k = 2.

However, the coupling and argument didn’t actually use the fact that there were
only two paths leading out of the root node. Suppose we glued another copy of the
binary tree of length k − 1 to the root node of the binary tree of length k. Then
similar to Proposition 3.1, we see that the mixing time is still the same.

We now introduce an iterated process for gluing copies of K3 for Proposition 3.7.
Throughout, we define an open vertex to be vertices whose degree is 2. At k = 1,
we simply have the complete graph itself. At k = 2, we glue a copy of the graph on
each vertex. At k = 3, we glue more copies along each open vertex. One can also
think of gluing these copies along the boundary of our new graph. An example of
this gluing procedure can be found in Figure 10.

One can then ask how we should expect the bound of the mixing time of the
modified lazy random walk to behave as we increase k. We use the transition matrix
introduced in Section 2; that is, we have

P (x, y) =


1
8 if y ∈ N(x),
1
8

(
4− |N(x)|

)
+ 1

2 if y = x,

0 otherwise.

Recall again that we do this so that the stationary distribution is uniform.

Proposition 3.7. For the above scenario, we have that for k > 1

tmix(ε) ≤ 104

3ε
2k − 16

ε
k − 100

3ε

Proof. Let our random walkers start anywhere on the graph. We couple first based
on the distance away from the first triangle. We change our height function to be

h(v) = min
x∈{0,1,2}

{ρ(x, v)}

where 0, 1, 2 will be the vertices on the origin, or center, triangle, as seen in Figure
10. We have then transformed our random walk on the large graph to a random
walk on {0, 1, . . . , k} such that when h(Xt) = h(Yt), we have h(Xs) = h(Ys) for all
s ≥ t. Imagine this set up on a line, with the leftmost position being the origin
triangle and the rightmost triangle being the boundary. Then the probability of
going left, or going towards the origin triangle, is 1/8, the probability of going right,
or away from the origin triangle, is 1/4, and the probability of staying in place is
5/8. We also have that trying to move left or right at the endpoints results in
staying in place respectively. We will also couple our walks so that whenever Xt

goes left, right, or stays in place, then Yt also goes left, right, or stays in place
respectively. It is sufficient then to find the expected amount of time it takes the
walker with the highest height to hit 0. Without loss of generality, take this walker
to be {Yt}.
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(0,1)

(0,0)
(1,1)
(2,2)
(3,5)
(4,6)

Figure 11. Locations and destinations of (Xt = 0, Yt = 1), with
top row being the initial states and remaining being the coupled
moves.

Let τ be the amount of time it takes for a walker to hit 0. We set fj = E(τ |X0 =
j). We have f0 = 0,

fk =
7

8
(1 + fk) +

1

8
(1 + fk−1),

and

fj =
5

8
(1 + fj) +

1

4
(1 + fj+1) +

1

8
(1 + fj−1)

for 0 < j < k.

Claim 3.8. We have

fj =
8(2j+1 − j − 2)

2j+1 − 1
+

2j+1 − 2

2j+1 − 1
fj+1.

Proof. Solving for f1 grants us

f1 =
8

3
+

2

3
f2,

as desired. Assume Claim 3.8 holds for j, 0 < j < k − 1. Then we must show the
inductive hypothesis holds for j + 1. We have

fj =
8(2j+1 − j − 2)

2j+1 − 1
+

2j+1 − 2

2j+1 − 1
fj+1

and

fj+1 =
5

8
(1 + fj1) +

1

4
(1 + fj+2) +

1

8
(1 + fj).

Substituting in appropriate values gives

fj+1 =
8(2j+2 − (j + 1)− 2)

2j+2 − 1
+

2j+2 − 2

2j+2 − 1
fj+2.

�

Claim 3.9. We have fi < fi+1 for all 0 ≤ i < k.

Proof. This is a result of Claim 3.8 and the construction itself. �

The prior claims give us

fk = 2k+4 − 16− 8k.

So the expected amount of time for the walkers to coalesce is bounded above by fk.
Now, we create another coupling. The walkers move the same direction on their

respective triangles until they reach the origin triangle; that is, once ρ(Xt, Yt) ≤ 1.
We then have that if they try to move to one of the other two vertices on the origin
triangle or stay in place, then they coalesce. If they otherwise move backwards,
then they move backwards identically. An example of this can be found in Figure
11, with reference to Figure 10. This then gives us a random walk on the graph of
their distance ρ(Xt, Yt) = {0, 1, 3, 5, . . . , 2k+1}, with absorption at 0, a 3/4 chance
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of going to 0 from 1, a 1/4 chance of going from 1 to 3, and the rest of the chain
remains identical to the quotient chain mentioned prior. To make things easier,
we’ll rewrite this instead as {0, 1, 2, 3, . . . , k, k+ 1} (the k here is important, and as
a result we cannot use a different variable here in its stead). We then want to find
the expected amount of time until they coalesce at 0. Again, we set up a series of
equations with fj = E(τ | X0 = j), and we see f0 = 0,

f1 =
3

4
+

1

4
(1 + f2),

fk+1 =
7

8
(1 + fk+1) +

1

8
(1 + fk),

and

fj =
5

8
(1 + fj) +

1

4
(1 + fj+1) +

1

8
(1 + fj−1),

for 1 < j < m+ 1.

Claim 3.10. We have

fj =
56 · 2j−1 − 24j − 28

7 · 2j−1 − 3
+

(
7(2j−1)− 6

7(2j−1)− 3

)
fj+1

for 0 < j < k.

Proof. We proceed by induction again. We see that substituting in j = 1 gives us

f1 = 1 +
1

4
f2,

as required. We now assume Claim 3.10 holds for j, and show it holds for j + 1.
We have

fj =
56 · 2j−1 − 24j − 28

7 · 2j−1 − 3
+

(
7(2j−1)− 6

7(2j−1)− 3

)
fj+1

and

fj+1 =
5

8
(1 + fj+1) +

1

4
(1 + fj+2) +

1

8
(1 + fj).

Substituting in the appropriate values and solving for fj+1, we have

fj+1 =
56 · 2j − 24(j + 1)− 28

7 · 2j − 3
+

(
7(2j)− 6

7(2j)− 3

)
fj+2

as desired. �

Claim 3.11. We again get fj < fj+1 for 0 ≤ j < k + 1.

Proof. Again, a result from the prior claim and the construction. �

We find that

fk+1 =
112

3
2k−1 − 8k − 52

3
.

So the expected time for the two random walkers to coalesce once they’ve coupled
using the prior couple is bounded by fk+1. Hence, if τ is the amount of time for
them to couple, we’ve found that

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 104

3
2k − 16k − 100

3
,

where k is the number of times we’ve iterated the gluing procedure. We get then

tmix(ε) ≤ 104

3ε
2k − 16

ε
k − 100

3ε

as desired. �
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(1,0,0)

(1,1,0)(0,1,0)

(0,0,0)

(0,0,1) (1,0,1)

(0,1,1) (1,1,1)

Figure 12. 3-dimensional hypercube.

Figure 13. 3-dimensional triangulated hypercube.

4. Mixing Times on Nice Classes of 3-Regular Graphs

Consider the space of binary strings of length n; that is, let

Ω = {0, 1}n = {v = (v1, . . . , vn) : vi ∈ {0, 1}} .

Definition 4.1. We define the Hamming weight on this space to be a function
H : Ω→ {0, . . . , n} such that

H(v) =

n∑
i=1

vi.

In other words, we sum the components of this vector.

Definition 4.2. We form the n-dimensional Hypercube by taking the space Ω
to be the set of vertices for our graph, and we connect an edge between v, w ∈ Ω if

|H(v)−H(w)| = 1.

We have that the 3-dimensional Hypercube forms a very nice 3-regular graph,
in that it is vertex transitive.

Definition 4.3. A graph G is vertex transitive if, for any two vertices v1, v2,
there is some map f : G→ G preserving edge-vertex connectivity (also referred to
as a graph automorphism) with

f(v1) = v2.

Remark 4.4. All of the graphs mentioned in this section will be vertex transitive.
This may be important (see the Question 4.23), however we do not really use this
property in finding any of the mixing times themselves. When referring to “nice
class of graphs,” we mean a family of vertex transitive 3-regular graphs which are
easily describable.
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→

Figure 14. Triangulating a vertex on a 3-regular graph

An example of this graph can be seen in Figure 12. The mixing time of the lazy
random walk on this graph is well understood to be

tmix ≤ n log(n)− n log(ε)

as seen in Example 5.3.1 in [3]. We would like to understand the behavior of
the modified lazy random walk on the triangulated 3-dimensional hypercube.
By triangulated, we mean replacing each vertex with a copy of K3 and attaching
corresponding edges. An example can be seen of the process can be seen in Figures
14 and the triangulated version of the 3-dimensional hypercube can be seen in 13.

Proposition 4.5. For the lazy random walk on the triangulated 3-dimensional
hypercube, we have

tmix(ε) ≤ 42

ε
.

Proof. Recall that the lazy random walk on this graph will be

P (x, y) =


1
2 if x = y,
1
6 if y ∈ N(x),

0 otherwise.

Notice that the vertices on our triangle correspond to dimensions, as can be seen
in Figure 13. That is, we have that the blue vertices correspond to moving in and
out, the red vertices correspond to moving up and down, and the green vertices
correspond to moving left and right in Figure 13. Assume that our walkers do not
match in any dimensions at their start. Then the expected amount of time until
they match in some dimension is a geometric random variable with a probability
of success being 1/6. The expected time for this is then 6. Now, our walkers
will move together in the dimension that they have matched up in, and will move
independently on either two dimensions. We now want to measure the expected
amount of time until our walkers match in another dimension. We now have three
states to consider; if our walkers are on the vertex color they have matched in, if
they are on a new color they have not yet matched in, and if they have coalesced in a
new color or dimension. We denote these by 2, 1, and 0 respectively. Doing so now
transforms our Markov chain to a walk on {0, 1, 2}. Let τ ′ be the amount of time it
takes until our walker on this new chain reaches 0. Then we set fi = E(τ ′ | X0 = i),
giving us f0 = 0,

f1 =
1

6
+

2

3
(1 + f1) +

1

6
(1 + f2),

and

f2 =
2

3
(1 + f2) +

1

3
(1 + f1).

Solving this sequence of equations gives f2 = 12 as our upper bound for this portion.
Now with our walkers matching in 2 dimensions, we want to see how long it takes
until they match in the third, and therefore coalesce. We again have the three
options we had before; our walkers are on a vertex in which they already match
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Figure 15. Prism graph of size 10

in dimension, they are on a vertex which they do not match in dimension, or they
have coalesced in this final dimension. Again, we represent these states as 2, 1, and
0. We have that our Markov chain is a walk on {0, 1, 2}, with 0 as the absorbing
state. Using the same notation as before, we have f0 = 0,

f1 =
1

6
+

1

3
(1 + f2) +

1

2
(1 + f1),

and

f2 =
5

6
(1 + f2) +

1

6
(1 + f1).

Solving this series of equations gives us f2 = 24, and so we have an upper bound of
24. If τ is the amount of time until the walkers coalesce, then we have a bound of

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 6 + 12 + 24 = 42

as desired. �

This then begs the question of whether or not there is some relation between
the mixing time of the modified random walk on the triangulated graph and the
mixing time of the modified walk on the 3-regular graphs. To explore this, we first
study the prism graph.

Definition 4.6. The prism graph on 2n vertices is constructed by taking two
cycles of length n and attaching edges between corresponding vertices. Notationally,
we have G = (V,E) is the prism graph if

V = {(a, b) | a ∈ {0, 1}, b ∈ {0, . . . , n− 1}},

E = {((a, b), (c, d)) | a = c, b = d± 1(mod n)} .
An example of a prism graph can be seen in Figures 12 and 15.

Proposition 4.7. For the lazy random walk on the prism graph of size n, we have

tmix ≤
3n2

16ε
+

6

ε

Proof. We first couple based on whether our walkers are both on the inner or
outer cycles. Flipping a coin to decide which walker moves and letting them move
wherever possible, we see that this it is a geometric random variable until our
walkers match in cycle. Since there is a probability of 1/6 of the walker moving
into the same cycle at each step, we have that the expected amount of time is 6. It
is now simply a random walk on the cycle with a higher chance of staying in place
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Figure 16. Möbius ladder graph of size 10

(2/3 chance of staying in place, and 1/6 chance of going left or right). Running
through the process, we have

fk = 3k +
k

k + 1
fk+1

leading us to have

fk = 3k
(n

2
− k
)
.

Maximizing this gives

max
x,y∈Ω

E(τ | X0 = y, Y0 = y) ≤ 3

16
n2 + 6

as desired. �

This argument lets us also find the mixing time of the Möbius ladder graph.

Definition 4.8. The Möbius ladder graph is formed by doing the same con-
struction as the prism graph, except there’s a twist at the bottom. Notationally,
we have G = (V,E) is the Möbius ladder graph of size 2n if

V = {(a, b) | a ∈ {0, 1}, b ∈ {0, . . . , n− 1}},
E = {((a, b), (c, d)) | a = b and b = d± 1(mod n), b ∈ {1, . . . , n− 2}

or a = 1− b and b = d+ 1(mod n) if d = n− 1, b = d− 1(mod n) if d = 0}.
An example can be seen in Figure 16. Since the Möbius ladder graph can be
unwound, as seen in Figure 17, we could alternatively identify this as

V = {0, . . . , 2n− 1}
E = {(a, b) | a = b± 1(mod 2n) or a = b± n(mod 2n)} .

Corollary 4.9. For the modified lazy random walk on the Möbius ladder graph,
we have that the mixing time is

tmix ≤
3n2

16ε
+

6

ε
.

Proof. Notice that the Möbius ladder graph can be unwound to get the circulant
graph, as seen in Figure 17. We identify two vertices across from one another to
be in the same class, that is, vertices v1, v2 ∈ V are in the same class if v1 =
v2 + n/2(mod n). This pushes our Markov chain to its quotient Markov chain.
We see we have a cycle on n/2, with modified probability of staying in place as in
Proposition 4.7. Moreover, once coupled in class, we just need to couple in position
itself. Flip a coin and move the walker; if it jumps across, we have the walkers
coalesce and we win. Otherwise, move the other walkers so that they are still in the
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Figure 17. Unwound Möbius ladder graph of size 10.

Figure 18. Triangulated cycle distance. Notice that we went from
3 vertices to 3(3) + 1 = 10 vertices.

same class. Then the probability of the walkers coalescing is a geometric random
variable with probability 1/6, and so we get the same constant factor of 6 as an
upper bound for this latter bound. Summing our two results together gives the
result. �

Proposition 4.10. For the lazy random walk on the triangulated prism graph of
size n, we have

tmix(ε) ≤ 15n2

16ε
+

87

5ε
.

Proof. We again want to start by coupling based on which cycle (either inner or
outer) we are in. Letting the walkers move independently of one another, we wait
until they occupy the same location relative to their triangles. This will take 6
steps, since this is just a geometric random variable. Couple the walkers so that
they now move the same direction on their relative triangles. We now wait until
they reach the vertex corresponding to moving either inwards or outwards, and then
couple it so that there’s a 1/3 chance they move to the same level, 1/3 chance they
stay in place, and 1/3 chance they move backwards together. On the remaining
two nodes, there is a 1/6 chance they move to the top node and a 5/6 chance they
stay on the base of the triangle. Solving the equations gives us that this will take
15 steps.

Now that we have they are in the same cycle, we have that they will stay in the
same cycle. We now focus on the lazy random walk on the triangulated cycle, with
the addendum that on the vertices of degree 2 (the top vertices of the triangles) we
have a 2/3 chance of staying in place. We’ll couple so that they move to the top
vertex together, move independent of one another on the bottom vertices (flip a
coin and move either left or right), and otherwise move to opposite locations on the
base from the top vertex. Using the same philosophy as with the normal cycle, we
instead look at the Markov chain constructed by the clockwise distances between
the vertices, with absorption at 0 and 3n+ 1 (here, 3n+ 1 since there are now 3n
vertices and we add an extra vertex to denote coalescing). An example of this can
be seen in Figure 18.

Claim 4.11. Let gi be the expected value of being absorbed starting at the right
most vertex in the ith triangle, hi the left most vertex on the ith triangle, and fi



26 JAMES MARSHALL REBER

on the top most vertex on the i+ 1th triangle. Then we have

gi =
18 + 45(i− 1)

5
+

5i− 3

5i
hi+1.

Proof. This can be shown using the usual inductive argument. In the case of i = 1,
we get

g1 =
18

5
+

2

5
h2

by simply substituting in the appropriate values. Assuming it holds for i, we simply
need to substitute in appropriate values on this chain and we should get the result.
So we have

gi =
18 + 45(i− 1)

5
+

5i− 3

5i
hi,

hi =
1

6
(1 + gi) +

1

6
(1 + fi) +

1

6
(1 + gi+1) +

1

2
(1 + hi),

and

fi =
1

6
(1 + hi) +

1

6
(1 + gi+1) +

2

3
(1 + fi).

Solving all of these variables and then solving for

gi+1 =
1

6
(1 + hi) +

1

6
(1 + fi) +

1

6
(1 + gi+2) +

1

2
(1 + gi+1)

gives us

gi+1 =
18 + 45i

5
+

5i+ 2

5i+ 5
hi+1.

as desired. �

Claim 4.12. Letting k = n/2, we have

gl =
3

5
(5k − 5l + 3)(5l − 3).

Proof. This holds for the base case l = k. Assume it holds for i. We must show it
holds for i− 1. Going through the motions, we have

fi =
1

6
(1 + gi) +

1

6
(1 + hi) +

2

3
(1 + fi)

which solving gives us

fi =
3

10
+

15

2
ki− 9

2
k − 15

2
i2 + 9i+

1

2
hi.

Solving

hi =
1

6
(1 + gi−1) +

1

6
(1 + fi) +

1

6
(1 + gi) +

1

2
hi

gives us

hi =
9

25
+ 9ki− 27

5
k − 9i2 +

54

5
i+

2

5
gi−1.

Finally, using the prior claim, we have

gi−1 =
18 + 45 ((i− 1)− 1)

5
+

5(i− 1)− 3

5(i− 1)
hi.

Substituting in the hi we just found, we get

gi−1 = −3

5
(5i− 5k − 8)(5i− 8),

which satisfies the induction hypothesis. �
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Figure 19. The generalized Petersen graph GP(6, 2).

This then also gives us

hl = 15(l − 1)(k − l + 1)

and

fl = −36

5
+ 15 kl − 12 k − 15 l2 + 24l

for free by substitution. The top most node will be furthest away, so maximizing
fl with respect to l gives

15

16
n2 +

12

5
.

Adding in the constant of 21 we found earlier gives us

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 15

16
n2 +

87

5
.

�

Corollary 4.13. For the modified lazy random walk on the triangulated Möbius
ladder graph, we have that the mixing time is

tmix(ε) ≤ 15n2

16ε
+ 875ε.

Proof. The argument is analogous to the argument found in Corollary 4.9. �

We then can also explore another nice class of 3-regular graphs called general-
ized Petersen graphs, denoted by GP(n, k).

Definition 4.14. The generalized Petersen graph is constructed by having a cycle
graph of size n on the outside connected to the star polygon of size n with k
vertices between a vertex and its neighbor. Notice that we require n ≥ 3 and
1 ≤ k ≤ b(n − 1)/2c. Notationally, we have again that a graph G = (V,E) is the
generalized Petersen graph G(n, k) if

V = {(a, b) | a ∈ {0, 1}, b ∈ {0, . . . , n− 1}},

E = {((a, b), (c, d)) | a 6= c, b = d or

a = c = 1, b = d ± 1(mod n) or a = c = 0, b = d ± k(mod n)}.

Prism graphs are an example of GP (n, 1) for example. Another example can be
seen in Figure 19. We can use a similar sort of coupling procedure as we used with
the prism and Möbius graphs to find a bound for GP(n, k).
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Figure 20. The cycle with extra nodes.

Proposition 4.15. For the lazy random walk on GP(n, k), we have that the mixing
time is

tmix ≤
3d2

2ε
+

3

2ε

(
n

d

)2

+
18

ε
,

where d = n/ gcd(n, k).

Proof. We first couple our walkers so that they have the same height; i.e., they
are either on the inner cycles or on the outer cycle. Letting the walkers move
independently of one another, we find that the probability of them coalescing with
regards to inner or outer cycle, or height, is a geometric random variable with
probability 1/6. The expected value is then 6. Once the walkers share the same
height, they will always share the same height. The number of different cycles on
the inner part is d = n/ gcd(n, k), since we’re looking at the order of k in Z/nZ.
We’ll have our walkers move together on the inner part (so they move left, right,
or outward together), and on the outer part they’ll move independently of one
another. Then we see that this gives us the quotient Markov chain on the cycle n/d
with extra nodes coming outward. An example of this can be seen in Figure 20.
We can use the same philosophy as on the normal cycle; shifting this to a Markov
chain on {0, . . . , n/d} with absorbing 0 and n/d being absorbing states. Focusing
only on the nodes on the ‘inside’ portion, we set up a series of equations again.

Claim 4.16. If τ is the amount of time it takes to be absorbed, letting fj =
E(τ | X0 = j), we have

fj = 6j +
j

j + 1
fj+1,

1 < j < n/d− 1.

Proof. Notice that we have

f1 =
1

6
(1 + 0) +

1

6
(1 + f2) +

1

6
(1 + g1) +

1

2
(1 + f1),

where gi here denotes the outer nodes. For gi, we have

gi =
5

6
(1 + gi) +

1

6
(1 + fi),

and solving this gives

gi = 6 + fi.

Substituting in all the values gives

f1 = 6 +
1

2
f2,

so we have Claim 4.16 holds for the base case. Now, assume the inductive hypothesis
holds for j. We show it holds for j + 1. We set up

fj+1 =
1

6
(1 + fj) +

1

6
(1 + gj) +

1

6
(1 + fj+2) +

1

2
(1 + fj).
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0 1

2

3

4 5

Figure 21. Triangles in the Cycle

Substituting in values and solving gives

fj+1 = 6(j + 1) +
j + 1

j + 2
fj+2

as desired. �

Claim 4.17. We have

fj = 6j

(
n

d
− j
)
.

Proof. From the prior claim, we have

fn/d−1 = 6
(n
d
− 1
)
.

Assume Claim 4.17 holds by induction for i, and we want to show it holds for i−1.
Then we have

fi = 6i
(n
d
− i
)

and

fi−1 = 6(i− 1) +
i− 1

i
fi.

Substituting in the values gives us

fi−1 = 6(i− 1)
(n
d
− i+ 1

)
as desired. �

Maximizing this, and using the fact that gi > fi for all i, we have an upper
bound of (3/2)(n/d)2 + 6. Now that the walkers are in the same inner cycle (since
there are d inner cycles that we could possibly be in), we can couple with respect
to the inner cycle, measuring how long it takes for the walkers to coalesce on their
respective inner cycle. However, this is just the same process as in Claims 4.16 and
4.17, replacing n/d with d. Once we have this, we sum everything together to see
that

d(t) ≤ 3

2t

(
n

d

)2

+
3d2

2t
+

18

t
.

as desired. �

Proposition 4.18. For the lazy random walk on the triangulated GP(n, k), we
have that the mixing time is

tmix ≤
15d2

2ε
+

15

2ε

(
n

d

)2

+
9n

dε
+

9d

ε
+

96

ε
.
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Proof. We will walk through roughly the same steps as before. We first couple
our walkers so they are in the same position in their relative triangle. Moving
our walkers independently, this is a geometric random variable and so it takes on
average 6 steps. We then want to couple our walkers so that they are in the same
‘height’ on their respective triangle duo. See Figure 21 for an example. We couple
so that if our walkers move to the top of their respective triangles (2 or 3 in Figure
21), then they move together. Once they are at the top of their triangles, then
they coalesce with probability 1/3 (one hops and the other stays in place), stay
with probability 1/3, and move downward with probability 1/3. and once they are
coupled in height then they stay coupled in height. Setting up a series of recursive
functions, we find that this is bounded by 15. Once coupled with regards to height,
we then want to couple based on which inner cycle we are in, as in the proof of
Proposition 12.

This gives us a cycle of length n/d of triangles with triangles above it as well.
An example of what each state looks like can be seen in Figure 21 again. We then
would like to find the maximum expected amount of time it takes to coalesce on
the cycle. Let the walkers move together everywhere except for the base of the
triangle and left and right independently on the base of the triangle (that is, one
stays in place while the other moves left or right). When moving downward from
the top vertex of the base triangle, the walkers move to opposing spaces. We can
then preform a similar procedure as in the proof of Proposition 11, with now the
maximum expected time being at either of the top two vertices.

Claim 4.19. Take fi to be the far right vertex on the base of the ith triangle (for
example, 1 in Figure 21) and hi the left vertex on the base of the ith triangle. Then
we have

fi = 18i+
8 + 5(i− 1)− 3

8 + 5(i− 1)
hi+1.

Proof. We proceed by induction. For the base case, we just plug in values to get

f1 = 18 +
5

8
h2.

Let ki be the vertex above hi and fi (for example, 2 in Figure 21), ai be the vertex
above that (for example, see 3 in Figure 21), di and gi the vertices on the top left
and right respectively (for example, see 4 and 5 respectively in Figure 21). Now,
we assume Claim 4.19 holds for i and show it holds for i + 1. Using our series of
equation, we have

fi = 18i+
8 + 5(i− 1)− 3

8 + 5(i− 1)
hi+1,

hi+1 =
1

6
(1 + fi+1) +

1

6
(1 + fi) +

1

6
(1 + ki+1) +

1

2
(1 + hi+1),

ki+1 =
1

6
(1 + hi+1) +

1

6
(1 + fi+1) +

1

6
(1 + ai+1) +

1

2
(1 + ki+1),

ai+1 =
1

6
(1 + ki+1) +

1

6
(1 + di+1) +

1

6
(1 + gi+1) +

1

2
(1 + ai+1),

di+1 =
1

6
(1 + ai+1) +

1

3
(1 + gi+1) +

1

2
(1 + di+1),

gi+1 =
1

6
(1 + ai+1) +

1

3
(1 + di+1) +

1

2
(1 + gi+1),

fi+1 =
1

6
(1 + hi+1) +

1

6
(1 + ki+1) +

1

6
(1 + hi+2) +

1

2
(1 + fi+1).

Solving and substituting in values gives us

fi+1 = 18(i+ 1) +
5 + 5i

8 + 5i
hi+2
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as desired. �

Claim 4.20. Without loss of generality, take gi be the top right vertex of the ith

triangle (for example, 5 in Figure 21), and take fi to be the far right vertex on the
base (for example, 1 in Figure 21). Then we have

gi =
198 + 30(i− 1)

5
+

5i− 1

5i
fi.

Proof. Manually going through, we see we have

g1 =
198

5
+

4

5
f1.

Using the proof from the prior claim, we see that

gi+1 =
198 + 30(i)

5
+

5(i+ 1)− 1

5(i+ 1)
fi+1

as desired. �

Claim 4.21. We have

fi = 6i

(
5

(
n

d

)
− 5i+ 3

)
.

Proof. Let α = n/d = gcd(n, d) for notational simplicity. We have hα+1 = 0, and
so it follows that fα = 18α, as desired from Claim 4.19. Now we check it holds for
induction. Assume it holds for i + 1, then we want to show it holds for i. Then
using the values we found from the proof of Claim 4.19, we substitute in

fi+1 = 6(i+ 1) (5α− 5(i+ 1) + 3)

and we see that

fi = 6i(5α− 5i+ 3)

as desired. �

Claim 4.22. We have

gi = −30i2 + (30α+ 30) i− 6α+ 30

Proof. A consequence of Claims 4.20 and 4.21. �

Maximizing gi with respect to this gives us

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 15

2

(
n

d

)2

+ 9
n

d
+

75

2
.

As in Proposition 12, we repeat this process for the inner triangles, with coalesc-
ing here now meaning our walkers coalesce in the larger triangle. Repeating this
procedure now gives

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 15

2
d2 + 9d2 +

75

2
.

We then sum these together along with our constant value to get our result. �

In the prism graph, Möbius ladder graph, and generalized Petersen graph, we
see that (fixing k) the triangulated version is asymptotically 5 times larger than
the non-triangulated version of the graph. This then leads us to a few questions.

Question 4.23. For vertex transitive 3-regular graphs, is the mixing time of the
triangulated 3-regular graph at most asymptotically 5 times larger than the upper
bound of the mixing time of the non-triangulated version?
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Question 4.24. For all 3-regular graphs, is the mixing time of the triangulated
3-regular graph always asymptotically 5 times larger than the upper bound of the
mixing time of the non-triangulated version?

Question 4.25. Can we find similar results for the lower bounds on these mixing
times?

Question 4.26. Are these bounds tight?

Further research on this could explore these questions. Propositions 4.7, 4.10,
4.15, and 4.18 all give some evidence towards Question 4.1. Being able to classify
graphs like the Heawood and Franklin graph may provide further evidence or coun-
terexamples for Question 4.1. For Questions 4.2 and 4.3, one may want to explore
3-regular graphs with large bottlenecks. It seems like vertex transitivity is a re-
quired property for this to work based on how the couplings in the prior examples
worked, so explicitly finding a family of 3-regular graphs which are not vertex tran-
sitive and determining the asymptotics of the mixing time for the non-triangulated
and triangulated version may provide counter examples for Question 4.2. Finally,
methods other than coupling may shed some light on Question 4.4.

5. Appendix

Throughout, we mention things like Gambler’s ruin and the mixing time on the
cycle of length n. While these facts can be found in most textbooks on Markov
chains and mixing times (see [2], [3], [4]), we place them here for convenience.

Proposition 5.1 (Fair Gambler’s Ruin). If a Gambler is betting 1 dollar on flips
of a fair coin, and must leave the game if they run out of money or reach n dollars,
then we have

E(τ | X0 = k) = k(n− k),

where τ is the amount of time it takes to reach 0 or n.

Proof. Let fi = E(τ | X0 = i). Then we have f0 = 0 = fn, and

fi =
1

2
(1 + fi−1) +

1

2
(1 + fi+1).

This leads us to the following claim.

Claim 5.2. We have

fi = i+
i

i+ 1
fi+1

for 0 < i < n.

Proof. We proceed by induction. For the base case, we have

f1 =
1

2
(1 + 0) +

1

2
(1 + f2)

and so simplifying gives us

f1 = 1 +
1

2
f2.

Assume it holds for i. Then we have

fi+1 =
1

2
(1 + fi) +

1

2
(1 + fi+2).

Substituting in fi and solving for fi+1 gives

fi+1 = i+ 1 +
i+ 1

i+ 2
fi+2

as desired. �
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We now need to establish the claim by induction. For the base case, we have

fn−1 = n− 1 +
n− 1

n
(0) = n− 1 = (n− 1)

(
n− (n− 1)

)
.

Assume it holds for k; that is,

fk = k(n− k).

Then we have

fk−1 = k − 1 +
k − 1

k
fk.

By the prior claim, we get

fk−1 = k − 1 +
k − 1

k

(
k(n− k)

)
= k − 1 + (n− k)(k − 1)

=
(
1 + (n− k)

)
(k − 1) = (k − 1)

(
n− (k − 1)

)
as desired. So the inductive hypothesis holds, and we get

fk = k(n− k)

for all 0 < k < n as desired. In particular, maximizing this gives

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ n2

4
.

�

Proposition 5.3 (Mixing Time of the Cycle). We have that the mixing time on
the cycle Z/nZ is bounded above by

tmix(ε) ≤ n2

4ε
.

Proof. Our coupling procedure is as follows: flip a fair coin to determine which
walker we move. Then, flip another fair coin to determine whether the walker
moves left or right. We measure the clockwise distance between the two walkers
after each step. The coupling procedure then shifts us to a walk on the chain
{0 . . . , n}, with 0 and n being absorbing states and transition probabilities being
1/2. We can then use Proposition 5.1 to determine that

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ n2

4
,

and so using Theorem 1.20 we get

tmix ≤
n2

4ε
.

�
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